1
|
Li L, Chen X, Li T, Sun B, Zhang B, Zhang W, Wu J, Cui M, Wu G. Integrated analysis and single-cell sequencing of mitochondrial metabolism related gene molecular subtype and diagnostic model in ulcerative colitis. PLoS One 2025; 20:e0320010. [PMID: 40153427 PMCID: PMC11952253 DOI: 10.1371/journal.pone.0320010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/11/2025] [Indexed: 03/30/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease that seriously affects the life expectancy of patients. Although increasingly sophisticated combinations of drugs can alleviate symptoms, 10-20% of patients still do not respond well. Therefore, it is necessary to further explore the pathogenesis and potential biomarkers of UC. Many clues have suggested the important value of mitochondrial metabolism in UC, but its role and related targets need to be further explored. By public database data, we identified differentially expressed mitochondrial metabolism related genes (MMRG) in UC. Subsequently, we identified biomarkers associated with MMRG based on a machine learning approach. After classifying the MMRG-associated molecular subtypes of UC, we comprehensively analyzed the MMRG biomarkers and the relationship between the MMRG molecular subtypes and immune infiltration characteristics. Single-cell sequencing analysis showed significant expression pattern of MMRG signatures in different cell subtypes. qRT-PCR and western blot further confirmed the abnormal expressions of selected genes in vitro. Our findings provided a new perspective on the role of MMRG in UC.
Collapse
Affiliation(s)
- Li Li
- Department of Endocrinology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyao Chen
- Department of Anorectal Section, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tao Li
- Department of Anorectal Section, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Bing Sun
- Department of Anorectal Section, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Bo Zhang
- Department of Anorectal Section, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Weifeng Zhang
- Department of Anorectal Section, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junbo Wu
- Department of Colorectal Surgery, Hengyang Central Hospital, Hengyang, China
| | - Meng Cui
- Department of Anorectal Section, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Guoliang Wu
- Department of Anorectal Section, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Ouyang XM, Lin JH, Lin Y, Zhao XL, Huo YN, Liang LY, Huang YD, Xie GJ, Mi P, Ye ZY, Guleng B. The SERPINB4 gene mutation identified in twin patients with Crohn's disease impaires the intestinal epithelial cell functions. Sci Rep 2025; 15:2638. [PMID: 39838210 PMCID: PMC11751486 DOI: 10.1038/s41598-025-87280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/17/2025] [Indexed: 01/23/2025] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory autoimmune disease of unknown etiology. To identify new targets related to the initiation of CD, we screened a pair of twins with CD, which is a rare phenomenon in the Chinese population, for genetic susceptibility factors. Whole-exome sequencing (WES) of these patients revealed a mutation in their SERPINB4 gene. Therefore, we studied a wider clinical cohort of patients with CD or ulcerous colitis (UC), healthy individuals, and those with a family history of CD for this mutation by Sanger sequencing. The single-nucleotide difference in the SERPINB4 gene, which was unique to the twin patients with CD, led to the substitution of lysine by a glutamic acid residue. Functional analysis indicated that this mutation of SERPINB4 inhibited the proliferation, colony formation, wound healing, and migration of intestinal epithelial cells (IECs). Furthermore, mutation of SERPINB4 induced apoptosis and activated apoptosis-related proteins in IECs, and a caspase inhibitor significantly reduced these effects. Transcriptome sequencing revealed that the expression of genes encoding proinflammatory proteins (IL1B, IL6, IL17, IL24, CCL2, and CXCR2) and key proteins in the immune response (S100A9, MMP3, and MYC) was significantly upregulated during SERPINB4 mutant-induced apoptosis. Thus, the heterozygous SERPINB4 gene mutation causes the dysfunction of IECs, which would disrupt the intestinal epithelial barrier and contribute to the development of intestinal inflammation. The activation of SERPINB4 might represent a novel therapeutic target for inflammatory bowel disease.
Collapse
Affiliation(s)
- Xiao-Mei Ouyang
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Jun-Hui Lin
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Ying Lin
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Xian-Ling Zhao
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Ya-Ni Huo
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Lai-Ying Liang
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Yong-Dong Huang
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Gui-Jing Xie
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Peng Mi
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Zhen-Yu Ye
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Bayasi Guleng
- Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China.
- Cancer Research Center, Department of Digestive Disease and Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, China.
| |
Collapse
|
3
|
Xia X, Huang Z, Xu C, Fu H, Wang S, Tian J, Rui K. Regulation of intestinal tissue‑resident memory T cells: a potential target for inflammatory bowel disease. Cell Commun Signal 2024; 22:610. [PMID: 39695803 DOI: 10.1186/s12964-024-01984-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
Tissue-resident memory T (TRM) cells are populations which settle down in non-lymphoid tissues instead of returning to secondary lymph organs after the antigen presentation. These cells can provide rapid on-site immune protection as well as long-term tissue damage. It is reported that TRM cells from small intestine and colon exhibited distinctive patterns of cytokine and granzyme expression along with substantial transcriptional and functional heterogeneity. In this review, we focus on the reason why they lodge in intestinal tract, their developmental plasticity of going back to to circulation, as well as their regulators associated with retention, maintenance, exhaustion and metabolism. We also elaborate their role in the inflammatory bowel disease (IBD) and discuss the potential therapeutic strategies targeting TRM cells.
Collapse
Affiliation(s)
- Xin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhanjun Huang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chengcheng Xu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hailong Fu
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
4
|
Joung JY, Choi K, Lee JH, Oh NS. Protective Potential of Limosilactobacillus fermentum Strains and Their Mixture on Inflammatory Bowel Disease via Regulating Gut Microbiota in Mice. J Microbiol Biotechnol 2024; 35:e2410009. [PMID: 39849930 PMCID: PMC11813365 DOI: 10.4014/jmb.2410.10009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025]
Abstract
The aim of this study is to investigate the protective potential of Limosilactobacillus fermentum IM57, IR51, and IR62 strains, isolated from infant feces, and their mixture against inflammatory bowel disease (IBD). The strains exhibited robust antioxidant activities and anti-inflammatory properties in RAW 264.7 cells. Subsequently, the potential protective effects of each of these three strains, along with their mixture, were evaluated in a murine colitis model induced by dextran sodium sulfate (DSS). Noteworthy improvements in physiological parameters such as body weight, disease activity index, and colon length were observed in mice treated with the mixture followed by IR62. Additionally, administration of each strain and the mixture mitigated DSS-induced changes in gut microbiota composition with increased abundance of Lactobacillus, Bifidobacterium, Ruminococcus, and Muribaculum, compared to DSS-treated mice. Interestingly, the abundance of Muribaculum increased approximately 2.4-fold after administration of the mixture compared to before administration. Additionally, the concentration of short-chain fatty acids (SCFAs) was significantly reduced in DSS-treated group compared to the control group, while the mixture treatment group had the highest concentration of SCFAs. Furthermore, due to these changes in microbiota and the leading metabolites induced by treatment of the mixture, DSS-induced dysregulation of inflammationand barrier function-related mRNA expressions was significantly inhibited in the group fed with the mixture. Consequently, this study indicates that the multi-strain mixture of L. fermentum strains may play a crucial role in modulating gut microbiota, thereby alleviating IBD through the synergistic effect of the individual effects of the three strains.
Collapse
Affiliation(s)
- Jae Yeon Joung
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Kayoung Choi
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
5
|
Vo DK, Trinh KTL. Emerging Biomarkers in Metabolomics: Advancements in Precision Health and Disease Diagnosis. Int J Mol Sci 2024; 25:13190. [PMID: 39684900 DOI: 10.3390/ijms252313190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Metabolomics has come to the fore as an efficient tool in the search for biomarkers that are critical for precision health approaches and improved diagnostics. This review will outline recent advances in biomarker discovery based on metabolomics, focusing on metabolomics biomarkers reported in cancer, neurodegenerative disorders, cardiovascular diseases, and metabolic health. In cancer, metabolomics provides evidence for unique oncometabolites that are important for early disease detection and monitoring of treatment responses. Metabolite profiling for conditions such as neurodegenerative and mental health disorders can offer early diagnosis and mechanisms into the disease especially in Alzheimer's and Parkinson's diseases. In addition to these, lipid biomarkers and other metabolites relating to cardiovascular and metabolic disorders are promising for patient stratification and personalized treatment. The gut microbiome and environmental exposure also feature among the influential factors in biomarker discovery because they sculpt individual metabolic profiles, impacting overall health. Further, we discuss technological advances in metabolomics, current clinical applications, and the challenges faced by metabolomics biomarker validation toward precision medicine. Finally, this review discusses future opportunities regarding the integration of metabolomics into routine healthcare to enable preventive and personalized approaches.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Youssef A, Rehman AU, Elebasy M, Roper J, Sheikh SZ, Karhausen J, Yang W, Ulloa L. Vagal stimulation ameliorates murine colitis by regulating SUMOylation. Sci Transl Med 2024; 16:eadl2184. [PMID: 39565873 DOI: 10.1126/scitranslmed.adl2184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/21/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
Inflammatory bowel diseases (IBDs) are chronic debilitating conditions without cure, the etiologies of which are unknown, that shorten the lifespans of 7 million patients worldwide by nearly 10%. Here, we found that decreased autonomic parasympathetic tone resulted in increased IBD susceptibility and mortality in mouse models of disease. Conversely, vagal stimulation restored neuromodulation and ameliorated colitis by inhibiting the posttranslational modification SUMOylation through a mechanism independent of the canonical interleukin-10/α7 nicotinic cholinergic vagal pathway. Colonic biopsies from patients with IBDs and mouse models showed an increase in small ubiquitin-like modifier (SUMO)2 and SUMO3 during active disease. In global genetic knockout mouse models, the deletion of Sumo3 protected against development of colitis and delayed onset of disease, whereas deletion of Sumo1 halted the progression of colitis. Bone marrow transplants from Sumo1-knockout (KO) but not Sumo3-KO mice into wild-type mice conferred protection against development of colitis. Electric stimulation of the cervical vagus nerve before the induction of colitis inhibited SUMOylation and delayed the onset of colitis in Sumo1-KO mice and resulted in milder symptoms in Sumo3-KO mice. Treatment with TAK-981, a first-in-class inhibitor of the SUMO-activating enzyme, ameliorated disease in three murine models of IBD and reduced intestinal permeability and bacterial translocation in a severe model of the disease, suggesting the potential to reduce progression to sepsis. These results reveal a pathway of vagal neuromodulation that reprograms endogenous stress-adaptive responses through inhibition of SUMOylation and suggest SUMOylation as a therapeutic target for IBD.
Collapse
Affiliation(s)
- Ayman Youssef
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ata Ur Rehman
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mohamed Elebasy
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jatin Roper
- Department of Medicine, Division of Gastroenterology, Duke University, Durham, NC 27710, USA
| | - Shehzad Z Sheikh
- University of North Carolina, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jorn Karhausen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Humanitas Research Hospital, Rozzano, MI 20089, Italy
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
Xu Y, Yan Z, Liu L. Identification of novel proteins in inflammatory bowel disease based on the gut-brain axis: a multi-omics integrated analysis. Clin Proteomics 2024; 21:59. [PMID: 39407121 PMCID: PMC11481439 DOI: 10.1186/s12014-024-09511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The gut-brain axis has garnered increasing attention, with observational studies suggesting its involvement in the disease activity and progression of inflammatory bowel disease (IBD), but the precise mechanisms remain unclear. MATERIALS AND METHODS In this study, we aimed to investigate "novel proteins" underlying IBD in the brain using a comprehensive multi-omics analysis approach. We performed integrated analyses of proteomics and transcriptomics in the human prefrontal cortex (PFC) tissue, coupled with genome-wide association studies (GWAS) of IBD, crohn's disease (CD), and ulcerative colitis (UC). This included performing protein-wide association studies (PWAS), transcriptome-wide association studies (TWAS), Mendelian randomization (MR), and colocalization analysis to identify brain proteins associated with IBD and its subtypes. RESULTS PWAS analyses identified and confirmation 9, 9, and 6 brain proteins strongly associated with IBD, CD, and UC, respectively. Subsequent MR analyses revealed that increased abundance of GPSM1, AUH, TYK2, SULT1A1, and FDPS, along with corresponding gene expression, led to decreased risk of IBD. For CD, increased abundance of FDPS, SULT1A1, and PDLIM4, along with corresponding gene expression, also decreased CD risk. Regarding UC, only increased abundance of AUH, along with corresponding gene expression, was significantly associated with decreased UC risk. Further TWAS and colocalization analyses at the transcriptome level supported strong associations of SULT1A1 and FDPS proteins with reduced risk of IBD and CD. CONCLUSION The two "novel proteins," SULT1A1 and FDPS, are strongly associated with IBD and CD, elucidating their causal relationship in reducing the risk of IBD and CD. This provides new clues for identifying the pathogenesis and potential therapeutic targets for IBD and CD.
Collapse
Affiliation(s)
- Yifeng Xu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhaoqi Yan
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liangji Liu
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
8
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 PMCID: PMC12036329 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
9
|
Shumway AJ, Shanahan MT, Hollville E, Chen K, Beasley C, Villanueva JW, Albert S, Lian G, Cure MR, Schaner M, Zhu LC, Bantumilli S, Deshmukh M, Furey TS, Sheikh SZ, Sethupathy P. Aberrant miR-29 is a predictive feature of severe phenotypes in pediatric Crohn's disease. JCI Insight 2024; 9:e168800. [PMID: 38385744 PMCID: PMC10967384 DOI: 10.1172/jci.insight.168800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/10/2024] [Indexed: 02/23/2024] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory gut disorder. Molecular mechanisms underlying the clinical heterogeneity of CD remain poorly understood. MicroRNAs (miRNAs) are important regulators of gut physiology, and several have been implicated in the pathogenesis of adult CD. However, there is a dearth of large-scale miRNA studies for pediatric CD. We hypothesized that specific miRNAs uniquely mark pediatric CD. We performed small RNA-Seq of patient-matched colon and ileum biopsies from treatment-naive pediatric patients with CD (n = 169) and a control cohort (n = 108). Comprehensive miRNA analysis revealed 58 miRNAs altered in pediatric CD. Notably, multinomial logistic regression analysis revealed that index levels of ileal miR-29 are strongly predictive of severe inflammation and stricturing. Transcriptomic analyses of transgenic mice overexpressing miR-29 show a significant reduction of the tight junction protein gene Pmp22 and classic Paneth cell markers. The dramatic loss of Paneth cells was confirmed by histologic assays. Moreover, we found that pediatric patients with CD with elevated miR-29 exhibit significantly lower Paneth cell counts, increased inflammation scores, and reduced levels of PMP22. These findings strongly indicate that miR-29 upregulation is a distinguishing feature of pediatric CD, highly predictive of severe phenotypes, and associated with inflammation and Paneth cell loss.
Collapse
Affiliation(s)
| | - Michael T. Shanahan
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | | | - Kevin Chen
- Center for Gastrointestinal Biology and Disease
- Department of Genetics
| | | | | | - Sara Albert
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | - Grace Lian
- Center for Gastrointestinal Biology and Disease
| | | | | | - Lee-Ching Zhu
- Department of Pathology and Laboratory Medicine, and
| | | | | | - Terrence S. Furey
- Center for Gastrointestinal Biology and Disease
- Department of Genetics
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shehzad Z. Sheikh
- Center for Gastrointestinal Biology and Disease
- Department of Genetics
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
de Ponthaud C, Abdalla S, Belot MP, Shao X, Penna C, Brouquet A, Bougnères P. Increased CpG methylation at the CDH1 locus in inflamed ileal mucosa of patients with Crohn disease. Clin Epigenetics 2024; 16:28. [PMID: 38355645 PMCID: PMC10865720 DOI: 10.1186/s13148-024-01631-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND E-cadherin, a major actor of cell adhesion in the intestinal barrier, is encoded by the CDH1 gene associated with susceptibility to Crohn Disease (CD) and colorectal cancer. Since epigenetic mechanisms are suspected to contribute to the multifactorial pathogenesis of CD, we studied CpG methylation at the CDH1 locus. The methylation of the CpG island (CGI) and of the 1st enhancer, two critical regulatory positions, was quantified in surgical specimens of inflamed ileal mucosa and in peripheral blood mononuclear cells (PBMC) of 21 CD patients. Sixteen patients operated on for a non-inflammatory bowel disease, although not normal controls, provided a macroscopically normal ileal mucosa and PBMC for comparison. RESULTS In ileal mucosa, 19/21 (90%) CD patients vs 8/16 control patients (50%) (p < 0.01) had a methylated CDH1 promoter CGI. In PBMC, CD patients with methylated CGI were 11/21 (52%) vs 7/16 controls (44%), respectively. Methylation in the 1st enhancer of CDH1 was also higher in the CD group for each of the studied CpGs and for their average value (45 ± 17% in CD patients vs 36 ± 17% in controls; p < 0.001). Again, methylation was comparable in PBMC. Methylation of CGI and 1st enhancer were not correlated in mucosa or PBMC. CONCLUSIONS Methylation of several CpGs at the CDH1 locus was increased in the inflamed ileal mucosa, not in the PBMC, of CD patients, suggesting the association of CDH1 methylation with ileal inflammation. Longitudinal studies will explore if this increased methylation is a risk marker for colorectal cancer.
Collapse
Affiliation(s)
- Charles de Ponthaud
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Solafah Abdalla
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Marie-Pierre Belot
- Groupe d'Études sur le Diabète, l'Obésité, la Croissance, GETDOC, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Xiaojian Shao
- Digital Technologies Research Center, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Christophe Penna
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Antoine Brouquet
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Pierre Bougnères
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France.
- Groupe d'Études sur le Diabète, l'Obésité, la Croissance, GETDOC, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France.
- MIRCEN Institute, CEA Paris-Saclay/site de Fontenay-aux-Roses, Bâtiment 56 PC 103, 18 route du Panorama, BP6 92265, Fontenay-aux-Roses Cedex, France.
| |
Collapse
|
11
|
Guo H, Tang J, Qin X, Lin M, Li M, Yang Q, Huang Z, Gao X, Chao K. A novel location classification system for Crohn's disease based on small bowel involvement: a better predictor of disease progression. Gastroenterol Rep (Oxf) 2024; 12:goae003. [PMID: 38344170 PMCID: PMC10859182 DOI: 10.1093/gastro/goae003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/05/2023] [Accepted: 12/29/2023] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Small bowel involvement is related to poor prognosis in Crohn's disease (CD), which may be a potential marker to stratify patients with a high risk of progression. This study aimed to establish a novel location classification system for CD and to develop a predictive model for disease progression. METHODS Consecutive patients with non-stricturing/non-penetrating CD were retrospectively included in the Sixth Affiliated Hospital, Sun Yat-sen University (Guangzhou, P. R. China) between January 2012 and January 2018. Patients were classified into two groups according to disease location: small bowel involvement group and isolated colon group. The primary outcome was disease progression to stricturing or penetrating phenotypes. Progression-free survival was estimated using Cox proportional hazards regression analysis and Kaplan-Meier method. RESULTS A total of 463 patients were analysed, with a median follow-up time of 55.3 months. Patients with small bowel involvement had a higher risk of disease progression than those with isolated colon disease (hazard ratio = 1.998, P = 0.007), while no differences were found between Montreal location classification and disease progression. Median progression-free survival was higher in the isolated colon group than in the small bowel involvement group (84.5 vs 77.3 months, P = 0.006). Four independent factors associated with disease progression were identified: small bowel involvement, duration of onset of >1 year, deep mucosal ulcer, and C-reactive protein levels of ≥10 mg/L (all P < 0.05). The nomogram model based on these factors showed good performance in predicting disease progression, with a C-index of 0.746 (95% confidence interval, 0.707-0.785). CONCLUSIONS Classifying CD based on small bowel involvement and isolated colon was superior to the Montreal location classification for predicting disease progression.
Collapse
Affiliation(s)
- Huili Guo
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jian Tang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiusen Qin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Minzhi Lin
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Miao Li
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Qingfan Yang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zicheng Huang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiang Gao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Kang Chao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
12
|
Bajaj A, Markandey M, Kedia S, Ahuja V. Gut bacteriome in inflammatory bowel disease: An update on recent advances. Indian J Gastroenterol 2024; 43:103-111. [PMID: 38374283 DOI: 10.1007/s12664-024-01541-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory gut disorders, majorly classified as ulcerative colitis and Crohn's disease. The complex, multifactorial etiopathogenesis of IBD involves genetic predisposition, environmental cues, aberrant mucosal immune response and a disturbed gut microbiota. Epidemiological trends, studies in gnotobiotic mice models and genome-wide association studies, identifying genes involved in microbial handling, together mount evidence in support of the gut microbiota playing a pivotal role in IBD pathogenesis. Both Crohn's disease and ulcerative colitis are characterized by severe dysbiosis of the gut microbiome, marked by an expansion of detrimental taxa and concomitant depletion of beneficial members. IBD is characterized by reduction in abundances of bacterial genera involved in production of short-chain fatty acids, bio-transformations of bile acids and synthesis of indole-based tryptophan compounds such as Faecalibacterium, Ruminococcus, Coprococcus, Dorea, Parabacteroides, Eubacterium, Oscillibacter and Prevotella and elevation in members of phyla Proteobacteria and Actinobacteria. This imbalance not only results in exaggerated immune signaling towards the microbial antigens, but also results in an altered metabolomic milieu that triggers additional inflammatory cascades. The present review provides insights into the bacterial dysbiosis observed across different intestinal sites and their metabolomic imprints participating in IBD.
Collapse
Affiliation(s)
- Aditya Bajaj
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Manasvini Markandey
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Saurabh Kedia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110 029, India.
| |
Collapse
|
13
|
Zhang Y, Wang Q, Xue H, Guo Y, Wei S, Li F, Gong L, Pan W, Jiang P. Epigenetic Regulation of Autophagy in Bone Metabolism. FUNCTION 2024; 5:zqae004. [PMID: 38486976 PMCID: PMC10935486 DOI: 10.1093/function/zqae004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024] Open
Abstract
The skeletal system is crucial for supporting bodily functions, protecting vital organs, facilitating hematopoiesis, and storing essential minerals. Skeletal homeostasis, which includes aspects such as bone density, structural integrity, and regenerative processes, is essential for normal skeletal function. Autophagy, an intricate intracellular mechanism for degrading and recycling cellular components, plays a multifaceted role in bone metabolism. It involves sequestering cellular waste, damaged proteins, and organelles within autophagosomes, which are then degraded and recycled. Autophagy's impact on bone health varies depending on factors such as regulation, cell type, environmental cues, and physiological context. Despite being traditionally considered a cytoplasmic process, autophagy is subject to transcriptional and epigenetic regulation within the nucleus. However, the precise influence of epigenetic regulation, including DNA methylation, histone modifications, and non-coding RNA expression, on cellular fate remains incompletely understood. The interplay between autophagy and epigenetic modifications adds complexity to bone cell regulation. This article provides an in-depth exploration of the intricate interplay between these two regulatory paradigms, with a focus on the epigenetic control of autophagy in bone metabolism. Such an understanding enhances our knowledge of bone metabolism-related disorders and offers insights for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yazhou Zhang
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Qianqian Wang
- Department of Pediatric Intensive Care Unit, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Hongjia Xue
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People’s Hospital, Jining 272000, China
| | - Shanshan Wei
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan 250000, China
| | - Fengfeng Li
- Department of Neurosurgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Linqiang Gong
- Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou 277500, China
| | - Weiliang Pan
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining 272000, China
| |
Collapse
|
14
|
Yang Y, Du H, Pan Y, Gong P, Yang Y, Wu F, Pan D, Xie W, Fu Z, Ni Y. Bifidobacterium animalis subsp. lactis LKM512 Alleviates Inflammatory Bowel Disease in Larval Zebrafish by Reshaping Microbiota. Biol Pharm Bull 2023; 46:1706-1713. [PMID: 37778980 DOI: 10.1248/bpb.b23-00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Inflammatory bowel disease (IBD) is a worldwide issue, and the increased incidence has brought a heavy burden to patients and society. Gut microbiota is involved in the pathogenesis of IBD, and targeting the microbiota, such as probiotics, has emerged as a potential therapy for the treatment of IBD. Here, the effect of Bifidobacterium animalis ssp. lactis LKM512 (LKM512), an anti-aging probiotic, on dextran sulfate sodium salt (DSS)-induced IBD in larval zebrafish was determined. Supplementation of LKM512 promoted the survival rate of the larvae, together with increased locomotor activities and body length. In addition, LKM512 treatment enhanced mucus secretion and alleviated intestinal injury, and these results were associated with the upregulation of mucin-related and downregulation of inflammatory markers. Moreover, LKM512 increased the diversity of the microbiota and ameliorated the dysbiosis by increasing the abundance of Bacteroidetes and Firmicutes and reducing the abundance of Proteobacteria. Specifically, the abundance of beneficial bacteria, including the short-chain fatty-acids (SCFAs)-producing genera Lachnospiraceae_NK4A136_group, Muribaculaceae, and Alloprevotella, was increased by LKM512, while the abundance of harmful genera, such as Pseudomonas, Halomonas, and Escherichia-Shigella, was reduced by LKM512. Consistent with these findings, the microbial functions related to metabolism were partly reversed by LKM512, and importantly, fermentation of short-chain fatty acids-related functions were enhanced by LKM512. Therefore, LKM512 might be one potential probiotic for the prevention and treatment of IBD, and further studies that clarify the mechanism of LKM512 would promote the application of LKM512.
Collapse
Affiliation(s)
- Yuru Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Haimei Du
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Yuxiang Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Ping Gong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Yi Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Fan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Dixin Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Weihao Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| |
Collapse
|
15
|
Ott A, Tutdibi E, Goedicke-Fritz S, Schöpe J, Zemlin M, Nourkami-Tutdibi N. Serum cytokines MCP-1 and GCS-F as potential biomarkers in pediatric inflammatory bowel disease. PLoS One 2023; 18:e0288147. [PMID: 37922289 PMCID: PMC10624322 DOI: 10.1371/journal.pone.0288147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/20/2023] [Indexed: 11/05/2023] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) with the subtypes ulcerative colitis (UC) and Crohn disease (CD), are chronic autoimmune inflammatory disorders of the gastrointestinal tract. Cytokines are associated with the development and progression in pediatric IBD. We measured cytokine levels in pediatric IBD patients to assess their potential function as biomarkers in disease assessment. METHOD In this prospective cohort study, we enrolled 33 children with IBD. All patients were in stable remission for 3 months on enrollment. Patients who developed a relapse within six months after enrollment were classified as relapsers. Blood sampling was performed at enrolment and for relapsers in relapse and post-relapse. Serum concentrations of 14 cytokines, chemokines and growth factors (IL-1α, IL-1β, IL-6, IL-12p40, IP-10, TNF-α, IFN-γ, IL-10, IL-8, MIP-1α, MCP-1, MCP-3, G-CSF, GM-CSF) were measured simultaneously using multiplex bead-based sandwich immunoassay on Luminex 100 system. RESULTS MCP-1 was significantly higher in CD patients compared to UC patients at each disease stage: stable remission (P<0.048), unstable remission (P<0.013), relapse (P<0.026) and post-relapse (P<0.024). G-CSF was significantly increased in UC patients developing a relapse and in post-relapse stage compared to UC patients in remission (P<0.02 and p<0.03, respectively). CONCLUSION MCP-1 showed potential as a diagnostic biomarker in CD patients independent of disease activity as it was able to discriminate between subtypes of pediatric IBD. In UC patients, G-CSF was significantly elevated in relapsers indicating its use and role as a potential prognostic biomarker.
Collapse
Affiliation(s)
- Andrea Ott
- Hospital for General Pediatrics and Neonatology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Erol Tutdibi
- Hospital for General Pediatrics and Neonatology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Sybelle Goedicke-Fritz
- Hospital for General Pediatrics and Neonatology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Jakob Schöpe
- Institute of Medical Biometry, Epidemiology and Medical Informatics, Saarland University, Homburg/Saar, Germany
| | - Michael Zemlin
- Hospital for General Pediatrics and Neonatology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Nasenien Nourkami-Tutdibi
- Hospital for General Pediatrics and Neonatology, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
16
|
Coates MD, Clarke K, Williams E, Jeganathan N, Yadav S, Giampetro D, Gordin V, Smith S, Vrana K, Bobb A, Gazzio TT, Tressler H, Dalessio S. Abdominal Pain in Inflammatory Bowel Disease: An Evidence-Based, Multidisciplinary Review. CROHN'S & COLITIS 360 2023; 5:otad055. [PMID: 37867930 PMCID: PMC10588456 DOI: 10.1093/crocol/otad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 10/24/2023] Open
Abstract
Abdominal pain is one of the most common and impactful symptoms associated with inflammatory bowel disease (IBD), including both Crohn's disease and ulcerative colitis. A great deal of research has been undertaken over the past several years to improve our understanding and to optimize management of this issue. Unfortunately, there is still significant confusion about the underlying pathophysiology of abdominal pain in these conditions and the evidence underlying treatment options in this context. There is also a relative paucity of comprehensive reviews on this topic, including those that simultaneously evaluate pharmacological and nonpharmacological therapeutic options. In this review, our multidisciplinary team examines evidence for various currently available medical, surgical, and other analgesic options to manage abdominal pain in IBD.
Collapse
Affiliation(s)
- Matthew D Coates
- Department of Medicine, Division of Gastroenterology & Hepatology, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Kofi Clarke
- Department of Medicine, Division of Gastroenterology & Hepatology, Penn State College of Medicine, Hershey, PA, USA
| | - Emmanuelle Williams
- Department of Medicine, Division of Gastroenterology & Hepatology, Penn State College of Medicine, Hershey, PA, USA
| | - Nimalan Jeganathan
- Department of Surgery, Division of Colorectal Surgery, Penn State College of Medicine, Hershey, PA, USA
| | - Sanjay Yadav
- Department of Psychiatry, Penn State College of Medicine, Hershey, PA, USA
| | - David Giampetro
- Department of Anesthesia & Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Vitaly Gordin
- Department of Anesthesia & Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Sadie Smith
- Department of Anesthesia & Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Kent Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Anne Bobb
- Department of Surgery, Division of Colorectal Surgery, Penn State College of Medicine, Hershey, PA, USA
| | - Thu Thi Gazzio
- Department of Surgery, Division of Colorectal Surgery, Penn State College of Medicine, Hershey, PA, USA
| | - Heather Tressler
- Department of Medicine, Division of Gastroenterology & Hepatology, Penn State College of Medicine, Hershey, PA, USA
| | - Shannon Dalessio
- Department of Medicine, Division of Gastroenterology & Hepatology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
17
|
Meng G, Monaghan TM, Duggal NA, Tighe P, Peerani F. Microbial-Immune Crosstalk in Elderly-Onset Inflammatory Bowel Disease: Unchartered Territory. J Crohns Colitis 2023; 17:1309-1325. [PMID: 36806917 DOI: 10.1093/ecco-jcc/jjad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 02/23/2023]
Abstract
Elderly-onset inflammatory bowel disease [IBD] patients exhibit a distinct natural history compared to younger IBD patients, with unique disease phenotypes, differential responses to therapy, and increased surgical morbidity and mortality. Despite the foreseeable high demand for personalized medicine and specialized IBD care in the elderly, current paradigms of IBD management fail to capture the required nuances of care for elderly-onset IBD patients. Our review postulates the roles of systemic and mucosal immunosenescence, inflammageing and a dysbiotic microbial ecosystem in the pathophysiology of elderly-onset IBD. Ultimately, a better understanding of elderly-onset IBD can lead to improved patient outcomes and the tailoring of future preventative and treatment strategies.
Collapse
Affiliation(s)
- Guanmin Meng
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Niharika A Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Paddy Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Farhad Peerani
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Medina TS, Murison A, Smith M, Kinker GS, Chakravarthy A, Vitiello GAF, Turpin W, Shen SY, Yau HL, Sarmento OF, Faubion W, Lupien M, Silverberg MS, Arrowsmith CH, De Carvalho DD. The chromatin and single-cell transcriptional landscapes of CD4 T cells in inflammatory bowel disease link risk loci with a proinflammatory Th17 cell population. Front Immunol 2023; 14:1161901. [PMID: 37600767 PMCID: PMC10436103 DOI: 10.3389/fimmu.2023.1161901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction The imbalance between Th17 and regulatory T cells in inflammatory bowel diseases (IBD) promotes intestinal epithelial cell damage. In this scenario, T helper cell lineage commitment is accompanied by dynamic changes to the chromatin that facilitate or repress gene expression. Methods Here, we characterized the chromatin landscape and heterogeneity of intestinal and peripheral CD4 T cellsfrom IBD patients using in house ATAC-Seq and single cell RNA-Seq libraries. Results We show that chromatin accessibility profiles of CD4 T cells from inflamed intestinal biopsies relate to genes associated with a network of inflammatory processes. After integrating the chromatin profiles of tissue-derived CD4 T cells and in-vitro polarized CD4 T cell subpopulations, we found that the chromatin accessibility changes of CD4 T cells were associated with a higher predominance of pathogenic Th17 cells (pTh17 cells) in inflamed biopsies. In addition, IBD risk loci in CD4 T cells were colocalized with accessible chromatin changes near pTh17-related genes, as shown in intronic STAT3 and IL23R regions enriched in areas of active intestinal inflammation. Moreover, single cell RNA-Seq analysis revealed a population of pTh17 cells that co-expresses Th1 and cytotoxic transcriptional programs associated with IBD severity. Discussion Altogether, we show that cytotoxic pTh17 cells were specifically associated with IBD genetic variants and linked to intestinal inflammation of IBD patients.
Collapse
Affiliation(s)
- Tiago S. Medina
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michelle Smith
- Division of Gastroenterology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Gabriela S. Kinker
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Ankur Chakravarthy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Williams Turpin
- Division of Gastroenterology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Shu Yi Shen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Helen L. Yau
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Olga F. Sarmento
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - William Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Mark S. Silverberg
- Division of Gastroenterology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Cheryl H. Arrowsmith
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Daniel D. De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Lu C, Chen Q, Tao H, Xu L, Li J, Wang C, Yu L. The causal effect of inflammatory bowel disease on diffuse large B-cell lymphoma: two-sample Mendelian randomization study. Front Immunol 2023; 14:1171446. [PMID: 37593734 PMCID: PMC10427854 DOI: 10.3389/fimmu.2023.1171446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Background It has been reported that inflammatory bowel disease (IBD) is associated with an increased risk of malignancies, including lymphoma. A number of large observational studies have been devoted to exploring the causal link between IBD and malignant lymphoma. However, no consensus exists on whether there is a causal relationship between IBD and malignant lymphoma. Methods The summary dataset of the IBD and lymphoma genome-wide association studies (GWAS) was obtained from the OPEN GWAS website. Single-nucleotide polymorphisms (SNPs) were selected as genetic instrumental variants (IVs) for fulling P < 5 × 10-8 and linkage disequilibrium (LD) of r2 = 0.001 in the IBD GWAS. The proxy SNPs with LD of r2 > 0.8 were identified. Palindromic SNPs and outlier SNPs were excluded. The assessments of sensitivity employed the Cochran's Q test, Mendelian randomization (MR)-Egger intercept test, and leave-one-out analysis. Results The MR analysis results proved the causality of IBD on diffuse large B-cell lymphoma (DLBCL). The risk of developing DLBCL is increased by 28.6% in patients with IBD [odds ratio (OR)IVW = 1.286, 95% confidence interval (CI) 1.066-1.552, P = 0.009]. The results of the subgroup analysis showed that Crohn's disease (ORIVW = 1.218, 95% CI 1.030-1.441, P = 0.021) rather than ulcerative colitis (ORIVW = 1.206, 95% CI 0.984-1.478, P = 0.072) had a causal effect on DLBCL. No horizontal and directional pleiotropy was observed in the MR studies. Conclusions The above MR study concluded that IBD itself is causally responsible for DLBCL, especially Crohn's disease. Further investigations are needed to elucidate the mechanism underlying this direct causal link.
Collapse
Affiliation(s)
- Chuanyang Lu
- Department of Hematology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Qiuni Chen
- Department of Hematology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Hong Tao
- Department of Hematology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Lei Xu
- Department of Hematology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Jiaxin Li
- Department of Hematology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Liang Yu
- Department of Hematology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Hey GE, Vedam-Mai V, Beke M, Amaris M, Ramirez-Zamora A. The Interface between Inflammatory Bowel Disease, Neuroinflammation, and Neurological Disorders. Semin Neurol 2023; 43:572-582. [PMID: 37562450 DOI: 10.1055/s-0043-1771467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Inflammatory Bowel Disease (IBD) is a complex, chronic inflammatory condition affecting the gastrointestinal tract. IBD has been associated with a variety of neurologic manifestations including peripheral nerve involvement, increased risk of thrombotic, demyelinating and events. Furthermore, an evolving association between IBD and neurodegenerative disorders has been recognized, and early data suggests an increased risk of these disorders in patients diagnosed with IBD. The relationship between intestinal inflammatory disease and neuroinflammation is complex, but the bidirectional interaction between the brain-gut-microbiome axis is likely to play an important role in the pathogenesis of these disorders. Identification of common mechanisms and pathways will be key to developing potential therapies. In this review, we discuss the evolving interface between IBD and neurological conditions, with a focus on clinical, mechanistic, and potentially therapeutic implications.
Collapse
Affiliation(s)
- Grace E Hey
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Vinata Vedam-Mai
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Matthew Beke
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida
| | - Manuel Amaris
- Department of Gastroenterology, University of Florida, Gainesville, Florida
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| |
Collapse
|
21
|
Xiao S, Xie W, Zhang Y, Pan Y, Lei L. The Immune Landscape and Molecular Subtypes of Pediatric Crohn's Disease: Results from In Silico Analysis. J Pers Med 2023; 13:jpm13040571. [PMID: 37108957 PMCID: PMC10142949 DOI: 10.3390/jpm13040571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 04/29/2023] Open
Abstract
Pediatric Crohn's disease (CD) presents a distinct phenotype from adult-onset disease. A dysregulated immune response is critical in CD pathogenesis; thus, it is clinically important to describe immune cell alterations and to identify a new molecular classification for pediatric CD. To this end, in this study, a RNA-seq derived dataset GSE101794-which contains the expression profiles of 254 treatment-naïve pediatric CD samples, including CIBERSORTx and weighted gene-co-expression network analysis (WGCNA)-were performed to estimate the ratio of immune cells and to identify modules and genes related to specific immune cell infiltration, respectively. Hub genes derived from WGCNA were further employed to create a molecular classification using unsupervised K-means clustering. In the pediatric CD samples, it was found that M2 macrophages, CD4+ memory resting T cells, CD8+ T cells, and resting mast cells were the most prominent immune cells in intestinal tissues. Then, 985 up-regulated genes and 860 down-regulated genes were identified in samples with high immune cell infiltration. Of these differential genes, 10 hub genes (APOA1, CYB5A, XPNPEP2, SLC1A7, SLC4A6, LIPE, G6PC, AGXT2, SLC13A1, and SOAT2) were associated with CD8+T cell infiltration. Clinically, the higher expression of these 10 hub genes was strongly associated with an earlier age of CD onset and colonic-type CD. Furthermore, based on these key genes, pediatric CD could be classified into three molecular subtypes, displaying a different immune landscape. Altogether, this in silico analysis provides a novel insight into the immune signature of pediatric CD, and a new classification of pediatric CD is presented, which may help us develop more personalized disease management and treatments for pediatric CD.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Gastroenterology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 100034, China
| | - Wenhui Xie
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing 100034, China
| | - Yinghui Zhang
- Department of Gastroenterology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 100034, China
| | - Yan Pan
- Department of Gastroenterology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 100034, China
| | - Lei Lei
- Department of Gastroenterology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 100034, China
| |
Collapse
|
22
|
Jung S, Kim Y, Park D, Lee Y, Park S, Baek J, Hwang SW, Park SH, Yang SK, Ye BD, Han B, Song K, Lee HS. Case-case genome-wide association analysis identifying genetic loci with divergent effects on Crohn's disease and ulcerative colitis. Hum Mol Genet 2023; 32:677-684. [PMID: 36164742 DOI: 10.1093/hmg/ddac241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 02/07/2023] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC), two major subtypes of inflammatory bowel disease, show substantial differences in their clinical course and treatment response. To identify the genetic factors underlying the distinct characteristics of these two diseases, we performed a genome-wide association study (GWAS) between CD (n = 2359) and UC (n = 2175) in a Korean population, followed by replication in an independent sample of 772 CD and 619 UC cases. Two novel loci were identified with divergent effects on CD and UC: rs9842650 in CD200 and rs885026 in NCOR2. In addition, the seven established susceptibility loci [major histocompatibility complex (MHC), TNFSF15, OTUD3, USP12, IL23R, FCHSD2 and RIPK2] reached genome-wide significance. Of the nine loci, six (MHC, TNFSF15, OTUD3, USP12, IL23R and CD200) were replicated in the case-case GWAS of European populations. The proportion of variance explained in CD-UC status by polygenic risk score analysis was up to 22.6%. The area under the receiver-operating characteristic curve value was 0.74, suggesting acceptable discrimination between CD and UC. This CD-UC GWAS provides new insights into genetic differences between the two diseases with similar symptoms and might be useful in improving their diagnosis and treatment.
Collapse
Affiliation(s)
- Seulgi Jung
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yongjae Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Dohoon Park
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yoonho Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sojung Park
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jiwon Baek
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sung Wook Hwang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang Hyoung Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Buhm Han
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ho-Su Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
23
|
Saez A, Herrero-Fernandez B, Gomez-Bris R, Sánchez-Martinez H, Gonzalez-Granado JM. Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. Int J Mol Sci 2023; 24:ijms24021526. [PMID: 36675038 PMCID: PMC9863490 DOI: 10.3390/ijms24021526] [Citation(s) in RCA: 209] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a heterogeneous state of chronic intestinal inflammation with no exact known cause. Intestinal innate immunity is enacted by neutrophils, monocytes, macrophages, and dendritic cells (DCs), and innate lymphoid cells and NK cells, characterized by their capacity to produce a rapid and nonspecific reaction as a first-line response. Innate immune cells (IIC) defend against pathogens and excessive entry of intestinal microorganisms, while preserving immune tolerance to resident intestinal microbiota. Changes to this equilibrium are linked to intestinal inflammation in the gut and IBD. IICs mediate host defense responses, inflammation, and tissue healing by producing cytokines and chemokines, activating the complement cascade and phagocytosis, or presenting antigens to activate the adaptive immune response. IICs exert important functions that promote or ameliorate the cellular and molecular mechanisms that underlie and sustain IBD. A comprehensive understanding of the mechanisms underlying these clinical manifestations will be important for developing therapies targeting the innate immune system in IBD patients. This review examines the complex roles of and interactions among IICs, and their interactions with other immune and non-immune cells in homeostasis and pathological conditions.
Collapse
Affiliation(s)
- Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Hector Sánchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-913908766
| |
Collapse
|
24
|
Kim HR, Noh EM, Kim SY. Anti-inflammatory effect and signaling mechanism of 8-shogaol and 10-shogaol in a dextran sodium sulfate-induced colitis mouse model. Heliyon 2023; 9:e12778. [PMID: 36647352 PMCID: PMC9840358 DOI: 10.1016/j.heliyon.2022.e12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Ethnopharmacological relevance Ginger (Zingiber officinale Roscoe) has been used for food and applied in Ayurvedic medicine in India for thousands of years. With a reputation for strong anti-inflammatory properties, it has been used for to treat colds, migraines, nausea, arthritis, and high blood pressure in China and Southeast Asia. The physiological activity of ginger is attributed to its functional components, including gingerol and shogaol, and their derivatives. Aim of the study We aimed to investigate the effects of 8- and 10-shogaol and their bioactive signaling mechanisms in a dextran sodium sulfate (DSS)-induced colitis mouse model. The anti-colitis efficacy of 6-, 8-, and 10-derivatives of gingerol and shogaol was comparatively analyzed. Materials and methods Colitis was induced by providing mice with drinking water containing 5% DSS (w/v) for 8 days. The 6-, 8-, and 10-derivatives of gingerol and shogaol were orally administered for two weeks at a dose of 30 mg/kg. Changes in body weight and disease activity index were measured. The levels of pro-inflammatory cytokines, iNOS and COX-2, as well as the phosphorylation of NF-κB were analyzed using ELISA, PCR, or western blotting. Mucin expression and mRNA levels were measured using alcian blue staining and PCR, respectively. The tight-junction-associated proteins occludin and ZO-1 were assessed using immunohistological staining. Results The 6-, 8-, and 10-derivatives of gingerol and shogaol exhibited anti-inflammatory effects by regulating NF-κB signaling. Among the compounds administered, 10-shogaol was the most effective against DSS-induced inflammation. Comparative analysis of the chemical structure showed that shogaol, a dehydrated analog of gingerol, was more effective. 6- and 10-shogaol showed similar effects on DSS-induced morphological changes in the colonic mucus layer, mucin expression, and tight junction proteins. Conclusions 6-, 8-, and 10-Gingerol and 6-, 8-, and 10-shogaol significantly improved the clinical symptoms and intestinal epithelial barrier damage in DSS-induced colitis in mice. The derivatives effectively inhibited DSS-induced inflammation through the regulation of NF-κB signaling. Moreover, 10-shogaol showed the most potent anti-inflammatory effect among the six compounds used in this study. The results indicate that 8- and 10-shogaol, both main ingredients in ginger, may serve as therapeutic candidates for the treatment of colitis.
Collapse
Affiliation(s)
| | - Eun-Mi Noh
- Corresponding author. Jeonju AgroBio-Materials Institute, 111-27 Wonjangdong-gil, Deokjin-gu, Jeonju, 54810, Republic of Korea.
| | | |
Collapse
|
25
|
Ribeiro BE, Breves J, de Souza HSP. Pathogenesis: Crohn’s disease and ulcerative colitis. NATURAL PLANT PRODUCTS IN INFLAMMATORY BOWEL DISEASES 2023:9-46. [DOI: 10.1016/b978-0-323-99111-7.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Wiredu Ocansey DK, Hang S, Yuan X, Qian H, Zhou M, Valerie Olovo C, Zhang X, Mao F. The diagnostic and prognostic potential of gut bacteria in inflammatory bowel disease. Gut Microbes 2023; 15:2176118. [PMID: 36794838 PMCID: PMC9980661 DOI: 10.1080/19490976.2023.2176118] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
The gut microbiome serves as a signaling hub that integrates environmental inputs with genetic and immune signals to influence the host's metabolism and immunity. Gut bacteria are intricately connected with human health and disease state, with specific bacteria species driving the characteristic dysbiosis found in gastrointestinal conditions such as inflammatory bowel disease (IBD); thus, gut bacteria changes could be harnessed to improve IBD diagnosis, prognosis, and treatment. The advancement in next-generation sequencing techniques such as 16S rRNA and whole-genome shotgun sequencing has allowed the exploration of the complexity of the gut microbial ecosystem with high resolution. Current microbiome data is promising and appears to perform better in some studies than the currently used fecal inflammation biomarker, calprotectin, in predicting IBD from healthy controls and irritable bowel syndrome (IBS). This study reviews current data on the differential potential of gut bacteria within IBD cohorts, and between IBD and other gastrointestinal diseases.
Collapse
Affiliation(s)
- Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Directorate of University Health Services, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Sanhua Hang
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, P.R. China
| | - Xinyi Yuan
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Hua Qian
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, P.R. China
| | - Mengjiao Zhou
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Chinasa Valerie Olovo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| |
Collapse
|
27
|
Feng S, Xu Z, Zhang Z, Mo Y, Deng Y, Li L, Fei S, Wu J, Wang K, Zhang Q, Song J, Zhou R. RNA-Seq approach to investigate the effects of melatonin on bone marrow-derived dendritic cells from dextran sodium sulfate-induced colitis mice. Toxicology 2022; 481:153354. [DOI: 10.1016/j.tox.2022.153354] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
|
28
|
Katkar GD, Sayed IM, Anandachar MS, Castillo V, Vidales E, Toobian D, Usmani F, Sawires JR, Leriche G, Yang J, Sandborn WJ, Das S, Sahoo D, Ghosh P. Artificial intelligence-rationalized balanced PPARα/γ dual agonism resets dysregulated macrophage processes in inflammatory bowel disease. Commun Biol 2022; 5:231. [PMID: 35288651 PMCID: PMC8921270 DOI: 10.1038/s42003-022-03168-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
A computational platform, Boolean network explorer (BoNE), has recently been developed to infuse AI-enhanced precision into drug discovery; it enables invariant Boolean Implication Networks of disease maps for prioritizing high-value targets. Here we used BoNE to query an Inflammatory Bowel Disease (IBD)-map and prioritize a therapeutic strategy that involves dual agonism of two nuclear receptors, PPARα/γ. Balanced agonism of PPARα/γ was predicted to modulate macrophage processes, ameliorate colitis, 'reset' the gene expression network from disease to health. Predictions were validated using a balanced and potent PPARα/γ-dual-agonist (PAR5359) in Citrobacter rodentium- and DSS-induced murine colitis models. Using inhibitors and agonists, we show that balanced-dual agonism promotes bacterial clearance efficiently than individual agonists, both in vivo and in vitro. PPARα is required and sufficient to induce the pro-inflammatory cytokines and cellular ROS, which are essential for bacterial clearance and immunity, whereas PPARγ-agonism blunts these responses, delays microbial clearance; balanced dual agonism achieved controlled inflammation while protecting the gut barrier and 'reversal' of the transcriptomic network. Furthermore, dual agonism reversed the defective bacterial clearance observed in PBMCs derived from IBD patients. These findings not only deliver a macrophage modulator for use as barrier-protective therapy in IBD, but also highlight the potential of BoNE to rationalize combination therapy.
Collapse
Affiliation(s)
- Gajanan D Katkar
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Ibrahim M Sayed
- Department of Pathology, University of California San Diego, San Diego, USA.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Eleadah Vidales
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Daniel Toobian
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Fatima Usmani
- Department of Pathology, University of California San Diego, San Diego, USA
| | - Joseph R Sawires
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - William J Sandborn
- Department of Medicine, University of California San Diego, San Diego, USA.
| | - Soumita Das
- Department of Pathology, University of California San Diego, San Diego, USA.
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, USA. .,Department of Pediatrics, University of California San Diego, San Diego, USA. .,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, USA.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA. .,Department of Medicine, University of California San Diego, San Diego, USA. .,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, USA. .,Veterans Affairs Medical Center, La Jolla, San Diego, USA.
| |
Collapse
|
29
|
Cheng X, Shi J, Jia Z, Ha P, Soo C, Ting K, James AW, Shi B, Zhang X. NELL-1 in Genome-Wide Association Studies across Human Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:395-405. [PMID: 34890556 PMCID: PMC8895422 DOI: 10.1016/j.ajpath.2021.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023]
Abstract
Neural epidermal growth factor-like (EGFL)-like protein (NELL)-1 is a potent and key osteogenic factor in the development and regeneration of skeletal tissues. Intriguingly, accumulative data from genome-wide association studies (GWASs) have started unveiling potential broader roles of NELL-1 beyond its functions in bone and cartilage. With exploration of the genetic variants of the entire genome in large-scale disease cohorts, GWASs have been used for establishing the connection between specific single-nucleotide polymorphisms of NELL1, in addition to osteoporosis, metabolic diseases, inflammatory conditions, neuropsychiatric diseases, neurodegenerative disorders, and malignant tumors. This review summarizes the findings from GWASs on the manifestation, significance level, implications on function, and correlation of specific NELL1 single-nucleotide polymorphisms in various disorders in humans. By offering a unique and comprehensive correlation between genetic variants and plausible functions of NELL1 in GWASs, this review illustrates the wide range of potential effects of a single gene on the pathogenesis of multiple disorders in humans.
Collapse
Affiliation(s)
- Xu Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, and the Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Jiayu Shi
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Zhonglin Jia
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, and the Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pin Ha
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California-Los Angeles, Los Angeles, California
| | - Kang Ting
- Forsyth Institute, affiliate of the Harvard School of Dental Medicine, Boston, Massachusetts
| | - Aaron W James
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bing Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, and the Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xinli Zhang
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California-Los Angeles, Los Angeles, California.
| |
Collapse
|
30
|
Chen R, Pang X, Li L, Zeng Z, Chen M, Zhang S. Ubiquitin-specific proteases in inflammatory bowel disease-related signalling pathway regulation. Cell Death Dis 2022; 13:139. [PMID: 35145062 PMCID: PMC8831562 DOI: 10.1038/s41419-022-04566-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
The exact pathogenesis of inflammatory bowel disease (IBD), a chronic gastrointestinal inflammatory disease comprising Crohn’s disease and ulcerative colitis, remains unclear. Studies on ubiquitination, which regulates the degradation of inflammation signalling pathway molecules, and deubiquitination have provided novel insights. Targeting the ubiquitin-specific protease (USP) family of deubiquitinases elucidates IBD signalling pathway mechanisms and possibly, IBD therapeutic solutions. Here, we characterised USPs as chief regulators of pro-inflammatory signalling pathways, including nuclear factor-κB and transforming growth factor-β; analysed the relationship between USPs and IBD pathogenesis in terms of genetic susceptibility, intestinal epithelial barrier, immunity, and gut microbiota; and discussed future research prospects.
Collapse
Affiliation(s)
- Rirong Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaobai Pang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Li Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
31
|
Nie K, Yi J, Yang Y, Deng M, Yang Y, Wang T, Chen X, Zhang Z, Wang X. A Broad m6A Modification Landscape in Inflammatory Bowel Disease. Front Cell Dev Biol 2022; 9:782636. [PMID: 35127705 PMCID: PMC8809481 DOI: 10.3389/fcell.2021.782636] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background and Aims: N6-Methyladenosine (m6A) is the most common post-transcriptional modification on eukaryotic mRNA, affecting the mRNA’s fate. The role of m6A regulation in inflammatory bowel disease is unclear. Here, we investigated the m6A landscape in inflammatory bowel diseases (IBD). Methods: Eleven human IBD microarray datasets were recruited from the Gene Expression Omnibus database and four were selected as discovery cohorts. An RNA-seq dataset from the Inflammatory Bowel Disease Multi’omics Database was used as a validation cohort. m6A regulators were measured in volunteers’ colonic samples. Consensus clustering and immune scoring were used to estimate the characteristics of m6A regulation in IBD. m6A-related characteristics of different sub-phenotypes, sample sources, and biological therapeutic responses were determined using seven independent datasets. Results: m6A modification involves methyltransferases (writers), demethylases (erasers), and methylation-reading proteins (readers). A wide interaction exists between m6A regulators and IBD risk genes. The IBD risk loci can also be modified by m6A modifications in the public m6A sequencing data. Furthermore, m6A regulators displayed extensive differential expression in four independent discovery cohorts that share common differential genes (IGF2BP2, HNRNPA2B1, ZCCHC4, and EIF3I). In the validated cohort and enrolled volunteers’ colonic biopsy samples, the differential m6A regulators were reconfirmed. Two clusters of consensus clustering exhibit different immune phenotypes. m6A-modified positions exist in the core IBD immune cytokines. Another set of IBD datasets revealed m6A-related differences across clinical phenotypes, biological samples, and therapeutic response subgroups in IBD patients. Conclusion: Regulation of m6A methylation is widely involved in IBD occurrence and development. m6A modifications in risk variants, core cytokines, immune cells, and other proteins may deeply influence the pathophysiology and clinical phenotypes. Further studies are needed to determine its role in IBD.
Collapse
Affiliation(s)
- Kai Nie
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Jun Yi
- Department of Gastroenterology, The Xiangya Hospital of Central South University, Changsha, China
| | - Yuanyuan Yang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yan Yang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Tianyu Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhaoyu Zhang
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- *Correspondence: Zhaoyu Zhang, ; Xiaoyan Wang,
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
- *Correspondence: Zhaoyu Zhang, ; Xiaoyan Wang,
| |
Collapse
|
32
|
Zhang X, Gu J, Zhao C, Hu Y, Zhang B, Wang J, Lv H, Ji X, Wang S. Sweeteners Maintain Epithelial Barrier Function Through the miR-15b/RECK/MMP-9 Axis, Remodel Microbial Homeostasis, and Attenuate Dextran Sodium Sulfate-Induced Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:171-183. [PMID: 34962394 DOI: 10.1021/acs.jafc.1c06788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Non-nutritive sweeteners are the most widely used food additives designed to provide sweetness and reduce caloric intake. Studies have confirmed a link between sweeteners and colitis, yet supporting scientific data remain exiguous and controversial. In this study, three common sweeteners (Saccharin sodium, Stevioside, and Sucralose) in acceptable daily intake dosage were added to water in order to determine their effects on dextran sodium sulfate-induced colitis in mice. Our results show that the three sweeteners meliorate colitis to varying degrees─Saccharin exerts the most pronounced effect, followed by Stevioside and Sucralose. Intake of sweeteners alleviates colitis symptoms, alters gut microbiota, reshapes the TH17/Treg balance, protects the intestinal barrier, and reduces inflammation. Most significantly, sweeteners can enhance the abundance of Mucispirillum and Alistipes, which are conducive to colitis recovery, and upregulate the expression of E-cadherin through the miR-15b/RECK/MMP-9 axis to improve intestinal barrier integrity. Moreover, by inhibiting the MMP-9/AKT/NF-κB pathway, inflammation is relieved, as reflected in the restoration of the Th17/Treg balance. Our results link the consumption of sweeteners to the remission of colitis, which provides new scientific evidence for the safe use of sweeteners.
Collapse
Affiliation(s)
- Xuejiao Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Jiaxin Gu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Congying Zhao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yaozhong Hu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Bowei Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuemeng Ji
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
33
|
Sauceda C, Bayne C, Sudqi K, Gonzalez A, Dulai PS, Knight R, Gonzalez DJ, Gonzalez CG. Stool multi-omics for the study of host-microbe interactions in inflammatory bowel disease. Gut Microbes 2022; 14:2154092. [PMID: 36503356 PMCID: PMC9746627 DOI: 10.1080/19490976.2022.2154092] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic immune-mediated inflammatory disease of the gastrointestinal tract that is a growing public burden. Gut microbes and their interactions with hosts play a crucial role in disease pathogenesis and progression. These interactions are complex, spanning multiple physiological systems and data types, making comprehensive disease assessment difficult, and often overwhelming single-omic capabilities. Stool-based multi-omics is a promising approach for characterizing host-gut microbiome interactions using deep integration of technologies such as 16S rRNA sequencing, shotgun metagenomics, meta-transcriptomics, metabolomics, and metaproteomics. The wealth of information generated through multi-omic studies is poised to usher in advancements in IBD research and precision medicine. This review highlights historical and recent findings from stool-based muti-omic studies that have contributed to unraveling IBD's complexity. Finally, we discuss common pitfalls, issues, and limitations, and how future pipelines should address them to standardize multi-omics in IBD research and beyond.
Collapse
Affiliation(s)
- Consuelo Sauceda
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Charlie Bayne
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Khadijeh Sudqi
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Parambir S. Dulai
- Division of Gastroenterology and Hepatology, Northwestern University, Chicago, IL, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Carlos G. Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
34
|
Argmann C, Tokuyama M, Ungaro RC, Huang R, Hou R, Gurunathan S, Kosoy R, Di’Narzo A, Wang W, Losic B, Irizar H, Peters L, Stojmirovic A, Wei G, Comella PH, Curran M, Brodmerkel C, Friedman JR, Hao K, Schadt EE, Zhu J, Cho J, Harpaz N, Dubinsky MC, Sands BE, Kasarskis A, Mehandru S, Colombel JF, Suárez-Fariñas M. Molecular Characterization of Limited Ulcerative Colitis Reveals Novel Biology and Predictors of Disease Extension. Gastroenterology 2021; 161:1953-1968.e15. [PMID: 34480882 PMCID: PMC8640960 DOI: 10.1053/j.gastro.2021.08.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Disease extent varies in ulcerative colitis (UC) from proctitis to left-sided colitis to pancolitis and is a major prognostic factor. When the extent of UC is limited there is often a sharp demarcation between macroscopically involved and uninvolved areas and what defines this or subsequent extension is unknown. We characterized the demarcation site molecularly and determined genes associated with subsequent disease extension. METHODS We performed RNA sequence analysis of biopsy specimens from UC patients with endoscopically and histologically confirmed limited disease, of which a subset later extended. Biopsy specimens were obtained from the endoscopically inflamed upper (proximal) limit of disease, immediately adjacent to the uninvolved colon, as well as at more proximal, endoscopically uninflamed colonic segments. RESULTS Differentially expressed genes were identified in the endoscopically inflamed biopsy specimens taken at each patient's most proximal diseased site relative to healthy controls. Expression of these genes in the more proximal biopsy specimens transitioned back to control levels abruptly or gradually, the latter pattern supporting the concept that disease exists beyond the endoscopic disease demarcation site. The gradually transitioning genes were associated with inflammation, angiogenesis, glucuronidation, and homeodomain pathways. A subset of these genes in inflamed biopsy specimens was found to predict disease extension better than clinical features and were responsive to biologic therapies. Network analysis revealed critical roles for interferon signaling in UC inflammation and poly(ADP-ribose) polymerase 14 (PARP14) was a predicted key driver gene of extension. Higher PARP14 protein levels were found in inflamed biopsy specimens of patients with limited UC that subsequently extended. CONCLUSION Molecular predictors of disease extension reveal novel strategies for disease prognostication and potential therapeutic targeting.
Collapse
Affiliation(s)
- Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, New York, New York.
| | - Minami Tokuyama
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ryan C. Ungaro
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ruiqi Huang
- Center for Biostatistics, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ruixue Hou
- Center for Biostatistics, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sakteesh Gurunathan
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Roman Kosoy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York
| | - Antonio Di’Narzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York,Sema4, Stamford, Connecticut
| | - Wenhui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York
| | - Bojan Losic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York
| | - Haritz Irizar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lauren Peters
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York
| | | | - Gabrielle Wei
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York
| | - Phillip H. Comella
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York
| | | | | | | | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York,Sema4, Stamford, Connecticut
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York,Sema4, Stamford, Connecticut
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York,Sema4, Stamford, Connecticut
| | - Judy Cho
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Noam Harpaz
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York,Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marla C. Dubinsky
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bruce E. Sands
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew Kasarskis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Icahn Institute for Data Science and Genomic Technology, New York, New York,Sema4, Stamford, Connecticut,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Saurabh Mehandru
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jean-Frederic Colombel
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mayte Suárez-Fariñas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Biostatistics, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
35
|
Abstract
Current practice in IBD is to classify patients based on clinical signs and symptoms and provide treatments accordingly. However, the response of IBD patients to available treatments is highly variable, highlighting clinically significant heterogeneity among patients. Thus, more accurate patient stratification is urgently needed to more effectively target therapeutic interventions to specific patients. Here we review the degree of heterogeneity in IBD, discussing how the microbiota, genetics, and immune system may contribute to the variation among patients. We highlight how molecular heterogeneity may relate to clinical phenotype, but in other situations may be independent of clinical phenotype, encouraging future studies to fill the gaps. Finally, we discuss novel stratification methodologies as a foundation for precision medicine, in particular a novel stratification strategy based on conserved genes across species. All of these dimensions of heterogeneity have potential to provide strategies for patient stratification and move IBD practice towards personalised medicine.
Collapse
Affiliation(s)
- Katja A Selin
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Gastroenterology Unit, Patient Area Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| | - Charlotte R H Hedin
- Gastroenterology Unit, Patient Area Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
36
|
Ho GT, Theiss AL. Mitochondria and Inflammatory Bowel Diseases: Toward a Stratified Therapeutic Intervention. Annu Rev Physiol 2021; 84:435-459. [PMID: 34614372 DOI: 10.1146/annurev-physiol-060821-083306] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria serve numerous critical cellular functions, rapidly responding to extracellular stimuli and cellular demands while dynamically communicating with other organelles. Mitochondrial function in the gastrointestinal epithelium plays a critical role in maintaining intestinal health. Emerging studies implicate the involvement of mitochondrial dysfunction in inflammatory bowel disease (IBD). This review presents mitochondrial metabolism, function, and quality control that converge in intestinal epithelial stemness, differentiation programs, barrier integrity, and innate immunity to influence intestinal inflammation. Intestinal and disease characteristics that set the stage for mitochondrial dysfunction being a key factor in IBD, and in turn, pathogenic mitochondrial mechanisms influencing and potentiating the development of IBD, are discussed. These findings establish the basis for potential mitochondrial-targeted interventions for IBD therapy. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gwo-Tzer Ho
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA;
| |
Collapse
|
37
|
Machine Learning Modeling from Omics Data as Prospective Tool for Improvement of Inflammatory Bowel Disease Diagnosis and Clinical Classifications. Genes (Basel) 2021; 12:genes12091438. [PMID: 34573420 PMCID: PMC8466305 DOI: 10.3390/genes12091438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/21/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Research of inflammatory bowel disease (IBD) has identified numerous molecular players involved in the disease development. Even so, the understanding of IBD is incomplete, while disease treatment is still far from the precision medicine. Reliable diagnostic and prognostic biomarkers in IBD are limited which may reduce efficient therapeutic outcomes. High-throughput technologies and artificial intelligence emerged as powerful tools in search of unrevealed molecular patterns that could give important insights into IBD pathogenesis and help to address unmet clinical needs. Machine learning, a subtype of artificial intelligence, uses complex mathematical algorithms to learn from existing data in order to predict future outcomes. The scientific community has been increasingly employing machine learning for the prediction of IBD outcomes from comprehensive patient data-clinical records, genomic, transcriptomic, proteomic, metagenomic, and other IBD relevant omics data. This review aims to present fundamental principles behind machine learning modeling and its current application in IBD research with the focus on studies that explored genomic and transcriptomic data. We described different strategies used for dealing with omics data and outlined the best-performing methods. Before being translated into clinical settings, the developed machine learning models should be tested in independent prospective studies as well as randomized controlled trials.
Collapse
|
38
|
de Sousa Figueiredo MB, Pradel E, George F, Mahieux S, Houcke I, Pottier M, Fradin C, Neut C, Daniel C, Bongiovanni A, Foligné B, Titécat M. Adherent-Invasive and Non-Invasive Escherichia coli Isolates Differ in Their Effects on Caenorhabditis elegans' Lifespan. Microorganisms 2021; 9:microorganisms9091823. [PMID: 34576719 PMCID: PMC8465672 DOI: 10.3390/microorganisms9091823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 01/09/2023] Open
Abstract
The adherent-invasive Escherichia coli (AIEC) pathotype has been implicated in the pathogenesis of inflammatory bowel diseases in general and in Crohn’s disease (CD) in particular. AIEC strains are primarily characterized by their ability to adhere to and invade intestinal epithelial cells. However, the genetic and phenotypic features of AIEC isolates vary greatly as a function of the strain’s clonality, host factors, and the gut microenvironment. It is thus essential to identify the determinants of AIEC pathogenicity and understand their role in intestinal epithelial barrier dysfunction and inflammation. We reasoned that soil nematode Caenorhabditis elegans (a simple but powerful model of host-bacterium interactions) could be used to study the virulence of AIEC vs. non- AIEC E. coli strains. Indeed, we found that the colonization of C. elegans (strain N2) by E. coli impacted survival in a strain-specific manner. Moreover, the AIEC strains’ ability to invade cells in vitro was linked to the median lifespan in C. elegans (strain PX627). However, neither the E. coli intrinsic invasiveness (i.e., the fact for an individual strain to be characterized as invasive or not) nor AIEC’s virulence levels (i.e., the intensity of invasion, established in % from the infectious inoculum) in intestinal epithelial cells was correlated with C. elegans’ lifespan in the killing assay. Nevertheless, AIEC longevity of C. elegans might be a relevant model for screening anti-adhesion drugs and anti-invasive probiotics.
Collapse
Affiliation(s)
- Maria Beatriz de Sousa Figueiredo
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Elizabeth Pradel
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France;
| | - Fanny George
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Séverine Mahieux
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Isabelle Houcke
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Muriel Pottier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Chantal Fradin
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1167-RID-AGE, F-59000 Lille, France;
| | - Christel Neut
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Catherine Daniel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France;
| | - Antonino Bongiovanni
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, F-59000 Lille, France;
| | - Benoît Foligné
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Correspondence: (B.F.); (M.T.)
| | - Marie Titécat
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Correspondence: (B.F.); (M.T.)
| |
Collapse
|
39
|
Zou J, Liu C, Jiang S, Qian D, Duan J. Cross Talk between Gut Microbiota and Intestinal Mucosal Immunity in the Development of Ulcerative Colitis. Infect Immun 2021; 89:e0001421. [PMID: 33526559 PMCID: PMC8370674 DOI: 10.1128/iai.00014-21] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC), a nonspecific inflammatory disease, is characterized by inflammation and mucosal damage in the colon, and its prevalence in the world is increasing. Nevertheless, the exact pathogenesis of UC is still unclear. Accumulating data have suggested that its pathogenesis is multifactorial, involving genetic predisposition, environmental factors, microbial dysbiosis, and dysregulated immune responses. Generally, UC is aroused by inappropriate immune activation based on the interaction of host and intestinal microbiota. The relationship between microbiota and host immune system in the pathogenesis of UC is complicated. However, increasing evidence indicates that the shift of microbiota composition can substantially influence intestinal immunity. In this review, we primarily focus on the delicate balance between microbiota and gut mucosal immunity during UC progression.
Collapse
Affiliation(s)
- Junfeng Zou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Chen Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
40
|
Koutouratsas T, Philippou A, Kolios G, Koutsilieris M, Gazouli M. Role of exercise in preventing and restoring gut dysbiosis in patients with inflammatory bowel diseases: A review. World J Gastroenterol 2021; 27:5037-5046. [PMID: 34497433 PMCID: PMC8384738 DOI: 10.3748/wjg.v27.i30.5037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) include a spectrum of chronic inflammatory disorders of the gastrointestinal tract whose pathogenesis is yet to be elucidated. The intestinal microbiome has been studied as a causal component, with certain microbiotic alterations having been observed in subtypes of IBD. Physical exercise is a modulator of the intestinal microbiome, causing shifts in its composition that are partially corrective of those observed in IBD; furthermore, physical exercise may be beneficial in patients with certain IBD subtypes. This review studies the effects of physical exercise on the human gut microbiome while investigating pathophysiologic mechanisms that could explain physical activity's clinical effects on patients with IBD.
Collapse
Affiliation(s)
- Tilemachos Koutouratsas
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Anastassios Philippou
- Department of Basic Medical Sciences, Laboratory of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - George Kolios
- Department of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Michael Koutsilieris
- Department of Basic Medical Sciences, Laboratory of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
41
|
Berger K, Somineni H, Prince J, Kugathasan S, Gibson G. Altered splicing associated with the pathology of inflammatory bowel disease. Hum Genomics 2021; 15:47. [PMID: 34301333 PMCID: PMC8305504 DOI: 10.1186/s40246-021-00347-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Aberrant splicing of individual genes is a well-known mechanism promoting pathology for a wide range of conditions, but disease is less commonly attributed to global disruption of exon usage. To explore the possible association of aberrant splicing with inflammatory bowel disease, we developed a pipeline for quantifying transcript abundance and exon inclusion transcriptome-wide and applied it to a dataset of ileal and rectal biopsies, both obtained in duplicate from 34 pediatric or young adult cases of ulcerative colitis and Crohn’s disease. Results Expression and splicing covary to some extent, and eight individuals exhibited aberrant profiles that can be explained by altered ratios of epithelial to stromal and immune cells. Ancestry-related biases in alternative splicing accounting for 5% of the variance were also observed, in part also related to cell-type proportions. In addition, two individuals were identified who had 284 exons with significantly divergent percent spliced in exons, including in the established IBD risk gene CEACAM1, which caused their ileal samples to resemble the rectum. Conclusions These results imply that quantitative differences in splice usage contribute to the pathology of inflammatory bowel disease in a previously unrecognized manner. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-021-00347-y.
Collapse
Affiliation(s)
- Kiera Berger
- School of Biological Sciences and Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hari Somineni
- Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA.,Current address: insitro, San Francisco, CA, 94080, USA
| | - Jarod Prince
- Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Subra Kugathasan
- Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Greg Gibson
- School of Biological Sciences and Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
42
|
Díez-Obrero V, Moratalla-Navarro F, Ibáñez-Sanz G, Guardiola J, Rodríguez-Moranta F, Obón-Santacana M, Díez-Villanueva A, Dampier CH, Devall M, Carreras-Torres R, Casey G, Moreno V. Transcriptome-Wide Association Study for Inflammatory Bowel Disease Reveals Novel Candidate Susceptibility Genes in Specific Colon Subsites and Tissue Categories. J Crohns Colitis 2021; 16:275-285. [PMID: 34286847 PMCID: PMC8864630 DOI: 10.1093/ecco-jcc/jjab131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS Genome-wide association studies [GWAS] for inflammatory bowel disease [IBD] have identified 240 risk variants. However, the benefit of understanding the genetic architecture of IBD remains to be exploited. Transcriptome-wide association studies [TWAS] associate gene expression with genetic susceptibility to disease, providing functional insight into risk loci. In this study, we integrate relevant datasets for IBD and perform a TWAS to nominate novel genes implicated in IBD genetic susceptibility. METHODS We applied elastic net regression to generate gene expression prediction models for the University of Barcelona and University of Virginia RNA sequencing project [BarcUVa-Seq] and correlated expression and disease association research [CEDAR] datasets. Together with Genotype-Tissue Expression project [GTEx] data, and GWAS results from about 60 000 individuals, we employed Summary-PrediXcan and Summary-MultiXcan for single and joint analyses of TWAS results, respectively. RESULTS BarcUVa-Seq TWAS revealed 39 novel genes whose expression in the colon is associated with IBD genetic susceptibility. They included expression markers for specific colon cell types. TWAS meta-analysis including all tissues/cell types provided 186 novel candidate susceptibility genes. Additionally, we identified 78 novel susceptibility genes whose expression is associated with IBD exclusively in immune (N = 19), epithelial (N = 25), mesenchymal (N = 22) and neural (N = 12) tissue categories. Associated genes were involved in relevant molecular pathways, including pathways related to known IBD therapeutics, such as tumour necrosis factor signalling. CONCLUSION These findings provide insight into tissue-specific molecular processes underlying IBD genetic susceptibility. Associated genes could be candidate targets for new therapeutics and should be prioritized in functional studies.
Collapse
Affiliation(s)
- Virginia Díez-Obrero
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain,ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain,Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ferran Moratalla-Navarro
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain,Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Gemma Ibáñez-Sanz
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain,ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain,Gastroenterology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, Spain
| | - Jordi Guardiola
- Gastroenterology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, Spain
| | | | - Mireia Obón-Santacana
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain,ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Anna Díez-Villanueva
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain,ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Christopher Heaton Dampier
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA,Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Matthew Devall
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA,Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Robert Carreras-Torres
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain,ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA,Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain,ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain,Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain,Corresponding author: Dr Victor Moreno, Catalan Institute of Oncology, Oncology Data Analytics Program, Hospital Duran i Reynals, Gran Via de l’Hospitalet, 199–203, 08908 L’Hospitalet de Llobregat (Barcelona) Spain. Tel: +34 932 607 434;
| |
Collapse
|
43
|
Geng Z, Geng Q. Risk of Urinary Bladder Cancer in Patients With Inflammatory Bowel Diseases: A Meta-Analysis. Front Surg 2021; 8:636791. [PMID: 34124132 PMCID: PMC8188732 DOI: 10.3389/fsurg.2021.636791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
A systematic search of the PubMed, Cochrane, Embase, and Web of Science databases was conducted to investigate the risk of urinary bladder cancer (BC) in patients with inflammatory bowel disease (IBD). We identified 168 articles, of which 11 met the inclusion and exclusion criteria. Our analysis included 165,176 patients with IBD, 491 of whom had BC. Overall, the pooled standardized incidence ratio (SIR) was 0.99 (95% CI: 0.87–1.12; I2 = 0%). Further subgroup analysis showed that BC risk was neither statistically higher for Crohn's disease (CD) (SIR: 1.19; 95% CI: 0.94–1.44; I2 = 0%) nor for patients with ulcerative colitis (UC) (SIR: 0.92; 95% CI: 0.77–1.06; I2 = 0%). In the analysis of two case-control studies providing data on BC in UC and CD combined, IBD patients seemed to have a higher risk of BC than non-IBD patients (relative risk: 1.25; 95% CI: 0.77–2.03; I2 = 37.5%). Although the overall risk of BC was not significantly increased among patients with IBD, there was a weak trend for the risk to be elevated in CD patients, indicating marginal significance. These findings may primarily be explained by the opposite effects of smoking on CD and UC as well as the immunosuppressive drugs these patients often take.
Collapse
Affiliation(s)
- Zhihua Geng
- Department of Orthopedics of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
44
|
Cesario A, D’Oria M, Bove F, Privitera G, Boškoski I, Pedicino D, Boldrini L, Erra C, Loreti C, Liuzzo G, Crea F, Armuzzi A, Gasbarrini A, Calabresi P, Padua L, Costamagna G, Antonelli M, Valentini V, Auffray C, Scambia G. Personalized Clinical Phenotyping through Systems Medicine and Artificial Intelligence. J Pers Med 2021; 11:jpm11040265. [PMID: 33918214 PMCID: PMC8065854 DOI: 10.3390/jpm11040265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Personalized Medicine (PM) has shifted the traditional top-down approach to medicine based on the identification of single etiological factors to explain diseases, which was not suitable for explaining complex conditions. The concept of PM assumes several interpretations in the literature, with particular regards to Genetic and Genomic Medicine. Despite the fact that some disease-modifying genes affect disease expression and progression, many complex conditions cannot be understood through only this lens, especially when other lifestyle factors can play a crucial role (such as the environment, emotions, nutrition, etc.). Personalizing clinical phenotyping becomes a challenge when different pathophysiological mechanisms underlie the same manifestation. Brain disorders, cardiovascular and gastroenterological diseases can be paradigmatic examples. Experiences on the field of Fondazione Policlinico Gemelli in Rome (a research hospital recognized by the Italian Ministry of Health as national leader in "Personalized Medicine" and "Innovative Biomedical Technologies") could help understanding which techniques and tools are the most performing to develop potential clinical phenotypes personalization. The connection between practical experiences and scientific literature highlights how this potential can be reached towards Systems Medicine using Artificial Intelligence tools.
Collapse
Affiliation(s)
- Alfredo Cesario
- Open Innovation Unit, Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Marika D’Oria
- Open Innovation Unit, Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Correspondence:
| | - Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (F.B.); (P.C.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giuseppe Privitera
- CEMAD—IBD Unit—Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (A.A.); (A.G.)
- Department of Medicine and Translational Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ivo Boškoski
- Surgical Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (I.B.); (G.C.)
| | - Daniela Pedicino
- Cardiology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.P.); (G.L.); (F.C.)
| | - Luca Boldrini
- Radiation Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (L.B.); (V.V.)
| | - Carmen Erra
- High Intensity Neurorehabilitation Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.E.); (C.L.); (L.P.)
| | - Claudia Loreti
- High Intensity Neurorehabilitation Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.E.); (C.L.); (L.P.)
| | - Giovanna Liuzzo
- Cardiology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.P.); (G.L.); (F.C.)
| | - Filippo Crea
- Cardiology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.P.); (G.L.); (F.C.)
| | - Alessandro Armuzzi
- CEMAD—IBD Unit—Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (A.A.); (A.G.)
- Department of Medicine and Translational Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- CEMAD—IBD Unit—Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (A.A.); (A.G.)
- Department of Medicine and Translational Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (F.B.); (P.C.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luca Padua
- High Intensity Neurorehabilitation Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.E.); (C.L.); (L.P.)
| | - Guido Costamagna
- Surgical Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (I.B.); (G.C.)
| | - Massimo Antonelli
- Anesthesia, Resuscitation, Intensive Care and Clinical Toxicology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Vincenzo Valentini
- Radiation Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (L.B.); (V.V.)
| | - Charles Auffray
- European Institute for Systems Biology and Medicine (EISBM), 69390 Vourles, France;
| | - Giovanni Scambia
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Gynecological Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
45
|
Du Y, Rong L, Cong Y, Shen L, Zhang N, Wang B. Macrophage polarization: an effective approach to targeted therapy of inflammatory bowel disease. Expert Opin Ther Targets 2021; 25:191-209. [PMID: 33682588 DOI: 10.1080/14728222.2021.1901079] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Inflammatory bowel disease (IBD) is a systemic disease with immune abnormalities that can affect the entire digestive tract. A high percentage of patients with IBD are unresponsive to current pharmacological agents, hence the need exists for novel therapeutic approaches. There is compelling evidence that macrophage polarization plays a key role in the remission of IBD patients and that it could open up future treatment options for patients.Areas covered: This paper highlights the crucial role of macrophage polarization in IBD. The authors shed light on the phenotype and function of macrophages and potential drug targets for polarization regulation. Existing approaches for regulating macrophage polarization are discussed and potential solutions for safety concerns are considered. We performed a literature search on the IBD and macrophage polarization mainly published in PubMed January 2010-July 2020.Expert opinion: Evidence indicates that there are fewer M2 macrophages and a high proportion of M1 macrophages in the intestinal tissues of individuals who are non- responsive to treatment. Regulating macrophage polarization is a potential novel targeted option for IBD treatment. Improved mechanistic insights are required to uncover more precise and effective targets for skewing macrophages into a proper phenotype.
Collapse
Affiliation(s)
- Yaoyao Du
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Rong
- Department of Digestive Diseases, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yuanhua Cong
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
46
|
Lo Sasso G, Khachatryan L, Kondylis A, Battey JND, Sierro N, Danilova NA, Grigoryeva TV, Markelova MI, Khusnutdinova DR, Laikov AV, Salafutdinov II, Romanova YD, Siniagina MN, Vasiliev IY, Boulygina EA, Solovyeva VV, Garanina EE, Kitaeva KV, Ivanov KY, Chulpanova DS, Kletenkov KS, Valeeva AR, Odintsova AK, Ardatskaya MD, Abdulkhakov RA, Ivanov NV, Peitsch MC, Hoeng J, Abdulkhakov SR. Inflammatory Bowel Disease-Associated Changes in the Gut: Focus on Kazan Patients. Inflamm Bowel Dis 2021; 27:418-433. [PMID: 32766755 PMCID: PMC7885336 DOI: 10.1093/ibd/izaa188] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Several studies have highlighted the role of host-microbiome interactions in the pathogenesis of inflammatory bowel disease (IBD), resulting in an increasing amount of data mainly focusing on Western patients. Because of the increasing prevalence of IBD in newly industrialized countries such as those in Asia, the Middle East, and South America, there is mounting interest in elucidating the gut microbiota of these populations. We present a comprehensive analysis of several IBD-related biomarkers and gut microbiota profiles and functions of a unique population of patients with IBD and healthy patients from Kazan (Republic of Tatarstan, Russia). METHODS Blood and fecal IBD biomarkers, serum cytokines, and fecal short-chain fatty acid (SCFA) content were profiled. Finally, fecal microbiota composition was analyzed by 16S and whole-genome shotgun sequencing. RESULTS Fecal microbiota whole-genome sequencing confirmed the presence of classic IBD dysbiotic features at the phylum level, with increased abundance of Proteobacteria, Actinobacteria, and Fusobacteria and decreased abundance of Firmicutes, Bacteroidetes, and Verrucomicrobia. At the genus level, the abundance of both fermentative (SCFA-producing and hydrogen (H2)-releasing) and hydrogenotrophic (H2-consuming) microbes was affected in patients with IBD. This imbalance was confirmed by the decreased abundance of SCFA species in the feces of patients with IBD and the change in anaerobic index, which mirrors the redox status of the intestine. CONCLUSIONS Our analyses highlighted how IBD-related dysbiotic microbiota-which are generally mainly linked to SCFA imbalance-may affect other important metabolic pathways, such as H2 metabolism, that are critical for host physiology and disease development.
Collapse
Affiliation(s)
- Giuseppe Lo Sasso
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Lusine Khachatryan
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Athanasios Kondylis
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - James N D Battey
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Nicolas Sierro
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Natalia A Danilova
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Tatiana V Grigoryeva
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Maria I Markelova
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Dilyara R Khusnutdinova
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Alexander V Laikov
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Ilnur I Salafutdinov
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Yulia D Romanova
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Mariia N Siniagina
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Ilya Yu Vasiliev
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Eugenia A Boulygina
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Valeriya V Solovyeva
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Ekaterina E Garanina
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Kristina V Kitaeva
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Konstantin Y Ivanov
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Darja S Chulpanova
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Konstantin S Kletenkov
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Alina R Valeeva
- Department of Clinical Immunology and Allergology, Kazan State Medical University, Kazan, Tatarstan, Russian Federation
| | - Alfiya Kh Odintsova
- Department of Gastroenterology, Republican Clinical Hospital of Tatarstan Republic, Kazan, Tatarstan, Russian Federation
| | - Maria D Ardatskaya
- Central State Medical Academy of Administrative Department of the President of the Russian Federation, Moscow, Russian Federation
| | - Rustam A Abdulkhakov
- Department of Clinical Immunology and Allergology, Kazan State Medical University, Kazan, Tatarstan, Russian Federation
| | - Nikolai V Ivanov
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Sayar R Abdulkhakov
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| |
Collapse
|
47
|
Han JX, Tao ZH, Qian Y, Yu CY, Li J, Kang ZR, Lu S, Xie Y, Hong J, Chen H, Chen YX, Fang JY. ZFP90 drives the initiation of colitis-associated colorectal cancer via a microbiota-dependent strategy. Gut Microbes 2021; 13:1-20. [PMID: 33947304 PMCID: PMC8115455 DOI: 10.1080/19490976.2021.1917269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/01/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation and gut microbiota dysbiosis are risk factors for colorectal cancer. In clinical practice, patients with inflammatory bowel disease (IBD) have a greatly increased risk of developing colitis-associated colorectal cancer (CAC). However, the underlying mechanism of the initiation of CAC remains unknown. Systematic analyses using an existing genome-wide association study (GWAS) and conditional deletion of Zfp90 (encoding zinc finger protein 90 homolog) in a CAC mouse model indicated that Zfp90 is a putative oncogene in CAC development.Strikingly, depletion of the gut microbiota eliminated the tumorigenic effect of Zfp90 in the CAC mouse model. Moreover, fecal microbiota transplantation demonstrated that Zfp90 promoted CAC dependent on the gut microbiota. Analysis of 16s rDNA sequences in fecal specimens from the CAC mouse model allowed us to speculate that a Prevotella copri-defined microbiota might mediate the oncogenic role of Zfp90 in the development of CAC. Mechanistic studies revealed Zfp90 accelerated CAC development through the TLR4-PI3K-AKT-NF-κB pathway. Our findings revealed the crucial role of the Zfp90-microbiota-NF-κB axis in creating a tumor-promoting environment and suggested therapeutic targets for CAC prevention and treatment.
Collapse
Affiliation(s)
- Ji-Xuan Han
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Hang Tao
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Qian
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Yang Yu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jialu Li
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Ran Kang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyuan Lu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanhong Xie
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xuan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
48
|
Affiliation(s)
- John T Chang
- From the Department of Medicine, University of California San Diego, La Jolla, and the Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego
| |
Collapse
|
49
|
Solitano V, D'Amico F, Correale C, Peyrin-Biroulet L, Danese S. Thiopurines and non-melanoma skin cancer: partners in crime in inflammatory bowel diseases. Br Med Bull 2020; 136:107-117. [PMID: 33200781 DOI: 10.1093/bmb/ldaa033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Several studies have shown that inflammatory bowel diseases (IBD) patients treated with thiopurines have an increased risk of developing skin cancer. SOURCES OF DATA This review is based on recent published literature regarding the use of thiopurines in IBD and skin malignancies. AREAS OF AGREEMENT Exposure to thiopurines is significantly associated with nonmelanoma skin cancer, but not with melanoma. Primary and secondary prevention including sun-protective measures and regular dermatologic screening are recommended in IBD patients, particularly in those exposed to thiopurines. AREAS OF CONTROVERSY Both when and how immunosuppressive therapy should be resumed in patients with a prior history of skin cancer still remain debatable topics. GROWING POINTS The benefit-risk balance between thiopurine therapy and risk of skin cancer should be evaluated in the drug decision process. AREAS TIMELY FOR DEVELOPING RESEARCH The approval of new effective strategies requires the re-evaluation of the positioning of thiopurines within the therapeutic algorithm based on an increasingly individualized approach.
Collapse
Affiliation(s)
- Virginia Solitano
- Department of Biomedical Sciences, Humanitas University, 4 Rita Levi Montalcini Street, Pieve Emanuele, 20090 Milan, Italy
| | - Ferdinando D'Amico
- Department of Biomedical Sciences, Humanitas University, 4 Rita Levi Montalcini Street, Pieve Emanuele, 20090 Milan, Italy.,Department of Gastroenterology and Inserm NGERE U1256, University Hospital of Nancy, University of Lorraine, 5 allèe du Morvan, 54500 Vandoeuvre-lès-Nancy, France
| | - Carmen Correale
- Department of Gastroenterology, IBD Center, Humanitas Clinical and Research Center, IRCCS, 56 Manzoni Street, Rozzano, 20089 Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology and Inserm NGERE U1256, University Hospital of Nancy, University of Lorraine, 5 allèe du Morvan, 54500 Vandoeuvre-lès-Nancy, France
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, 4 Rita Levi Montalcini Street, Pieve Emanuele, 20090 Milan, Italy.,Department of Gastroenterology, IBD Center, Humanitas Clinical and Research Center, IRCCS, 56 Manzoni Street, Rozzano, 20089 Milan, Italy
| |
Collapse
|
50
|
Toyonaga T, Araba KC, Kennedy MM, Keith BP, Wolber EA, Beasley C, Steinbach EC, Schaner MR, Jain A, Long MD, Barnes EL, Herfarth HH, Isaacs KL, Hansen JJ, Kapadia M, Gaston Guillem J, Koruda MJ, Rahbar R, Sadiq T, Gulati AS, Sethupathy P, Furey TS, Ehre C, Sheikh SZ. Increased Colonic Expression of ACE2 Associates with Poor Prognosis in Crohn's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33269348 DOI: 10.1101/2020.11.24.396382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background and Aims The host receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), is highly expressed in small intestine. Our aim was to study colonic ACE2 expression in Crohn's disease (CD) and non-inflammatory bowel disease (non-IBD) controls. We hypothesized that the colonic expression levels of ACE2 impacts CD course. Methods We examined the expression of colon ACE2 using RNA-seq and quantitative (q) RT-PCR from 69 adult CD and 14 NIBD control patients. In a subset of this cohort we validated ACE2 protein expression and localization in formalin-fixed, paraffin-embedded matched colon and ileal tissues using immunohistochemistry. The impact of increased ACE2 expression in CD for the risk of surgery was evaluated by a multivariate regression analysis and a Kaplan-Meier estimator. To provide critical support for the generality of our findings, we analyzed previously published RNA-seq data from two large independent cohorts of CD patients. Results Colonic ACE2 expression was significantly higher in a subset of adult CD patients (ACE2-high CD). IHC in a sampling of ACE2-high CD patients confirmed high ACE2 protein expression in the colon and ileum compared to ACE2-low CD and NIBD patients. Notably, we found that ACE2-high CD patients are significantly more likely to undergo surgery within 5 years of diagnosis, with a Cox regression analysis finding that high ACE2 levels is an independent risk factor (OR 2.18; 95%CI, 1.05-4.55; p=0.037). Conclusion Increased intestinal expression of ACE2 is associated with deteriorated clinical outcomes in CD patients. These data point to the need for molecular stratification that may impact CD disease-related outcomes.
Collapse
|