1
|
Enssle S, Sax A, May P, El Khawanky N, Soliman N, Perl M, Enssle JC, Krey K, Ruland J, Pichlmair A, Bassermann F, Poeck H, Heidegger S. Gasdermin E links tumor cell-intrinsic nucleic acid signaling to proinflammatory cell death for successful checkpoint inhibitor cancer immunotherapy. Oncoimmunology 2025; 14:2504244. [PMID: 40366863 PMCID: PMC12080277 DOI: 10.1080/2162402x.2025.2504244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
Durable clinical responses to immune checkpoint inhibitors (ICI) are limited to a minority of patients, and molecular pathways that modulate their efficacy remain incompletely defined. We have recently shown that activation of the innate RNA-sensing receptor RIG-I and associated apoptotic tumor cell death can facilitate tumor immunosurveillance and -therapy, but the mechanism that drives its immunogenicity remained unclear. We here show that intratumoral activity of the pore-forming protein gasdermin E (GSDME) links active RIG-I signaling and apoptotic cell death in tumor cells to inflammatory pyroptosis. Activation of tumor-intrinsic RIG‑I triggered cleavage of GSDME, pore formation, loss of cell membrane integrity and leakage of cytosolic components from dying tumor cells. Tumor antigen cross-presentation by dendritic cells and subsequent expansion of cytotoxic T cells strongly relied on tumor-intrinsic GSDME activity. In preclinical murine cancer models, defective GSDME signaling rendered tumors resistant to ICI therapy. Epigenetic reprogramming with upregulation of Gdsme enhanced the susceptibility of tumor cells to inflammatory cell death and immunotherapy. In humans, transcriptome analysis of melanoma samples showed strong correlation between genetic activity of the RIG-I and pyroptosis pathways. In melanoma patients, high transcriptional activity of a pyroptosis gene set was associated with prolonged survival and beneficial response to ICI therapy. In summary, our data show that GSDME links RIG-I and apoptotic signaling to inflammatory cell death, thereby driving its immunogenicity and responsiveness to ICI. A deeper understanding of these pathways may allow for the development of novel combined modality approaches to improve ICI treatment responses in cancer patients.
Collapse
Affiliation(s)
- Stefan Enssle
- Department of Medicine III, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Anna Sax
- Department of Medicine III, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Peter May
- Department of Medicine III, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Nadia El Khawanky
- Department of Medicine III, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Nardine Soliman
- Department of Medicine III, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Markus Perl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Julius C. Enssle
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Karsten Krey
- Institute of Virology, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jürgen Ruland
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Pichlmair
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Virology, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Florian Bassermann
- Department of Medicine III, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hendrik Poeck
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
- Center for immunomedicine intransplantation and oncology (CITO), Regensburg, Germany
| | - Simon Heidegger
- Department of Medicine III, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Yao M, Miao L, Wang X, Han Y. Targeting programmed cell death pathways in gastric cancer: a focus on pyroptosis, apoptosis, necroptosis and PANoptosis. Gene 2025; 960:149546. [PMID: 40334955 DOI: 10.1016/j.gene.2025.149546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/05/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Gastric cancer (GC) is recognized as one of the most prevalent and serious malignancies, distinguished by its high incidence and fatality rates. Given the considerable mortality rate associated with GC, it is imperative to clarify the related pathways of GC development and further identify feasible targets for rational targeted therapy. Accumulating evidence reveals that programmed cell death (PCD) is a crucial element in both the progression and treatment of cancer. Pyroptosis, apoptosis, and necroptosis are three well-studied types of PCD, and a link between them and GC has been established in recent studies. PANoptosis, a comparatively novel type of PCD, shares key traits with pyroptosis, apoptosis, and necroptosis, yet cannot be entirely illustrated by any single model. PANoptosis has been discovered to exert an impact on multiple diseases, including cancer, infections, and inflammatory conditions, consequently offering novel perceptions into the progression and treatment of GC. This review seeks to encapsulate the emerging roles and therapeutic potential of pyroptosis, apoptosis, necroptosis, and PANoptosis in GC, laying the groundwork for the advancement of innovative treatment methods that target important signaling pathways connected with these four forms of PCD.
Collapse
Affiliation(s)
- Minghui Yao
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Liying Miao
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Xin Wang
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Yangyang Han
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China; Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
3
|
Tan Y, Hu G, Li M, An Y, Wang Z, Liu R, Xu D, Tan X, Zeng Y, He Y, Lu Z, Liu G. Two-photon photosensitizer for specific targeting and induction of tumor pyroptosis to elicit systemic immunity-boosting anti-tumor therapy. Biomaterials 2025; 317:123108. [PMID: 39824002 DOI: 10.1016/j.biomaterials.2025.123108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Photodynamic therapy (PDT) has garnered increasing attention in cancer treatment due to its precise spatiotemporal selectivity and non-invasive nature. However, several challenges, including the inability of photosensitizers to discriminate between tumor and healthy tissues, as well as the limited tissue penetration depth of light sources, impede its broader application. To surmount these impediments, our research introduces a two-photon photosensitizer (TPSS) that specifically targets tumor overexpressing carbonic anhydrase IX (CA IX), thereby exhibiting exceptional specificity for tumor cells. Under two-photon laser stimulation, TPSS generates a large amount of reactive oxygen species (ROS), inducing cell pyroptosis and subsequently triggering a strong anti-tumor immune response. Additionally, proteomics analysis provides compelling evidence to elucidate the anti-tumor mechanism of TPSS in vivo. Through comprehensive immune assessments, TPSS under two-photon laser irradiation effectively activates both the innate and adaptive immune systems, efficiently suppressing the proliferation of distant metastatic tumors, underscoring its considerable therapeutic potential. Collectively, this study provides a viable strategy to overcome the limitations of PDT, highlighting the prospects of two-photon excitation photosensitizers.
Collapse
Affiliation(s)
- Yubo Tan
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China; Sichuan Research Institute of Xiamen University, Chengdu, 610000, China
| | - Guosheng Hu
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Man Li
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yibo An
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Ziying Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Renyuan Liu
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinyu Tan
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Yaohui He
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Zhixiang Lu
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; Sichuan Research Institute of Xiamen University, Chengdu, 610000, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
4
|
Li M, Zhu Y, Li M. Newcastle Disease Virus Induces Pyroptosis in Canine Mammary Tumour CMT-U27 Cells via the TNFα/NF-κB/NLRP3 Signalling Pathway. Vet Comp Oncol 2025; 23:224-235. [PMID: 40026277 DOI: 10.1111/vco.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Mammary tumours are the most common type of neoplasm in female dogs, with nearly half being malignant. Oncolytic Newcastle disease virus (NDV) therapy has emerged as a novel cancer treatment option; however, its precise oncolytic mechanism in canine mammary tumours (CMT) remain unclear. Ultrastructural analysis of NDV-infected CMT-U27 cells with locally damaged cell membranes and swollen and ruptured mitochondria revealed the occurrence of pyroptosis. Transcriptome sequencing further identified a significant upregulation of pyroptosis-related genes, including NLRP1, NOD2, caspase-1, and GSDMD. Subsequent examination of RNA and protein expression levels of pyroptosis-related molecules in vitro indicated that NDV induces pyroptosis in CMT-U27 cells via the caspase-1/GSDMD pathway. Additionally, inhibition of the TNFα/NF-κB pathway and knockdown of NOD-like receptor pyrin domain-containing protein 3 (NLRP3) using small interfering RNA demonstrated that the TNFα/NF-κB pathway can regulate NDV-induced pyroptosis through the NLRP3 inflammasome. In a xenograft model, intravenous administration of NDV significantly inhibited tumour growth, and prolonged the survival time in nude mice bearing CMT-U27 cells. NDV treatment enhances intratumoural pyrotosis in tumour bearing mice. In conclusion, these findings suggest that NDV induces pyroptosis in CMT-U27 cells through the TNFα/NF-κB/NLRP3 pathway, providing a foundation for future research into NDV's therapeutic potential in canine mammary cancer.
Collapse
Affiliation(s)
- Mengqing Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yunjie Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Li B, Li T, Cai Y, Cheng J, Zhang C, Liu J, Song K, Wang Z, Ji X. Machine Learning and Experiments Revealed Key Genes Related to PANoptosis Linked to Drug Prediction and Immune Landscape in Spinal Cord Injury. Mol Neurobiol 2025; 62:7364-7379. [PMID: 39888480 PMCID: PMC12078448 DOI: 10.1007/s12035-025-04717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Spinal cord injury (SCI) is a severe central nervous system injury without effective therapies. PANoptosis is involved in the development of many diseases, including brain and spinal cord injuries. However, the biological functions and molecular mechanisms of PANoptosis-related genes in spinal cord injury remain unclear. In the bioinformatics analysis of public data of SCI, the differentially expressed genes (DEGs) identified by GSE151371 were hybridized with PANoptosis-related genes (PRGs) to obtain differentially expressed PANoptosis-related genes (DE-PRGs). Through three machine learning algorithms, we obtained the hub genes. Then, we constructed functional analysis, drug prediction, regulatory network construction, and immune infiltrating cell analysis. Finally, the expression of the hub gene was verified in GSE93561, GSE45376, and qRT-PCR analysis. Through the above analysis, 14 DE-PRGs were obtained by intersecting 3582 DEGs with 46 PRGs. Five key hub genes, CASP4, GSDMB, NAIP, NLRC4, and NLRP3, were obtained by 3 machine learning algorithms. All five hub genes were enriched in phagocytosis mediated by FC GAMMA R. The 11 immune cells were significantly different between spinal cord injury (SCI) group and human control (HC) group, such as mast cell and gamma delta T cell. The transcription factor (TF)-hub gene network contained 10-nodes (4 hub genes and 6 TFs) and 8-edges. The miRNA-hub gene network consisting of 5-nodes (3 hub genes and 2 miRNAs) and 3-edges was constructed. Moreover, the CASP4 predicted 1 small molecule drug and NLRP3 predicted 9 small molecule drugs. Finally, the expression of 5 hub genes were significantly different in GSE45376 and GSE93561 (SCI vs. HC) and mice SCI model (Sham vs. SCI). Collectively, we identified 5 hub genes (CASP4, GSDMB, NAIP, NLRC4, and NLRP3) associated with PANoptosis, providing potential directions for treating spinal cord injury.
Collapse
Affiliation(s)
- Bo Li
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Tao Li
- Department of Neurosurgery, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, 210093, China
| | - Yibo Cai
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Junyao Cheng
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Chuyue Zhang
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Jianheng Liu
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Keran Song
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China.
| | - Zheng Wang
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China.
| | - Xinran Ji
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
6
|
Xiao Z, Xie J, Zhao X, Chen X, Lu Y, Xu Y, Wu M, An L, Li Q. Role of Pyroptosis in inflammatory bowel disease. Int Immunopharmacol 2025; 155:114619. [PMID: 40209313 DOI: 10.1016/j.intimp.2025.114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Inflammatory bowel disease (IBD) is a serious chronic condition marked by persistent and recurrent intestinal ulcers. Although the exact cause of IBD remains unclear, it is generally accepted that a complex interaction among dietary factors, gut microbiota, and immune responses in genetically predisposed individuals contributes to its development. Pyroptosis, an inflammatory form of programmed cell death activated by inflammasomes, is marked by the rupture of cell membranes and the subsequent release of inflammatory mediators. Emerging evidence indicates that pyroptosis plays a crucial role in the pathogenesis of IBD. Moderate pyroptosis activation can enhance intestinal immune defenses, while excessive inflammasome activation can trigger an inflammatory cascade, resulting in increased damage to intestinal tissues. This article reviews the molecular mechanisms underlying pyroptosis and highlights its role in the onset and progression of IBD. Furthermore, We explore recent advancements in IBD treatment, focusing on small molecule compounds that specifically target and inhibit pyroptosis.
Collapse
Affiliation(s)
- Zhiyi Xiao
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, China
| | - Jiling Xie
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, China
| | - Xun Zhao
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Xiangjun Chen
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, China
| | - Yihong Lu
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, China
| | - Yuanzhao Xu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Manqing Wu
- Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Lingyue An
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| | - Qing Li
- Department of Gastroenterology and Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
7
|
Wang H, Feng X, He H, Li L, Wen Y, Liu X, He B, Hua S, Sun S. Crosstalk between autophagy and other forms of programmed cell death. Eur J Pharmacol 2025; 995:177414. [PMID: 39986593 DOI: 10.1016/j.ejphar.2025.177414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Cell death occurs continuously throughout individual development. By removing damaged or senescent cells, cell death not only facilitates morphogenesis during the developmental process, but also contributes to maintaining homeostasis after birth. In addition, cell death reduces the spread of pathogens by eliminating infected cells. Cell death is categorized into two main forms: necrosis and programmed cell death. Programmed cell death encompasses several types, including autophagy, pyroptosis, apoptosis, necroptosis, ferroptosis, and PANoptosis. Autophagy, a mechanism of cell death that maintains cellular equilibrium via the breakdown and reutilization of proteins and organelles, is implicated in regulating almost all forms of cell death in pathological contexts. Notably, necroptosis, ferroptosis, and PANoptosis are directly classified as autophagy-mediated cell death. Therefore, regulating autophagy presents a therapeutic approach for treating diseases such as inflammation and tumors that arise from abnormalities in other forms of programmed cell death. This review focuses on the crosstalk between autophagy and other programmed cell death modalities, providing new perspectives for clinical interventions in inflammatory and neoplastic diseases.
Collapse
Affiliation(s)
- Huaiyuan Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China; Clinical Medicine, class 3, 2022 Grade, Kunming Medical University, Kunming, China
| | - Xiran Feng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China; Clinical Medicine, Kunming Medical University-Shanghai Jiaotong University Joint Program, 2022 Grade, Kunming Medical University, Kunming, China
| | - Huilin He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Lingyu Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaofei Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Bifeng He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China.
| |
Collapse
|
8
|
Zhu X, Xu K, Ai S, Zhang Y, Chu C, Wei R, Gao S, Liu L, Li W, Zhang Y, Kikete S, Liu X, Zhang Z, Li X. miR-126-5p protects from URSA via inhibiting Caspase-1-dependent pyroptosis of trophoblast cells. Cell Mol Life Sci 2025; 82:204. [PMID: 40372489 DOI: 10.1007/s00018-025-05713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/16/2025]
Abstract
Unexplained recurrent spontaneous abortion (URSA) is a distressing pregnancy complication that seriously threat to women's reproductive health. Trophoblast pyroptosis was involved in the occurrence of URSA, but the potential mechanism remains unclear. In this work, we found CASP1 transcription and the level of pyroptosis were significantly elevated in the villous tissues of URSA patients. Suppression of cell pyroptosis by Gasdermin-D (GSDMD) or Caspase-1 inhibitors can reduce embryo resorption rate of URSA mice, while Caspase-1 over-expression in normal pregnant (NP) mice can aggravate embryo resorption. Meanwhile, a pronounced decline in the expression of microRNA-126-5p (miR-126-5p) was found in URSA patients, which was inversely related to CASP1 expression. Over-expression of miR-126-5p restrained trophoblast pyroptosis via inhibiting Caspase-1/GSDMD signaling pathway by direct binding to 3'-UTR of CASP1. Moreover, experiments in vivo substantiated that up-regulation of miR-126-5p effectively suppressed Caspase-1-mediated pyroptosis in placental tissue and significantly reduced embryo resorption rate. Collectively, these results underscored that diminished miR-126-5p expression plays a crucial role in URSA by enhancing trophoblast pyroptosis through activating Caspase-1/GSDMD signaling pathway. As a result, miR-126-5p shows significant promise as a possible biomarker for diagnosis and treatment of URSA.
Collapse
Affiliation(s)
- Xiaoxiao Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Ke Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Shuang Ai
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingjie Zhang
- The First Clinical College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chu Chu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Ran Wei
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shufeng Gao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Lu Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Wei Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Yunhong Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Siambi Kikete
- School of Health Sciences, Department of Pharmacognosy and Pharmaceutical Chemistry, Kenyatta University, Nairobi, 00609, Kenya
| | - Xinkui Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Zhen Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
9
|
Wu Y, Liu Q, Tian R, Zhao S, Ding B, Jiang Q. Predesigned DNA Origami Nanodrills Mediate Controlled Pore Formation on a Plasma Membrane and Cell Death. NANO LETTERS 2025. [PMID: 40343847 DOI: 10.1021/acs.nanolett.5c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
We presented an engineered DNA origami nanodrill that is capable of controlled attachment and penetration of the plasma membrane, thereby inducing cell damage and lytic death. The cap-and-stem-like DNA origami nanodrills were constructed, equipping them with addressable cholesterol tags on their caps for adherence to lipid bilayers. The subsequent insertion of the origami stems was initiated, enabling the generation of distinct transmembrane channels in various artificial and biological membranes. These nanodrills with plasma-membrane-disrupting functions resulted in mechanical damage to living cell membranes, leading to increased cytosolic calcium levels, enhanced intracellular protein release, and potent cytotoxicity against tumor cells. The further stimuli-responsive design enabled acid-triggered attachment of DNA nanodrills to the plasma membrane and subsequent cell damage in a pH-controlled fashion. This programmable origami nanodrill could serve as an artificial mediator of plasma-membrane rupture and cell death, thus potentially leading to the development of new therapeutic strategies to combat cancer.
Collapse
Affiliation(s)
- Yushuai Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Run Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Meng J, Zuo J, Li L, Zhang Y, Zhao M, Xiong P. Sonodynamic Therapy Induces Pyroptosis and Recruits CAR-NK Cells to Enhance the Treatment of Oral Squamous Cell Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40338058 DOI: 10.1021/acsami.5c03584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Background: Immunotherapy strategies have demonstrated promising efficacy in treating various cancers. However, cancer cells often evade immune surveillance by reducing their immunogenicity, which limits immune cell infiltration into the tumor microenvironment. Pyroptosis, a proinflammatory form of programmed cell death, is characterized by the formation of plasma membrane pores that lead to the release of intracellular contents and stimulate a robust immune response. Results: To exploit this mechanism, we developed hematoporphyrin monomethyl ether (HMME)-loaded nanoliposomes capable of efficiently accumulating at the tumor site. Upon ultrasound irradiation, these nanomedicines generate reactive oxygen species (ROS) that activate Caspase-3, which cleaves Gasdermin E (GSDME) and induces tumor cell pyroptosis. Notably, this sonodynamic therapy (SDT) based on nanosonosensitizers enhanced the targeted enrichment of chimeric antigen receptor (CAR)-engineered natural killer (NK) cells at the ultrasound-irradiated tumor site, significantly improved the tumor immune response, and effectively inhibited the growth and proliferation of oral squamous cell carcinoma (OSCC) cells both in vivo and in vitro. Conclusions: Given that NK cell immunotherapy has an excellent safety profile with minimal risks of cytokine release syndrome and neurotoxicity, this approach holds promise as an adjunct to various NK cell-based immunotherapies through SDT-induced pyroptosis.
Collapse
Affiliation(s)
- Jing Meng
- Department of Ultrasound, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, P.R. China
| | - Jiaxin Zuo
- Department of Ultrasound, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, P.R. China
| | - Luyu Li
- Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Yunxuan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Minghao Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ping Xiong
- Department of Ultrasound, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, P.R. China
| |
Collapse
|
11
|
Zhang S, Qiu J, Zhang H, Chen B, Zhang X, Li D, Li G, Shan G. Pyrazolo[1,5- a]pyrimidine-Based Type-I Photosensitizer as an Efficient Pyroptosis Inducer for Tumor Ablation. J Med Chem 2025. [PMID: 40319502 DOI: 10.1021/acs.jmedchem.4c03075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Pyroptosis is a proinflammatory and lytic programmed cell death form, which can promote cytotoxic T lymphocyte (CTL) maturation and tumor infiltration through the release of damage-associated molecular patterns (DAMPs). Therefore, the induction of pyroptosis by small molecules is a promising strategy to activate antitumor immunity. In this work, we report the design of a new class of pyrazolo[1,5-a]pyrimidine-based type-I photosensitizers (PSs) as efficient pyroptosis inducers for cancer photodynamic therapy (PDT). Among the compounds, ZS-3 exhibited the most excellent reactive oxygen species (ROS) generation ability and phototoxicity in vitro. It was found that ZS-3 induced cell pyroptosis through the caspase-3/gasdermin E (GSDME) pathway under light irradiation, characterized by bubble formation and damage-associated molecular pattern release. Furthermore, ZS-3 lipid nanoparticles significantly inhibited tumor growth and evoked antitumor immune responses in vivo.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, P. R. China
| | - Jingru Qiu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, P. R. China
| | - Hao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, P. R. China
| | - Baolan Chen
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Donghai Li
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Guiling Li
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Gang Shan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, P. R. China
| |
Collapse
|
12
|
Huang C, Li J, Wu R, Li Y, Zhang C. Targeting pyroptosis for cancer immunotherapy: mechanistic insights and clinical perspectives. Mol Cancer 2025; 24:131. [PMID: 40319304 PMCID: PMC12049004 DOI: 10.1186/s12943-025-02344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025] Open
Abstract
Pyroptosis is a distinct form of programmed cell death characterized by the rupture of the cell membrane and robust inflammatory responses. Increasing evidence suggests that pyroptosis significantly affects the tumor microenvironment and antitumor immunity by releasing damage-associated molecular patterns (DAMPs) and pro-inflammatory mediators, thereby establishing it as a pivotal target in cancer immunotherapy. This review thoroughly explores the molecular mechanisms underlying pyroptosis, with a particular focus on inflammasome activation and the gasdermin family of proteins (GSDMs). It examines the role of pyroptotic cell death in reshaping the tumor immune microenvironment (TIME) involving both tumor and immune cells, and discusses recent advancements in targeting pyroptotic pathways through therapeutic strategies such as small molecule modulators, engineered nanocarriers, and combinatory treatments with immune checkpoint inhibitors. We also review recent advances and future directions in targeting pyroptosis to enhance tumor immunotherapy with immune checkpoint inhibitors, adoptive cell therapy, and tumor vaccines. This study suggested that targeting pyroptosis offers a promising avenue to amplify antitumor immune responses and surmount resistance to existing immunotherapies, potentially leading to more efficacious cancer treatments.
Collapse
Affiliation(s)
- Chen Huang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiayi Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ruiyan Wu
- West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yangqian Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chenliang Zhang
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
13
|
Kruglikov IL, Scherer PE. Regulation of the terminal complement cascade in adipose tissue for control of its volume, cellularity, and fibrosis. Obesity (Silver Spring) 2025; 33:839-850. [PMID: 40134146 PMCID: PMC12015659 DOI: 10.1002/oby.24270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/28/2024] [Accepted: 01/26/2025] [Indexed: 03/27/2025]
Abstract
White adipose tissue (WAT) is a reservoir for various pathogens and their products, such as lipopolysaccharides. Therefore, it must be equipped with a defense mechanism connected with the activation of innate immunity. This explains the phenomenon that adipocytes express components of the classical and alternative complement pathways, which can be activated even in the absence of opportunistic pathogens. Terminal stages of the complement pathway are related to the production of membrane attack complexes and, thus, can cause lysis of pathogens, as well as autolysis of host adipocytes, contributing to the regulation of the cellularity in WAT. Complement-induced autolysis of adipocytes is counteracted by a number of cellular defense mechanisms. This versatility of activation and suppression processes enables a broad range of adaptability to physiological contexts, ranging from the development of hypertrophic WAT to lipodystrophy. Pathogen-induced activation of the complement pathway in WAT also induces a profibrotic phenotype. These processes may also be involved in the regulation of insulin resistance in adipocytes. This explains the dual immune/metabolic role of the complement pathway in WAT: the pathway is an integral part of the immune response but also potently involved in the control of volume and cellularity of WAT under both physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
14
|
Zhang T, Sun Y, Xia J, Fan H, Shi D, Wu Q, Huang M, Hou XY. Targeting HPK1 inhibits neutrophil responses to mitigate post-stroke lung and cerebral injuries. EMBO Mol Med 2025; 17:1018-1040. [PMID: 40169896 DOI: 10.1038/s44321-025-00220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025] Open
Abstract
Circulating neutrophils are responsible for poor neurological outcomes and have been implicated in respiratory morbidity after acute ischemic stroke (AIS). However, the molecular mechanisms regulating neutrophil responses and their pathological relevance in post-stroke complications remain unclear. In this study, we investigated the involvement of hematopoietic progenitor kinase 1 (HPK1) in neutrophil responses and mobilization, as well as subsequent lung and cerebral injuries following AIS. We found that lipopolysaccharide treatment triggered neutrophil activation in an HPK1-dependent manner. HPK1 enhanced intrinsic NF-κB/STAT3/p38-MAPK pathways and gasdermin D cleavage, leading to neutrophil hyperactivation. Following AIS, HPK1 promoted the mobilization of CXCR2high bone marrow neutrophils. HPK1 loss inhibited peripheral neutrophil hyperactivation, neutrophil infiltration, and aggregation of neutrophil extracellular traps, progressively alleviating systemic inflammation and impairments in mouse pulmonary and neurological functions. Furthermore, HPK1 pharmacological inhibition attenuated post-stroke pulmonary and neurological impairments in mice. Our findings revealed that HPK1 upregulates neutrophil mobilization and various responses, promoting post-stroke systemic inflammation and tissue injury. This study highlights HPK1 as a therapeutic target for improving pulmonary and neurological functions after AIS.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Ying Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jing Xia
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Hongye Fan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Dingfang Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Qian Wu
- The Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ming Huang
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| | - Xiao-Yu Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
15
|
Shang W, Geng X, Sun X, Fan X, Li A, Zhang C, Kang Y, Liang Y, Zhang J. Non-coding RNAs modulate pyroptosis in diabetic cardiomyopathy: A comprehensive review. Int J Biol Macromol 2025; 309:142865. [PMID: 40188918 DOI: 10.1016/j.ijbiomac.2025.142865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/07/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Diabetic cardiomyopathy (DCM) is a leading cause of heart failure (HF) among individuals with diabetes, presenting a significant medical challenge due to its complex pathophysiology and the lack of targeted therapies. Pyroptosis, a pro-inflammatory form of programmed cell death (PCD), is the predominant mode of cell death in the primary resident cells involved in DCM. It has been reported to be critical in DCM's onset, progression, and pathogenesis. Non-coding RNAs (ncRNAs), diverse transcripts lacking protein-coding potential, are essential for cellular physiology and the progression of various diseases. Increasing evidence indicates that ncRNAs are pivotal in the pathogenesis of DCM by regulating pyroptosis. This observation suggests that targeting the regulation of pyroptosis by ncRNAs may offer a novel therapeutic approach for DCM. However, a comprehensive review of this topic is currently lacking. Our objective is to elucidate the regulatory role of ncRNAs in pyroptosis associated with DCM and to elucidate the relationships among these factors. Additionally, we explored how ncRNAs influence pyroptosis and contribute to the pathophysiology of DCM. By doing so, we aim to identify new research targets for the clinical diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Wenyu Shang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xiaofei Geng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xitong Sun
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xinbiao Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Aolin Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Chi Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Yuxin Kang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Yongchun Liang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Junping Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China.
| |
Collapse
|
16
|
Li Q, Wang Z, Li F, Liu S, Ding Y, Yan J, Feng X, Li M. AIM2 exacerbates hypoxic-ischemic brain damage in neonatal rats via promoting neuronal pyroptosis. Brain Res Bull 2025; 224:111305. [PMID: 40101806 DOI: 10.1016/j.brainresbull.2025.111305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Pyroptosis has been reported to play a pathogenic role in neonatal hypoxic-ischemic brain damage (HIBD). Absence in melanoma 2 (AIM2) is an inflammasome involved in pyroptosis. OBJECTIVE This study aimed to investigate the role of AIM2 in hypoxic-ischemia (HI)-induced pyroptosis and brain damage in a neonatal rat HIBD model. METHODS In vivo, we injected a lentivirus that overexpressed or knocked down AIM2 into the lateral ventricle of rats within 24 h after birth and prepared a 7-day Sprague Dawley (SD) rat HIBD model. In vitro, we transfected lentiviruses overexpressing or knocking down AIM2 into cultured primary neurons and established an oxygen/glucose deprivation/reoxygenation (OGD/R) model. 2,3,5-triphenyltetrazolium chloride (TTC) staining was used to determine infarct size. Hematoxylin and eosin and Nissl staining were used to evaluate morphological changes in the damaged brain. Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) assays were used to determine cell viability and toxicity. Pyroptosis was observed using transmission electron microscopy. RESULTS AIM2 expression significantly increased in the HI-induced cortex of neonatal rats. Lentivirus-mediated overexpression of AIM2 significantly aggravates HI-induced brain injury and OGD/R-induced neuronal injury in vivo and in vitro. The lentivirus-mediated AIM2 knockdown significantly reversed these adverse effects. In addition, AIM2 overexpression increased HI-induced pyroptosis in neonatal rats in vivo and in vitro, whereas AIM2 knockdown suppressed HI-induced pyroptosis via the AIM2/Caspase-1/GSDMD pathway. CONCLUSION These findings show that the upregulation of AIM2 activates pyroptosis and plays a pathogenic role in neonatal HIBD.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Neonatology, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, Jiangsu Province, China; Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zengqin Wang
- Department of Neonatology, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, Jiangsu Province, China
| | - Fengli Li
- Department of Intensive Care Unit, Zibo Central Hospital, Zibo, Shandong Province, China
| | - Songlin Liu
- Department of Neonatology, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, Jiangsu Province, China
| | - Yuhong Ding
- Department of Neonatology, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, Jiangsu Province, China
| | - Junmei Yan
- Department of Neonatology, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, Jiangsu Province, China.
| | - Xing Feng
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Mei Li
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
17
|
Berkel C. Potential Impact of Climate Change-Induced Alterations on Pyroptotic Cell Death in Animal Cells: A Review. Mol Biotechnol 2025; 67:1784-1799. [PMID: 38748072 DOI: 10.1007/s12033-024-01182-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 04/10/2025]
Abstract
Climate change-induced alterations in temperature variation, ozone exposure, water salinity and acidification, and hypoxia might influence immunity and thus survival in diverse groups of animals from fish to mammals. Pyroptosis is a type of lytic pro-inflammatory programmed cell death, which participates in the innate immune response, and is involved in multiple diseases characterized by inflammation and cell death, mostly studied in human cells. Diverse extrinsic factors can induce pyroptosis, leading to the extracellular release of pro-inflammatory molecules such as IL-18. Climate change-related factors, either directly or indirectly, can also promote animal cell death via different regulated mechanisms, impacting organismal fitness. However, pyroptosis has been relatively less studied in this context compared to another cell death process, apoptosis. This review covers previous research pointing to the potential impact of climate change, through various abiotic stressors, on pyroptotic cell death in different animal cells in various contexts. It was proposed that temperature, ozone exposure, water salinity, water acidification and hypoxia have the potential to induce pyroptotic cell death in animal cells and promote inflammation, and that these pyroptotic events should be better understood to be able to mitigate the adverse effects of climate change on animal physiology and health. This is of high importance considering the increasing frequency, intensity and duration of climate-based changes in these environmental parameters, and the critical function of pyroptosis in immune responses of animals and in their predisposition to multiple diseases including cancer. Furthermore, the need for further mechanistic studies showing the more direct impact of climate change-induced environmental alterations on pyroptotic cell death in animals at the organismal level was highlighted. A complete picture of the association between climate change and pyroptosis in animals will be also highly valuable in terms of ecological and clinical applications, and it requires an interdisciplinary approach. SIGNIFICANCE: Climate change-induced alterations might influence animal physiology. Pyroptosis is a form of cell death with pro-inflammatory characteristics. Previous research suggests that temperature variation, ozone exposure, water salinity and acidification, and hypoxia might have the potential to contribute to pyroptotic cell death in certain cell types and contexts. Climate change-induced pyroptotic cell death should be better understood to be able to mitigate the adverse effects of climate change on animal health.
Collapse
Affiliation(s)
- Caglar Berkel
- Deparment of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Türkiye.
| |
Collapse
|
18
|
Liang JL, Cao Y, Lv K, Xiao B, Sun J. Amplifying Ca 2+ overload by engineered biomaterials for synergistic cancer therapy. Biomaterials 2025; 316:123027. [PMID: 39700532 DOI: 10.1016/j.biomaterials.2024.123027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Ca2+ overload is one of the most widely causes of inducing apoptosis, pyroptosis, immunogenic cell death, autophagy, paraptosis, necroptosis, and calcification of tumor cells, and has become the most valuable therapeutic strategy in the field of cancer treatment. Nevertheless, several challenges remain in translating Ca2+ overload-mediated therapeutic strategies into clinical applications, such as the precise control of Ca2+ dynamics, specificity of Ca2+ homeostasis dysregulation, as well as comprehensive mechanisms of Ca2+ regulation. Given this, we comprehensively reviewed the Ca2+-driven intracellular signaling pathways and the application of Ca2+-based biomaterials (such as CaCO3-, CaP-, CaO2-, CaSi-, CaF2-, and CaH2-) in mediating cancer diagnosis, treatment, and immunotherapy. Meanwhile, the latest researches on Ca2+ overload-mediated therapeutic strategies, as well as those combined with multiple-model therapies in mediating cancer immunotherapy are further highlighted. More importantly, the critical challenges and the future prospects of the Ca2+ overload-mediated therapeutic strategies are also discussed. By consolidating recent findings and identifying future research directions, this review aimed to advance the field of oncology therapy and contribute to the development of more effective and targeted treatment modalities.
Collapse
Affiliation(s)
- Jun-Long Liang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Yangyang Cao
- Hangzhou Ultra-theranostics Biopharmaceuticals Technology Co., Ltd., Hangzhou, 311231, China
| | - Kaiwei Lv
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Bing Xiao
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
19
|
Karasawa T, Takahashi M. Inflammasome Activation and Neutrophil Extracellular Traps in Atherosclerosis. J Atheroscler Thromb 2025; 32:535-549. [PMID: 39828369 PMCID: PMC12055512 DOI: 10.5551/jat.rv22033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
The deposition of cholesterol containing cholesterol crystals and the infiltration of immune cells are features of atherosclerosis. Although the role of cholesterol crystals in the progression of atherosclerosis have long remained unclear, recent studies have clarified the involvement of cholesterol crystals in inflammatory responses. Cholesterol crystals activate the NLRP3 inflammasome, a molecular complex involved in the innate immune system. Activation of NLRP3 inflammasomes in macrophages cause pyroptosis, which is accompanied by the release of inflammatory cytokines such as IL-1β and IL-1α. Furthermore, NLRP3 inflammasome activation drives neutrophil infiltration into atherosclerotic plaques. Cholesterol crystals trigger NETosis against infiltrated neutrophils, a form of cell death characterized by the formation of neutrophil extracellular traps (NETs), which, in turn, prime macrophages to enhance inflammasome-mediated inflammatory responses. Colchicine, an anti-inflammatory drug effective in cardiovascular disease, is expected to inhibit cholesterol crystal-induced NLRP3 inflammasome activation and neutrophil infiltration. In this review, we illustrate the reinforcing cycle of inflammation that is amplified by inflammasome activation and NETosis.
Collapse
Affiliation(s)
- Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
20
|
Berkel C, Keskin A, Cacan E. Chemo-sensitive and chemo-resistant ovarian cancer cells show differences in cellular processes leading to pyroptotic cell death. Pathol Res Pract 2025; 269:155911. [PMID: 40112594 DOI: 10.1016/j.prp.2025.155911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/24/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Tumor immunology in ovarian cancer is not completely understood. Chemoresistance limits the success of available treatment options for patients with ovarian cancer. Pyroptosis, pro-inflammatory programmed cell death characterized by membrane pore formation by gasdermin proteins, is important for both immunogenicity and drug resistance. Here, we showed that estrogen increases GSDMC and GSDMD mRNA levels in chemo-sensitive ovarian cancer cells; but, not in chemo-resistant ovarian cancer cells in vitro. GSDMC or GSDMD overexpression increases cell viability in chemo-sensitive ovarian cancer cells; but, not in chemo-resistant ovarian cancer cells. Silencing of GSDMD in chemo-sensitive ovarian cancer cells and silencing of GSDMC in chemo-resistant ovarian cancer cells limit the effect of nigericin, a pyroptosis inducer, on cell viability. Inhibition of caspase-1, -4, -6 or -8 blocks nigericin-induced cell death (pyroptosis) in chemo-sensitive ovarian cancer cells; however, only the inhibition of caspase-1 blocks nigericin-induced cell death in chemo-resistant ovarian cancer cells, showing that caspases participating in pyroptosis might differ between ovarian cancer cells based on their chemo-sensitivity profiles. Treatment with disulfiram, a GSDMD pore formation inhibitor, decreases cell viability in both cell lines. Lastly, we found that in chemo-resistant ovarian cancer cell line, disulfiram and nigericin combination treatment decreases cell viability even more compared to only disulfiram or only nigericin treatment. Combined, our study points that ovarian cancer cells with different chemosensitivity profiles might have certain differences in pyroptotic cell death.
Collapse
Affiliation(s)
- Caglar Berkel
- Deparment of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Turkey.
| | - Aysun Keskin
- Deparment of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Turkey
| | - Ercan Cacan
- Deparment of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Turkey.
| |
Collapse
|
21
|
Xia Y, Su M, Ye Z, Du F, Wang X, Guan D, Zhang X, Rao Z, Ning P. An epigenetic regulator synergizes with alphavirus-mediated gene therapy via biomimetic delivery for enhanced cancer therapy. Trends Biotechnol 2025; 43:1196-1214. [PMID: 39955233 DOI: 10.1016/j.tibtech.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 02/17/2025]
Abstract
Gene therapy is promising for treating genetic disorders, but faces challenges in treating cancer due to the intricate genetic and immunosuppressive landscape of this disease. Here, we describe a technology combining alphavirus-based gene therapy with an epigenetic regulator via pyroptosis and immune checkpoints to address these challenges. A filamentous actin-mimicking liposomal delivery system, with high fusion efficiency, was developed that encapsulates the Semliki Forest virus (pSFV) DNA vector to deliver p53 and PDL1 scFv DNA, bypassing traditional endocytic barriers to deliver genes with high efficiency via membrane fusion. To enhance this combined therapy, the DNA methyltransferase inhibitor decitabine (DAC) was used to increase Gasdermin E (GSDME) expression, converting apoptosis to pyroptosis. This approach kills apoptosis-resistant tumor cells, and also promotes T cell infiltration and activation, facilitating an anti-PDL1 therapy and the systemic antitumor immune response. This multifaceted therapeutic strategy combines gene therapy with epigenetic regulation to significantly improve immune checkpoint therapy (ICT) effectiveness, offering a robust potential as a transformative cancer treatment.
Collapse
Affiliation(s)
- Yuqiong Xia
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Maozhi Su
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Zixuan Ye
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Fuyu Du
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Xinruo Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Dashan Guan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Xianghan Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China; Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, 510555, PR China
| | - Zhiping Rao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| | - Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| |
Collapse
|
22
|
Yan W, Xiang S, Feng J, Zu X. Role of ubiquitin-specific proteases in programmed cell death of breast cancer cells. Genes Dis 2025; 12:101341. [PMID: 40083330 PMCID: PMC11904532 DOI: 10.1016/j.gendis.2024.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 03/16/2025] Open
Abstract
Breast cancer (BC) is the most common malignant tumor and the leading cause of cancer-related deaths among women worldwide. Great progress has been recently achieved in controlling breast cancer; however, mortality from breast cancer remains a substantial challenge, and new treatment mechanisms are being actively sought. Programmed cell death (PCD) is associated with the progression and treatment of many types of human cancers. PCD can be divided into multiple pathways including autophagy, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis, and anoikis. Ubiquitination is a post-translational modification process in which ubiquitin, a 76-amino acid protein, is coupled to the lysine residues of other proteins. Ubiquitination is involved in many physiological events and promotes cancer development and progression. This review elaborates the role of ubiquitin-specific protease (USP) in programmed cell death, which is common in breast cancer cells, and lays the foundation for tumor diagnosis and targeted therapy.
Collapse
Affiliation(s)
| | | | - Jianbo Feng
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| | - Xuyu Zu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| |
Collapse
|
23
|
Li T, Zhang Y, Li C, Song Y, Jiang T, Yin Y, Chang M, Song X, Zheng X, Zhang W, Yu Z, Feng W, Zhang Q, Ding L, Chen Y, Wang S. Microbial Photosynthetic Oxygenation and Radiotherapeutic Sensitization Enables Pyroptosis Induction for Combinatorial Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503138. [PMID: 40285553 DOI: 10.1002/adma.202503138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/08/2025] [Indexed: 04/29/2025]
Abstract
Rectal cancer surgery is challenging due to the complex anatomy, making it difficult to achieve clear surgical margins. Radiotherapy (RT) plays a crucial role, especially in treating locally recurrent rectal cancer and preserving anal function. However, its effectiveness is often limited by tumor hypoxia, particularly prevalent in hypoxic regions near the bowel wall in colorectal cancer. Hypoxia contributes to both radiation resistance and apoptosis resistance, compromising RT outcomes. To overcome hypoxia-driven radiotherapy resistance, this work designs and engineers a radiotherapy-sensitizing bioplatform for efficient cancer RT. It combines lanthanum oxide nanoparticles (La2O3 NPs) with cyanobacteria, which produces oxygen through photosynthesis. This bioplatform uniquely reduces tumor hypoxia, enhances radiation deposition, and improves RT efficacy. La2O3 NPs further enhance reactive oxygen species (ROS) production induced by radiation, triggering pyroptosis via the ROS-NLRP3-GSDMD pathway, while RT amplifies pyroptosis through GSDME, circumventing tumor apoptosis resistance. The further integrated thermosensitive hydrogels ensure precise localization of the bioplatform, reducing systemic toxicity and improving therapeutic specificity. Compared to conventional therapies, this dual-action system addresses hypoxia, RT resistance, and apoptosis resistance more effectively. In vivo and in vitro hypoxia models validate its potent anti-tumor efficacy, offering valuable insights for refining clinical treatment paradigms.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Ya Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Cong Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Yanwei Song
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Tiaoyan Jiang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Yipengchen Yin
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiaojun Zheng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Wenqing Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Zhongdan Yu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Qin Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Li Ding
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Sheng Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| |
Collapse
|
24
|
Li C, Cheng H, Zhuang Z, Cao F, Liu H, Zhao L, Rizvi SFA, Wang K, Yang L, Lu X, Zheng Y, Zhang Y, He P, Mao J, Wen X, Zhang L, Jiang L, Lin J, Li D, Chu C, Zeng Y, Lu Z, Liu C, Thompson EW, Chen Z, Wang P, Liu G. FlexiPlasma Microcatheter-Embolic Material (FPM-EM) Platform: A Non-Inflammatory Pyroptosis Strategy for Precision Hepatocellular Carcinoma Therapy. SMALL METHODS 2025:e2500231. [PMID: 40285389 DOI: 10.1002/smtd.202500231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Hepatocellular carcinoma (HCC) remains a global challenge, with conventional locoregional therapies like transarterial chemoembolization (TACE) lacking tumor specificity and promoting metastasis and inflammation. Cold atmospheric plasma (CAP) offers a tumor-selective ablation strategy but suffers from limited tissue penetration. To overcome this, the FlexiPlasma microcatheter (FPM) is developed, integrating flexible non-metallic microtubes and ring-shaped electrodes for precise CAP delivery to deep tumors. The optimized FPM-generated CAP eliminates cytotoxic UV and ozone while inducing tumor-specific pyroptosis via a ROS/Caspase-8/GSDMC pathway. Gasdermin-C (GSDMC) is highly expressed in liver tumors but absent in normal tissues, ensuring selective targeting with minimal inflammation. FPM is combined with embolic material (EM), PPP@CD hydrogel, enhancing injectability, tumor embolization, and sustained drug release. This FPM-EM strategy potentiates antitumor immunity, particularly CD4+ and CD8+ T-cell responses. These findings establish FPM-EM as a safe, effective, and minimally invasive therapy for HCC, revealing a non-inflammatory pyroptosis mechanism and broadening the potential of CAP-based cancer treatments. The FPM-EM combination offers promising new therapeutic options for HCC, addressing the limitations of TACE. Furthermore, the FPM-EM platform can be extended to the interventional therapy of other tumors and adapted to incorporate various drugs and nano-/micro-materials, highlighting the strong potential for future clinical translation.
Collapse
Affiliation(s)
- Changhong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
- Zhuhai UM Science & Technology Research Institute, University of Macau, Macau, 999078, China
| | - Ziqi Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Fei Cao
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hui Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Liqian Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Syed Faheem Askari Rizvi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Kanqi Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361102, China
| | - Liuyin Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361102, China
| | - Xiaowei Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361102, China
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yu Zhang
- Department of Hepatobiliary and Pancreas Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Pan He
- Department of Hepatobiliary and Pancreas Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jingsong Mao
- The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangdong, 511518, China
| | - Xiaofei Wen
- Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Liang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Department of Dermatology, The Fourth Affiliated Hospital of Harbin Medical University, No.37, Yiyuan Street, Nangang District, Harbin, 150001, China
| | - Lili Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jinyong Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dong Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Chengchao Chu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yun Zeng
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Zhixiang Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Chao Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| | - Erik W Thompson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, 4059, Australia
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Zhitong Chen
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Advanced Therapeutic Center, National Innovation Center for Advanced Medical Devices, Shenzhen, 518100, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Peiyu Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
25
|
Wu TX, Pang HZ, Liu XD, Liu L, Tang YF, Luo XF, Ran XK. Adiponectin alleviates inflammatory response in metabolic dysfunction-associated steatohepatitis by inhibiting NLRP3 inflammasome-mediated hepatocyte pyroptosis. Hepatobiliary Pancreat Dis Int 2025:S1499-3872(25)00061-X. [PMID: 40307114 DOI: 10.1016/j.hbpd.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Activation of NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasomes induced by pyroptosis is crucial in metabolic dysfunction-associated steatohepatitis (MASH) progression. Adiponectin possesses an anti-inflammatory role in various liver diseases. This study aimed to evaluate the effects of adiponectin on MASH. METHODS Adiponectin-mediated anti-inflammatory mechanisms, effects on pyroptosis-related proteins, and activation of NLRP3 inflammasomes were investigated using methionine-choline-deficient (MCD)-induced MASH murine model and in vitro models. The degree of MASH inflammation in liver tissue of C57BL/6J mice was assessed using histopathology. Enzyme-linked immunosorbent assay was performed to measure levels of inflammatory factors [interleukin-18 (IL-18), IL-1β, and tumor necrosis factor-α (TNF-α)] in mice serum and culture medium. Western blot and quantitative polymerase chain reaction were performed to analyze the expression of pyroptosis-related genes and proteins in liver tissues of mouse model and in vitro models. Macrophage recruitment in vitro was evaluated using co-culture of upper and lower chambers. RESULTS MASH developed in MCD diet mice [metabolic dysfunction-associated steatotic liver disease (MASLD) activity score = 6] but not in methionine-choline-sufficient (MCS) diet mice (MASLD activity score = 3). Compared to MCS-fed mice, MCD-fed mice showed increased serum levels of aspartate aminotransferase, IL-18, IL-1β, and TNF-α and higher MASLD activity score (P < 0.001). Adiponectin inhibited these increases (P < 0.05) and suppressed mRNA and protein levels of NLRP3, gasdermin-D (GSDMD), and GSDMD-N in liver tissues (P < 0.05). In vitro, lipopolysaccharide (LPS)/palmitic acid (PA) increased the levels of IL-18, IL-1β, and TNF-α, mRNA expressions of CASP1 and GSDMD, and production of CASP1, NLRP3, GSDMD, and GSDMD-N (P < 0.01). Adiponectin reduced the levels of these inflammatory factors and downregulated the mRNA expression and protein generation of pyroptosis-related markers (P < 0.05). HepG2 cells pretreated with LPS/PA recruited more J774A.1 cells (P < 0.001) and increased inflammatory factor secretion by J774A.1 cells (P < 0.001). Adiponectin inhibited this recruitment and reduced inflammatory factor secretion (P < 0.001). CONCLUSIONS Adiponectin inhibits hepatocyte pyroptosis by reducing the production and activation of NLRP3 inflammasomes, CASP1, and GSDMD, thus improving the inflammatory response in MASH and possibly delaying or reversing MASLD progression.
Collapse
Affiliation(s)
- Tie-Xiong Wu
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530000, China; Department of Hepatobiliary, the Third Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Hua-Zhen Pang
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China; Department of Gastroenterology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou 545001, China
| | - Xu-Dong Liu
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530000, China; Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China.
| | - Li Liu
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Yan-Fang Tang
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xue-Fei Luo
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiao-Ke Ran
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530000, China
| |
Collapse
|
26
|
Zhang X, Li J, He J, Li Y, Sun D, Zhang W. Glutathion peroxidase 4 (GPX4) and Ribosomal Protein L40 (RPL40) participate in arsenic induced progression of renal cell carcinoma by regulating the NLRP3 mediated classic pyroptosis pathway. Int J Biol Macromol 2025; 310:143129. [PMID: 40239794 DOI: 10.1016/j.ijbiomac.2025.143129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Epidemiological studies have demonstrated that long-term exposure to high‑arsenic water increases the risk of kidney cancer. Kidney dysfunction can lead to the accumulation of metabolic waste and chronic inflammation, with the latter being a significant factor in tumor development. Therefore, it is crucial to investigate how environmental arsenic exposure affects renal function and inflammation, as well as its potential influence on the progression of renal carcinoma. Additionally, pyroptosis plays an essential role in immune responses and the maintenance of cellular homeostasis. However, the role and mechanisms of pyroptosis in arsenic-induced kidney cancer progression remain unexplored. Our findings indicated that low-dose arsenic exposure reduces pyroptosis and promotes abnormal proliferation of renal tubular epithelial cells, while high-dose exposure enhances pyroptosis and damages renal tissue structure in mouse models. Mechanistically, in vitro studies confirmed that low-dose arsenic exposure promotes the progression of renal cell carcinoma by downregulating NLRP3 and inhibiting pyroptosis, whereas high-dose exposure has the opposite effect. Proteomics analysis identified GPX4 and RPL40 as key proteins mediating pyroptosis induced by low and high doses of arsenic, respectively. Furthermore, GPX4 and RPL40 were shown to regulate the malignant progression of renal cell carcinoma through their effects on NLRP3-mediated pyroptosis. This study reveals that arsenic exposure induces pyroptosis via NLRP3, leading to renal injury and influencing the malignant progression of renal cancer. Notably, GPX4 and RPL40 regulate this progression under low and high-dose arsenic exposure, respectively.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China
| | - Jinyu Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China
| | - Jing He
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China
| | - Yuanyuan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China.
| | - Wei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China.
| |
Collapse
|
27
|
Feng Z, Hou Y, Yu C, Li T, Fu H, Lv F, Li P. Mitophagy in perioperative neurocognitive disorder: mechanisms and therapeutic strategies. Eur J Med Res 2025; 30:270. [PMID: 40211418 PMCID: PMC11987364 DOI: 10.1186/s40001-025-02400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/20/2025] [Indexed: 04/13/2025] Open
Abstract
Perioperative neurocognitive disorder (PND) is a common neurological complication after surgery/anesthesia in elderly patients that affect postoperative outcome and long-term quality of life, which increases the cost of family and social resources. The pathological mechanism of PND is complex and not fully understood, and the methods of prevention and treatment of PND are very limited, so it is particularly important to analyze the mechanism of PND. Research indicates that mitochondrial dysfunction is pivotal in the initiation and progression of PND, although the precise mechanisms remain elusive and could involve disrupted mitophagy. We reviewed recent studies on the link between mitophagy and PND, highlighting the role of key proteins in abnormal mitophagy and discussing therapeutic strategies aimed at mitophagy regulation. This provides insights into the mechanisms underlying PND and potential therapeutic targets.
Collapse
Affiliation(s)
- Zhen Feng
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, 301 Nancheng Avenue, Nan'an District, Chongqing, Chongqing, 400000, People's Republic of China
| | - Yan Hou
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, 301 Nancheng Avenue, Nan'an District, Chongqing, Chongqing, 400000, People's Republic of China
| | - Chang Yu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China
| | - Ting Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China
| | - Haoyang Fu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China
| | - Feng Lv
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China.
| | - Ping Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
28
|
Zhang H, Xu X, Cao Y, Chen Z, Liu W, Lu X, Li C. Unlocking the Power of Photothermal Agents: A Universal Platform for Smart Immune NIR-Agonists for Precise Cancer Therapy. Angew Chem Int Ed Engl 2025; 64:e202424830. [PMID: 39907354 DOI: 10.1002/anie.202424830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/06/2025]
Abstract
Selective ablation of tumor cells allows safe eradication, thereby minimizing off-target damage, while specifically inducing immunogenic cell death (ICD) rather than commonly non-immunogenic apoptosis of tumor cells enables activation of anti-tumor immune response against residual cancer cells, including metastatic lesions. Herein, we present a general strategy leveraging a novel photothermal agent (PTA) that concomitantly enables precise tumor killing and activation of anti-tumor immunity. The unique PTA scaffold exhibits unexpected inherent endoplasmic reticulum (ER)-targeting capability and potent near-infrared (NIR) photothermal activity, inducing NIR-controlled immunogenic pyroptosis in various tumor cell lines via targeting ER stress in an oxygen-independent manner. Moreover, both ER-targeting and NIR-activity of our scaffold can be modulated on demand by chemical caging/uncaging, allowing quick activation with diverse biological and bioorthogonal molecular triggers. The potency of this universal platform is demonstrated via its application to develop a membrane protein-activatable NIR-agonist that selectively activates ICD in tumor sites while priming anti-tumor immunity, minimizing off-target effects and enhancing efficacy against mouse breast tumors. This versatile approach could lead to customization of various personalized and effective immune NIR-agonists for specific photoimmunotherapy applicable to diverse solid tumors.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaona Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yahui Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Zihui Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Weiqing Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
29
|
Lu X, Sun Y, Zhang Z, Sun Z, Wang S, Xu E. Regulation of pyroptosis by natural products in ulcerative colitis: mechanisms and therapeutic potential. Front Pharmacol 2025; 16:1573684. [PMID: 40271055 PMCID: PMC12014637 DOI: 10.3389/fphar.2025.1573684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Ulcerative colitis (UC), a chronic inflammatory bowel disease, is driven by dysregulated immune responses and persistent intestinal inflammation. Pyroptosis, a caspase/gasdermin-mediated inflammatory cell death that exacerbates mucosal damage through excessive cytokine release and epithelial barrier disruption. Although pyroptosis is considered to be a key mechanism in the pathogenesis of UC, the systematic assessment of the role of natural products in targeting the pyroptosis pathway remains a critical research gap. The purpose of this review is to investigate the regulatory effects of natural products on pyroptosis in UC and elucidate the mechanisms of action and potential therapeutic effects. Key findings highlight polyphenols (e.g., resveratrol), flavonoids (e.g., Quercetin), and terpenoids as promising agents that inhibit NLRP3 inflammasome activation, suppress gasdermin D cleavage, and restore barrier integrity, thereby reducing pro-inflammatory cytokine release in preclinical UC models. Current evidence shows enhanced efficacy and safety when these compounds are combined with standard therapies, but clinical translation requires overcoming three key barriers: limited human trial data, uncharacterized polypharmacology, and suboptimal pharmacokinetics needing formulation refinement. Future research should prioritize standardized animal-to-human translational models, mechanistic studies on synergistic pathways, and rigorous clinical validation to harness the full potential of natural products in pyroptosis-targeted UC therapies.
Collapse
Affiliation(s)
- Xiaobei Lu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yapeng Sun
- Department of Proctology, Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhaoyi Zhang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhigang Sun
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shaohui Wang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Erping Xu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
30
|
Xu H, Wu M, Wang Y, Jiao Y, Chen Y, Yuan Z, Sun L. Teleost GSDMEc regulates GSDMEa-mediated pyroptosis. J Adv Res 2025:S2090-1232(25)00226-7. [PMID: 40210150 DOI: 10.1016/j.jare.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025] Open
Abstract
INTRODUCTION Gasdermin (GSDM) is a family of proteins that execute pyroptosis after being activated by caspase (CASP) cleavage. Mammals possess five GSDM members (A - E) with pyroptotic ability. Teleosts possess only one pyroptotic GSDM, GSDME, that exists in three orthologs, GSDMEa, b, and c. GSDMEa and GSDMEb are known to induce pyroptosis, but the function of GSDMEc is unknown. OBJECTIVES The present study aimed to elucidate the function of teleost GSDMEc and examine the interplay among teleost GSDME orthologs by using snakehead Channa argus as a representative species. METHODS Pyroptosis was assessed via microscopy and biochemical assays. GSDME cleavage, oligomerization, and membrane translocation were examined via immunoblotting. The interactions of GSDME products were examined using confocal microscopy and co-immunoprecipitation. GSDME knockdown in fish and in vivo bacterial infection were performed. RESULTS C. argus possessed three GSDME variants (CaGSDMEa, CaGSDMEc1, and CaGSDMEc2). CaGSDMEa was cleaved by C. argus CASP (CaCASP) 1/8 to produce an N-terminal fragment (NT), NT261, that induced pyroptosis. CaGSDMEc1 and CaGSDMEc2 were also cleaved by CaCASP1/8, but the resulting NTs, NT123 and NT108, respectively, were unable to induce pyroptosis. However, both NT123 and NT108 could bind and promote the pyroptotic activity of NT261 by facilitating NT261 oligomerization and membrane translocation. The interaction between NT261 and NT123/NT108 depended on a positively charged motif that is conserved in the metazoan GSDME and is essential to the membrane localization of NT123 and the pyroptotic activity of NT261. Bacterial infection induced CaGSDMEa/CaCASP8 activation and CaGSDMEc1/c2 cleavage in snakehead cells, resulting in pyroptosis, IL-1β/18 maturation cleavage, and extracellular DNA-net formation. CaGSDMEa/c1 knockdown significantly increased bacterial dissemination in fish tissues and reduced fish survival. CONCLUSIONS Our results revealed the functions and interactive mechanism of teleost GSDME orthologs, and provided new insights into the regulation of pyroptosis in lower vertebrates.
Collapse
Affiliation(s)
- Hang Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Meng Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| | - Yujian Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Yaoming Jiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| | - Yuan Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| | - Zihao Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China.
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
31
|
Zhang N, Xu D. Controlling pyroptosis through post-translational modifications of gasdermin D. Dev Cell 2025; 60:994-1007. [PMID: 40199241 DOI: 10.1016/j.devcel.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/15/2024] [Accepted: 02/05/2025] [Indexed: 04/10/2025]
Abstract
Pyroptosis, a lytic and programmed cell death pathway, is mediated by gasdermins (GSDMs), with GSDMD playing an important role in innate immunity and pathology. Upon activation, GSDMD is cleaved to release the active N-terminal fragment that oligomerizes into membrane pores, which promote pyroptosis and cytokine secretion, leading to inflammation. Emerging evidence indicates that post-translational modification (PTM) is an important regulatory mechanism of GSDMD activity. This review explores how PTMs, aside from proteolytic cleavage, control GSDMD activity and link biological contexts to pyroptosis in innate immunity and inflammation, which could inform future studies and therapeutic solutions for treating inflammatory conditions.
Collapse
Affiliation(s)
- Na Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China; Shanghai Academy of Natural Sciences (SANS), Fudan University, Shanghai 200031, China.
| |
Collapse
|
32
|
Barbero-Úriz Ó, Valenti M, Molina M, Fernández-Acero T, Cid VJ. Modeling Necroptotic and Pyroptotic Signaling in Saccharomyces cerevisiae. Biomolecules 2025; 15:530. [PMID: 40305268 PMCID: PMC12025182 DOI: 10.3390/biom15040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
The yeast Saccharomyces cerevisiae is the paradigm of a eukaryotic model organism. In virtue of a substantial degree of functional conservation, it has been extensively exploited to understand multiple aspects of the genetic, molecular, and cellular biology of human disease. Many aspects of cell signaling in cancer, aging, or metabolic diseases have been tackled in yeast. Here, we review the strategies undertaken throughout the years for the development of humanized yeast models to study regulated cell death (RCD) pathways in general, and specifically, those related to innate immunity and inflammation, with an emphasis on pyroptosis and necroptosis. Such pathways involve the assembly of distinct modular signaling complexes such as the inflammasome and the necrosome. Like other supramolecular organizing centers (SMOCs), such intricate molecular arrangements trigger the activity of enzymes, like caspases or protein kinases, culminating in the activation of lytic pore-forming final effectors, respectively, Gasdermin D (GSDMD) in pyroptosis and MLKL in necroptosis. Even though pathways related to those governing innate immunity and inflammation in mammals are missing in fungi, the heterologous expression of their components in the S. cerevisiae model provides a "cellular test tube" to readily study their properties and interactions, thus constituting a valuable tool for finding novel therapies.
Collapse
Affiliation(s)
| | | | | | | | - Víctor J. Cid
- Department of Microbiology and Parasitology, School of Pharmacy, Universidad Complutense de Madrid, Pza. de Ramón y Cajal s/n, 28040 Madrid, Spain; (Ó.B.-Ú.); (M.V.); (M.M.); (T.F.-A.)
| |
Collapse
|
33
|
Lim CS, Gu JK, Ma Q. Multiwalled carbon nanotubes activate the NLRP3 inflammasome-dependent pyroptosis in macrophages. Mol Pharmacol 2025; 107:100031. [PMID: 40273527 DOI: 10.1016/j.molpha.2025.100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 04/26/2025] Open
Abstract
Macrophages are major innate immune cells for the clearance of inhaled nanoparticles but may undergo cell death upon phagocytosis of certain nanoparticles due to their resistance to lysosomal degradation and high toxicity to the cell. Here we investigated the pyroptotic effect of exposure to fibrogenic multiwalled carbon nanotubes (MWCNTs) on macrophages, an inflammatory form of cell death. We first evaluated MWCNT-induced cell death in M1 and M2 macrophages that mediate the temporal inflammatory response to MWCNTs in mammalian lungs. Macrophages were differentiated from human monocytic THP-1 cells, followed by polarization to M1 or M2 cells. MWCNTs caused concentration- and time-dependent cytotoxicity in M1 and, to a lesser extent, M2 cells. Carbon black, an amorphous carbonous material control for CNTs, did not cause apparent toxicity in the cells. MWCNTs increased the production and secretion of IL-1β, accompanied by activation of caspase-1, in M1, but not M2, cells. Moreover, MWCNTs induced the formation of apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain specks and the release of cathepsin B in M1 cells, revealing activation of the nucleotide-binding, oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome via lysosomal damage. MWCNTs induced the cleavage of gasdermin D (GSDMD) to form the 31 kDa N-terminal fragment (GSDMD-N), the pore-forming peptide causing pyroptotic cell death. Increased IL-1β release was completely suppressed by AC-YVAD-CMK (a caspase-1 inhibitor), MCC-950 (an NLRP3 inflammasome inhibitor), or CA-074 Me (a cathepsin B inhibitor), alongside the blockage of MWCNT-induced cleavage of GSDMD. The study demonstrates that MWCNTs trigger pyroptosis in M1 macrophages and boost sterile inflammation by activating the NLRP3 inflammasome pathway. SIGNIFICANCE STATEMENT: The nucleotide-binding, oligomerization domain-like receptor family pyrin domain containing 3 inflammasome mediates the inflammatory response to fibrogenic nanoparticles in the lung via multiple means. The current study uncovers the induction of pyroptotic death of macrophages as a major means of nanotoxicity and sterile inflammation via the nucleotide-binding, oligomerization domain-like receptor family pyrin domain containing 3 pathway by nanoparticles.
Collapse
Affiliation(s)
- Chol Seung Lim
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Ja Kook Gu
- BioAnalytics Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia.
| |
Collapse
|
34
|
Zhang J, Hu Y, Wen X, Yang Z, Wang Z, Feng Z, Bai H, Xue Q, Miao Y, Tian T, Zheng P, Zhang J, Li J, Qiu L, Xu JJ, Ye D. Tandem-controlled lysosomal assembly of nanofibres induces pyroptosis for cancer immunotherapy. NATURE NANOTECHNOLOGY 2025; 20:563-574. [PMID: 39966684 DOI: 10.1038/s41565-025-01857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/08/2025] [Indexed: 02/20/2025]
Abstract
Pyroptosis has emerged as a promising approach for cancer immunotherapy. However, current pyroptosis inducers lack specificity for cancer cells and have a weak antitumour immune response. Here we report a tumour-specific nanoparticle (NP-NH-D5) that activates pyroptosis by disrupting lysosomes for cancer immunotherapy. NP-NH-D5 undergoes negative-to-positive charge reversal and nanoparticle-to-nanofibre transformation within tumour cell lysosomes through tandem response to extracellular matrix metallopeptidase-2 and intracellular reducing agents. The as-formed non-peptide nanofibres efficiently break the lysosomes and trigger gasdermin-D-mediated pyroptosis, leading to strong immunogenic cell death and alleviation of the immunosuppressive tumour microenvironment. In vivo, NP-NH-D5 inhibits orthotopic 4T1 breast tumours, prevents metastasis and recurrence, and prolongs survival without systemic side effects. Furthermore, it greatly enhances the effectiveness of PD-L1 antibody immunotherapy in the 4T1 late-stage lung metastasis and aggressive orthotopic Pan02 pancreatic tumour models. Our research may open pathways for developing stimuli-responsive pyroptosis inducers for precise cancer immunotherapy.
Collapse
Affiliation(s)
- Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zeyue Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zhiyuan Feng
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - He Bai
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Qi Xue
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Tian Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jie Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
35
|
Li JSY, Moudgil A, Meijles DN, Shaw K, Julovi SM, Trinh K, Alexander SI, Rogers NM. Gasdermin D mutation protects against renal ischemia reperfusion injury. Physiol Rep 2025; 13:e70254. [PMID: 40268886 PMCID: PMC12018169 DOI: 10.14814/phy2.70254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/28/2025] [Accepted: 02/09/2025] [Indexed: 04/25/2025] Open
Abstract
Pyroptosis, the most inflammatory form of cell death, is dependent on membrane pore formation governed by the assembly of cleaved Gasdermin D (GSDMD). We hypothesized that regulated necrosis pathways are crucial in the pathophysiology of acute kidney injury (AKI). Mice with an isoleucine-to-asparagine loss-of-function mutation in the Gasdermin D gene (GSDMDI105N/I105N) generated by ethylnitrosourea-mutagenesis were subjected to bilateral renal ischemia-reperfusion injury (IRI) with bio-molecular readouts performed at 24 h. IRI was also performed in mice pretreated with disulfiram. Whole-body irradiation followed by syngeneic bone marrow transplantation generated chimeric mice prior to IRI. Mice homozygous for the GSDMD I105N mutation were protected from IRI, demonstrating lower serum creatinine and reduced histological injury, as well as decreased pro-inflammatory cytokine expression and oxidative stress. Chimeric mice showed that this protection was predominantly governed by mutations in the parenchymal tissue, with a potential contribution from the hematopoietic compartment. Pharmacological inhibition of GSDMD pore formation using disulfiram protected against IRI. Manipulation of GSDMD is an attractive target to mitigate inflammation and cellular death following AKI.
Collapse
Affiliation(s)
- Jennifer S. Y. Li
- Centre for Transplant and Renal ResearchWestmead Institute for Medical ResearchWestmeadAustralia
- Sydney Medical School, Faculty of Health and MedicineUniversity of SydneyCamperdownAustralia
- Department of Renal MedicineWestmead HospitalWestmeadAustralia
| | - Aadhar Moudgil
- Centre for Transplant and Renal ResearchWestmead Institute for Medical ResearchWestmeadAustralia
| | - Daniel N. Meijles
- Molecular and Clinical Science InstituteSt George's, University of LondonLondonUK
| | - Karli Shaw
- Sydney Medical School, Faculty of Health and MedicineUniversity of SydneyCamperdownAustralia
- Centre for Kidney ResearchChildren's Hospital at WestmeadWestmeadAustralia
| | - Sohel M. Julovi
- Centre for Transplant and Renal ResearchWestmead Institute for Medical ResearchWestmeadAustralia
| | - Katie Trinh
- Centre for Transplant and Renal ResearchWestmead Institute for Medical ResearchWestmeadAustralia
| | - Stephen I. Alexander
- Sydney Medical School, Faculty of Health and MedicineUniversity of SydneyCamperdownAustralia
- Centre for Kidney ResearchChildren's Hospital at WestmeadWestmeadAustralia
| | - Natasha M. Rogers
- Centre for Transplant and Renal ResearchWestmead Institute for Medical ResearchWestmeadAustralia
- Sydney Medical School, Faculty of Health and MedicineUniversity of SydneyCamperdownAustralia
- Department of Renal MedicineWestmead HospitalWestmeadAustralia
| |
Collapse
|
36
|
Tian L, Piao S, Li X, Guo L, Huang L, Gao W. Functional Materials Targeted Regulation of Gasdermins: From Fundamentals to Functionalities and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500873. [PMID: 40273335 PMCID: PMC12021126 DOI: 10.1002/advs.202500873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Indexed: 04/26/2025]
Abstract
Targeted regulation of pyroptosis to modulate the immune landscape has emerged as a novel design strategy for cancer immunotherapy and anti-inflammatory therapy. However, pyroptosis acts as a double-edged sword, making it important to optimize the design strategies of functional materials to appropriately activate pyroptosis for effective disease treatment. This paper summarizes and discusses the structure, pore formation, and molecular mechanisms of "executor" Gasdermins, as well as the events preceding and following these processes. Subsequently, the focus is on reviewing functional materials that directly regulate Gasdermin pore formation to target pyroptosis and those that indirectly regulate the events before and after Gasdermin pore formation to control pyroptosis activity. Finally, the advantages, disadvantages, and future prospects of designing such functional materials are provided, aiming to facilitate the precise design, pharmacological investigation, and clinical translation of pyroptosis-related functional materials.
Collapse
Affiliation(s)
- Luyao Tian
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Shuo Piao
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Xia Li
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700P. R. China
| | - Luqi Huang
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700P. R. China
| | - Wenyuan Gao
- Key Laboratory of Pharmacology School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| |
Collapse
|
37
|
Chen Y, Zhang D, Li J, Sun Y, Wang J, Xi L. SNS‑032 combined with decitabine induces caspase‑3/gasdermin E‑dependent pyroptosis in breast cancer cells. Oncol Lett 2025; 29:202. [PMID: 40070781 PMCID: PMC11894506 DOI: 10.3892/ol.2025.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/13/2025] [Indexed: 03/14/2025] Open
Abstract
SNS-032 is a synthetic compound that specifically inhibits cyclin-dependent kinases 2, 7 and 9. Its primary anticancer activity involves cell cycle arrest, which prevents tumor cell growth. However, there are limited reports on whether SNS-032 induces pyroptosis, a novel inflammation-mediated programmed cell death pathway in breast cancer (BC). The present study demonstrated that SNS-032 treatment decreased cell viability by inducing pyroptosis in BC cells. Typical morphological indications of pyroptosis were observed, including cell swelling and destruction of cell membrane integrity, leading the release of adenosine 5'-triphosphate and lactate dehydrogenase. Furthermore, the expression of caspase-3, the N terminus of gasdermin E (GSDME) and B-cell lymphoma-2 (BCL-2)-associated X protein increased, whereas expression of BCL-2 decreased. In addition, Z-DEVD-FMK, a specific caspase-3 inhibitor, markedly alleviated pyroptosis triggered by SNS-032. These findings suggested that SNS-032 induced caspase-3/GSDME-dependent pyroptosis. Furthermore, the present study demonstrated that decitabine (DAC), a DNA methyltransferase inhibitor, upregulated the expression of GSDME protein and enhanced SNS-032-induced caspase-3/GSDME-dependent pyroptosis in BC cells. In conclusion, these results suggest that caspase-3/GSDME-induced pyroptosis can be facilitated by SNS-032 treatment in BC cells, and DAC has the potential to enhance SNS-032-induced pyroptosis by increasing GSDME expression. This mechanistic insight indicates that SNS-032 is a promising therapeutic agent for BC treatment.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Danya Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jie Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yue Sun
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jing Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ling Xi
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
38
|
Khadour FA, Khadour YA, Xu T. Electroacupuncture delays the progression of juvenile collagen-induced arthritis via regulation NLRP3/ NF-κB signaling pathway -mediated pyroptosis and its influence on autophagy. Clin Rheumatol 2025; 44:1713-1728. [PMID: 40067573 DOI: 10.1007/s10067-025-07354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 04/13/2025]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) can lead to synovial inflammation. JIA is a chronic autoimmune inflammatory condition that primarily affects children. It is recognized as the most prevalent form of arthritis in the pediatric population and is associated with significant impairment and disability. Electroacupuncture (EA) effectively treats various synovium-related conditions, including symptoms of synovial inflammation, in both human and animal models. However, the specific mechanism by which EA protects against JIA remains unclear. Therefore, we conducted a comprehensive study to investigate the protective mechanisms of EA in a rat model. We aimed to examine the impact of EA on pathological changes in synovial tissue of juvenile collagen-induced arthritis (CIA) rats. METHODS The CIA model was established using Sprague‒Dawley (SD) rats aged 2-3 weeks. In this study, we investigated the potential role of EA on JIA by regulating the NLRP3-NF-κB axis in juvenile CIA rats and its influence on autophagy. To verify the effect of EA on juvenile CIA, the expression of NLRP3 was overexpressed by an adeno-associated virus injected into the knee joint of the CIA rats. RESULTS In this study, we observed that NLRP3 plays an important role in developing juvenile CIA and that NLRP3 overexpression exacerbates inflammation and increases synovium inflammation. We also demonstrated that the expression of NLRP3 was increased in synovial tissue, and NLRP3 could upregulate the NF-κB signal pathway and influence inflammation. Moreover, we also found increases in the expression of NLRP3 by impairing autophagy capacity and activation of the pyroptosis pathway in the synovium of the juvenile CIA rats. CONCLUSION Moreover, we also discovered that EA decreased the expression of NLRP3 by restoring the impaired autophagy capacity and inhibiting the NLRP3-NF-κB axis, thereby delaying the progression of juvenile CIA. These results showed that EA is effective in inhibiting inflammation and synovial degeneration and alleviating the progression of juvenile CIA. As a result, our results provide new insight into the mechanism by which EA delays the development of juvenile CIA, offering a novel therapeutic regimen for JIA. This trial was registered with ClinicalTrials.gov, number NCT10203935. Registered October 07, 2023. Key Points • NLRP3 plays a critical role in juvenile collagen-induced arthritis (CIA), with its overexpression linked to increased inflammation in synovial tissue. • Electroacupuncture (EA) reduces NLRP3 expression and inhibits the NLRP3-NF-κB axis, mitigating inflammatory responses and delaying juvenile CIA progression. • EA restores impaired autophagy in juvenile CIA rats, promoting cellular health and inflammation management. • EA alleviates synovial degeneration, improving joint health and function in juvenile CIA models.
Collapse
Affiliation(s)
- Fater A Khadour
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Health Science Faculty, Al-Baath University, Homs, Syria
| | - Younes A Khadour
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Cairo University, Cairo, 11835, Egypt
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
39
|
Xiong W, Li J, Tian A, Mao X. Unravelling the Role of PANoptosis in Liver Diseases: Mechanisms and Therapeutic Implications. Liver Int 2025; 45:e70000. [PMID: 40116786 DOI: 10.1111/liv.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 03/23/2025]
Abstract
PANoptosis is a multimodal form of cell death that involves inflammatory, apoptotic, and necroptotic pathways, playing a key role in the development of liver diseases. This article first outlines the definition and characteristics of PANoptosis, and then explores its mechanisms of action in different types of liver diseases, including acute liver injury, liver failure, metabolic dysfunction-associated fatty liver disease, and hepatocellular carcinoma. Furthermore, this article analyses the molecular regulatory network of PANoptosis and potential therapeutic targets. Finally, this article summarises the current research on PANoptosis in liver diseases and future research directions, and it reviews the role of the emerging cell death mechanism of PANoptosis in liver diseases.
Collapse
Affiliation(s)
- Wanyuan Xiong
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Junfeng Li
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Department of Liver Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Aiping Tian
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaorong Mao
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
40
|
Luo QY, Yang J, Di T, Xia ZF, Zhang L, Pan WT, Shi S, Yang LQ, Sun J, Qiu MZ, Yang DJ. The novel BCL-2/BCL-XL inhibitor APG-1252-mediated cleavage of GSDME enhances the antitumor efficacy of HER2-targeted therapy in HER2-positive gastric cancer. Acta Pharmacol Sin 2025; 46:1082-1096. [PMID: 39592733 PMCID: PMC11950313 DOI: 10.1038/s41401-024-01414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
HER2-positive gastric cancer has a poor prognosis, with a high incidence of drug resistance and a lack of effective treatments for drug-resistant patients. The exploration of the mechanism of resistance to HER2-targeted therapy in HER2-positive gastric cancer and the identification of effective strategies to reverse it are urgently needed. In this study, we found that HER2-targeted agents upregulated the expression of GSDME and that the overexpression of GSDME attenuated the sensitivity of HER2-targeted agents. Furthermore, we observed that the BCL-2/BCL-XL inhibitor APG-1252 plus lapatinib promoted GSDME-mediated pyroptosis and exhibited remarkable antitumor activity both in vitro and in vivo. Mechanistically, APG-1252 combined with lapatinib synergistically induced GSDME-mediated pyroptosis in HER2-positive gastric cancer by activating caspase-dependent pathways and blocking the phospho-AKT/GSK-3β/MCL-1 signaling pathway. Our data indicated that the combination of lapatinib and APG-1252 had a synergistic antitumor effect on HER2-positive gastric cancer through the induction of caspase-3/GSDME-mediated apoptosis and pyroptosis.
Collapse
Affiliation(s)
- Qiu-Yun Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Clinical Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jing Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tian Di
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zeng-Fei Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Clinical Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wen-Tao Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, 215000, China
| | - Shan Shi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Qiong Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jian Sun
- Department of Clinical Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Miao-Zhen Qiu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Da-Jun Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, 215000, China.
| |
Collapse
|
41
|
Yuan Y, Martsch P, Chen X, Martinez E, Li L, Song J, Poppenborg T, Bruns F, Kim JH, Kamler M, Martin JF, Abu-Taha I, Dobrev D, Li N. Atrial cardiomyocyte-restricted cleavage of gasdermin D promotes atrial arrhythmogenesis. Eur Heart J 2025; 46:1250-1262. [PMID: 39927987 PMCID: PMC11959185 DOI: 10.1093/eurheartj/ehaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/21/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND AND AIMS Enhanced inflammatory signalling causally contributes to atrial fibrillation (AF) development. Gasdermin D (GSDMD) is an important downstream effector of several inflammasome pathways. However, the role of GSDMD, particularly the cleaved N-terminal (NT)-GSDMD, in non-immune cells remains elusive. This study aimed to elucidate the function of NT-GSDMD in atrial cardiomyocytes (ACMs) and determine its contribution to atrial arrhythmogenesis. METHODS Human atrial appendages were used to assess the protein levels and localization. A modified adeno-associated virus 9 was employed to establish ACM-restricted overexpression of NT-GSDMD in mice. RESULTS The cleavage of GSDMD was enhanced in ACMs of AF patients. Atrial cardiomyocyte-restricted overexpression of NT-GSDMD in mice increased susceptibility to pacing-induced AF. The NT-GSDMD pore formation facilitated interleukin-1β secretion from ACMs, promoting macrophage infiltration, while up-regulating 'endosomal sorting complexes required for transport'-mediated membrane-repair mechanisms, which prevented inflammatory cell death (pyroptosis) in ACMs. Up-regulated NT-GSDMD directly targeted mitochondria, increasing mitochondrial reactive oxygen species (ROS) generation, which triggered proarrhythmic calcium-release events. The NT-GSDMD-induced arrhythmogenesis was mitigated by the mitochondrial-specific antioxidant MitoTEMPO. A mutant NT-GSDMD lacking pore-formation capability failed to cause mitochondrial dysfunction or induce atrial arrhythmia. Genetic ablation of Gsdmd prevented spontaneous AF development in a mouse model. CONCLUSIONS These findings establish a unique pyroptosis-independent role of NT-GSDMD in ACMs and arrhythmogenesis, which involves ROS-driven mitochondrial dysfunction. Mitochondrial-targeted therapy, either by reducing ROS production or inhibition of GSDMD, prevents AF inducibility, positioning GSDMD as a novel therapeutic target for AF prevention.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM285, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Pascal Martsch
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Xiaohui Chen
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM285, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Enrique Martinez
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM285, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Luge Li
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM285, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Jia Song
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM285, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Theresa Poppenborg
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Florian Bruns
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Jong Hwan Kim
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - James F Martin
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Na Li
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM285, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
42
|
Gao H, Xie T, Li Y, Xu Z, Song Z, Yu H, Zhou H, Li W, Yun C, Guan B, Luan S, Yin L. Role of gasdermins in chronic kidney disease. Front Immunol 2025; 16:1557707. [PMID: 40236694 PMCID: PMC11996640 DOI: 10.3389/fimmu.2025.1557707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
Gasdermins (GSDMs), functioning as membrane perforating proteins, can be activated by canonical inflammasomes, noncanonical inflammasomes, as well as non-inflammasomes, leading to cell pyroptosis and the subsequent release of inflammatory mediators. Increasing evidence has implicated that GSDMs are associated with chronic kidney disease (CKD), including diabetes nephropathy, lupus nephritis, obstructive nephropathy, and crystalline nephropathy. This review centers on the role of GSDMs-mediated pyroptosis in the pathogenesis of CKD, providing novel ideas for enhancing the prognosis and therapeutic strategies of CKD.
Collapse
Affiliation(s)
- Hanchao Gao
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| | - Ting Xie
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yunyi Li
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zigan Xu
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| | - Zhuoheng Song
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| | - Huixia Yu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Hongming Zhou
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| | - Weilong Li
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| | - Chen Yun
- Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Baozhang Guan
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen, Guangdong, China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
43
|
Lin M, Zhang C, Li H, Li K, Gou S, He X, Lv C, Gao K. Pyroptosis for osteoarthritis treatment: insights into cellular and molecular interactions inflammatory. Front Immunol 2025; 16:1556990. [PMID: 40236711 PMCID: PMC11996656 DOI: 10.3389/fimmu.2025.1556990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
Osteoarthritis (OA) is a widely prevalent chronic degenerative disease often associated with significant pain and disability. It is characterized by the deterioration of cartilage and the extracellular matrix (ECM), synovial inflammation, and subchondral bone remodeling. Recent studies have highlighted pyroptosis-a form of programmed cell death triggered by the inflammasome-as a key factor in sustaining chronic inflammation. Central to this process are the inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), which play crucial roles mediating intra-articular pyroptosis through the NOD-like receptor protein 3 (NLRP3) inflammasome. This paper investigates the role of the pyroptosis pathway in perpetuating chronic inflammatory diseases and its linkage with OA. Furthermore, it explores the mechanisms of pyroptosis, mediated by nuclear factor κB (NF-κB), the purinergic receptor P2X ligand-gated ion channel 7 (P2X7R), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible factor-1α (HIF-1α). Additionally, it examines the interactions among various cellular components in the context of OA. These insights indicate that targeting the regulation of pyroptosis presents a promising therapeutic approach for the prevention and treatment of OA, offering valuable theoretical perspectives for its effective management.
Collapse
Affiliation(s)
- Minghui Lin
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cunxin Zhang
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Haiming Li
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kang Li
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Shuao Gou
- Jining No.1 People's Hospital, affiliated with Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao He
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Chaoliang Lv
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Kai Gao
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
44
|
Miller M, LaFuze A, Leslie E, Svyatskaya S, Choi GS, Kennedy JL, Croft M, Broide DH. Asthma Associated Cytokines Regulate Gasdermin A and Gasdermin B Expression by Human Bronchial Epithelial Cells. Clin Exp Allergy 2025. [PMID: 40165431 DOI: 10.1111/cea.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Affiliation(s)
- Marina Miller
- Division of Allergy and Immunology, University of California San Diego, La Jolla, California, USA
| | - Allison LaFuze
- Division of Allergy and Immunology, University of California San Diego, La Jolla, California, USA
| | - Eric Leslie
- Division of Allergy and Immunology, University of California San Diego, La Jolla, California, USA
| | - Sofia Svyatskaya
- Division of Allergy and Immunology, University of California San Diego, La Jolla, California, USA
| | - Gil-Soon Choi
- Division of Allergy and Immunology, University of California San Diego, La Jolla, California, USA
| | - Joshua L Kennedy
- Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Michael Croft
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - David H Broide
- Division of Allergy and Immunology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
45
|
Johnstone BA, Christie MP, Joseph R, Morton CJ, Brown HG, Hanssen E, Sanford TC, Abrahamsen HL, Tweten RK, Parker MW. Structural basis for the pore-forming activity of a complement-like toxin. SCIENCE ADVANCES 2025; 11:eadt2127. [PMID: 40153490 PMCID: PMC11952106 DOI: 10.1126/sciadv.adt2127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
Pore-forming proteins comprise a highly diverse group of proteins exemplified by the membrane attack complex/perforin (MACPF), cholesterol-dependent cytolysin (CDC), and gasdermin superfamilies, which all form gigantic pores (>150 angstroms). A recently found family of pore-forming toxins, called CDC-like proteins (CDCLs), are wide-spread in gut microbes and are a prevalent means of antibacterial antagonism. However, the structural aspects of how CDCLs assemble a pore remain a mystery. Here, we report the crystal structure of a proteolytically activated CDCL and cryo-electron microscopy structures of a prepore-like intermediate and a transmembrane pore providing detailed snapshots across the entire pore-forming pathway. These studies reveal a sophisticated array of regulatory features to ensure productive pore formation, and, thus, CDCLs straddle the MACPF, CDC, and gasdermin lineages of the giant pore superfamilies.
Collapse
Affiliation(s)
- Bronte A. Johnstone
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michelle P. Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Riya Joseph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Craig J. Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hamish G. Brown
- Ian Holmes Imaging Centre, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Eric Hanssen
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Ian Holmes Imaging Centre, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tristan C. Sanford
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hunter L. Abrahamsen
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rodney K. Tweten
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael W. Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| |
Collapse
|
46
|
Ju X, Zhang H, Wang J, Wang J, Wang N, Geng J, Guo L, Wang Q. LXR agonists induces GSDME-mediated pyroptosis in tumors through alters the integrity of the MOM to activates Caspase-4/APAF-1 pyroptosome. Int J Biol Macromol 2025; 310:142568. [PMID: 40154703 DOI: 10.1016/j.ijbiomac.2025.142568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Liver X receptors (LXRs) play a key role in cholesterol transport, glucose metabolism and the tumorigenesis. LXR ligands can inhibit tumor growth through several mechanisms, such as suppressing tumor cell proliferation and migration, and inducing tumor cell death. Among them, induction of tumor cell death is one of the main mechanisms by which LXR ligands inhibit tumor growth; but how exactly LXR ligands cause cell death is still unclear. In this study, we found that LXR agonists can induce nonclassical pyroptosis in various cancer cells. Further study we found that Caspase-3-mediated GSDME cleavage is involved in LXR agonist-induced pyroptosis. Mechanically, LXR agonists firstly induce ER stress in tumor cells, then the ER stress induced by LXR agonists alters the integrity of the mitochondrial outer membrane (MOM) through the NOXA and BAX/BAK. Subsequently, mitochondrial permeability transition activates Caspase-4/APAF-1 pyroptosome to activate GSDME-dependent pyroptosis. Finally, we also found that LXR agonists induced GSDME-dependent pyroptosis in mouse cells. Our results demonstrated that LXR agonists can induce nonclassical GSDME-dependent pyroptosis in cancer cells by inducing ER stress, which alters the integrity of MOM to activate Caspase-4/APAF-1 pyroptosome.
Collapse
Affiliation(s)
- Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jin Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiayou Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ning Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jingyao Geng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lanfang Guo
- Department of Clinical Laboratory Medicine, The Fourth People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Qiang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
47
|
Xiao J, Wang L, Zhang B, Hou A. Cell death in acute lung injury: caspase-regulated apoptosis, pyroptosis, necroptosis, and PANoptosis. Front Pharmacol 2025; 16:1559659. [PMID: 40191423 PMCID: PMC11968751 DOI: 10.3389/fphar.2025.1559659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
There has been abundant research on the variety of programmed cell death pathways. Apoptosis, pyroptosis, and necroptosis under the action of the caspase family are essential for the innate immune response. Caspases are classified into inflammatory caspase-1/4/5/11, apoptotic caspase-3/6/7, and caspase-2/8/9/10. Although necroptosis is not caspase-dependent to transmit cell death signals, it can cross-link with pyroptosis and apoptosis signals under the regulation of caspase-8. An increasing number of studies have reiterated the involvement of the caspase family in acute lung injuries caused by bacterial and viral infections, blood transfusion, and ventilation, which is influenced by noxious stimuli that activate or inhibit caspase engagement pathways, leading to subsequent lung injury. This article reviews the role of caspases implicated in diverse programmed cell death mechanisms in acute lung injury and the status of research on relevant inhibitors against essential target proteins of the described cell death mechanisms. The findings of this review may help in delineating novel therapeutic targets for acute lung injury.
Collapse
Affiliation(s)
| | | | | | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
48
|
Zhao T, Chi Z, Wang D. Versatility of gasdermin D beyond pyroptosis. Trends Cell Biol 2025:S0962-8924(25)00061-3. [PMID: 40121145 DOI: 10.1016/j.tcb.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025]
Abstract
Gasdermin D (GSDMD) has garnered significant attention primarily for the pore-forming role of its p30 N-terminal fragment (NT-p30) generated during pyroptosis, a proinflammatory form of cell death. However, emerging evidence suggests that the formation of GSDMD-NT pores is reversible, and the activation of GSDMD does not necessarily lead to pyroptosis. Instead, this process may take part either in other forms of cell death, or in various state changes of living cells, including (i) inflammation regulation, (ii) endolysosomal pathway rewiring, (iii) granule exocytosis, (iv) type II immunity, (v) food tolerance maintenance, and (vi) temporary permeability alteration. This review explores the latest insights into the involvement of GSDMD in cell death and homeostasis maintenance, aiming to underscore the pleiotropic nature of GSDMD.
Collapse
Affiliation(s)
- Tianming Zhao
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Zhexu Chi
- Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu 322000, China.
| | - Di Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310058, China.
| |
Collapse
|
49
|
Erasha AM, EL-Gendy H, Aly AS, Fernández-Ortiz M, Sayed RKA. The Role of the Tumor Microenvironment (TME) in Advancing Cancer Therapies: Immune System Interactions, Tumor-Infiltrating Lymphocytes (TILs), and the Role of Exosomes and Inflammasomes. Int J Mol Sci 2025; 26:2716. [PMID: 40141358 PMCID: PMC11942452 DOI: 10.3390/ijms26062716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Understanding how different contributors within the tumor microenvironment (TME) function and communicate is essential for effective cancer detection and treatment. The TME encompasses all the surroundings of a tumor such as blood vessels, fibroblasts, immune cells, signaling molecules, exosomes, and the extracellular matrix (ECM). Subsequently, effective cancer therapy relies on addressing TME alterations, known drivers of tumor progression, immune evasion, and metastasis. Immune cells and other cell types act differently under cancerous conditions, either driving or hindering cancer progression. For instance, tumor-infiltrating lymphocytes (TILs) include lymphocytes of B and T cell types that can invade malignancies, bringing in and enhancing the ability of immune system to recognize and destroy cancer cells. Therefore, TILs display a promising approach to tackling the TME alterations and have the capability to significantly hinder cancer progression. Similarly, exosomes and inflammasomes exhibit a dual effect, resulting in either tumor progression or inhibition depending on the origin of exosomes, type of inflammasome and tumor. This review will explore how cells function in the presence of a tumor, the communication between cancer cells and immune cells, and the role of TILs, exosomes and inflammasomes within the TME. The efforts in this review are aimed at garnering interest in safer and durable therapies for cancer, in addition to providing a promising avenue for advancing cancer therapy and consequently improving survival rates.
Collapse
Affiliation(s)
- Atef M. Erasha
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sadat City University, Sadat City 32897, Egypt;
| | - Hanem EL-Gendy
- Department of Pharmacology, Faculty of Veterinary Medicine, Sadat City University, Sadat City 32897, Egypt;
| | - Ahmed S. Aly
- Department of Animal Production, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt;
| | - Marisol Fernández-Ortiz
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Ramy K. A. Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt;
| |
Collapse
|
50
|
Saad HM, Atef E, Elsayed AE. New Insights on the Potential Role of Pyroptosis in Parkinson's Neuropathology and Therapeutic Targeting of NLRP3 Inflammasome with Recent Advances in Nanoparticle-Based miRNA Therapeutics. Mol Neurobiol 2025:10.1007/s12035-025-04818-4. [PMID: 40100493 DOI: 10.1007/s12035-025-04818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder characterized by the gradual degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). This review aims to summarize the recent advancements in the pathophysiological mechanisms of pyroptosis, mediated by NLRP3 inflammasome, in advancing PD and the anti-pyroptotic agents that target NLRP3 inflammatory pathways and miRNA. PD pathophysiology is primarily linked to the aggregation of α-synuclein, the overproduction of reactive oxygen species (ROS), and the development of neuroinflammation due to microglial activation. Prior research indicated that a significant quantity of microglia is activated in both PD patients and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse models, triggering neuroinflammation and resulting in a cascade of cellular death. Microglia possess an inflammatory complex pathway termed the nucleotide-binding oligomerization domain-, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome. Activation of the NLRP-3 inflammasome results in innate cytokines maturation, including IL-18 and IL-1β, which initiates the neuroinflammatory signal and induces a type of inflammatory cell death known as pyroptosis. Upon neuronal damage, intracellular levels of damage-associated molecular patterns (DAMPs), including reactive oxygen species (ROS), would build. DAMPs induce unregulated cell death and subsequent release of oxidative intermediates and pro-inflammatory cytokines, leading to the progression of PD. Thus, targeting of neuroinflammation using antipyroptotic medications can be efficiently achieved by blocking NLRP3 and obstructing IL-1β signaling and release. Furthermore, many research studies showed that miRNAs have been identified as regulators of the NLRP3 inflammasome and Nrf2 signal, which subsequently modulate the NLRP3-Nrf2 axis in PD. Nanotechnology promises potential for the advancement of miRNA-based therapies. Nanoparticles that ensure miRNA stability, traverse the blood-brain barrier (BBB) and distribute miRNA targeting regions needed to be created. In conclusion, targeting the pyroptosis pathway via NLRP3 or miRNA may serve as a prospective therapeutic strategy for PD in the future.
Collapse
Affiliation(s)
- Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Esraa Atef
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom, 32511, Egypt
| | - Abeer E Elsayed
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt
| |
Collapse
|