1
|
Zhao S, Lin H, Li W, Xu X, Wu Q, Wang Z, Shi J, Chen Y, Ye L, Xi L, Chen L, Yuan M, Su J, Gao A, Jin J, Ying X, Wang X, Ye Y, Sun Y, Zhang Y, Deng X, Shen B, Gu W, Ning G, Wang W, Hong J, Wang J, Liu R. Post sleeve gastrectomy-enriched gut commensal Clostridia promotes secondary bile acid increase and weight loss. Gut Microbes 2025; 17:2462261. [PMID: 39915243 PMCID: PMC11810084 DOI: 10.1080/19490976.2025.2462261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 02/12/2025] Open
Abstract
The gut microbiome is altered after bariatric surgery and is associated with weight loss. However, the commensal bacteria involved and the underlying mechanism remain to be determined. We performed shotgun metagenomic sequencing in obese subjects before and longitudinally after sleeve gastrectomy (SG), and found a significant enrichment in microbial species in Clostridia and bile acid metabolizing genes after SG treatment. Bile acid profiling further revealed decreased primary bile acids (PBAs) and increased conjugated secondary bile acids (C-SBAs) after SG. Specifically, glycodeoxycholic acid (GDCA) and taurodeoxycholic acid (TDCA) were increased at different follow-ups after SG, and were associated with the increased abundance of Clostridia and body weight reduction. Fecal microbiome transplantation with post-SG feces increased SBA levels, and alleviated body weight gain in the recipient mice. Furthermore, both Clostridia-enriched spore-forming bacteria and GDCA supplementation increased the expression of genes responsible for lipolysis and fatty acid oxidation in adipose tissue and reduced adiposity via Takeda G-protein-coupled receptor 5 (TGR5) signaling. Our findings reveal post-SG gut microbiome and C-SBAs as contributory to SG-induced weight loss, in part via TGR5 signaling, and suggest SBA-producing gut microbes as a potential therapeutic target for obesity intervention.
Collapse
Affiliation(s)
- Shaoqian Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huibin Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Qihan Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Juan Shi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufei Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingxia Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liuqing Xi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijia Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyang Yuan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junlei Su
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aibo Gao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiabin Jin
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiayang Ying
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yaorui Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yingkai Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifei Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaxing Deng
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiyong Shen
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqiong Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Hong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Lee S, Park JS, Hong JH, Woo H, Lee CH, Yoon JH, Lee KB, Chung S, Yoon DS, Lee JH. Artificial intelligence in bacterial diagnostics and antimicrobial susceptibility testing: Current advances and future prospects. Biosens Bioelectron 2025; 280:117399. [PMID: 40184880 DOI: 10.1016/j.bios.2025.117399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
Recently, artificial intelligence (AI) has emerged as a transformative tool, enhancing the speed, accuracy, and scalability of bacterial diagnostics. This review explores the role of AI in revolutionizing bacterial detection and antimicrobial susceptibility testing (AST) by leveraging machine learning models, including Random Forest, Support Vector Machines (SVM), and deep learning architectures such as Convolutional Neural Networks (CNNs) and transformers. The integration of AI into these methods promises to address the current limitations of traditional techniques, offering a path toward more efficient, accessible, and reliable diagnostic solutions. In particular, AI-based approaches have demonstrated significant potential in resource-limited settings by enabling cost-effective and portable diagnostic solutions, reducing dependency on specialized infrastructure, and facilitating remote bacterial detection through smartphone-integrated platforms and telemedicine applications. This review highlights AI's transformative role in automating data analysis, minimizing human error, and delivering real-time diagnostic results, ultimately improving patient outcomes and optimizing healthcare efficiency. In addition, we not only examine the current advances in machine learning and deep learning but also review their applications in plate counting, mass spectrometry, morphology-based and motion-based microscopic detection, holographic microscopy, colorimetric and fluorescence detection, electrochemical sensors, Raman and Surface-Enhanced Raman Spectroscopy (SERS), and Atomic Force Microscopy (AFM) for bacterial diagnostics and AST. Finally, we discuss the future directions and potential advancements in AI-driven bacterial diagnostics.
Collapse
Affiliation(s)
- Seungmin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea
| | - Jeong Soo Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; School of Mechanical Engineering, Korea University, 145 Anam-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea
| | - Ji Hye Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea
| | - Hyowon Woo
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chang-Hyun Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Ju Hwan Yoon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Ki-Baek Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea.
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea; Astrion Inc, Seoul, 02841, Republic of Korea.
| | - Jeong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Department of Integrative Energy Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Flörl L, Meyer A, Bokulich NA. Exploring sub-species variation in food microbiomes: a roadmap to reveal hidden diversity and functional potential. Appl Environ Microbiol 2025:e0052425. [PMID: 40304520 DOI: 10.1128/aem.00524-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Within-species diversity of microorganisms in food systems significantly shapes community function. While next-generation sequencing (NGS) methods have advanced our understanding of microbiomes at the community level, it is essential to recognize the importance of within-species variation for understanding and predicting the functional activities of these communities. This review highlights the substantial variation observed among microbial species in food systems and its implications for their functionality. We discuss a selection of key species in fermented foods and food systems, highlighting examples of strain-level variation and its influence on quality and safety. We present a comprehensive roadmap of methodologies aimed at uncovering this often overlooked underlying diversity. Technologies like long-read marker-gene or shotgun metagenome sequencing offer enhanced resolution of microbial communities and insights into the functional potential of individual strains and should be integrated with techniques such as metabolomics, metatranscriptomics, and metaproteomics to link strain-level microbial community structure to functional activities. Furthermore, the interactions between viruses and microbes that contribute to strain diversity and community stability are also critical to consider. This article highlights existing research and emphasizes the importance of incorporating within-species diversity in microbial community studies to harness their full potential, advance fundamental science, and foster innovation.
Collapse
Affiliation(s)
- Lena Flörl
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Annina Meyer
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Nicholas A Bokulich
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Wen C, Chen X, Lai L. Identifying metabolic biomarkers and pathways in pulpitis: a metabolomic study using ultra-high-performance liquid chromatography/orbitrap mass spectrometry. J Appl Oral Sci 2025; 33:e20240428. [PMID: 40298663 DOI: 10.1590/1678-7757-2024-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Pulpitis, which is often triggered by caries and trauma, is a significant clinical challenge due to its prevalence. This research aims to uncover potential metabolic biomarkers for pulpitis and map out the implicated metabolic pathways, thereby laying a foundation for enhanced diagnostic and preventive strategies. METHODOLOGY We analyzed pulp samples from 12 participants (six who had pulpitis and six who had healthy teeth) using serum metabolomics via ultra-high-performance liquid chromatography coupled with Orbitrap mass spectrometry. Important biomarkers were pinpointed via multivariate analysis and orthogonal partial least squares discriminant analysis. Additionally, correlation and biomarker pathway enrichment analyses were conducted to explore the relations between differentially expressed biomarkers and their associated biological pathways. Specific metabolites of interest were further examined via alkaline phosphatase (ALP) staining, Alizarin Red staining, and RT-qPCR analysis. RESULTS We identified 22 significant biomarkers (13 increased, nine decreased) related to 18 metabolic pathways in pulpitis cases. Key biomarkers included ascorbic acid, inosine, allopurinol riboside, and L-asparagine, in which ascorbic acid and inosine showed the most substantial downregulation and strongest association with pulpitis. Notably, aminoacyl-tRNA biosynthesis and retrograde endocannabinoid signaling pathways were closely linked with pulpitis. Ascorbic acid enhanced the osteogenic differentiation, calcium deposition, as well as the expression of osteogenic genes of human dental pulp stem cells (DPSCs).Conclusions: The identified biomarkers and metabolic pathways offer insights into the pathogenesis of pulpitis and have potential applications in developing preventive treatments.
Collapse
Affiliation(s)
- Congpeng Wen
- Wenzhou Central Hospital, Wenzhou Medical University, Dingli Clinical College, Department of Stomatology, Wenzhou, Zhejiang, China
| | - Xueqin Chen
- Wenzhou Central Hospital, Wenzhou Medical University, Dingli Clinical College, Department of Stomatology, Wenzhou, Zhejiang, China
| | - Linfeng Lai
- Wenzhou Central Hospital, Wenzhou Medical University, Dingli Clinical College, Department of Stomatology, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Ogger PP, Murray PJ. Dissecting inflammation in the immunemetabolomic era. Cell Mol Life Sci 2025; 82:182. [PMID: 40293552 PMCID: PMC12037969 DOI: 10.1007/s00018-025-05715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025]
Abstract
The role of immune metabolism, specific metabolites and cell-intrinsic and -extrinsic metabolic states across the time course of an inflammatory response are emerging knowledge. Targeted and untargeted metabolomic analysis is essential to understand how immune cells adapt their metabolic program throughout an immune response. In addition, metabolomic analysis can aid to identify pathophysiological patterns in inflammatory disease. Here, we discuss new metabolomic findings within the transition from inflammation to resolution, focusing on three key programs of immunity: Efferocytosis, IL-10 signaling and trained immunity. Particularly the tryptophan-derived metabolite kynurenine was identified as essential for efferocytosis and inflammation resolution as well as a potential biomarker in diverse inflammatory conditions. In summary, metabolomic analysis and integration with transcriptomic and proteomic data, high resolution imaging and spatial information is key to unravel metabolic drivers and dependencies during inflammation and progression to tissue-repair.
Collapse
Affiliation(s)
- Patricia P Ogger
- Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Peter J Murray
- Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
| |
Collapse
|
6
|
Ren L, Cao Q, Ye H, Dong Z, Zhang C, Yan F, Zhou Y, Zhou H, Zuo J, Wang W. The single degree of polymerization influences the efficacy of xylooligosaccharides in shaping microbial and metabolite profiles in chicken gut to combat avian pathogenic Escherichia coli. BMC Microbiol 2025; 25:227. [PMID: 40264018 PMCID: PMC12013008 DOI: 10.1186/s12866-025-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Avian pathogenic Escherichia coli (APEC) threatens both poultry production and human health. Xylooligosaccharides (XOS) may suppress pathogenic bacteria through prebiotic actions. However, the influences of single degree of polymerization (DP) on the inhibition of APEC by XOS remain unknown. This study aimed to probe if XOS and their major monomers (xylobiose, xylotriose and xylotetraose) could differentially combat APEC via prebiotic actions using an in vitro fermentation model with chicken cecal microbiota. METHODS Microbiota were randomly divided into 7 groups (5 replicate tubes/group). Control group (CON) received no treatment; XOS group received commercial XOS mixtures; APEC group received APEC; XA, X2, X3 and X4 groups received APEC combined with commercial XOS mixtures, xylobiose, xylotriose and xylotetraose, respectively. RESULTS XOS and their major monomers mitigated APEC-induced decline (p < 0.05) in gut microbial α-diversity, with xylotetrose showing the least effect. Gut microbiota in XA, X2, X3 and X4 groups clustered together, with a relative separation observed in X4 group. XOS and their monomers elevated (p < 0.05) the abundances of Firmicutes, Bacteroidota and several probiotics (Lactobacillus, Bacteroides and Megamonas), but reduced (p < 0.05) the abundances of Proteobacteria and Escherichia-Shigella, with xylotetraose exhibiting the least efficacy. Besides, xylotriose and xylotetrose had an advantage over xylotetraose in promoting microbial production of short-chain fatty acids. Metabolomics analysis revealed that APEC challenge mainly downregulated (p < 0.05) several amino acids metabolism pathways of gut microbiota, while xylotriose had an inferiority to XOS in upregulating (p < 0.05) histidine metabolism pathway. Furthermore, microbial fermentation metabolites of all XOS monomers lowered (p < 0.05) certain virulence genes expression in APEC, with xylotriose being the most advantageous. CONCLUSIONS XOS and their major monomers differentially improved gut microbiota and metabolite profiles in chicken gut against APEC challenge. Overall, xylotriose exhibited the greatest inhibition against APEC abundance and virulence. Our findings underscore the role of single DP in influencing the prebiotic actions of XOS against APEC, providing a basis for the reasonable application of XOS in diets to combat bacterial challenge.
Collapse
Affiliation(s)
- Lulu Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingyun Cao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zemin Dong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Changming Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fei Yan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuping Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Huiyun Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jianjun Zuo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Weiwei Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Situ Y, Zhang P, Zhang C, Jiang A, Zhang N, Zhu L, Mou W, Liu Z, Wong HZH, Zhang J, Cheng Q, Lin A, Luo P. The metabolic dialogue between intratumoural microbes and cancer: implications for immunotherapy. EBioMedicine 2025; 115:105708. [PMID: 40267755 DOI: 10.1016/j.ebiom.2025.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
The tumour microenvironment (TME) exerts a profound influence on cancer progression and treatment outcomes. Recent investigations have elucidated the crucial role of intratumoural microbiota and their metabolites in shaping the TME and modulating anti-tumour immunity. This review critically assesses the influence of intratumoural microbial metabolites on the TME and cancer immunotherapy. We systematically analyse how microbial-derived glucose, amino acid, and lipid metabolites modulate immune cell function, cytokine secretion, and tumour growth. The roles of specific metabolites, including lactate, short-chain fatty acids, bile acids, and tryptophan derivatives, are comprehensively examined in regulating immune responses and tumour progression. Furthermore, we investigate the potential of these metabolites to augment the efficacy of cancer immunotherapies, with particular emphasis on immune checkpoint inhibitors. By delineating the mechanisms through which microbial metabolites influence the TME, this review provides insights into novel microbiome-based therapeutic strategies, thereby highlighting a promising frontier in personalised cancer medicine.
Collapse
Affiliation(s)
- Yingheng Situ
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University); Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiming Mou
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hank Z H Wong
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China.
| | - Anqi Lin
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University); Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Peng Luo
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University); Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
8
|
Chi Q, Tang J, Ji C, Chen S, Chen Q, Zeng M, Cao J, Sun S, Herr DR, Zhang QG, Wang Z, Huang CM. Profiling electric signals of electrogenic probiotic bacteria using self-attention analysis. Appl Microbiol Biotechnol 2025; 109:100. [PMID: 40263148 PMCID: PMC12014698 DOI: 10.1007/s00253-025-13425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/12/2025] [Accepted: 01/27/2025] [Indexed: 04/24/2025]
Abstract
We fabricated a self-assembled electric circuit to detect the electrical signals produced by two electrogenic probiotic bacteria [Leuconostoc mesenteroides (L. mesenteroides) and Lactococcus lactis (L. lactis)] on chicken egg chorioallantoic membranes as well as in the intestine lumen of mice. Inoculation of L. mesenteroides or L. lactis plus glucose onto a ferrozine assay triggered the reduction of ferric ions to ferrous ions and the formation of ferrozine complexes, indicating the bacterial electron production. In the presence of glucose, L. lactis yielded higher electricity, measured by voltage changes, than L. mesenteroides in vitro. The spectra of the electrical signals generated by these two probiotic bacteria were highly distinguishable. We evaluated the importance of these differences with the application of a self-attention mechanism, a deep learning-based module, revealing several unique signals in the electrical spectra of L. mesenteroides as well as L. lactis bacteria. The specific electrical spectrum for each probiotic bacterium provided a dynamic signature for evaluation of the efficacy of various therapies using probiotics, antibiotics, and fecal microbiota transplantation in the future. KEY POINTS: • The electrical signals produced by probiotic bacteria L. mesenteroides and L. lactis on chicken egg chorioallantoic membranes and in the mouse intestine lumen were detectable. • In the presence of glucose, L. lactis yielded higher electricity than L. mesenteroides in vitro. Furthermore, the electrical spectra generated by these two bacteria were different. • The importance of these differences with the application of a self-attention mechanism revealed several unique signals in the electrical spectra.
Collapse
Affiliation(s)
- Qing Chi
- Medical College of Dalian University, Dalian, 116622, China
| | - Jie Tang
- Medical College of Dalian University, Dalian, 116622, China
- Health Medicine Translational Research Center, College of Dalian University, Dalian, 116622, China
| | - Changqing Ji
- School of Information Engineering, Dalian University, Dalian, 116622, China
| | - Shan Chen
- Medical College of Dalian University, Dalian, 116622, China
| | - Qinquan Chen
- Medical College of Dalian University, Dalian, 116622, China
| | - Meikai Zeng
- Medical College of Dalian University, Dalian, 116622, China
| | - JiXing Cao
- School of Information Engineering, Dalian University, Dalian, 116622, China
| | - Shenxia Sun
- Medical College of Dalian University, Dalian, 116622, China
| | - Deron R Herr
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Qing-Gao Zhang
- Medical College of Dalian University, Dalian, 116622, China.
- Health Medicine Translational Research Center, College of Dalian University, Dalian, 116622, China.
| | - Zumin Wang
- School of Information Engineering, Dalian University, Dalian, 116622, China.
| | - Chun-Ming Huang
- Medical College of Dalian University, Dalian, 116622, China.
- Health Medicine Translational Research Center, College of Dalian University, Dalian, 116622, China.
| |
Collapse
|
9
|
Shi Y, Yang J, Yang Q, Zhang Y, Zeng Z. Quality evaluation of metabolite annotation based on comprehensive simulation of MS/MS data from high-resolution mass spectrometry (HRMS) and similarity scoring. Anal Bioanal Chem 2025:10.1007/s00216-025-05847-7. [PMID: 40249542 DOI: 10.1007/s00216-025-05847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/19/2025]
Abstract
Metabolite annotation is a critical step in discovery metabolomics, but remains a significant challenge. In this study, the accuracy of metabolite annotation was systematically evaluated by leveraging the proposed strategies for simulation of tandem mass spectrometry (MS/MS) data from high-resolution mass spectrometry (HRMS) and then construction of a large-scale virtual database. Furthermore, various similarity scoring methods were comprehensively compared to assess the performance for annotation. First, three key characteristics that are essential for simulating MS/MS spectra to closely resemble experimental data were identified: (i) the number of mass-to-charge ratio (m/z) features, (ii) the differences between neighboring m/z values, and (iii) the intensity distribution of MS/MS features. These factors were employed to generate representative MS/MS spectra for subsequent study. A meticulously designed virtual MS/MS database was constructed to facilitate accurate annotation assessment, which covered over 100,000 metabolites with diverse structural similarities and differences. To evaluate annotation quality, two simulation strategies on the basis of strong and weak data inference were respectively proposed to replicate MS/MS spectra for unknown metabolites. These simulated spectra were then compared with the virtual database, which provided insights into the expected variations in experimental MS/MS data. Furthermore, eight similarity evaluation methods, including entropy similarity (ES) and weighted dot product (W/DP) algorithms, were rigorously evaluated for their effectiveness in metabolite annotation. The results revealed that some methods, such as ES, exhibited strong resistance to interference and broad adaptability across different MS/MS patterns, whereas others selectively yielded reliable outcomes under specific conditions. This study provided a systematic framework for quality evaluation in metabolite annotation and offered strategies to mitigate false-positive identifications. The findings held great significance for advancing metabolomics research and further improving annotation reliability in complex biological samples.
Collapse
Affiliation(s)
- Yingjiao Shi
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China
| | - Ji Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd, Kunming, 650231, China.
| | - Qianxu Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd, Kunming, 650231, China.
| | - Yipeng Zhang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd, Kunming, 650231, China.
| | - Zhongda Zeng
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd, Kunming, 650231, China.
| |
Collapse
|
10
|
Corbin KD, Igudesman D, Smith SR, Zengler K, Krajmalnik-Brown R. Targeting the Gut Microbiota's Role in Host Energy Absorption With Precision Nutrition Interventions for the Prevention and Treatment of Obesity. Nutr Rev 2025:nuaf046. [PMID: 40233201 DOI: 10.1093/nutrit/nuaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
The field of precision nutrition aims to develop dietary approaches based on individual biological factors such as genomics or the gut microbiota. The gut microbiota, which is the highly individualized and complex community of microbes residing in the colon, is a key contributor to human physiology. Although gut microbes play multiple roles in the metabolism of nutrients, their role in modulating the absorption of dietary energy from foods that escape digestion in the small intestine has the potential to variably affect energy balance and, thus, body weight. The fate of this energy, and its subsequent impact on body weight, is well described in rodents and is emerging in humans. This narrative review is focused on recent clinical evidence of the role of the gut microbiota in human energy balance, specifically its impact on energy available to the human host. Despite recent progress, remaining gaps in knowledge present opportunities for developing and implementing strategies to understand causal microbial mechanisms related to energy balance. We propose that implementing rigorous microbiota-focused measurements in the context of innovative clinical trial designs will elucidate integrated diet-host-gut microbiota mechanisms. These mechanisms are primed to be targets for precision nutrition interventions to optimize energy balance to achieve desired weight outcomes. Given the magnitude and impact of the obesity epidemic, implementing these interventions within comprehensive weight management paradigms has the potential to be of public health significance.
Collapse
Affiliation(s)
- Karen D Corbin
- AdventHealth Translational Research Institute, Orlando, FL 32804, United States
| | - Daria Igudesman
- AdventHealth Translational Research Institute, Orlando, FL 32804, United States
| | - Steven R Smith
- AdventHealth Translational Research Institute, Orlando, FL 32804, United States
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, United States
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health through Microbiomes, Arizona State University, Tempe, AZ 85281, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, United States
| |
Collapse
|
11
|
Zhang H, Tao P, Tong H, Zhang Y, Sun N, Deng C. Group IV Bimetallic MOFs Engineering Enhanced Metabolic Profiles Co-Predict Liposarcoma Recognition and Classification. SMALL METHODS 2025; 9:e2401421. [PMID: 39760266 DOI: 10.1002/smtd.202401421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/08/2024] [Indexed: 01/07/2025]
Abstract
The rarity and heterogeneity of liposarcomas (LPS) pose significant challenges in their diagnosis and management. In this work, a series of metal-organic frameworks (MOFs) engineering is designed and implemented. Through comprehensive characterization and performance evaluations, such as stability, thermal-driven desorption efficiency, as well as energy- and charge-transfer capacity, the engineering of group IV bimetallic MOFs emerges as particularly noteworthy. This is especially true for their derivative products, which exhibit superior performance across a range of laser desorption/ionization mass spectrometry (LDI MS) performance tests, including those involving practical sample assessments. The top-performing product is utilized to enable high-throughput recording of LPS metabolic fingerprints (PMFs) within seconds using LDI MS. With machine learning on PMFs, both the LPSrecognizer and LPSclassifier are developed, achieving accurate recognition and classification of LPS with area under the curves (AUCs) of 0.900-1.000. Simplified versions are also developed of the LPSrecognizer and LPSclassifier by screening metabolic biomarker panels, achieving considerable predictive performance, and conducting basic pathway exploration. The work highlights the MOFs engineering for the matrix design and their potential application in developing metabolic analysis and screening tools for rare diseases in clinical settings.
Collapse
Affiliation(s)
- Heyuhan Zhang
- Department of Chemistry, Department of Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Ping Tao
- Department of Laboratory Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Hanxing Tong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361006, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361006, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Department of Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chunhui Deng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Department of Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
12
|
Yang F, Liang Z, Zhao H, Zheng J, Liu L, Song H, Xin G. Mass spectral database-based methodologies for the annotation and discovery of natural products. Chin J Nat Med 2025; 23:410-420. [PMID: 40274344 DOI: 10.1016/s1875-5364(25)60852-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 04/26/2025]
Abstract
Natural products (NPs) have long held a significant position in various fields such as medicine, food, agriculture, and materials. The chemical space covered by NPs is extensive but often underexplored. Therefore, high-throughput and efficient methodologies for the annotation and discovery of NPs are desired to address the complexity and diversity of NP-based systems. Mass spectrometry (MS) has emerged as a powerful platform for the annotation and discovery of NPs. MS databases provide vital support for the structural characterization of NPs by integrating extensive mass spectral data and sample information. Additionally, the released annotation methodologies, based on a variety of informatics tools, continuously improve the ability to annotate the structure and properties of compounds. This review examines the current mainstream databases and annotation methodologies, focusing on their advantages and limitations. Prospects for future technological advancements are then discussed in terms of novel applications and research objectives. Through a systematic overview, this review aims to provide valuable insights and a reference for MS-based NPs annotation, thereby promoting the discovery of novel natural entities.
Collapse
Affiliation(s)
- Fengyao Yang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zeyuan Liang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haoran Zhao
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiayi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lifang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huipeng Song
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Guizhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
13
|
Neugent ML, Hulyalkar NV, Ghosh D, Saenz CN, Zimmern PE, Shulaev V, De Nisco NJ. Urinary biochemical ecology reveals microbiome-metabolite interactions and metabolic markers of recurrent urinary tract infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.22.619727. [PMID: 39484483 PMCID: PMC11526914 DOI: 10.1101/2024.10.22.619727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Recurrent urinary tract infections (rUTIs) are a major clinical challenge and their increasing prevalence underscores the need to define host-microbiome interactions underlying susceptibility. How the urinary microbiota engages with the biochemical environment of the urogenital tract is yet to be fully defined. Here, we leverage paired metagenomic and quantitative metabolomic data to establish a microbe-metabolite association network of the female urinary microbiome and define metabolic signatures of rUTI. We observe unique metabolic networks of uropathogens and uroprotective species, highlighting potential metabolite-driven ecological shifts influencing rUTI susceptibility. We find distinct metabolites are associated with urinary microbiome diversity and identify a lipid signature of active rUTI that accurately distinguishes cases from controls. Finally, we identify deoxycholic acid as a prognostic indicator for UTI recurrence. Together these findings provide insight into microbiome-metabolite interactions within the female urinary tract and highlight new biomarkers for the development of new diagnostic tools to improve patient outcomes.
Collapse
|
14
|
McDonnell KJ. Operationalizing Team Science at the Academic Cancer Center Network to Unveil the Structure and Function of the Gut Microbiome. J Clin Med 2025; 14:2040. [PMID: 40142848 PMCID: PMC11943358 DOI: 10.3390/jcm14062040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Oncologists increasingly recognize the microbiome as an important facilitator of health as well as a contributor to disease, including, specifically, cancer. Our knowledge of the etiologies, mechanisms, and modulation of microbiome states that ameliorate or promote cancer continues to evolve. The progressive refinement and adoption of "omic" technologies (genomics, transcriptomics, proteomics, and metabolomics) and utilization of advanced computational methods accelerate this evolution. The academic cancer center network, with its immediate access to extensive, multidisciplinary expertise and scientific resources, has the potential to catalyze microbiome research. Here, we review our current understanding of the role of the gut microbiome in cancer prevention, predisposition, and response to therapy. We underscore the promise of operationalizing the academic cancer center network to uncover the structure and function of the gut microbiome; we highlight the unique microbiome-related expert resources available at the City of Hope of Comprehensive Cancer Center as an example of the potential of team science to achieve novel scientific and clinical discovery.
Collapse
Affiliation(s)
- Kevin J McDonnell
- Center for Precision Medicine, Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
15
|
Zuffa S, Charron-Lamoureux V, Brennan C, Ambre M, Knight R, Dorrestein PC. Human Untargeted Metabolomics in High-Throughput Gut Microbiome Research: Ethanol vs Methanol. Anal Chem 2025; 97:4945-4953. [PMID: 40015251 PMCID: PMC11912123 DOI: 10.1021/acs.analchem.4c05142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Untargeted metabolomics is frequently performed on human fecal samples in conjunction with sequencing to unravel the gut microbiome functionality. As sample collection efforts are rapidly expanding, with individuals often collecting specimens at home, metabolomics experiments should adapt to accommodate the safety and needs of bulk off-site collections and improve high throughput. Here, we show that a 95% ethanol, safe to be shipped and handled, extraction part of the Matrix Method pipeline recovers comparable amounts of metabolites as a validated 50% methanol extraction, preserving metabolic profile differences between investigated subjects. Additionally, we show that the fecal metabolome remains relatively stable when stored in 95% ethanol for up to 1 week at room temperature. Finally, we suggest a metabolomics data analysis workflow based on robust centered log ratio transformation, which removes the variance introduced by possible different sample weights and concentrations, allowing for reliable and integration-ready untargeted metabolomics experiments in gut microbiome research.
Collapse
Affiliation(s)
- Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, California 92093, United States
| | - Vincent Charron-Lamoureux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, California 92093, United States
| | - Caitriona Brennan
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093, United States
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Madison Ambre
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093, United States
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093, United States
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Halıcıoğlu Data Science Institute, and Center for Microbiome Innovation, University of California San Diego, La Jolla, California 92093, United States
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Fan X, Ge AH, Qi S, Guan Y, Wang R, Yu N, Wang E. Root exudates and microbial metabolites: signals and nutrients in plant-microbe interactions. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2876-0. [PMID: 40080268 DOI: 10.1007/s11427-024-2876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/19/2025] [Indexed: 03/15/2025]
Abstract
Plant roots meticulously select and attract particular microbial taxa from the surrounding bulk soil, thereby establishing a specialized and functionally diverse microbial community within the rhizosphere. Rhizosphere metabolites, including root exudates and microbial metabolites, function as both signals and nutrients that govern the assembly of the rhizosphere microbiome, playing crucial roles in mediating communications between plants and microbes. The environment and their feedback loops further influence these intricate interactions. However, whether and how specific metabolites shape plant-microbe interactions and facilitate diverse functions remains obscure. This review summarizes the current progress in plant-microbe communications mediated by chemical compounds and their functions in plant fitness and ecosystem functioning. Additionally, we raise some prospects on future directions for manipulating metabolite-mediated plant-microbe interactions to enhance crop productivity and health. Unveiling the biological roles of specific metabolites produced by plants and microbes will bridge the gap between fundamental research and practical applications.
Collapse
Affiliation(s)
- Xiaoyan Fan
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - An-Hui Ge
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shanshan Qi
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuefeng Guan
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Ran Wang
- College of Life Sciences, Henan Province Engineering Research Center of Crop Synthetic Biology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Nan Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Ertao Wang
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
17
|
Narayana JK, Mac Aogáin M, Hansbro PM, Chotirmall SH. The bronchiectasis microbiome: current understanding and treatment implications. Curr Opin Pulm Med 2025; 31:135-144. [PMID: 39492755 DOI: 10.1097/mcp.0000000000001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
PURPOSE OF REVIEW Advances in DNA sequencing and analysis of the respiratory microbiome highlight its close association with bronchiectasis phenotypes, revealing fresh opportunities for diagnosis, stratification, and personalized clinical intervention. An under-recognized condition, bronchiectasis is increasingly the subject of recent large-scale, multicentre, and longitudinal clinical studies including detailed analysis of the microbiome. In this review, we summarize recent progress in our understanding of the bronchiectasis microbiome within the context of its potential use in treatment decisions. RECENT FINDINGS Diverse microbiome profiles exist in bronchiectasis, in line with the established disease heterogeneity including treatment response. Classical microbiology has established Pseudomonas aeruginosa and Haemophilus influenza as two microbial markers of disease, while holistic microbiome analysis has uncovered important associations with less common bacterial taxa including commensal an/or pathobiont species, including the emerging role of the fungal mycobiome, virome, and interactome. Integration of airway microbiomes with other high-dimensional biological and clinical datasets holds significant promise to determining treatable traits and mechanisms of disease related to the microbiome. SUMMARY The bronchiectasis microbiome is an emerging and key area of study with significant implications for understanding bronchiectasis, influencing treatment decisions and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Jayanth Kumar Narayana
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Micheál Mac Aogáin
- Department of Biochemistry, St. James's Hospital
- School of Medicine, Trinity College, Dublin, Ireland
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
18
|
Baral T, Johnson AS, Unnikrishnan MK, Manu MK, Saravu K, Udyavara Kudru C, Abdulsalim S, Singh J, Mukhopadhyay C, Rao M, Miraj SS. Potential role of indole-3-propionic acid in tuberculosis: current perspectives and future prospects. Expert Opin Ther Targets 2025; 29:171-178. [PMID: 40160109 DOI: 10.1080/14728222.2025.2482548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Indole-3-propionic acid (IPA), a tryptophan catabolite derived from gut bacterial metabolism, has been identified as a functional link between the gut microbiome and tuberculosis. AREA COVERED IPA has gained ample attention over the past two decades on account of its multiple physiological roles, besides being both detectable and quantifiable. IPA is well studied across different health conditions, including cardiovascular and neurological conditions. IPA blocks tryptophan synthesis in Mycobacterium by binding to the allosteric tryptophan-binding site of TrpE, thereby threatening Mycobacterium survival due to tryptophan deficit. EXPERT OPINION Characterizing IPA would enable its use as a tool to investigate the pathophysiology of tuberculosis. Integrating 'OMICS' techniques (through next-generation sequencing) along with targeted microbial metabolomics may help explore the possible association of serum IPA levels with TB in patients. This will aid in identifying IPA-producing gut microbes and selecting probiotic strains as a microbiome-targeting adjunct therapy, eventually enhancing our understanding of the molecular dynamics of the pathophysiology of tuberculosis in the context of the microbiome.
Collapse
Affiliation(s)
- Tejaswini Baral
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Aieshel Serafin Johnson
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | | | - Mohan K Manu
- Department of Respiratory Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | | | - Suhaj Abdulsalim
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
19
|
He T, Zhang D, Wen Y, Liu Q, Zhou J, Zhi W, OuYang L, Qi Y, Zhou Z, Gao X, Li F, Su Z, Shen J, Zhou Z. Metabolomic analysis of the intrinsic resistance mechanisms of Microtus fortis against Schistosoma japonicum infection. Sci Rep 2025; 15:7147. [PMID: 40021829 PMCID: PMC11871335 DOI: 10.1038/s41598-025-91164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
Microtus fortis (M. fortis) is the only mammal known in China that is intrinsically resistant to Schistosoma japonicum (S. japonicum) infection. Nevertheless, the underlying resistance mechanism of M. fortis against schistosomes are still unclear. In this study, we detected and compared colon aqueous extracts and serum metabolic profiles between M. fortis and ICR mice before and after S. japonicum infection using liquid chromatography-mass spectrometry (LC-MS). We identified 232 specific colon aqueous extract metabolites and 79 specific serum metabolites of M. fortis infected with or without S. japonicum at two weeks compared with those of ICR mice, which might be closely correlated with the time-course of schistosomiasis progression and could also be used as indicators for the M. fortis against S. japonicum, for example, nonadecanoic acid, hesperetin, glycocholic acid, 2-Aminobenzoic acid, 6-hydroxydaidzein and spermidine. And the enriched pathways were further identified, our findings revealed that S. japonicum infection induced the metabolic changes involved in a variety of metabolic pathways including amino acid metabolism, lipid metabolism, ABC transporters, central carbon metabolism in cancer and bile secretion. These results indicated that the colon aqueous extracts and serum metabolic profiles were significantly different between M. fortis and ICR mice before and after S. japonicum infection and will provide new insights into the underlying resistance mechanism of M. fortis against S. japonicum infection and identify promising candidates for the use of drugs against schistosomes.
Collapse
Affiliation(s)
- Tianqiong He
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Du Zhang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Province Clinical Medical Research Center for Genetic Birth Defects and Rare Diseases, Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yixin Wen
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Qian Liu
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Junkang Zhou
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Wenling Zhi
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Lingxuan OuYang
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yushan Qi
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Zikang Zhou
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Xin Gao
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Fan Li
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Zhijie Su
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Jia Shen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Zhijun Zhou
- Department of Laboratory Animal Science, Xiangya Medical College, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
20
|
Li A, Zhang X, Ju Z, Luo T, Cui T, Qin X, Liu G. Integrated cell metabolomics and network pharmacology approach deciphers the mechanisms of Astragali Radix MIX in repairing podocyte injury. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1255:124522. [PMID: 39954488 DOI: 10.1016/j.jchromb.2025.124522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/10/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
To elucidate the molecular mechanisms of the MIX (combined in proportion to the content in Astragali Radix (AR), named the MIX) repairing podocyte damage to ameliorate nephropathy. MTT assay and western blot analysis were used to evaluate the protective effects of MIX on MPC5 cells induced by Adriamycin (ADR). Screening of potential pharmacodynamic markers, relevant drugs and disease targets were conducted by using metabolomics combined with bioinformatics, and the most relevant metabolic pathways were identified by analyzing shared target and KEGG pathways. The key mechanism was subsequently validated by cell adhesion assays, western blot assays, and immunofluorescence staining. The results showed that the MIX has the capacity to repair adriamycin-induced damage in MPC5 cells, as evidenced by enhanced cell viability and synaptopodin expression. Additionally, the MIX shows promise in potentially reinstating the podocyte adhesion through the modulation of the expression of podocyte adhesion-related proteins linked to nucleotide metabolites. The MIX has the potential to beneficially affect podocyte injury by modulating the cell adhesion pathway, contributing to one of the pharmacodynamic mechanisms of AR treatment of nephrotic syndrome. This has implications for the development and utilization of AR resources and achievement the social benefit of empowering rural revitalization.
Collapse
Affiliation(s)
- Aiping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China; Shanxi Academy of Traditional Chinese Medicine, Taiyuan 030012, China.
| | - Xiaoyu Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China
| | - Zheng Ju
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China
| | - Tingting Luo
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China
| | - Ting Cui
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Guangzhen Liu
- Shanxi Academy of Traditional Chinese Medicine, Taiyuan 030012, China.
| |
Collapse
|
21
|
Fu Z, Zhang H, Yang Z, Liu Y, Wang P, Zhang J, Chi H. Metagenomic and Metabolomic Analyses Reveal the Role of a Bacteriocin-Producing Strain of Enterococcus faecalis DH9003 in Regulating Gut Microbiota in Mice. Microorganisms 2025; 13:372. [PMID: 40005739 PMCID: PMC11858018 DOI: 10.3390/microorganisms13020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
To investigate the regulatory effect of a bacteriocin-producing strain of Enterococcus faecalis DH9003 on the gut microbiota of mice, 15 healthy C57 male mice were randomly administered an equal volume of sterile normal saline (HD, control group, n = 7) and E. faecalis DH9003 (YD, treatment group, n = 8) via gavage. Metagenomic and metabolomic analyses were performed to determine the composition and metabolic function of the intestinal microbiota in mice. The results showed that the relative abundance of Firmicutes continuously increased over time in YD compared to HD. The number of E. faecalis DH9003 increased slowly and remained steady from days 7 to 28, indicating that E. faecalis DH9003 could colonize a considerable number of mouse guts via intragastric administration. Supplementation with E. faecalis DH9003 demonstrated a regulatory effect on the intestinal microbiota composition of mice, causing a shift in the relative abundance of Bacteroidetes and Firmicutes at the phylum level. In addition, a total of 2426 different metabolites were found in mouse feces, including 1286 and 1140 metabolites in positive and negative modes, respectively. Vitamin B6 and succinate were the most regulated and downregulated metabolites in negative ion mode, and the most upregulated and downregulated metabolites in positive ion mode were N-methyl-glutamic acid and N-octanoyl sphingosine. In conclusion, E. faecalis DH9003 can colonize mice gut, affecting the gut microbiota and metabolic competence. This strain therefore offers considerable potential for application as a probiotic.
Collapse
Affiliation(s)
- Zhiyu Fu
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (Z.F.); (Y.L.)
| | - Haitao Zhang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Z.); (Z.Y.); (P.W.)
- School of Ocean Food and Biology Engineering, Jiangsu Ocean University, Lianyungang 222005, China;
| | - Zhenzhu Yang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Z.); (Z.Y.); (P.W.)
| | - Yujun Liu
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (Z.F.); (Y.L.)
| | - Peng Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Z.); (Z.Y.); (P.W.)
| | - Junjie Zhang
- School of Ocean Food and Biology Engineering, Jiangsu Ocean University, Lianyungang 222005, China;
| | - Hai Chi
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (Z.F.); (Y.L.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Z.); (Z.Y.); (P.W.)
- School of Ocean Food and Biology Engineering, Jiangsu Ocean University, Lianyungang 222005, China;
| |
Collapse
|
22
|
Long N, Qiu M, Zuo Y, Deng H. Antimicrobial Activity and Metabolomic Analysis of Linalool Against Pathogenic Bacteria Methicillin-Resistant Staphylococcus aureus. Infect Drug Resist 2025; 18:731-744. [PMID: 39936039 PMCID: PMC11812441 DOI: 10.2147/idr.s491358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose The purpose of this study was to evaluate the antibacterial activity and mechanism of linalool against Methicillin-resistant Staphylococcus aureus (MRSA). Methods The determination of the antibacterial activity of linalool against clinically isolated MRSA strains was based on the minimum inhibitory concentration (MIC) and growth curve analysis. Finally, the inhibition mechanism of linalool was elucidated through metabolomic analysis and molecular docking. Results Among the isolated strains, penicillin resistance was found to be the highest, while resistance to daptomycin/quinupristin-dalfopristin, linezolid, vancomycin, tetracycline, telithromycin, and levofloxacin was not observed. The MIC range of linalool was 211.24-1.65 μg/mL, with MIC50 and MIC90 values of 13.2 μg/mL and 105.62 μg/mL, respectively. Metabolomic analysis revealed that linalool interferes with various substance metabolisms and energy metabolism in MRSA, with the glutathione pathway potentially being a key pathway affected by linalool. Molecular docking revealed that linalool exhibited good binding potential to the target glutathione. Conclusion This study suggests that linalool could be developed as a drug or preservative to inhibit MRSA growth.
Collapse
Affiliation(s)
- Nana Long
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, People’s Republic of China
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, People’s Republic of China
| | - Min Qiu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, People’s Republic of China
| | - Youwei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, People’s Republic of China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, People’s Republic of China
| |
Collapse
|
23
|
Igudesman D, Yu G, Dutta T, Carnero EA, Krajmalnik-Brown R, Smith SR, Corbin KD. Global metabolite profiling in feces, serum, and urine yields insights into energy balance phenotypes induced by diet-driven microbiome remodeling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.05.25321733. [PMID: 39974023 PMCID: PMC11838622 DOI: 10.1101/2025.02.05.25321733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background Preclinical literature and behavioral human data suggest that diet profoundly impacts the human gut microbiome and energy absorption-a key determinant of energy balance. To determine whether these associations are causal, domiciled controlled feeding studies with precise measurements of dietary intake and energy balance are needed. Metabolomics-a functional readout of microbiome modulation-can help identify putative mechanisms mediating these effects. We previously demonstrated that a high-fiber, minimally processed Microbiome Enhancer Diet (MBD) fed at energy balance decreased energy absorption and increased microbial biomass relative to a calorie-matched fiber-poor, highly processed Western Diet (WD). Objective To identify metabolic signatures distinguishing MBD from WD feeding and potential metabolomic mechanisms mediating the MBD-induced negative energy balance. Methods We deployed global metabolomics in feces, serum, and urine using samples collected at the end of a randomized crossover controlled feeding trial delivering 22 days of an MBD and a WD to 17 persons without obesity. Samples were collected while participants were domiciled on a metabolic ward and analyzed using Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy. Linear mixed effects models tested metabolite changes by diet. Weighted gene network correlation analysis identified metabolite modules correlated with energy balance phenotypes. Results Numerous metabolites consistently altered in the feces, fasting serum, and/or urine may serve as putative dietary biomarkers of MBD feeding. Fecal diet-microbiota co-metabolites decreased by an MBD correlated with reduced energy absorption and increased microbial biomass. An MBD shifted the urinary metabolome from sugar degradation to ketogenesis-evidence of negative energy balance. Conclusions Precisely controlled diets disparate in microbiota-accessible substrates led to distinct metabolomic signatures in feces, fasting serum, and/or urine. These diet-microbiota co-metabolites may be biomarkers of a "fed" (MBD) or "starved" (WD) gut microbiota associated with energy balance. These findings lay the foundation for unveiling causal pathways linking diet-microbiota co-metabolism to energy absorption.
Collapse
|
24
|
Lin Z, Feng Y, Wang J, Men Z, Ma X. Microbiota governs host chenodeoxycholic acid glucuronidation to ameliorate bile acid disorder induced diarrhea. MICROBIOME 2025; 13:36. [PMID: 39905483 DOI: 10.1186/s40168-024-02011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/17/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Disorder in bile acid (BA) metabolism is known to be an important factor contributing to diarrhea. However, the pathogenesis of BA disorder-induced diarrhea remains unclear. METHODS The colonic BA pool and microbiota between health piglets and BA disorder-induced diarrheal piglets were compared. Fecal microbiota transplantation and various cell experiments further indicated that chenodeoxycholic acid (CDCA) metabolic disorder produced CDCA-3β-glucuronide, which is the main cause of BA disorder diarrhea. Non-targeted metabolomics uncovered the inhibition of the BA glucuronidation by Lactobacillus reuteri (L. reuteri) is through deriving indole-3-carbinol (I3C). In vitro, important gene involved in the reduction of BA disorder induced-diarrhea were screened by RNA transcriptomics sequencing, and activation pathway of FXR-SIRT1-LKB1 to alleviate BA disorder diarrhea and P53-mediated apoptosis were proposed in vitro by multifarious siRNA interference, CO-IP, immunofluorescence, and so on, which mechanism was also verified in a variety of mouse models. RESULTS Here, we reveal for the first time that core microbiota derived I3C represses gut epithelium glucuronidation, particularly 3β-glucuronic CDCA production, which reaction is mediated by host UDP glucuronosyltransferase family 1 member A4 (UGT1A4) and necessary of BA disorder induced diarrhea. Mechanistically, L. reuteri derived I3C activates aryl hydrocarbon receptor to decrease UGT1A4 transcription and CDCA-3β-glucuronide content, thereby upregulating FXR-SIRT1-LKB1 signal. LKB1 binds with P53 based on protein interaction, ultimately resists to apoptosis and diarrhea. Moreover, I3C assists CDCA to attain the ameliorative effects of FXR activation in BA disorder diarrhea, through reversion of abnormal metabolism pathway, improving the outcomes of CDCA supplement. CONCLUSION These findings uncover the crucial interplay between gut epithelial cells and microbes, highlighting UGT1A4-mediated conversion of CDCA-3β-glucuronide as a key target for ameliorating BA disorder-induced diarrhea. Video Abstract.
Collapse
Affiliation(s)
- Zishen Lin
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Yue Feng
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Jinping Wang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaoyue Men
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.
| |
Collapse
|
25
|
Sharif A, Nejad RB, Ghassempour A. Immunoassay-mass spectrometry to identify Brucella melitensis. Front Cell Infect Microbiol 2025; 15:1531018. [PMID: 39967794 PMCID: PMC11832529 DOI: 10.3389/fcimb.2025.1531018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Two factors frequently impede accurate bacterial identification using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS): inadequate bacterial abundance in real samples and bacterial combinations. For MALDI-TOF MS analysis and libraries for bacterial identification, time-consuming culture procedures are necessary to achieve sufficient concentration and isolation of a single bacterium. When dealing with hazardous bacteria like Brucella, which are more difficult to handle and cure, this problem becomes even more crucial. To overcome these obstacles, Fe3O4 magnetic nanoparticles (MNPs) linked with Brucella-specific antibodies and MALDI-TOF MS analysis have been used to create a quick and accurate technique for direct bacterial separation and identification in complex samples. This method allows MNPs to immune-selectively collect Brucella cells, which are then deactivated and ready for MALDI-TOF MS analysis by a formic acid/acetonitrile wash. Rabbits were used to manufacture brucella antibodies, which have effectively adsorbed onto the MNPs-protein A. Any particular Brucella bacteria found in the media might be absorbed by this MNPs-protein A-antibody immunoprobe. The concentration of Brucella bacterial cells increases the protein spectrum's visibility by a factor of 103, making it possible to quickly identify Brucella spp. without first growing them in cultural conditions. This method has been successfully used to achieve a limit of detection (LOD) of 50 CFU/mL in an aqueous medium and genuine sample-milk. The diagnostic time for this harmful bacterium is greatly decreased because the entire procedure from bacterial isolation to species identification is finished in less than 60 min. High sensitivity and specificity are demonstrated by the immunoassay-MS approach, as the spectral pattern it produces matches well-known databases like SPECLUST and Ribopeaks.
Collapse
Affiliation(s)
- Amirreza Sharif
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Ramin Bagheri Nejad
- Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
26
|
Jamal QMS, Ahmad V. Bacterial metabolomics: current applications for human welfare and future aspects. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:207-230. [PMID: 39078342 DOI: 10.1080/10286020.2024.2385365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
An imbalanced microbiome is linked to several diseases, such as cancer, inflammatory bowel disease, obesity, and even neurological disorders. Bacteria and their by-products are used for various industrial and clinical purposes. The metabolites under discussion were chosen based on their biological impacts on host and gut microbiota interactions as established by metabolome research. The separation of bacterial metabolites by using statistics and machine learning analysis creates new opportunities for applications of bacteria and their metabolites in the environmental and medical sciences. Thus, the metabolite production strategies, methodologies, and importance of bacterial metabolites for human well-being are discussed in this review.
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
27
|
Lan Y, Peng Q, Fu B, Liu H. Effective analysis of thyroid toxicity and mechanisms of acetyltributyl citrate using network toxicology, molecular docking, and machine learning strategies. Toxicology 2025; 511:154029. [PMID: 39657862 DOI: 10.1016/j.tox.2024.154029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
The growing prevalence of environmental pollutants has raised concerns about their potential role in thyroid dysfunction and related disorders. Previous research suggests that various chemicals, including plasticizers like acetyl tributyl citrate (ATBC), may adversely affect thyroid health, yet the precise mechanisms remain poorly understood. The objective of this study was to elucidate the complex effects of acetyl tributyl citrate (ATBC) on the thyroid gland and to clarify the potential molecular mechanisms by which environmental pollutants influence the disease process. Through an exhaustive exploration of databases such as ChEMBL, STITCH, and GEO, we identified a comprehensive list of 19 potential targets closely associated with ATBC and the thyroid gland. After rigorous screening using the STRING platform and Cytoscape software, we narrowed this list to 15 candidate targets, ultimately identifying five core targets: CBX5, HADHB, TRIM33, TP53, and CUL4A, utilizing three well-established machine learning methods. In-depth Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses conducted in the DAVID database revealed that the primary pathways through which ATBC affects the thyroid gland involve key signaling cascades, including the FoxO signaling pathway and metabolic pathways such as fatty acid metabolism. Furthermore, molecular docking simulations using Molecular Operating Environment software confirmed strong binding interactions between ATBC and these core targets, enhancing our understanding of their interactions. Overall, our findings provide a theoretical framework for comprehending the intricate molecular mechanisms underlying ATBC's effects on thyroid damage and pave the way for the development of preventive and therapeutic strategies against thyroid disorders caused by exposure to ATBC-containing plastics or overexposure to ATBC.
Collapse
Affiliation(s)
- Yujian Lan
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qingping Peng
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Bowen Fu
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China; Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510145, China; Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China.
| | - Huan Liu
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
28
|
Luo J, Wang Y. Precision Dietary Intervention: Gut Microbiome and Meta-metabolome as Functional Readouts. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:23-50. [PMID: 40313608 PMCID: PMC12040796 DOI: 10.1007/s43657-024-00193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 05/03/2025]
Abstract
Gut microbiome, the group of commensals residing within the intestinal tract, is closely associated with dietary patterns by interacting with food components. The gut microbiome is modifiable by the diet, and in turn, it utilizes the undigested food components as substrates and generates a group of small molecule-metabolites that addressed as "meta-metabolome" in this review. Profiling and mapping of meta-metabolome could yield insightful information at higher resolution and serve as functional readouts for precision nutrition and formation of personalized dietary strategies. For assessing the meta-metabolome, sample preparation is important, and it should aim for retrieval of gut microbial metabolites as intact as possible. The meta-metabolome can be investigated via untargeted and targeted meta-metabolomics with analytical platforms such as nuclear magnetic resonance spectroscopy and mass spectrometry. Employing flux analysis with meta-metabolomics using available database could further elucidate metabolic pathways that lead to biomarker discovery. In conclusion, integration of gut microbiome and meta-metabolomics is a promising supplementary approach to tailor precision dietary intervention. In this review, relationships among diet, gut microbiome, and meta-metabolome are elucidated, with an emphasis on recent advances in alternative analysis techniques proposed for nutritional research. We hope that this review will provide information for establishing pipelines complementary to traditional approaches for achieving precision dietary intervention.
Collapse
Affiliation(s)
- Jing Luo
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- TUMCREATE, 1 Create Way, #10-02 CREATE Tower, Singapore, 138602 Singapore
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921 Singapore
| |
Collapse
|
29
|
Hoskinson C, Petersen C, Turvey SE. How the early life microbiome shapes immune programming in childhood asthma and allergies. Mucosal Immunol 2025; 18:26-35. [PMID: 39675725 DOI: 10.1016/j.mucimm.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Despite advances in our understanding of their diagnosis and treatment, pediatric allergies impose substantial burdens on affected children, families, and healthcare systems. Further, the prevalence of allergic diseases has dramatically increased over the past half-century, leading to additional concerns and concerted efforts to identify the origins, potential predictors and preventions, and therapies of allergic diseases. Together with the increase in allergic diseases, changes in lifestyle and early-life environmental influences have corresponded with changes in colonization patterns of the infant gut microbiome. The gut microbiome plays a key role in developing the immune system, thus greatly influencing the development of allergic disease. In this review, we specifically highlight the importance of the proper maturation and composition of the gut microbiome as an essential step in healthy child development or disease progression. By exploring the intertwined development of the immune system and microbiome across pediatric allergic diseases, we provide insights into potential novel strategies for their prevention and management.
Collapse
Affiliation(s)
- Courtney Hoskinson
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Charisse Petersen
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
30
|
Bai PR, An N, Wang YZ, Chen YY, Zhu QF, Feng YQ. iTASO: A Novel Photosensitive Probe for High-Throughput and Selective Submetabolomic Analysis via Flow Injection-Mass Spectrometry. Anal Chem 2025; 97:1495-1499. [PMID: 39804786 DOI: 10.1021/acs.analchem.4c06108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Flow injection mass spectrometry (FI-MS) is widely employed for high-throughput metabolome analysis, yet the absence of prior separation leads to significant matrix effects, thereby limiting the metabolome coverage. In this study, we introduce a novel photosensitive MS probe, iTASO-ONH2, integrated with FI-MS to establish a high-throughput strategy for submetabolome analyses. The iTASO probe features a conjugated-imino sulfonate moiety for efficient photolysis under 365 nm irradiation and a reactive group for selective metabolite labeling. The iTASO-ONH2 probe effectively and selectively labels carbonyl compounds, forming highly stable labeled products. Upon UV exposure, the labeled products rapidly release sulfonic acid-containing photolysis products, detectable with high sensitivity in ESI-negative mode and low matrix effect, offering femtomole-level detection sensitivity. The iTASO-ONH2-based FI-MS strategy was applied to fecal samples from chronic sleep-deprived and control mice, revealing 192 potential carbonyl compounds of which 37 exhibited significant alterations. Additionally, three other photosensitive probes─iTASO-NH2, iTASO-NHS, and iTASO-MAL─were synthesized to selectively label carboxyl, amino, and thiol metabolites, respectively, underscoring the versatility of the iTASO-based FI-MS strategy for submetabolomic analysis across diverse metabolite classes.
Collapse
Affiliation(s)
- Pei-Rong Bai
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Na An
- Department of Chemistry, Wuhan University, Wuhan 430072, China
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
| | - Yan-Zhen Wang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yao-Yu Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Quan-Fei Zhu
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
31
|
Alves V, Zamith-Miranda D, Frases S, Nosanchuk JD. Fungal Metabolomics: A Comprehensive Approach to Understanding Pathogenesis in Humans and Identifying Potential Therapeutics. J Fungi (Basel) 2025; 11:93. [PMID: 39997385 PMCID: PMC11856446 DOI: 10.3390/jof11020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Metabolomics has emerged as a transformative tool in the study of microbes, including pathogenic fungi, facilitating the identification of unique metabolic profiles that elucidate their pathogenic mechanisms, host interactions, and treatment resistance. This review highlights key applications of metabolomics in understanding fungal metabolites essential for human virulence, such as mycotoxins produced by various fungal species, including Aspergillus fumigatus (gliotoxin, fumagillins) and Candida species (phenylethyl alcohol, TCA cycle metabolites), and secondary metabolites that contribute to pathogenicity. It also explores the metabolic adaptations of fungi in relation to drug resistance and biofilm formation, revealing alterations in key metabolic pathways during infection, as seen in C. albicans and C. auris. Furthermore, metabolomics aids in deciphering host-pathogen interactions, showcasing how fungi like Cryptococcus neoformans and Candida modify host metabolism to promote survival and evade immune responses. The study of antifungal resistance mechanisms has also benefited from metabolomic approaches, identifying specific metabolite patterns that signify resistance, such as in Candida albicans and Candidozyma (Candida) auris, and informing new therapeutic strategies. The integration of metabolomics with other omics technologies is paving the way for a comprehensive understanding of fungal biology and pathogenesis. Such multi-omics approaches are crucial for discovering new therapeutic targets and developing innovative antifungal treatments. Thus, the purpose of this review is to provide an overview of how metabolomics is revolutionizing our understanding of fungal pathogenesis, drug resistance, and host interactions, and to highlight its potential for identifying new therapeutic targets and improving antifungal strategies.
Collapse
Affiliation(s)
- Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro—FAPERJ, Rio de Janeiro 21040-360, Brazil
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
32
|
Reuben RC, Torres C. Integrating the milk microbiome signatures in mastitis: milk-omics and functional implications. World J Microbiol Biotechnol 2025; 41:41. [PMID: 39826029 PMCID: PMC11742929 DOI: 10.1007/s11274-024-04242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025]
Abstract
Mammalian milk contains a variety of complex bioactive and nutritional components and microorganisms. These microorganisms have diverse compositions and functional roles that impact host health and disease pathophysiology, especially mastitis. The advent and use of high throughput omics technologies, including metagenomics, metatranscriptomics, metaproteomics, metametabolomics, as well as culturomics in milk microbiome studies suggest strong relationships between host phenotype and milk microbiome signatures in mastitis. While single omics studies have undoubtedly contributed to our current understanding of milk microbiome and mastitis, they often provide limited information, targeting only a single biological viewpoint which is insufficient to provide system-wide information necessary for elucidating the biological footprints and molecular mechanisms driving mastitis and milk microbiome dysbiosis. Therefore, integrating a multi-omics approach in milk microbiome research could generate new knowledge, improve the current understanding of the functional and structural signatures of the milk ecosystem, and provide insights for sustainable mastitis control and microbiome management.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Biology Department, King's College, 133 North River Street, Wilkes-Barre, PA, 18711, USA.
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
33
|
Sharma SA, Oladejo SO, Kuang Z. Chemical interplay between gut microbiota and epigenetics: Implications in circadian biology. Cell Chem Biol 2025; 32:61-82. [PMID: 38776923 PMCID: PMC11569273 DOI: 10.1016/j.chembiol.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Circadian rhythms are intrinsic molecular mechanisms that synchronize biological functions with the day/night cycle. The mammalian gut is colonized by a myriad of microbes, collectively named the gut microbiota. The microbiota impacts host physiology via metabolites and structural components. A key mechanism is the modulation of host epigenetic pathways, especially histone modifications. An increasing number of studies indicate the role of the microbiota in regulating host circadian rhythms. However, the mechanisms remain largely unknown. Here, we summarize studies on microbial regulation of host circadian rhythms and epigenetic pathways, highlight recent findings on how the microbiota employs host epigenetic machinery to regulate circadian rhythms, and discuss its impacts on host physiology, particularly immune and metabolic functions. We further describe current challenges and resources that could facilitate research on microbiota-epigenetic-circadian rhythm interactions to advance our knowledge of circadian disorders and possible therapeutic avenues.
Collapse
Affiliation(s)
- Samskrathi Aravinda Sharma
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Sarah Olanrewaju Oladejo
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Zheng Kuang
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
34
|
Dudkina N, Park HB, Song D, Jain A, Khan SA, Flavell RA, Johnson CH, Palm NW, Crawford JM. Human AKR1C3 binds agonists of GPR84 and participates in an expanded polyamine pathway. Cell Chem Biol 2025; 32:126-144.e18. [PMID: 39163853 PMCID: PMC11748234 DOI: 10.1016/j.chembiol.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Altered human aldo-keto reductase family 1 member C3 (AKR1C3) expression has been associated with poor prognosis in diverse cancers, ferroptosis resistance, and metabolic diseases. Despite its clinical significance, the endogenous biochemical roles of AKR1C3 remain incompletely defined. Using untargeted metabolomics, we identified a major transformation mediated by AKR1C3, in which a spermine oxidation product "sperminal" is reduced to "sperminol." Sperminal causes DNA damage and activates the DNA double-strand break response, whereas sperminol induces autophagy in vitro. AKR1C3 also pulls down acyl-pyrones and pyrone-211 inhibits AKR1C3 activity. Through G protein-coupled receptor ligand screening, we determined that pyrone-211 is also a potent agonist of the semi-orphan receptor GPR84. Strikingly, mammalian fatty acid synthase produces acyl-pyrones in vitro, and this production is modulated by NADPH. Taken together, our studies support a regulatory role of AKR1C3 in an expanded polyamine pathway and a model linking fatty acid synthesis and NADPH levels to GPR84 signaling.
Collapse
Affiliation(s)
- Natavan Dudkina
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT 06516, USA
| | - Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT 06516, USA; Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Deguang Song
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06536, USA
| | - Abhishek Jain
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06536, USA
| | - Sajid A Khan
- Department of Surgery, Division of Surgical Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06536, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06536, USA
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06536, USA.
| | - Noah W Palm
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06536, USA.
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
35
|
Shi X, Shi J, Zou F, Cao Q, Yan X, Liu S, Li Y, Lan X. Omics detection and treatment of syphilis. Clin Chim Acta 2025; 565:120008. [PMID: 39427935 DOI: 10.1016/j.cca.2024.120008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Treponema pallidum is the source of the chronic systemic sexually transmitted illness syphilis. T. pallidum can evade immunity and spread. A hard chancre, enlarged lymph nodes, and a syphilis rash are the primary clinical signs. The condition may affect the nervous or cardiovascular system and even become fatal after being neglected. Omics technology is a cutting-edge technique that maps the entire regulatory network of gene and protein metabolism using high-throughput sequencing and other techniques, such as transcriptomics, proteomics, metabolomics, and genomics, to perform more efficient and methodical research on biological samples. Owing to the diverse and intricate biological roles and gene expression of T. pallidum, a single omics study is frequently insufficient and limited. This review focused on and summarized the use of several omics methods for investigating T. pallidum by referencing several different studies in the literature.
Collapse
Affiliation(s)
- Xinyan Shi
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jiayin Shi
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fei Zou
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Qian Cao
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaoliang Yan
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Xiaopeng Lan
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
36
|
Sun Y, Li G, Kong M, Li J, Wang S, Tan Y. Angelica sinensis polysaccharide as potential protectants against recurrent spontaneous abortion: focus on autophagy regulation. Front Med (Lausanne) 2025; 12:1522503. [PMID: 39881843 PMCID: PMC11774876 DOI: 10.3389/fmed.2025.1522503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
Introduction Recurrent spontaneous abortion (RSA) represents a significant clinical challenge, with its underlying mechanisms yet to be fully elucidated. Despite advances in understanding, the precise pathophysiology driving RSA remains unclear. Angelica sinensis, a traditional herbal remedy, is frequently used as an adjunctive treatment for miscarriage. However, it remains uncertain whether its primary active component, Angelica sinensis polysaccharide (ASP), plays a definitive role in its therapeutic effects. The specific function and mechanism of ASP in the context of RSA require further investigation. Methods In this study, we sought to evaluate autophagy levels at the maternal-fetal interface in RSA patients and in an RSA mouse model treated with ASP, complemented by a comprehensive metabolomic analysis. Autophagy flux in the decidua was compared between eight RSA patients and eight healthy pregnant women. Additionally, changes in autophagy flux were assessed in an RSA mouse model following ASP treatment, with embryos and placental tissues collected for subsequent metabolomic profiling. Results Our results revealed a significant reduction in Beclin 1 protein levels in the decidua of RSA patients compared to the normal pregnancy group. Conversely, ASP treatment in the RSA mouse model restored autophagy-related protein expression, including ATG7, ATG16L, and Beclin 1, to levels higher than those observed in the untreated RSA group. Metabolomic analyses further identified significant changes in phosphatidylethanolamine levels between ASP-treated and control groups, with differential metabolites enriched in pathways related to glycolysis/gluconeogenesis, glycerolipid metabolism, and glycine, serine, and threonine metabolism. Functional assays revealed that ASP enhances trophoblast cell proliferation, migration, and invasion. Conclusion In summary, our findings demonstrate diminished autophagy activity in RSA patients, while ASP appears to restore autophagy and regulate key metabolic pathways, including glycolysis/gluconeogenesis. These results provide new insights into the protective mechanisms of ASP in RSA, suggesting its potential as a therapeutic intervention for this condition.
Collapse
Affiliation(s)
- Yeli Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guohua Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Reproductive Immunology, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengwen Kong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junyuan Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuyun Wang
- Department of Integrated Traditional Chinese Medicine (TCM) and Western Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Tan
- Department of Integrated Traditional Chinese Medicine (TCM) and Western Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
37
|
Hughes A, Vangeenderhuysen P, De Graeve M, Pomian B, Nawrot TS, Raes J, Cameron SJS, Vanhaecke L. Toward Automated Preprocessing of Untargeted LC-MS-Based Metabolomics Feature Lists from Human Biofluids. Anal Chem 2025; 97:122-129. [PMID: 39757901 DOI: 10.1021/acs.analchem.4c03124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Maximizing the extraction of true, high-quality, nonredundant features from biofluids analyzed via LC-MS systems is challenging. Here, the R packages IPO and AutoTuner were used to optimize XCMS parameter settings for the retrieval of metabolite or lipid features in both ionization modes from either faecal or urine samples from two cohorts (n = 621). The feature lists obtained were compared with those where the parameter values were selected manually. Three categories were used to compare feature lists: 1) feature quality through removing false positives, 2) tentative metabolite identification using the Human Metabolome Database (HMDB) and 3) feature utility such as analyzing the proportion of features within intensity threshold bins. Furthermore, a PCA-based approach to feature filtering using QC samples and variable loadings was also explored under this category. Overall, more features were observed after automated selection of parameter values for all data sets (1.3- to 3.7-fold), which propagated through comparative exercises. For example, a greater number of features (on average 51 vs 45%) had a coefficient of variation (CV) < 30%. Additionally, there was a significant increase (7.6-10.4%) in the number of faecal metabolites that could be tentatively annotated, and more features were present in higher intensity threshold bins. Considering the overlap across all three categories, a greater number of features were also retained. Automated approaches that guide selection of optimal parameter values for preprocessing are important to decrease the time invested for this step, while taking advantage of the wealth of data that LC-MS systems provide.
Collapse
Affiliation(s)
- Amy Hughes
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, Northern Ireland
| | - Pablo Vangeenderhuysen
- Laboratory of Integrative Metabolomics (LIMET), Ghent University, 9820Merelbeke, Belgium
| | - Marilyn De Graeve
- Laboratory of Integrative Metabolomics (LIMET), Ghent University, 9820Merelbeke, Belgium
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy
| | - Beata Pomian
- Laboratory of Integrative Metabolomics (LIMET), Ghent University, 9820Merelbeke, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek 3590, Belgium
- School of Public Health, Occupational and Environmental Medicine, Leuven University, 3000 Leuven, Belgium
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Rega Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Centre for Microbiology, Vlaams Instituut voor Biotechnologie (VIB), 3001Leuven, Belgium
| | - Simon J S Cameron
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, Northern Ireland
| | - Lynn Vanhaecke
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, Northern Ireland
- Laboratory of Integrative Metabolomics (LIMET), Ghent University, 9820Merelbeke, Belgium
| |
Collapse
|
38
|
Zhou J, Feng D, Chen Y, Li X, Cen J, Wu W, Zheng W, Gan W, Zhang T. Effect of leucine on mitochondria and oxidative stress to reduce virulence and pathogenicity of Acinetobacter baumannii. Microbiol Res 2025; 290:127932. [PMID: 39454348 DOI: 10.1016/j.micres.2024.127932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Elucidating the virulence mechanisms of A. baumannii is essential for developing strategies to mitigate pathogenicity. Although high-virulent strains are associated with increased mortality rate in severely infected patients, the underlying mechanisms remains not well understood. Our analysis revealed leucine as a pivotal biomarker, with the 11dP and paaK being significant contributors to virulence. The ATP-dependent activity and antioxidant activity were identified as the most important pathways in distinguishing the virulence of A. baumannii. Exogenous leucine was found to modulate mitochondria dysfunction and oxidative stress, thereby diminishing the pathogenicity of A. baumannii towards Beas 2B cells. Moreover, leucine reduced the virulence of A. baumannii to Galleria mellonella (G. mellonella) and alleviated pathological damage to lung tissues in mice. Our study offers a novel treatment strategy based on metabolomics, which may assist in the exploration and management of infections caused by highly virulent pathogens. It sets a new course for reducing the impact of highly virulent A. baumannii infections and has significant implications for the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Jianxia Zhou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Dingyun Feng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Yuetao Chen
- The State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Xia Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Jiemei Cen
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Wenbin Wu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Wenzheng Zheng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Wenlei Gan
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
39
|
Lu Y, Huangfu S, Ma C, Ding Y, Zhang Y, Zhou C, Liao L, Li M, You J, Chen Y, Wang D, Chen A, Jiang B. Exosomes derived from umbilical cord mesenchymal stem cells promote healing of complex perianal fistulas in rats. Stem Cell Res Ther 2024; 15:414. [PMID: 39732731 DOI: 10.1186/s13287-024-04028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/28/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Complex perianal fistulas, challenging to treat and prone to recurrence, often require surgical intervention that may cause fecal incontinence and lower quality of life due to large surgical wounds and potential sphincter damage. Human umbilical cord-derived MSCs (hUC-MSCs) and their exosomes (hUCMSCs-Exo) may promote wound healing. METHODS This study assessed the efficacy, mechanisms, and safety of these exosomes in treating complex perianal fistulas in SD rats. We established a rat model, divided rats with fistulas into the control and the exosome groups. We assessed treatment efficacy through ultrasound, clinical observations, and histopathological analysis. We also evaluated the activation of the HIF-1α/TGF-β/Smad signaling pathway via PCR and Western blot and assessed serological markers for HIF-1α and inflammatory indices through ELISA. We analyzed gut microbiota and the systemic metabolic environment via untargeted metabolomics. RESULTS The hUCMSCs-Exo effectively promoted healing of wound, regulated the immune balance enhanced collagen synthesis and angiogenesis in the perianal fistulas model of rats, and regulated the gut microbiota and metabolomic profiles. Results of PCR and Western blot analyses indicated that the exosomes activated HIF-1α/TGF-β/Smad signaling pathways. To the dosages tested, the 10ug/100ul concentration (medium dose) was found to be the most effective to the treatment of complex perianal fistulas. CONCLUSIONS The hUCMSCs-Exo significantly promoted the healing of wound in perianal fistulas of rats and demonstrated higher safety. The underlying mechanism facilitating the healing process was likely associated with the activation of the HIF-1α/TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Yafei Lu
- National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China
| | - Shaohua Huangfu
- National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China
| | - Chuanxue Ma
- National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China
| | - Yan Ding
- National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China
| | - Yajie Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China
- Department of Biobank, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China
| | - Chungen Zhou
- National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China
| | - Lianming Liao
- Center of Laboratory Medicine, Union Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, People's Republic of China
| | - Ming Li
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, People's Republic of China
| | - Jia You
- National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China
| | - Yuting Chen
- National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China
| | - Dawei Wang
- National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China
| | - Ao Chen
- National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China
| | - Bin Jiang
- National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China.
| |
Collapse
|
40
|
Chen LB, Chen Q, Chao S, Yuan ZH, Jia L, Niu YL. Influence of gut flora on diabetes management after kidney transplantation. BMC Nephrol 2024; 25:468. [PMID: 39716100 DOI: 10.1186/s12882-024-03899-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
Post-transplant diabetes mellitus (PTDM) is a common complication following renal transplantation, and its incidence has been gradually increasing in recent years, posing a significant public health challenge. Managing PTDM is complex, as studies suggest that it involves changes in the microbial flora across multiple organs. Recent research highlights the critical role of gut flora metabolism in the development of diabetes among post-renal transplant patients. This paper reviews the alterations in gut flora observed in PTDM patients and explores how gut flora influences PTDM. These findings may offer new perspectives on targeting gut flora metabolites for the prevention and treatment of PTDM.
Collapse
Affiliation(s)
- Luo-Bei Chen
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, No. 28 Guimedical Street, Yunyan District, Guiyang, Guizhou Province, 550000, China
| | - Qian Chen
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, No. 28 Guimedical Street, Yunyan District, Guiyang, Guizhou Province, 550000, China
| | - Sheng Chao
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, No. 28 Guimedical Street, Yunyan District, Guiyang, Guizhou Province, 550000, China
| | - Zhi-Hui Yuan
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, No. 28 Guimedical Street, Yunyan District, Guiyang, Guizhou Province, 550000, China
| | - Lei Jia
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, No. 28 Guimedical Street, Yunyan District, Guiyang, Guizhou Province, 550000, China
| | - Yu-Lin Niu
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, No. 28 Guimedical Street, Yunyan District, Guiyang, Guizhou Province, 550000, China.
| |
Collapse
|
41
|
Wang XS, Wang JY, Yu F, Shi D, Xie JJ, Li LJ, Wang BH. Microbiota-related metabolites correlated with the severity of COVID-19 patients. Hepatobiliary Pancreat Dis Int 2024:S1499-3872(24)00168-1. [PMID: 39734160 DOI: 10.1016/j.hbpd.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a global pandemic with high mortality, and the treatment options for the severe patients remain limited. Previous studies reported the altered gut microbiota in severe COVID-19. But there are no comprehensive data on the role of microbial metabolites in COVID-19 patients. METHODS We identified 153 serum microbial metabolites and assessed the changes in 72 COVID-19 patients upon admission and one-month after their discharge, comparing these changes to those in 133 healthy control individuals from the outpatient department during the same period. RESULTS Our study revealed that microbial metabolites varied across different stages and severity of COVID-19 patients. These altered microbial metabolites included tryptophan, bile acids, fatty acids, amino acids, vitamins and those containing benzene. A total of 13 distinct microbial metabolites were identified in COVID-19 patients compared to healthy controls. Notably, correlations were found among these disrupted metabolites and organ injury and inflammatory responses related to COVID-19. Furthermore, these metabolites did not restore to the normal levels one month after discharge. Importantly, two microbial metabolites were the core microbial metabolites related to the severity of COVID-19 patients. CONCLUSIONS The microbial metabolites were altered in the acute and recovery stage, correlating with disease severity of COVID-19. These results indicated the important role of gut microbiota in the progression of COVID-19, and facilitated the potential therapeutic microbial target for severe COVID-19 patients.
Collapse
Affiliation(s)
- Xiao-Sen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing-Yu Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Fei Yu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Department of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiao-Jiao Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Department of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Jinan Microecological Biomedicine Shandong Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310000, China
| | - Bao-Hong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Jinan Microecological Biomedicine Shandong Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310000, China.
| |
Collapse
|
42
|
Go D, Yeon GH, Park SJ, Lee Y, Koh HG, Koo H, Kim KH, Jin YS, Sung BH, Kim J. Integration of metabolomics and other omics: from microbes to microbiome. Appl Microbiol Biotechnol 2024; 108:538. [PMID: 39702677 DOI: 10.1007/s00253-024-13384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Metabolomics is a cutting-edge omics technology that identifies metabolites in organisms and their environments and tracks their fluctuations. This field has been extensively utilized to elucidate previously unknown metabolic pathways and to identify the underlying causes of metabolic changes, given its direct association with phenotypic alterations. However, metabolomics inherently has limitations that can lead to false positives and false negatives. First, most metabolites function as intermediates in multiple biochemical reactions, making it challenging to pinpoint which specific reaction is responsible for the observed changes in metabolite levels. Consequently, metabolic processes that are anticipated to vary with metabolite concentrations may not exhibit significant changes, generating false positives. Second, the range of metabolites identified is contingent upon the analytical conditions employed. Until now, no analytical instrument or protocol has been developed that can capture all metabolites simultaneously. Therefore, some metabolites are changed but are not detected, generating false negatives. In this review, we offer a novel and systematic assessment of the limitations of omics technologies and propose-specific strategies to minimize false positives and false negatives through multi-omics approaches. Additionally, we provide examples of multi-omics applications in microbial metabolic engineering and host-microbiome interactions, helping other researchers gain a better understanding of these strategies. KEY POINTS: • Metabolomics identifies metabolic shifts but has inherent false positive/negatives. • Multi-omics approaches help overcome metabolomics' inherent limitations.
Collapse
Affiliation(s)
- Daewon Go
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang, Gangwon-Do, 25354, Republic of Korea
| | - Gun-Hwi Yeon
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Soo Jin Park
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Yujin Lee
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang, Gangwon-Do, 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-Gun, 25354, Gangwon-Do, Republic of Korea
| | - Hyun Gi Koh
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Hyunjin Koo
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang, Gangwon-Do, 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-Gun, 25354, Gangwon-Do, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Jungyeon Kim
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang, Gangwon-Do, 25354, Republic of Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-Gun, 25354, Gangwon-Do, Republic of Korea.
| |
Collapse
|
43
|
Yu J, Metwally H, Kolwich J, Tomm H, Kaufmann M, Klotz R, Liu C, Le Blanc JCY, Covey TR, Rudan J, Ross AC, Oleschuk RD. Rapid and Robust Workflows Using Different Ionization, Computation, and Visualization Approaches for Spatial Metabolome Profiling of Microbial Natural Products in Pseudoalteromonas. ACS MEASUREMENT SCIENCE AU 2024; 4:668-677. [PMID: 39713036 PMCID: PMC11659995 DOI: 10.1021/acsmeasuresciau.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 12/24/2024]
Abstract
Ambient mass spectrometry (MS) technologies have been applied to spatial metabolomic profiling of various samples in an attempt to both increase analysis speed and reduce the length of sample preparation. Recent studies, however, have focused on improving the spatial resolution of ambient approaches. Finer resolution requires greater analysis times and commensurate computing power for more sophisticated data analysis algorithms and larger data sets. Higher resolution provides a more detailed molecular picture of the sample; however, for some applications, this is not required. A liquid microjunction surface sampling probe (LMJ-SSP) based MS platform combined with unsupervised multivariant analysis based hyperspectral visualization is demonstrated for the metabolomic analysis of marine bacteria from the genus Pseudoalteromonas to create a rapid and robust spatial profiling workflow for microbial natural product screening. In our study, metabolomic profiles of different Pseudoalteromonas species are quickly acquired without any sample preparation and distinguished by unsupervised multivariant analysis. Our robust platform is capable of automated direct sampling of microbes cultured on agar without clogging. Hyperspectral visualization-based rapid spatial profiling provides adequate spatial metabolite information on microbial samples through red-green-blue (RGB) color annotation. Both static and temporal metabolome differences can be visualized by straightforward color differences and differentiating m/z values identified afterward. Through this approach, novel analogues and their potential biosynthetic pathways are discovered by applying results from the spatial navigation to chromatography-based metabolome annotation. In this current research, LMJ-SSP is shown to be a robust and rapid spatial profiling method. Unsupervised multivariant analysis based hyperspectral visualization is proven straightforward for facile/rapid data interpretation. The combination of direct analysis and innovative data visualization forms a powerful tool to aid the identification/interpretation of interesting compounds from conventional metabolomics analysis.
Collapse
Affiliation(s)
- Jian Yu
- Department
of Chemistry, Queen’s University, Kingston, Ontario, Canada K7K 0C2
| | - Haidy Metwally
- Department
of Chemistry, Queen’s University, Kingston, Ontario, Canada K7K 0C2
| | - Jennifer Kolwich
- Department
of Chemistry, Queen’s University, Kingston, Ontario, Canada K7K 0C2
| | - Hailey Tomm
- Department
of Chemistry, Queen’s University, Kingston, Ontario, Canada K7K 0C2
| | - Martin Kaufmann
- Department
of Surgery, Queen’s University, Kingston, Ontario, Canada K7L 2V7
| | - Rachel Klotz
- Department
of Chemistry, Queen’s University, Kingston, Ontario, Canada K7K 0C2
| | - Chang Liu
- SCIEX, 71 Four Valley Drive, Concord, Ontario, Canada L4K 4V8
| | | | - Thomas R. Covey
- SCIEX, 71 Four Valley Drive, Concord, Ontario, Canada L4K 4V8
| | - John Rudan
- Department
of Surgery, Queen’s University, Kingston, Ontario, Canada K7L 2V7
| | - Avena C. Ross
- Department
of Chemistry, Queen’s University, Kingston, Ontario, Canada K7K 0C2
| | | |
Collapse
|
44
|
Hu X, Xu Q, Ma X, Li L, Wu Y, Sun F. An interpretable machine learning model for precise prediction of biomarkers for intermittent fasting pattern. Nutr Metab (Lond) 2024; 21:106. [PMID: 39695671 DOI: 10.1186/s12986-024-00876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Intermittent fasting is currently a highly sought-after dietary pattern. To explore the potential biomarkers of intermittent fasting, untargeted metabolomics analysis of fecal metabolites in two groups of mice, intermittent fasting and normal feeding, was conducted using UPLC-HRMS. The data was further analyzed through interpretable machine learning (ML) to data mine the biomarkers for two dietary patterns. We developed five machine learning models and results showed that under three-fold cross-validation, Random Forest model was the most suitable for distinguishing the two dietary patterns. Finally, Shapely Additive exPlanations (SHAP) were explored to perform a weighted explanatory analysis on the Random Forest model, and the contribution of each metabolite to the model was calculated. Results indicated that Ganoderenic Acid C is the potential biomarkers to distinguish the two dietary patterns. Our work provides new insights for metabolic biomarker analysis and lays a theoretical foundation for the selection of a healthieir dietary lifestyle.
Collapse
Affiliation(s)
- Xiaoli Hu
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Qingjun Xu
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Xuan Ma
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100017, China
| | - Feifei Sun
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100017, China.
| |
Collapse
|
45
|
Fu C, Liu X, Wang L, Hang D. The Potential of Metabolomics in Colorectal Cancer Prognosis. Metabolites 2024; 14:708. [PMID: 39728489 DOI: 10.3390/metabo14120708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, posing a serious threat to human health. Metabolic reprogramming represents a critical feature in the process of tumor development and progression, encompassing alterations in sugar metabolism, lipid metabolism, amino acid metabolism, and other pathways. Metabolites hold promise as innovative prognostic biomarkers for cancer patients, which is crucial for targeted follow-up care and interventions. This review aims to provide an overview of the progress in research on metabolic biomarkers for predicting the prognosis of CRC. We also discuss the future trends and challenges in this area.
Collapse
Affiliation(s)
- Chengqu Fu
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative, Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinyi Liu
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative, Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Le Wang
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Dong Hang
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative, Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| |
Collapse
|
46
|
Zhao F, Zhao Q, Li S, Zhu Y, Si H, Feng J, Li Z. Comparison of Fecal Microbiota and Metabolites Between Captive and Grazing Male Reindeer. Animals (Basel) 2024; 14:3606. [PMID: 39765510 PMCID: PMC11672574 DOI: 10.3390/ani14243606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The reindeer (Rangifer tarandus) is a circumpolar member of the Cervidae family, and has adapted to a harsh environment. Summer is a critical period for reindeer, with peak digestibility facilitating body fat accumulation. The gut microbiota plays a pivotal role in nutrient metabolism, and is affected by captivity. However, differences in the composition of the gut microbiota and metabolites between captive and grazing reindeer during summer remain poorly understood. Here, we conducted a comparative study of the fecal microbiota and metabolites between captive (n = 6) and grazing (n = 6) male reindeer, using full-length 16S rRNA gene sequencing and gas chromatography-time-of-flight mass spectrometry, respectively. Our results indicated that Prevotella, Phocaeicola, Papillibacter, Muribaculum, and Bacteroides were the predominant genera in the feces of reindeer. However, microbial diversity was significantly higher in captive reindeer compared to their grazing counterparts. Principal coordinate analysis revealed significant differences in the fecal microbiota between captive and grazing reindeer. In captive reindeer, the relative abundances of the genera Clostridium, Paraprevotella, Alistipes, Paludibacter, Lentimicrobium, Paraclostridium, and Anaerovibrio were significantly higher, while those of the genera Prevotella, Phocaeicola, Pseudoflavonifractor, and Lactonifactor were significantly lower. A comparison of predicted functions indicated that pathways involved in fat digestion and absorption, histidine metabolism, lysine biosynthesis, and secondary bile acid biosynthesis were more abundant in captive reindeer, whereas the pathways of fructose and mannose metabolism and propanoate metabolism were less abundant. An untargeted metabolomic analysis revealed that 624 metabolites (e.g., amino acids, lipids, fatty acids, and bile acids) and 645 metabolites (e.g., carbohydrates and purines) were significantly increased in the feces of captive and grazing reindeer, respectively. In conclusion, we unveiled significant differences in fecal microbiota and metabolites between captive and grazing male reindeer, with the results suggesting a potentially enhanced ability to utilize plant fibers in grazing reindeer.
Collapse
Affiliation(s)
- Fei Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.L.); (Y.Z.); (H.S.)
| | - Quanmin Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China;
| | - Songze Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.L.); (Y.Z.); (H.S.)
| | - Yuhang Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.L.); (Y.Z.); (H.S.)
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.L.); (Y.Z.); (H.S.)
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.L.); (Y.Z.); (H.S.)
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
47
|
Xie F, Zhao H, Liu J, Yang X, Neuber M, Agrawal AA, Kaur A, Herrmann J, Kalinina OV, Wei X, Müller R, Fu C. Autologous DNA mobilization and multiplication expedite natural products discovery from bacteria. Science 2024; 386:eabq7333. [PMID: 39666857 DOI: 10.1126/science.abq7333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/10/2024] [Indexed: 12/14/2024]
Abstract
The transmission of antibiotic-resistance genes, comprising mobilization and relocation events, orchestrates the dissemination of antimicrobial resistance. Inspired by this evolutionarily successful paradigm, we developed ACTIMOT, a CRISPR-Cas9-based approach to unlock the vast chemical diversity concealed within bacterial genomes. ACTIMOT enables the efficient mobilization and relocation of large DNA fragments from the chromosome to replicative plasmids within the same bacterial cell. ACTIMOT circumvents the limitations of traditional molecular cloning methods involving handling and replicating large pieces of genomic DNA. Using ACTIMOT, we mobilized and activated four cryptic biosynthetic gene clusters from Streptomyces, leading to the discovery of 39 compounds across four distinct classes. This work highlights the potential of ACTIMOT for accelerating the exploration of biosynthetic pathways and the discovery of natural products.
Collapse
Affiliation(s)
- Feng Xie
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
| | - Haowen Zhao
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
| | - Jiaqi Liu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Xiaoli Yang
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Neuber
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Amay Ajaykumar Agrawal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Amninder Kaur
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- PharmaScienceHub, Saarbrücken, Germany
| | - Olga V Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- PharmaScienceHub, Saarbrücken, Germany
- Faculty of Medicine, Saarland University, Homburg, Germany
| | - Xiaoyi Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
| |
Collapse
|
48
|
Zheng F, You L, Zhao X, Lu X, Xu G. Predicting Tandem Mass Spectra of Small Molecules Using Graph Embedding of Precursor-Product Ion Pair Graph. Anal Chem 2024; 96:19190-19195. [PMID: 39575948 DOI: 10.1021/acs.analchem.4c04375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics identification relies heavily on high-quality MS/MS data; MS/MS prediction is a good way to address this issue. However, the accuracy of the prediction, resolution, and correlation with chemical structures have not been well-solved. In this study, we have developed a MS/MS prediction method, PPGB-MS2, which transforms the MS/MS prediction into fragment intensity prediction, and the concept of precursor-product ion pair graph bags (PPGBs) was introduced to represent fragments, achieving uniform representation of precursor and product ion structures and MS/MS fragmentation information. The chemical structure information is kept before it is incorporated into machine learning models. Due to the PPGB representation, graph neural networks (GNNs) can be utilized to achieve MS/MS fragment intensity prediction. The system was trained and evaluated using [M+H]+ and [M-H]- data acquired by an Agilent QTOF 6530 in the NIST 20 tandem MS database. Results demonstrated that the average cosine similarity is 0.71 in the test set, which is higher than classical MS/MS prediction methods. PPGB-MS2 also achieves high-resolution MS/MS prediction due to its effective management of the correspondence between fragments and structures.
Collapse
Affiliation(s)
- Fujian Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Lei You
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| |
Collapse
|
49
|
Zhu J, Tong Y, Wang Z, Li Z, Zhang L, Guo X, Tong L, Wang P. Gold Flake-Enabled Miniature Capacitive Picobalances. SMALL METHODS 2024:e2401640. [PMID: 39659074 DOI: 10.1002/smtd.202401640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Measurement of masses of microscale objects or weak force with ultrahigh sensitivity (down to nanogram/piconewton level) and compact configuration is highly desired for fundamental research and applications in various disciplines. Here, by using freestanding gold flakes with high reflectivity (≈98% at 980 nm) as the sample tray and silica microfibers with extremely low spring constant (≈0.05 mN m-1) as the cantilever beams, miniature capacitive balances are reported with piconewton-level detection limit (picobalances) and reliable radiation force-based calibration. In the design, the gold flake is suspended by two silica microfibers, which also functions as an electrode to form a capacitor with an underneath gold electrode. Benefitting from the high reflectivity of the gold flake, the performance of picobalances can be precisely calibrated by exerting piconewton-level radiation pressure on the gold flake (working as a mirror) with a laser, showing a detection limit as low as 6.9 pN. Finally, using a fiber taper-assisted micromanipulation technique, masses of various types of pollens (with weights ranging from 4.6 to 96.3 ng) are readily measured by a picobalance at single-particle level. The miniature picobalances should find applications in precise measurement of masses of micro or nanoscale objects and various types of weak forces.
Collapse
Affiliation(s)
- Jiajie Zhu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuanbiao Tong
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhenxin Wang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiyong Li
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314000, China
| | - Lei Zhang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xin Guo
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314000, China
| | - Limin Tong
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pan Wang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314000, China
| |
Collapse
|
50
|
Zhang M, You M, Ma N, Lv J. Advance in the application of metabolomics technology in poultry. Front Vet Sci 2024; 11:1501630. [PMID: 39717790 PMCID: PMC11663919 DOI: 10.3389/fvets.2024.1501630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Metabolomics is a science that takes small molecular metabolites in organisms as the research object and determines the dynamic changes of metabolites at the overall level through a variety of modern analytical techniques. At present, metabolomics technology has been widely used in biological significance interpretation, food safety and quality, breeding, disease diagnosis, functional compound identification, and other fields. Its application in poultry science has also become the focus of widespread attention. With the sustainable development of analytical techniques, metabolomics has great potential in the application of poultry science. In this paper, the research progress of metabolomics in poultry growth and development, genetics and breeding, egg quality, meat quality, and disease is reviewed and concluded, which is expected to provide scientific ideas for the research of metabolomics in poultry.
Collapse
Affiliation(s)
- Meimei Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Manhua You
- Veterinary Biological Technology Innovation Center of Hebei Province, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Ning Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jiancun Lv
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|