1
|
Cheng Z, Wang S, Hua X, Zhang L, Li B, Li H, Bai Y, Li Y, Hao J, Wang J, Zhao L, Gao D, Zhang L. Elucidating the mechanisms of Shenwu Capsule in improving the cognitive decline in aging based on the UPLC-Q-TOF-MS, network pharmacology, and experimental validation. J Pharm Biomed Anal 2025; 260:116818. [PMID: 40117864 DOI: 10.1016/j.jpba.2025.116818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/23/2025]
Abstract
Given the growing incidence of dementia-related disorders in the aging population, identifying effective treatments for age-related cognitive decline (ARCD) is crucial. Shenwu Capsule (SWC), shown to have therapeutic efficacy in phase III clinical trials for senile dementia, has unclear mechanisms and active ingredients. Aged mice were administered SWC orally for three months, and behavioral tests, including the Morris water maze, Y maze, and novel object recognition, assessed learning and memory. Neuronal damage was evaluated using histopathology, and the levels of Aβ and phosphorylated tau proteins were measured. UPLC-Q-TOF-MS identified 11 components of SWC capable of crossing the blood-brain barrier (BBB), and network pharmacology was employed to explore their potential mechanisms. Through various detection methods, including transmission electron microscopy, Western blotting, qRT-PCR, ELISA, and immunofluorescence, six key targets (AKT1, TNF, TP53, SRC, EGFR, BCL2) were elucidated. GO and KEGG pathway analyses revealed that the PI3K/Akt signaling pathway plays a crucial role in the pharmacological effects of SWC. SWC was found to suppress neuronal apoptosis by activating the PI3K/Akt/Bcl-2 signaling pathway, as demonstrated by changes in mRNA and protein levels. Histological analysis further showed that SWC treatment restored mitochondrial morphology in the hippocampus of aged mice. Molecular docking simulations confirmed strong binding affinities between the active components and key targets. Psoralidin, a component with strong molecular docking potential, was shown in vitro to activate the PI3K/Akt/Bcl-2 pathway, reduce ROS, decrease apoptosis, improve mitochondrial morphology, and stabilize mitochondrial membrane potential. These protective effects were blocked by the PI3K inhibitor LY294002. Overall, SWC ameliorates ARCD through modulation of the PI3K/Akt/Bcl-2 signaling pathway, with psoralidin identified as a potential active ingredient.
Collapse
Affiliation(s)
- Zizhao Cheng
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Shengyao Wang
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuesi Hua
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Li Zhang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Boya Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Huiling Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yunya Bai
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yali Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Jinping Hao
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Jianxiong Wang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Lingyi Zhao
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Dan Gao
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| | - Lan Zhang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| |
Collapse
|
2
|
Wang X, Wang L, Yu J, Teng Y, Xiang X, Zhang D, Kang L, Niu Y, Feng X, Chen L. Effect of electron beam irradiation on the quality of chicken during post-mortem ageing. Food Chem 2025; 480:143869. [PMID: 40120307 DOI: 10.1016/j.foodchem.2025.143869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/15/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
The effects of electron beam irradiation (0, 4, and 8 kGy) on the quality of fresh chicken breast muscle during post-mortem ageing (0, 1, 3, and 5 days) were evaluated. The results suggested that the pH value and water-holding capacity of the chicken breast muscle were reduced, and the water was migrated. The color of the chicken breast muscle improved after irradiation, with decreased in L* and b* values and increased in a* values and oxymyoglobin content. Furthermore, irradiation significantly lowered shear force, raised the myofibrillar fragmentation index (MFI), and enhanced chicken breast tenderness. RT-qPCR and western blotting analyses showed that electron beam irradiation influenced the tenderness of chicken breast muscle by regulating apoptosis through mitochondrial, death receptor, and ERS pathways during post-mortem ageing. In conclusion, these results suggested that electron beam irradiation improved tenderness through apoptosis and changed chicken breast quality (such as color, pH, and moisture).
Collapse
Affiliation(s)
- Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Linya Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling 712100, China
| | - Yifeng Teng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaomei Xiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Dan Zhang
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling 712100, China
| | - Luyao Kang
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling 712100, China
| | - Yabin Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Yin X, Li S, Wang J, Wang M, Yang J. Research progress of active compounds from traditional Chinese medicine in the treatment of stroke. Eur J Med Chem 2025; 291:117599. [PMID: 40188582 DOI: 10.1016/j.ejmech.2025.117599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/08/2025]
Abstract
Stroke is a serious cerebrovascular disease that is categorized into two types: ischemic and hemorrhagic. The pathological mechanisms of ischemic stroke are complex and diverse, encompassing processes such as neuroinflammation and apoptosis. The pathological processes of hemorrhagic stroke primarily involve the disruption of the blood-brain barrier and cerebral edema. Western medical treatment methods show certain effectiveness during the acute phase of stroke, but they are limited by a narrow therapeutic window and secondary injuries. Traditional Chinese medicine (TCM) has a long history and unique advantages in treating stroke. Studies confirm that active compounds derived from TCM exert multi-pathway, multi-target effects, significantly improving therapeutic outcomes and reducing adverse reactions. However, due to the complexity of the components in TCM, research on monomeric components still faces challenges. This article reviews the relevant research progress published in domestic and international journals over the past twenty years regarding the mechanisms of action of monomeric components of TCM in the treatment of stroke, aiming to provide insights and references for the clinical application of TCM in stroke treatment and further new drug development.
Collapse
Affiliation(s)
- Xinyi Yin
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China
| | - Shutang Li
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China
| | - Junwei Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China
| | - Meng Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China.
| | - Jinfei Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China.
| |
Collapse
|
4
|
Yan R, Cheng X, Song Y, Wang H, Zhang R, Jin Y, Li X, Chen Y, Xiang H. Cuproptosis nanoprodrug-initiated self-promoted cascade reactions for postoperative tumor therapy. Biomaterials 2025; 318:123176. [PMID: 39954313 DOI: 10.1016/j.biomaterials.2025.123176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Cancer metastasis and recurrence remain a regular cause of postoperative death in patients, implying that extra consolidation treatment strategies are needed. Here, a cuproptosis nanoprodrug, termed as Lipo@CP@DQ NPs, is developed to initiate self-promoted cascade reactions to achieve the combinational effect of cuproptosis, in situ chemotherapy, and oxidative stress amplification for effectively suppressing tumor recurrence and metastasis after postoperative treatment. Lipo@CP@DQ NPs are fabricated by loading copper peroxides (Cu2O2, CP) and hydrogen peroxide (H2O2)-repsonsive prodrug DQ into liposomal nanoparticles. Lipo@CP@DQ NPs rapidly dissociate in the acidic tumor microenvironment to release copper ions, H2O2, and prodrug DQ. Subsequently, the excessive accumulation of Cu ions induces cuproptosis and produces highly cytotoxic hydroxyl radicals (•OH). Meanwhile, the self-supplied H2O2 catalyzes the decomposition of DQ to diethyldithiocarbamate (DTC), which is chelated with self-supplied Cu ions to form the anticancer compound, Cu(DTC)2. The another decomposition product, quinone methide (QM), acts as a glutathione (GSH) scavenger for oxidative stress amplification. The synergistic effect of Lipo@CP@DQ NPs-mediated cuproptosis, in situ chemotherapy, and oxidative stress amplification effectively inhibits the growth and postoperative recurrence of triple-negative breast cancer. This work furnishes a strategy for developing cuproptosis-based nanomedicines for effective antitumor treatment after surgery.
Collapse
Affiliation(s)
- Ruiqi Yan
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xuan Cheng
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yujing Song
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Haiyue Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Run Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yiqi Jin
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Huijing Xiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
5
|
Cagalinec M, Mohd A, Borecka S, Bultynck G, Choubey V, Yanovsky-Dagan S, Ezer S, Gasperikova D, Harel T, Jurkovicova D, Kaasik A, Liévens JC, Maurice T, Peviani M, Richard EM, Skoda J, Skopkova M, Tarot P, Van Gorp R, Zvejniece L, Delprat B. Improving mitochondria-associated endoplasmic reticulum membranes integrity as converging therapeutic strategy for rare neurodegenerative diseases and cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119954. [PMID: 40216201 DOI: 10.1016/j.bbamcr.2025.119954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/04/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
Membrane contact sites harbor a distinct set of proteins with varying biological functions, thereby emerging as hubs for localized signaling nanodomains underlying adequate cell function. Here, we will focus on mitochondria-associated endoplasmic reticulum membranes (MAMs), which serve as hotspots for Ca2+ signaling, redox regulation, lipid exchange, mitochondrial quality and unfolded protein response pathway. A network of MAM-resident proteins contributes to the structural integrity and adequate function of MAMs. Beyond endoplasmic reticulum (ER)-mitochondrial tethering proteins, MAMs contain several multi-protein complexes that mediate the transfer of or are influenced by Ca2+, reactive oxygen species and lipids. Particularly, IP3 receptors, intracellular Ca2+-release channels, and Sigma-1 receptors (S1Rs), ligand-operated chaperones, serve as important platforms that recruit different accessory proteins and intersect with these local signaling processes. Furthermore, many of these proteins are directly implicated in pathophysiological conditions, where their dysregulation or mutation is not only causing diseases such as cancer and neurodegeneration, but also rare genetic diseases, for example familial Parkinson's disease (PINK1, Parkin, DJ-1), familial Amyotrophic lateral sclerosis (TDP43), Wolfram syndrome1/2 (WFS1 and CISD2), Harel-Yoon syndrome (ATAD3A). In this review, we will discuss the current state-of-the-art regarding the molecular components, protein platforms and signaling networks underlying MAM integrity and function in cell function and how their dysregulation impacts MAMs, thereby driving pathogenesis and/or impacting disease burden. We will highlight how these insights can generate novel, potentially therapeutically relevant, strategies to tackle disease outcomes by improving the integrity of MAMs and the signaling processes occurring at these membrane contact sites.
Collapse
Affiliation(s)
- Michal Cagalinec
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Adnan Mohd
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Silvia Borecka
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Geert Bultynck
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | - Vinay Choubey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Shlomit Ezer
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Daniela Gasperikova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Marco Peviani
- Cellular and Molecular Neuropharmacology Lab., Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martina Skopkova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pauline Tarot
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Robbe Van Gorp
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | | | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France.
| |
Collapse
|
6
|
Xu Y, Li X, Cui M, Pan T, Zheng S, Shang Z, Yin D, Xu Y, Yang Z, Wang J, Song X. Fufang-Biejia-Ruangan tablet targeting both cancer-associated fibroblasts and tumor cells by HIPPO-PI3K/AKT cascades in intrahepatic cholangiocarcinoma treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156690. [PMID: 40215817 DOI: 10.1016/j.phymed.2025.156690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) ranks second among primary liver cancers in terms of prevalence, characterized by poor prognosis and scarce therapeutic interventions. Fufang-Biejia-Ruangan tablet (BJRG), a traditional Chinese herbal remedy, has been widely used for liver diseases. However, its therapeutic efficacy and underlying mechanisms in ICC remain poorly understood. AIM OF THE STUDY This study aims to systematically investigate the anti-ICC effects of BJRG, focusing on tumor progression and microenvironment modulation, through experimental and transcriptomic analyses. METHODS The chemical composition of BJRG was analyzed employing ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). In vitro assays were performed with QBC939 and LX-2 cell lines. Two primary ICC models (AKT/YAP and sgP53/KRAS) were established via hydrodynamic tail-vein injection of corresponding plasmids. A co-culture system for subcutaneous tumor formation was developed using cancer-associated fibroblasts (CAFs) derived from the AKT/YAP model and primary tumor cells derived from the sgP53/KRAS model. RESULTS UPLC-MS analysis identified 1091 chemical components, primarily terpenoids, sugars, glycosides, and phenylpropanoids. The therapeutic efficacy of BJRG was evaluated for the treatment of ICC. BJRG treatment slowed down the growth of both human ICC cell lines and AKT/YAP ICC mouse model. Mechanistically, BJRG inhibited HIPPO-PI3K/AKT signaling pathway in ICC tumor cells. Importantly, BJRG significantly inhibited the growth of CAFs via HIPPO-PI3K/AKT cascades. Of note, co-culture CAFs with ICC cell lines substantially sensitized the efficacy of BJRG in sgP53/KRAS syngeneic tumor model. Furthermore, BJRG therapy not only affected CAFs but also induced alterations in vascular structures and hypoxic conditions within lesions in the AKT/YAP model. This intervention promoted the infiltration of T lymphocytes and macrophages into the tumor microenvironment, which may further augment the anti-proliferative effects of BJRG by enhancing the immune response within ICC tumor tissues. CONCLUSION Our research demonstrates BJRG's anti-ICC efficacy via diverse pathways, including the suppression of tumor cell proliferation, regulation of CAFs activity, and promotion of immune cell infiltration. These findings underscore BJRG as a promising therapeutic candidate for ICC, offering novel mechanistic insights and highlighting its potential for clinical translation.
Collapse
Affiliation(s)
- Yanyu Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350122, China; Laboratory for Clinical Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xiang Li
- Laboratory for Clinical Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Miao Cui
- Laboratory for Clinical Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Tao Pan
- Laboratory for Clinical Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Shuwen Zheng
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350122, China; Laboratory for Clinical Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zimeng Shang
- Laboratory for Clinical Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Center of Integrative Medicine, Beijing Ditan Hospital, Affiliated to Capital Medical University, Beijing 100015, China
| | - Donghao Yin
- Laboratory for Clinical Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing You'an Hospital, Affiliated to Capital Medical University, Beijing, 100069, China
| | - Yang Xu
- Laboratory for Clinical Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zhiyun Yang
- Laboratory for Clinical Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Center of Integrative Medicine, Beijing Ditan Hospital, Affiliated to Capital Medical University, Beijing 100015, China
| | - Jiabo Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian 350122, China; Laboratory for Clinical Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| | - Xinhua Song
- Laboratory for Clinical Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
7
|
Zhou M, Liu S, Yuan F, Li J, Zhou M, Huang J, Zhang Y, Liang Q. Isomeric 2-isobutylmalate derivatives with anti-pulmonary fibrosis effects from the leaves of Bletilla striata via LC-MS/MS-based molecular networking. Bioorg Chem 2025; 159:108351. [PMID: 40117752 DOI: 10.1016/j.bioorg.2025.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/23/2025]
Abstract
Based on the LC-MS/MS molecular networking strategy, nine undescribed 2-isobutylmalate derivatives, namely bletistrosides M-U (compounds 1-7, 9, and 11), together with two known analogues (compounds 8 and 10), were isolated and identified from the leaves of Bletilla striata. Their structures with absolute configurations were deduced from spectroscopic data, acidic hydrolysis, and comparison with reported compounds. Compounds 1/2, 3/4, 5/6, and 7/8 represented four pairs of Z/E isomers regarding cinnamoyl groups, and each pair underwent interconversion under UV radiation at 254 nm. Biologically, compounds 1, 2, and 10 exhibited anti-pulmonary fibrosis effects against bleomycin-stimulated cell injury in A549 cells. Further investigations demonstrated that the anti-pulmonary fibrosis potential of 2 was related to the inhibition of apoptosis and epithelial-mesenchymal transition by blocking the Bax/Bcl-2, TGF-β1/Smad2/3, and PI3K/AKT signaling pathways, while concurrently enhancing the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Ming Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, People's Republic of China
| | - Si Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, People's Republic of China
| | - Fang Yuan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, People's Republic of China
| | - Jun Li
- College of Pharmacy, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Mengchen Zhou
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Junfeng Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, People's Republic of China
| | - Yanjun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, People's Republic of China
| | - Qiong Liang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, People's Republic of China.
| |
Collapse
|
8
|
Kamerkar SC, Liu A, Higgs HN. Mitochondrial fission - changing perspectives for future progress. J Cell Sci 2025; 138:jcs263640. [PMID: 40104946 DOI: 10.1242/jcs.263640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Mitochondrial fission is important for many aspects of cellular homeostasis, including mitochondrial distribution, stress response, mitophagy, mitochondrially derived vesicle production and metabolic regulation. Several decades of research has revealed much about fission, including identification of a key division protein - the dynamin Drp1 (also known as DNM1L) - receptors for Drp1 on the outer mitochondrial membrane (OMM), including Mff, MiD49 and MiD51 (also known as MIEF2 and MIEF1, respectively) and Fis1, and important Drp1 regulators, including post-translational modifications, actin filaments and the phospholipid cardiolipin. In addition, it is now appreciated that other organelles, including the endoplasmic reticulum, lysosomes and Golgi-derived vesicles, can participate in mitochondrial fission. However, a more holistic understanding of the process is lacking. In this Review, we address three questions that highlight knowledge gaps. First, how do we quantify mitochondrial fission? Second, how does the inner mitochondrial membrane (IMM) divide? Third, how many 'types' of fission exist? We also introduce a model that integrates multiple regulatory factors in mammalian mitochondrial fission. In this model, three possible pathways (cellular stimulation, metabolic switching or mitochondrial dysfunction) independently initiate Drp1 recruitment at the fission site, followed by a shared second step in which Mff mediates subsequent assembly of a contractile Drp1 ring. We conclude by discussing some perplexing issues in fission regulation, including the effects of Drp1 phosphorylation and the multiple Drp1 isoforms.
Collapse
Affiliation(s)
- Sukrut C Kamerkar
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Ao Liu
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
9
|
D'Alessandro MCB, Kanaan S, Geller M, Praticò D, Daher JPL. Mitochondrial dysfunction in Alzheimer's disease. Ageing Res Rev 2025; 107:102713. [PMID: 40023293 DOI: 10.1016/j.arr.2025.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive cognitive decline and distinct neuropathological features. The absence of a definitive cure presents a significant challenge in neurology and neuroscience. Early clinical manifestations, such as memory retrieval deficits and apathy, underscore the need for a deeper understanding of the disease's underlying mechanisms. While amyloid-β plaques and tau neurofibrillary tangles have dominated research efforts, accumulating evidence highlights mitochondrial dysfunction as a central factor in AD pathogenesis. Mitochondria, essential cellular organelles responsible for energy production necessary for neuronal function become impaired in AD, triggering several cellular consequences. Factors such as oxidative stress, disturbances in energy metabolism, failures in the mitochondrial quality control system, and dysregulation of calcium release are associated with mitochondrial dysfunction. These abnormalities are closely linked to the neurodegenerative processes driving AD development and progression. This review explores the intricate relationship between mitochondrial dysfunction and AD pathogenesis, emphasizing its role in disease onset and progression, while also considering its potential as a biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Maria Clara Bila D'Alessandro
- Universidade Federal Fluminense, Faculty of Medicine, Desembargador Athayde Parreiras road 100, Niterói, Rio de Janeiro, Brazil.
| | - Salim Kanaan
- Universidade Federal Fluminense, Faculty of Medicine, Department of Pathology, Marquês do Paraná road, 303, 2nd floor, Niterói, Rio de Janeiro, Brazil.
| | - Mauro Geller
- Unifeso, Department of Immunology and Microbiology, Alberto Torres avenue 111, Teresópolis, Rio de Janeiro, Brazil
| | - Domenico Praticò
- Department of Neurosciences, Lewis Katz School of Medicine. Temple University, 3500 North Broad Street, Philadelphia, PA, United States.
| | - João Paulo Lima Daher
- Universidade Federal Fluminense, Faculty of Medicine, Department of Pathology, Marquês do Paraná road, 303, 2nd floor, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Ren G, Lin Y, Fu Y, Liu F, Wang R, Zhang C, Qiu J, Chen L, Dou X. Multi-omics joint analysis: Pachymic acid ameliorated non-alcoholic fatty liver disease by regulating gut microbiota. Food Res Int 2025; 209:116178. [PMID: 40253122 DOI: 10.1016/j.foodres.2025.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/12/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Poria cocos a traditional Chinese medicinal material with both culinary and therapeutic applications, contains pachymic acid (Pac) as one of its main active compounds, which has demonstrated anti-lipid accumulation and hypoglycemic effects. However, its impact on the biochemical changes in the enterohepatic axis induced by a high-fat diet remains poorly understood. This study investigated the protective mechanism of Pac using a high-fat diet-induced non-alcoholic fatty liver disease (NAFLD) mouse model. 16S rRNA sequencing of gut microbiota revealed that Pac administration reduced the Firmicutes to Bacteroidetes ratio, restored Akkermansia abundance, decreased Desulfovibrio and Streptococcus population, and ameliorated gut dysbiosis. Concurrently, Pac treatment reduced the expression of hepatic inflammatory factors by mainly adjusted LPS/TLR4/MYD88/NFκB pathway. Liver transcriptome analysis indicated that Pac primarily affects genes involved in lipid metabolism, apoptosis, and inflammatory responses. Specifically, Pac inhibited FASN, SREBP1c, and SCD1 expression while upregulating PPARα and CPT1α, thereby improving high-fat diet-induced hepatic steatosis in mice. Additionally, Pac treatment reduced hepatocellular apoptosis. Non-targeted liver metabolomics analysis following Pac intervention revealed increased levels of acylcarnitine and oleic acid. Collectively, these findings suggest that Pac alleviates high-fat diet-induced hepatic lipid accumulation and damage by modulating gut microbiota, lipid metabolism, inflammation, and apoptosis. This comprehensive study provides valuable insights into the therapeutic potential of Pac and offers a reference for the development and utilization of Poria cocos resources in addressing NAFLD.
Collapse
Affiliation(s)
- Guilin Ren
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yiyou Lin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yilong Fu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Fucai Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Ruiqi Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Congcong Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Jiannan Qiu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Lin Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
11
|
Yu H, Kou Q, Yuan H, Qi Y, Li Q, Li L, Zhao G, Wang G, Li S, Qu J, Chen H, Zhao M, Wang Q, Li S, Chen K, Lu C, Xiao H, Lin P, Li K. Alkannin triggered apoptosis and ferroptosis in gastric cancer by suppressing lipid metabolism mediated by the c-Fos/SREBF1 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156604. [PMID: 40049103 DOI: 10.1016/j.phymed.2025.156604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/19/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Gastric cancer (GC), one of the most common malignancies with high mortality worldwide, currently requires beneficial therapeutic strategies. Alkannin is the primary active component of Lithospermum erythrorhizon and has been shown to have potential anticancer effects on a variety of cancers. However, the specific effects and molecular mechanisms of alkannin against GC remain unknown. PURPOSE This study aimed to explore the detailed role and downstream effectors of alkannin in the treatment of GC. METHODS The functions of alkannin on the proliferation, migration and invasion of GC cells were measured via CCK-8, EdU, colony formation, LDH release, flow cytometry, wound healing, and Transwell assays. BODIPY-C11 staining, determination of cellular ferrous iron, MDA and GSH levels, and western blotting were used to evaluate alkannin-induced ferroptosis. Transcriptome sequencing was analyzed to identify differentially expressed genes. Nile red staining and cholesterol and triglyceride assays were utilized to examine changes in lipid metabolism. Transcriptional regulation was determined by real-time PCR, dual-luciferase reporter and chromatin immunoprecipitation assays. Finally, a xenograft animal model was employed to assess tumor growth in vivo. RESULTS Alkannin inhibited growth and motility and simultaneously triggered apoptotic and ferroptotic cell death in GC cells. Transcriptome sequencing analysis revealed that alkannin treatment downregulated c-Fos expression. The overexpression of c-Fos conferred the GC cells to tolerate alkannin in vitro and in vivo. Moreover, we confirmed that c-Fos activated SREBF1 transcription by directly binding to TPA-responsive elements within the SREBF1 promoter, leading to increased expression of lipid biosynthesis-related genes, which counteracted ferroptosis through the maintenance of cellular lipid homeostasis. CONCLUSION Our present study provides the first evidence that alkannin induces both apoptosis and ferroptosis in GC cells and reveals a novel mechanism by which alkannin restrains c-Fos-dependent SREBF1 transcriptional activation, leading to lipid metabolism and redox homeostasis disorders. Our findings highlight that alkannin is an available and promising natural product for the avoidance of drug resistance and the clinical treatment of GC.
Collapse
Affiliation(s)
- Huayang Yu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Qiming Kou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Hang Yuan
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Yanyu Qi
- Department of Oncology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Sichuan Chengdu 610404, PR China
| | - Qin Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Liang Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Gang Zhao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Guanru Wang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Siqi Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Jie Qu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Hongbai Chen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Minghui Zhao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Qijing Wang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Shan Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Kang Chen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Chenghong Lu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Hengyi Xiao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China.
| | - Ping Lin
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China.
| | - Kai Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China.
| |
Collapse
|
12
|
Song Y, Feng Y, Liu G, Duan Y, Zhang H. Research progress on edible mushroom polysaccharides as a novel therapeutic strategy for inflammatory bowel disease. Int J Biol Macromol 2025; 305:140994. [PMID: 39952533 DOI: 10.1016/j.ijbiomac.2025.140994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Inflammatory bowel disease (IBD) is a complex condition linked to the gut microbiota, host metabolism, and the immune system. Edible mushroom polysaccharides (EMPs) are gaining attention for their benefits, particularly as prebiotics that help balance gut microbial, a key factor in IBD. With their scalable production, diverse hydrophilic properties, and demonstrated anti-inflammatory effects in both laboratory and animal studies, EMPs show promise for easing IBD symptoms. By supporting a healthy gut microbiome through various mechanisms, EMPs can play an important role in preventing and managing IBD, ultimately benefiting overall health and opening new treatment avenues. This review examines how EMPs affect IBD, focusing on their role in shaping gut microbiota, restoring gut barriers, regulating immune function, and influencing pathways related to colitis. It also explores their impact on the microbiota-gut-multi organ axis and overall host health, as well as the relationship between EMPs preparation, structure, and bioactivity, along with their potential applications in food and medicine. This investigation provides valuable insights into the intricate connections between the gut, immune system, and systemic inflammation system, highlighting how EMPs are key players in this complex interaction.
Collapse
Affiliation(s)
- Yating Song
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuqin Feng
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China.
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
13
|
Chen M, Pang H, Pham TTH, He Y, Gao Q, Liao Y, Zhu C, Chen L, Yan G, Mo S, Han C. 2-Dodecyl-6-Methoxycyclohexa-2,5-Diene-1,4-Dione from Averrhoa carambola L. roots: Suppressing hepatocellular carcinoma progression through ROS accumulation and p53 pathway-mediated apoptosis. Toxicol Appl Pharmacol 2025; 498:117296. [PMID: 40086489 DOI: 10.1016/j.taap.2025.117296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/21/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
This study explores the anti-tumor effects of 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD), a compound derived from Averrhoa carambola L roots, on hepatocellular carcinoma (HCC) cells and a xenograft mouse model, focusing on its underlying mechanisms. Cell viability following DMDD treatment was assessed using the CCK-8 assay. Flow cytometry determined changes in cell cycle distribution and apoptosis rates, while migration and invasion capabilities were assessed using wound healing and transwell assays, respectively. Transcriptome sequencing (RNA-seq) was conducted to analyze differential gene expression and pathway enrichment. Z-VAD-FMK, a pan-caspase inhibitor, was used to confirm the apoptotic mechanism induced by DMDD. The expression levels of p53, Bax, Bcl-2, and cleaved caspase 3 were quantified via Western blot analysis. A xenograft mouse model was developed to assess the in vivo effects of DMDD on HCC. DMDD suppressed proliferation, migration, and invasion, and induced apoptosis in Huh7 and Hep3b cells. RNA-seq revealed significant enrichment of p53 and apoptosis signaling pathways among differentially expressed genes. DMDD downregulated Bcl-2 expression and upregulated p53, Bax and cleaved caspase 3. In addition, Z-VAD-FMK partially inhibited DMDD-induced apoptosis. DMDD also inhibited tumor growth in mice. DMDD effectively inhibited tumor growth in HCC cell lines and xenograft models, potentially through ROS elevation and p53-mediated activation of the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Meifeng Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Hongbing Pang
- Research department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Thi Thai Hoa Pham
- Research and Development Centre of Zhuang and Yao Medicines, Guangxi International Zhuang Medical Hospital, Nanning, China
| | - Yongfei He
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Qiang Gao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuan Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunyi Zhu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Linqian Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Guohong Yan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Shutian Mo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Chuangye Han
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
14
|
Qiu Y, Hüther JA, Wank B, Rath A, Tykwe R, Aldrovandi M, Henkelmann B, Mergner J, Nakamura T, Laschat S, Conrad M, Stöhr D, Rehm M. Interplay of ferroptotic and apoptotic cell death and its modulation by BH3-mimetics. Cell Death Differ 2025:10.1038/s41418-025-01514-7. [PMID: 40301648 DOI: 10.1038/s41418-025-01514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025] Open
Abstract
Ferroptosis and apoptosis are widely considered to be independent cell death modalities. Ferroptotic cell death is a consequence of insufficient radical detoxification and progressive lipid peroxidation, which is counteracted by glutathione peroxidase-4 (GPX4). Apoptotic cell death can be triggered by a wide variety of stresses, including oxygen radicals, and can be suppressed by anti-apoptotic members of the BCL-2 protein family. Mitochondria are the main interaction site of BCL-2 family members and likewise a major source of oxygen radical stress. We therefore studied if ferroptosis and apoptosis might intersect and possibly interfere with one another. Indeed, cells dying from impaired GPX4 activity displayed hallmarks of both ferroptotic and apoptotic cell death, with the latter including (transient) membrane blebbing, submaximal cytochrome-c release and caspase activation. Targeting BCL-2, MCL-1 or BCL-XL with BH3-mimetics under conditions of moderate ferroptotic stress in many cases synergistically enhanced overall cell death and frequently skewed primarily ferroptotic into apoptotic outcomes. Surprisingly though, in other cases BH3-mimetics, most notably the BCL-XL inhibitor WEHI-539, counter-intuitively suppressed cell death and promoted cell survival following GPX4 inhibition. Further studies revealed that most BH3-mimetics possess previously undescribed antioxidant activities that counteract ferroptotic cell death at commonly employed concentration ranges. Our results therefore show that ferroptosis and apoptosis can intersect. We also show that combining ferroptotic stress with BH3-mimetics, context-dependently can either enhance and convert cell death outcomes between ferroptosis and apoptosis or can also suppress cell death by intrinsic antioxidant activities.
Collapse
Affiliation(s)
- Yun Qiu
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Juliana A Hüther
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Bianca Wank
- Institute of Organic Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Antonia Rath
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - René Tykwe
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Maceler Aldrovandi
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Bernhard Henkelmann
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at MRI, TUM, Munich, Germany
| | - Toshitaka Nakamura
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Sabine Laschat
- Institute of Organic Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Daniela Stöhr
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
15
|
Cao P, Jaeschke H, Ni HM, Ding WX. The Ways to Die: Cell Death in Liver Pathophysiology. Semin Liver Dis 2025. [PMID: 40199509 DOI: 10.1055/a-2576-4332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Liver diseases are closely associated with various cell death mechanisms, including apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis. Each process contributes uniquely to the pathophysiology of liver injury and repair. Importantly, these mechanisms are not limited to hepatocytes; they also significantly involve nonparenchymal cells. This review examines the molecular pathways and regulatory mechanisms underlying these forms of cell death in hepatocytes, emphasizing their roles in several liver diseases, such as ischemia-reperfusion injury, metabolic dysfunction-associated steatotic liver disease, drug-induced liver injury, and alcohol-associated liver disease. Recent insights into ferroptosis and pyroptosis may reveal novel therapeutic targets for managing liver diseases. This review aims to provide a comprehensive overview of these cell death mechanisms in the context of liver diseases, detailing their molecular signaling pathways and implications for potential treatment strategies.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
- Division of Gastroenterology, Hepatology and Mobility, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
16
|
Wang M, Wan M, Liu M, Zhou W, Zhang X, Liu W, Liu Y, Jiang S, Shang E, Duan J. Integrated network pharmacology and metabolomics analysis to reveal the potential mechanism of Ershen Wan in ameliorating ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119690. [PMID: 40158827 DOI: 10.1016/j.jep.2025.119690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ershen Wan (ESW), a classic traditional Chinese medicine (TCM) prescription composed of Psoralea corylifolia Linn. and Myristica fragrans Houtt., has been applied to treat gastrointestinal disorders in clinical practices for thousands of years. However, its potential molecular mechanism in alleviating ulcerative colitis (UC) remains to be elusive. AIM OF THE STUDY The purpose of the study is to explore the underlying mechanism of ESW in treating UC. MATERIALS AND METHODS The protective effect of ESW on dextran sodium sulfate (DSS)-induced UC mice was assessed by body weight, disease activity index (DAI), colon length, colon tissue pathology, and colonic inflammatory factors. Furthermore, network pharmacology was applied to dissect the possible targets and biological pathways regulated by ESW. The plasma and fecal metabolomics were comprehensively analyzed by UPLC-Q-TOF/MS. Subsequently, an efficient and feasible approach integrating network pharmacology, metabolomics, and molecular docking was used to explore the key targets obtained from the metabolite-reaction-enzyme-gene network. And the effect of ESW on the MAPK signaling mediated intestinal epithelial cell apoptosis was further investigated by in vitro and in vivo experiments. RESULTS ESW could notably alleviate colon injury and inflammation of UC mice. Network pharmacology suggested that the bioactive components of ESW could mainly modulate signaling pathways associated with inflammation and metabolism. Consistently, plasma and fecal metabolomics further indicated that ESW could regulate the metabolic pathways of arachidonic acid, linoleic acid, sphingolipid, tryptophan, and glycerophospholipid. And the combined analysis of network pharmacology and metabolomics revealed that 14 pivotal targets were modulated by ESW, including PTGS1, PTGS2, CYP1A1, FADS1, CBR1, ALOX5, EPHX1, EPHX2, HPGD, PLA2G1B, PLA2G7, MGLL, ACHE, and SPHK1. Additionally, molecular docking suggested that bioactive components of ESW could bind well to these potential targets. And in vitro and in vivo experiments further verified that ESW could markedly ameliorate pathological symptoms of UC mice through inhibiting MAPK signaling mediated colonic epithelial cell apoptosis. CONCLUSION Collectively, these findings indicated that ESW could effectively alleviate the pathological symptoms of UC mice, mainly involving in the modulation of lipid and amino acid metabolism pathways, and the suppression of MAPK signaling-mediated apoptosis. In this study, the potential mechanism of ESW for the treatment of UC was first clarified, which provided a solid scientific foundation for its clinical application. Notably, the proposed strategy facilitated a comprehensive prediction and validation of the efficacy and molecular mechanism of TCMs, and also provided a novel approach for revealing the intricate biological pathogenesis of diseases.
Collapse
Affiliation(s)
- Mingyang Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Meiyu Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Meijuan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Wenwen Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Xiaoxiao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Weijie Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Ying Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| |
Collapse
|
17
|
Chen K, Chen J, Cong Y, He Q, Liu C, Chen J, Li H, Ju Y, Chen L, Song Y, Xing Y. TTK promotes mitophagy by regulating ULK1 phosphorylation and pre-mRNA splicing to inhibit mitochondrial apoptosis in bladder cancer. Cell Death Differ 2025:10.1038/s41418-025-01492-w. [PMID: 40269198 DOI: 10.1038/s41418-025-01492-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/20/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
Bladder cancer (BC) remains a major global health challenge, with poor prognosis and limited therapeutic options in advanced stages. TTK protein kinase (TTK), a serine/threonine kinase, has been implicated in the progression of various cancers, but its role in BC has not been fully elucidated. In this study, we show that TTK is significantly upregulated in BC tissues and cell lines, correlating with poor patient prognosis. Functional assays revealed that TTK promotes proliferation and inhibits apoptosis of BC cells. Mechanistically, TTK enhances mitophagy by directly phosphorylating ULK1 at Ser477, thereby activating the ULK1/FUNDC1-mediated mitophagy pathway. TTK knockdown disrupts mitophagy, leading to impaired clearance of damaged mitochondria, excessive accumulation of mitochondrial reactive oxygen species (mtROS), and activation of mitochondrial apoptosis. Furthermore, TTK phosphorylates SRSF3 at Ser108, preventing ULK1 exon 5 skipping and maintaining ULK1 mRNA stability. These findings show that TTK plays a key role in maintaining mitophagy in BC cells. Targeting TTK could offer a promising new approach for BC treatment by disrupting mitophagy and inducing mitochondrial apoptosis.
Collapse
Affiliation(s)
- Kang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyu Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Cong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingliu He
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chunyu Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunjie Ju
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Li L, Shang W, Ma Y, Zhang C, Zhang X. Silibinin protects the ischemic brain in mice by exerting anti-apoptotic effects via the EGFR/ERK pathway. Brain Res Bull 2025; 226:111353. [PMID: 40280368 DOI: 10.1016/j.brainresbull.2025.111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Apoptosis is a significant occurrence of cell death in the cerebral ischemia process, potentially revealing specific treatment points. Silibinin (SIL) has been proven to regulate a range of biological effects on inflammation, oxidative stress and apoptosis. Meanwhile, the epidermal growth factor receptor (EGFR) has been reported to impact cell apoptosis owing to its proliferative activity, which is in the opposite direction of apoptosis. This brings up the question of whether silibinin modulates apoptosis after cerebral ischemic injury and whether EGFR is involved in mediating this effect. We therefore examined the potential protective role of silibinin in ischemic brain and the underlying mechanisms. We assigned CD1 mice into groups and assessed neurological function via behavioral tests, infarct volume staining, and edema measurement. Neuronal vitality in the infarcted hemisphere was assessed using Nissl staining, while the level of apoptosis was evaluated by detecting cleaved Caspase-3, Bcl-2, and Bax. Penumbra vascular conditions were examined by immunofluorescence and two-photon imaging. Western Blot and immunohistochemistry detected EGFR/ERK level changes. An EGFR inhibitor was used to confirm the involvement of the EGFR/ERK pathway in the disease process. Our findings indicated that silibinin substantially diminished infarct volume and brain edema, reduced neuronal apoptosis following stroke, enhancing neurological function. These effects were accompanied by up-regulation of p-EGFR/EGFR, p-ERK/ERK, and Bcl-2, as well as down-regulation of Bax and cleaved-Caspase3 in ischemic brain tissue post-stroke, while inhibiting EGFR activation attenuated or reversed the anti-apoptotic effects of silibinin. We concluded that silibinin protected the brain after cerebral ischemia by exerting anti-apoptotic effects via the activation of EGFR/ERK signaling pathway.
Collapse
Affiliation(s)
- Linlin Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Wenyan Shang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Yuexia Ma
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China.
| |
Collapse
|
19
|
Zhou J, Xia T, Zhang S, He Z, Li Z, Chen Z. Interaction of vernodalin with p38 mitogen-activated protein kinase (p38 MAPK) and subsequent effects in lung cancer cell model. Int J Biol Macromol 2025:143413. [PMID: 40268012 DOI: 10.1016/j.ijbiomac.2025.143413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/01/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
The p38 mitogen-activated protein kinase (p38 MAPK) is a key regulator of numerous cellular processes relevant to cancer therapy. Apart from reactive oxygen species (ROS)-mediated activation, the p38 pathway can also be activated through direct interactions between the p38 MAPK protein which stabilize an open conformation of the activation loop, exposing the phosphorylation sites. Therefore, assessing p38 MAPK expression and the direct binding of anticancer agents with p38 MAPK can provide critical insights for advancing the development of innovative anticancer therapies. In this research, following the incubation of A549 lung cancer cells with vernodalin (VN), a sesquiterpene lactone, several cellular assays were conducted. It was noted that VN suppressed the proliferation of A549 cells with IC50 values of 65.80 μM, 39,90 μM, and 25.85 μM at 24 h, 48 h, and 72 h, respectively, while, IC50 values were higher for VN in BEAS-2B human bronchial epithelial cells. Moreover, we discovered that VN leads to excessive ROS and MDA production by downregulating the activities of SOD/CAT/GPX, reducing GSH levels, and decreasing both HO-1 mRNA expression and activity, along with Nrft mRNA expression. We subsequently found that VN boosted the expression of p38 MAPK, Bax/Bcl-2 mRNA, and caspase-3/-9 mRNA and activity in A549 cells. Molecular docking analysis revealed strong binding affinity between VN and p38 MAPK (-9.97 kcal/mol) near the ATP-binding site (Asp-150 and Arg-149) and the activation loop (Gly-170 and Leu-171) facilitated by hydrophobic as well as hydrogen bond interactions. The fluorescence spectroscopy analysis demonstrated that the spontaneous interaction between p38 MAPK and one molecule VN occurred with logKb = 5.02 ± 0.18 and ΔG∘ = -28.49 ± 1.91 kJ/mol. Multi-spectroscopy measurements revealed minor alterations in the p38 MAPK conformation following interaction with VN. We hypothesize that the pro-apoptotic effect of VN on lung cancer cells may be mediated by two mechanisms: (1) ROS-dependent modulation of p38 pathway, and/or (2) direct ligand-receptor interaction between VN and critical residues near the ATP-binding pocket or activation loop of p38 MAPK, thereby stabilizing its catalytically active conformation. However, these preliminary findings necessitate further experimental validation and confirmation in subsequent studies.
Collapse
Affiliation(s)
- Jiayu Zhou
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| | - Tao Xia
- Department of Gastrointestinal-Pancreatic Surgery, Zhejiang Provisional People's Hospital, Hangzhou 310016, China
| | - Shizhen Zhang
- Department of Gastrointestinal-Pancreatic Surgery, Zhejiang Provisional People's Hospital, Hangzhou 310016, China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Zhijun Li
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Zhoumiao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
20
|
Dashti A, Hosseini HM, Mirhosseini SA. Epsilon toxin induces cytotoxicity by mediating autophagy and apoptosis via the PI3K/AKT/mTOR signaling pathway in A549 cells. Mol Biol Rep 2025; 52:403. [PMID: 40252125 DOI: 10.1007/s11033-025-10439-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/14/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Epsilon toxin, which is synthesized by Clostridium perfringens, is a type of pore-forming protein that is associated with the development of enterotoxemia in ruminants. As toxins are agents of bioterrorism, exposure to toxin aerosols causes endothelial cell damage and cytotoxicity in human lung cells. However, little information is available regarding the cytotoxicity and mechanisms associated with lung cancer cell lines. The aim of the present study was to explore the cytotoxic effects of epsilon toxin on the human lung cell line A549 and its involvement in the PI3K/AKT/mTOR signaling pathway to clarify the underlying molecular mechanism involved. METHODS AND RESULTS A549 cells were treated with epsilon toxin, and cytotoxicity was assessed via MTT and LDH assays. Flow cytometry evaluated ROS levels, cell cycle arrest, and apoptosis, while Hoechst 33,258 staining confirmed apoptotic morphology. qRT‒PCR and Western blotting measured apoptosis-, autophagy-, and PI3K/AKT/mTOR-related markers. Epsilon toxin reduced cell viability and increased membrane leakage in a concentration-dependent manner, accompanied by ROS overproduction. It upregulated autophagy markers (beclin-1, LC3 II/I, p62) and suppressed PI3K/AKT/mTOR signaling. Cell cycle arrest at the sub-G1 phase and apoptosis were induced via p53 activation, Bax/Bcl-2 imbalance, and caspase-3 cleavage, as confirmed by annexin V/PI and Hoechst 33,258 staining. CONCLUSIONS Epsilon toxin triggers cytotoxicity in A549 cells by activating apoptosis and autophagy through PI3K/AKT/mTOR pathway inhibition. These findings elucidate molecular mechanisms underlying epsilon toxin's action in lung cancer cells, highlighting its dual role in programmed cell death and potential therapeutic relevance.
Collapse
Affiliation(s)
- Ayat Dashti
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Mussalo L, Afonin AM, Zavodna T, Krejcik Z, Honkova K, Fayad C, Shahbaz MA, Kalapudas J, Penttilä E, Löppönen H, Koivisto AM, Malm T, Topinka J, Jalava P, Lampinen R, Kanninen KM. Traffic-related ultrafine particles influence gene regulation in olfactory mucosa cells altering PI3K/AKT signaling. ENVIRONMENT INTERNATIONAL 2025; 199:109484. [PMID: 40273555 DOI: 10.1016/j.envint.2025.109484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/10/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Traffic-related ultrafine particles (UFPs) are an emerging health concern affecting the brain and increasing the risk of Alzheimer's disease (AD). PI3K/AKT signaling is known to contribute to neuronal survival and to be altered in AD. The nasal olfactory mucosa (OM) is a sensory tissue exposed directly to ambient air, and a starting point for olfactory neural circuits towards the brain. Evidence of air pollution-induced transcriptional regulation via microRNAs (miRNA) and DNA methylation (DNAmet) is accumulating and air pollutant-mediated disturbances in PI3K/AKT signaling have been reported. By utilizing a highly translational human-based in vitro model of OM, we aimed to investigate possible gene regulatory mechanisms in PI3K/AKT signaling induced by UFPs, and to compare the responses between cognitively healthy and individuals with AD. miRNA expression was analyzed using next-generation sequencing (NGS) and chip-based methylation analysis was performed to detect differentially methylated loci (DML). These data were combined with previously published transcriptomics analysis (mRNA) to construct an mRNA-miRNA-DNAmet-integrative network. Protein level changes were studied by immunoassays. We observed UFP-induced reductions in viability and increases in oxidative stress and DNA damage without eminent cell death. Integrative network analysis revealed multiple connections of miRNAs to differentially expressed genes in the PI3K/AKT pathway, and effects were most prominent in AD cells. Similarly, in AD cells DML were identified in transcription factor and apoptosis genes, downstream of PI3K/AKT signaling. Conclusively, traffic-related UFPs influence gene regulation of PI3K/AKT signaling to modulate OM cell survival, with existing AD pathology resulting in heightened vulnerability to UFP effects.
Collapse
Affiliation(s)
- Laura Mussalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Alexey M Afonin
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Tana Zavodna
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Zdenek Krejcik
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Katerina Honkova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Claire Fayad
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Muhammad Ali Shahbaz
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Juho Kalapudas
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Anne M Koivisto
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210 Kuopio, Finland; Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210 Kuopio, Finland; Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Faculty of Medicine, University of Helsinki 00014 Helsinki, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jan Topinka
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Riikka Lampinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland.
| |
Collapse
|
22
|
Srivastava S, Sekar G, Ojoawo A, Aggarwal A, Ferreira E, Uchikawa E, Yang M, Grace CR, Dey R, Lin YL, Guibao CD, Jayaraman S, Mukherjee S, Kossiakoff AA, Dong B, Myasnikov A, Moldoveanu T. Structural basis of BAK sequestration by MCL-1 in apoptosis. Mol Cell 2025; 85:1606-1623.e10. [PMID: 40187349 DOI: 10.1016/j.molcel.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/11/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Apoptosis controls cell fate, ensuring tissue homeostasis and promoting disease when dysregulated. The rate-limiting step in apoptosis is mitochondrial poration by the effector B cell lymphoma 2 (BCL-2) family proteins BAK and BAX, which are activated by initiator BCL-2 homology 3 (BH3)-only proteins (e.g., BIM) and inhibited by guardian BCL-2 family proteins (e.g., MCL-1). We integrated structural, biochemical, and pharmacological approaches to characterize the human prosurvival MCL-1:BAK complex assembled from their BCL-2 globular core domains. We reveal a canonical interaction with BAK BH3 bound to the hydrophobic groove of MCL-1 and disordered and highly dynamic BAK regions outside the complex interface. We predict similar conformations of activated effectors in complex with other guardians or effectors. The MCL-1:BAK complex is a major cancer drug target. We show that MCL-1 inhibitors are inefficient in neutralizing the MCL-1:BAK complex, requiring high doses to initiate apoptosis. Our study underscores the need to design superior clinical candidate MCL-1 inhibitors.
Collapse
Affiliation(s)
- Shagun Srivastava
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Giridhar Sekar
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Adedolapo Ojoawo
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105; Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anup Aggarwal
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105; Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elisabeth Ferreira
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Emiko Uchikawa
- Dubochet Center for Imaging, EPFL, Lausanne 1015, Vaud, Switzerland
| | - Meek Yang
- Chemistry and Biochemistry, University of Arkansas Fayetteville, Fayetteville, AR 72701, USA
| | - Christy R Grace
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Raja Dey
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yi-Lun Lin
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Cristina D Guibao
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Seetharaman Jayaraman
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105; Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Somnath Mukherjee
- Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Anthony A Kossiakoff
- Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Bin Dong
- Chemistry and Biochemistry, University of Arkansas Fayetteville, Fayetteville, AR 72701, USA
| | | | - Tudor Moldoveanu
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
23
|
Li A, Zhao L, Liu C, Xu X, Jia J. Gray Frequency-Based Methodology for Assessing Cell Damage. ACS OMEGA 2025; 10:14084-14093. [PMID: 40256511 PMCID: PMC12004167 DOI: 10.1021/acsomega.4c11226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Cell biology techniques offer a solid foundation for evaluating and forecasting the danger of pollutants in the investigations of environmental toxicology. Studies on ecological toxicity, medication development, and illness diagnosis depend on evaluating cellular damage. The morphology of stimulated cells can alter the light scattering and reflection, and the brightness of microscopic images of the cells. This study demonstrated that stimulation-damaged and normal cells had distinct gray value distributions which led to the proposal of a novel theory to measure cellular damage by image brightness. Second, various cell types were used to confirm the method's applicability. Additionally, an evaluation technique based on gray frequency analysis can be created to determine the extent of cellular damage. This approach provides an effective and helpful tool for cellular damage visualization and quantitative evaluation in environmental toxicity assessment.
Collapse
Affiliation(s)
- Anqi Li
- Jiangmen
Key Laboratory of Synthetic Chemistry and Cleaner Production, School
of Environmental and Chemical Engineering; Carbon Neutrality Innovation
Center, Wuyi University, Jiangmen 529020, China
| | - Linying Zhao
- Jiangmen
Key Laboratory of Synthetic Chemistry and Cleaner Production, School
of Environmental and Chemical Engineering; Carbon Neutrality Innovation
Center, Wuyi University, Jiangmen 529020, China
| | - Changyu Liu
- Jiangmen
Key Laboratory of Synthetic Chemistry and Cleaner Production, School
of Environmental and Chemical Engineering; Carbon Neutrality Innovation
Center, Wuyi University, Jiangmen 529020, China
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Industry Jieyang
Center, Jieyang 515200, China
| | - Xiaolong Xu
- Jiangmen
Key Laboratory of Synthetic Chemistry and Cleaner Production, School
of Environmental and Chemical Engineering; Carbon Neutrality Innovation
Center, Wuyi University, Jiangmen 529020, China
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Industry Jieyang
Center, Jieyang 515200, China
| | - Jianbo Jia
- Jiangmen
Key Laboratory of Synthetic Chemistry and Cleaner Production, School
of Environmental and Chemical Engineering; Carbon Neutrality Innovation
Center, Wuyi University, Jiangmen 529020, China
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Industry Jieyang
Center, Jieyang 515200, China
| |
Collapse
|
24
|
Yu H, Liu X, Liu J, Tang D. Bupivacaine Reduces the Viability of SH-SY5Y Cells and Promotes Apoptosis by the Inhibition of Akt Signaling Pathway. Neurochem Res 2025; 50:143. [PMID: 40220051 DOI: 10.1007/s11064-025-04386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Bupivacaine (BUP) is a commonly used local anesthetic, while SH-SY5Y cells are a human neuroblastoma cell line frequently employed in research on neurotoxicity and neuroprotective mechanisms. To assess the neurotoxic effects of BUP on SH-SY5Y cells and the role of threonine-serine protein kinase B (Akt) signaling in BUP-induced nerve injury. SH-SY5Y cells were divided into three groups: the control group (Control), BUP group, and BUP + SC79 group. Cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the level of reactive oxygen species (ROS) in cells was detected using the dihydroethidium fluorescence probe method, and changes in mitochondrial membrane potential were detected by flow cytometry, while BUP-induced apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The effects of BUP on Bax, Bcl-2, Caspase-3, Caspase-9, Akt and phosphorylated Akt (p-Akt) were analyzed by Western blot (WB). Compared with the control group, the BUP group and the BUP + SC79 group showed significantly reduced cell viability, significantly increased apoptosis, significantly elevated ROS levels, significantly decreased JC-1 polymer/monomer ratio, significantly increased protein levels of Bax, caspase-3, caspase-9, Akt, and p-Akt, and significantly decreased Bcl-2 protein levels (P < 0.05). However, compared with the BUP group, the BUP + SC79 group exhibited significantly increased cell viability (P = 0.022), significantly reduced apoptosis rate (P = 0.017), significantly decreased ROS levels (P = 0.015), significantly increased JC-1 polymer/monomer ratio (P = 0.024), significantly reduced protein levels of Bax, caspase-3, caspase-9, Akt, and p-Akt (P = 0.033, 0.028, 0.030, 0.035, and 0.005, respectively), and significantly increased Bcl-2 protein levels (P = 0.024). BUP can reduce the viability of SH-SY5Y cells and promote apoptosis, which may be related to its inhibitory effect on Akt protein activity.
Collapse
Affiliation(s)
- Heng Yu
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, 441021, China
| | - Xiufeng Liu
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, 441021, China
| | - Juan Liu
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, 441021, China.
| | - Dong Tang
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, 441021, China.
| |
Collapse
|
25
|
Wang X, Li S, Chen J, Liu L, Li F. Exogenous Alpha-Ketoglutaric Acid Alleviates the Rabbit Dermal Papilla Cell Oxidative Damage Caused by Hydrogen Peroxide Through the ERK/Nrf2 Signaling Pathway. Antioxidants (Basel) 2025; 14:455. [PMID: 40298808 PMCID: PMC12024376 DOI: 10.3390/antiox14040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
As an endogenous metabolite, α-ketoglutarate (AKG) exhibits potent antioxidant properties, yet its molecular mechanisms remain unclear. Dermal Papilla Cells (DPCs), functioning as the regulatory hub of hair follicle morphogenesis, serve as a pivotal model system for deciphering follicular functionality and regeneration mechanisms through their orchestration of signaling networks. Using a hydrogen peroxide (H2O2)-induced oxidative stress model in DPCs, we investigated AKG's protective effects. AKG attenuated H2O2-triggered reactive oxygen species (ROS) overproduction, restored mitochondrial membrane potential, and suppressed apoptosis-related protein dysregulation. It enhanced cellular stress resistance by increasing the Bcl-2/Bax ratio, boosting antioxidant levels, and inhibiting inflammation. Mechanistically, H2O2 activated the Nrf2 pathway, while AKG amplified Nrf2 nuclear translocation and expression. Crucially, ERK inhibition abrogated AKG-mediated Nrf2 regulation, intensifying ROS accumulation and cell death. These results identify the ERK/Nrf2 axis as central to AKG's antioxidative cytoprotection. This study advances AKG's therapeutic potential and deepens insights into its multifunctional roles.
Collapse
Affiliation(s)
| | | | | | - Lei Liu
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Department of Animal Science and Technology, Shandong Agricultural University, Tai’an 271017, China; (X.W.); (S.L.); (J.C.)
| | - Fuchang Li
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Department of Animal Science and Technology, Shandong Agricultural University, Tai’an 271017, China; (X.W.); (S.L.); (J.C.)
| |
Collapse
|
26
|
Fu H, Wang Y, Huang B, Liang Z, Li Y, Cao Z, Wu J, Zhao Y. Tannic acid‑cerium nanoenzymes serve as broad-spectrum antioxidants to alleviate acute kidney injury by modulating macrophage polarization, mitophagy and endoplasmic reticulum stress. J Control Release 2025; 380:892-909. [PMID: 39971251 DOI: 10.1016/j.jconrel.2025.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Acute kidney injury (AKI) is a critical condition marked by a rapid decline in renal function, primarily driven by oxidative stress, mitochondrial dysfunction, and inflammation. Despite extensive research, effective therapeutic strategies addressing the complex pathophysiology of AKI remain limited. In this study, we prepared a tannic acid‑cerium nanoenzyme (TA-Ce) and explored its potential for treating AKI. TA-Ce, synthesized via a one-pot method, demonstrated strong reactive oxygen species (ROS) scavenging, therapeutic efficacy, and biocompatibility in vitro and in vivo. TA-Ce, approximately 25.6 nm in size, was obtained by optimizing the molar ratios of TA to Ce and pH conditions, resulting in effective accumulation in the injured kidney. In addition, TA-Ce exhibited broad-spectrum antioxidant ability, capable of scavenging various ROS and alleviating oxidative stress. Notably, TA-Ce outperformed the conventional anti-inflammatory drug N-acetylcysteine (NAC) in both rhabdomyolysis-induced AKI (RM-AKI) and cisplatin-induced AKI (CP-AKI) mouse models. Mechanistic studies in RM-AKI revealed that TA-Ce disrupted the vicious cycle of oxidative stress, mitochondrial damage, endoplasmic reticulum stress, apoptosis, and inflammation. The nanoenzyme restored mitochondrial autophagic flux by inhibiting the P62-LC3 signaling pathway and alleviated endoplasmic reticulum stress by suppressing the IRE1-XBP1s pathway. Consequently, this prevented the downstream activation of the Bcl-2-Bax-Cyt-c-Cleaved Casp-3 apoptotic pathway and the NF-κB inflammatory pathway, ultimately ameliorating RM-AKI. This study lays a strong foundation for the development of metal-polyphenol nanomaterials as a therapeutic strategy for clinical AKI.
Collapse
Affiliation(s)
- Huayu Fu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yanhui Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Bangqi Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zonghao Liang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yumin Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhong Cao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong, China; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Yi Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
27
|
Terraza-Silvestre E, Villamuera R, Bandera-Linero J, Letek M, Oña-Sánchez D, Ramón-Barros C, Moyano-Jimeno C, Pimentel-Muiños FX. An unconventional autophagic pathway that inhibits ATP secretion during apoptotic cell death. Nat Commun 2025; 16:3409. [PMID: 40210636 PMCID: PMC11986000 DOI: 10.1038/s41467-025-58619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
Mobilisation of Damage-Associated Molecular Patterns (DAMPs) determines the immunogenic properties of apoptosis, but the mechanisms that control DAMP exposure are still unclear. Here we describe an unconventional autophagic pathway that inhibits the release of ATP, a critical DAMP in immunogenic apoptosis, from dying cells. Mitochondrial BAK activated by BH3-only molecules interacts with prohibitins and stomatin-1 through its latch domain, indicating the existence of an interactome specifically assembled by unfolded BAK. This complex engages the WD40 domain of the autophagic effector ATG16L1 to induce unconventional autophagy, and the resulting LC3-positive vesicles contain ATP. Functional interference with the pathway increases ATP release during cell death, reduces ATP levels remaining in the apoptotic bodies, and improves phagocyte activation. These results reveal that an unconventional component of the autophagic burst that often accompanies apoptosis sequesters intracellular ATP to prevent its release, thus favouring the immunosilent nature of apoptotic cell death.
Collapse
Affiliation(s)
- Elena Terraza-Silvestre
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Raquel Villamuera
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Julia Bandera-Linero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Michal Letek
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071, León, Spain
| | - Daniel Oña-Sánchez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Cristina Ramón-Barros
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Clara Moyano-Jimeno
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Felipe X Pimentel-Muiños
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain.
| |
Collapse
|
28
|
Mao T, Jiang K, Pang Y, Pan Y, Jia W, Gao Q, Lin Q. Hydroxysafflor yellow A for ischemic heart diseases: a systematic review and meta-analysis of animal experiments. Front Pharmacol 2025; 16:1510657. [PMID: 40271057 PMCID: PMC12014549 DOI: 10.3389/fphar.2025.1510657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/28/2025] [Indexed: 04/25/2025] Open
Abstract
Background Hydroxysafflor yellow A (HSYA) possesses a variety of pharmacological activities which has been demonstrated to be effective against ischemic heart disease (IHD). This study aimed to comprehensively examine the efficacy and summarize the potential mechanisms of HSYA against IHD in animal models. Methods We conducted electronic searches for preclinical studies on PubMed, Embase, Web of Science, Cochrane Library, CNKI, SinoMed, Wanfang, and Chinese VIP databases from inception to 31 January 2024. The CAMARADES checklist was chosen to assess the quality of evidence. STATA 14.0 software was utilized to analyze the data. The underlying mechanisms were categorized and summarized. Results Twenty-eight studies involving 686 rodents were included and the mean score of methodology quality was 5.04 (range from 4 to 7). Meta-analysis observed that HSYA could decrease myocardial infarction size (SMD: -2.82, 95%CI: -3.56 to -2.08, p < 0.001) and reduce the levels of biomarkers of myocardial injury including cTnI (SMD: -3.82, 95%CI: -5.20 to -2.44, p < 0.001) and CK-MB (SMD: -2.74, 95%CI: -3.58 to -1.91, p < 0.001). HSYA displayed an improvement in cardiac function indicators including LVEF, LVSP, +dp/dt max and -dp/dt max. Furthermore, HSYA was able to reduce the levels of MDA, TNF-α and IL-6, while increasing SOD and NO levels. Mechanistically, the protective effect of HSYA in alleviating myocardial injury after ischemia may be associated with NLRP3 inflammasome, Bcl-2, Bax, caspase-3, eNOS proteins, and TLR/NF-κB, Nrf2/HO-1, JAK/STAT, PI3K/Akt, AMPK/mTOR, VEGFA pathways. Conclusion This study demonstrates that HSYA exerts cardioprotective effects in decreasing infarct size, reducing myocardial enzymes and improving cardiac function, which may be mediated by anti-inflammatory, antioxidant, anti-apoptotic, regulation of autophagy, improvement of microcirculation and promotion of angiogenesis. However, the absence of safety assessment, lack of animal models of co-morbidities, and inconsistency between timing of administration and clinical practice are limitations of preclinical studies. Systematic Review Registration clinicaltrials.gov, Identifier, CRD42023460790.
Collapse
Affiliation(s)
- Tianshi Mao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kaixin Jiang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanting Pang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Pan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenhao Jia
- Department of Cardiology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Qun Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Lin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Croce CM, Vaux D, Strasser A, Opferman JT, Czabotar PE, Fesik SW. The BCL-2 protein family: from discovery to drug development. Cell Death Differ 2025:10.1038/s41418-025-01481-z. [PMID: 40204952 DOI: 10.1038/s41418-025-01481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
The landmark discovery of the BCL-2 gene and then its function marked the identification of inhibition of apoptotic cell death as a crucial novel mechanism driving cancer development and launched the quest to discover the molecular control of apoptosis. This work culminated in the generation of specific inhibitors that are now in clinical use, saving and improving tens of thousands of lives annually. Here, some of the original players of this story, describe the sequence of critical discoveries. The t(14;18) chromosomal translocation, frequently observed in follicular lymphoma, allowed the identification and the cloning of a novel oncogene (BCL-2) juxtaposed to the immunoglobulin heavy chain gene locus (IgH). Of note, BCL-2 acted in a distinct manner as compared to then already known oncogenic proteins like ABL and c-MYC. BCL-2 did not promote cell proliferation but inhibited cell death, as originally shown in growth factor dependent haematopoietic progenitor cell lines (e.g., FDC-P1) and in Eμ-Myc/Eμ-Bcl-2 double transgenic mice. Following a rapid expansion of the BCL-2 protein family, the Abbott Laboratories solved the first structure of BCL-XL and subsequently the BCL-XL/BAK peptide complex, opening the way to understanding the structures of other BCL-2 family members and, finally, to the generation of inhibitors of the different pro-survival BCL-2 proteins, thanks to the efforts of Servier/Norvartis, Genentech/WEHI, AbbVie, Amgen, Prelude and Gilead. Although the BCL-2 inhibitor Venetoclax is in clinical use and inhibitors of BCL-XL and MCL-1 are undergoing clinical trials, several questions remain on whether therapeutic windows can be achieved and what other agents should be used in combination with BH3 mimetics to achieve optimal therapeutic impact for cancer therapy. Finally, the control of the expression of BH3-only proteins and pro-survival BCL-2 family members needs to be better understood as this may identify novel targets for cancer therapy. This story is still not concluded!
Collapse
Affiliation(s)
- Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - David Vaux
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Stephen W Fesik
- Department of Biochemistry, Pharmacology and Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
30
|
Tang L, Zhang W, Liao Y, Wang W, Deng X, Wang C, Shi W. Autophagy: a double-edged sword in ischemia-reperfusion injury. Cell Mol Biol Lett 2025; 30:42. [PMID: 40197222 PMCID: PMC11978130 DOI: 10.1186/s11658-025-00713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
Ischemia-reperfusion (I/R) injury describes the pathological process wherein tissue damage, initially caused by insufficient blood supply (ischemia), is exacerbated upon the restoration of blood flow (reperfusion). This phenomenon can lead to irreversible tissue damage and is commonly observed in contexts such as cardiac surgery and stroke, where blood supply is temporarily obstructed. During ischemic conditions, the anaerobic metabolism of tissues and organs results in compromised enzyme activity. Subsequent reperfusion exacerbates mitochondrial dysfunction, leading to increased oxidative stress and the accumulation of reactive oxygen species (ROS). This cascade ultimately triggers cell death through mechanisms such as autophagy and mitophagy. Autophagy constitutes a crucial catabolic mechanism within eukaryotic cells, facilitating the degradation and recycling of damaged, aged, or superfluous organelles and proteins via the lysosomal pathway. This process is essential for maintaining cellular homeostasis and adapting to diverse stress conditions. As a cellular self-degradation and clearance mechanism, autophagy exhibits a dualistic function: it can confer protection during the initial phases of cellular injury, yet potentially exacerbate damage in the later stages. This paper aims to elucidate the fundamental mechanisms of autophagy in I/R injury, highlighting its dual role in regulation and its effects on both organ-specific and systemic responses. By comprehending the dual mechanisms of autophagy and their implications for organ function, this study seeks to explore the potential for therapeutic interventions through the modulation of autophagy within clinical settings.
Collapse
Affiliation(s)
- Lingxuan Tang
- Basic Medical University, Naval Medical University, Shanghai, 200433, China
| | - Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Weijie Wang
- Basic Medical University, Naval Medical University, Shanghai, 200433, China
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Wenwen Shi
- School of Nursing, Navy Military Medical University, Shanghai, China.
| |
Collapse
|
31
|
Huynh QDT, Phan TTT, Liu TW, Duong TLT, Hsu SJ, Kuo CC, Chu MH, Wang YH, Nguyen TV, Shen YA, Fan YJ, Nguyen DK, Vo TH, Lee CK. Cytotoxicity-guided isolation of elatostemanosides I-VI from Elatostema tenuicaudatum W. T. Wang and their cytotoxic activities. RSC Adv 2025; 15:10639-10652. [PMID: 40190632 PMCID: PMC11970508 DOI: 10.1039/d4ra09007a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/09/2025] [Indexed: 04/09/2025] Open
Abstract
Elatostema tenuicaudatum W. T. Wang, a medicinal plant traditionally utilized in herbal remedies, was explored for its cytotoxic properties. Bioassay-guided fractionation led to the discovery of six novel compounds, designated as elatostemanosides I-VI, with their structures elucidated through advanced spectroscopic methods and DP4+ analysis. Among these, compounds 2, 5, and 6 demonstrated moderate cytotoxicity against the human liver cancer cell line HepG2, exhibiting IC50 values of 18.2 ± 2.1, 32.1 ± 0.4, and 57.6 ± 1.3 µM, respectively. Notably, compound 6 also displayed significant activity against the human breast cancer cell line HCC1806, with an IC50 value of 35.4 ± 0.3 µM. Mechanistic studies revealed these compounds induced apoptosis by modulating the Bax/Bcl-2 ratio. Furthermore, structure-activity relationship (SAR) analysis underscored the importance of specific functional groups in mediating cytotoxic effects.
Collapse
Affiliation(s)
- Quoc-Dung Tran Huynh
- Ph. D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
- Institute of Pharmaceutical Education and Research, Binh Duong University Thu Dau Mot 820000 Binh Duong Vietnam
| | - Thuy-Tien Thi Phan
- Institute of Pharmaceutical Education and Research, Binh Duong University Thu Dau Mot 820000 Binh Duong Vietnam
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University Taipei 11031 Taiwan
| | - Ta-Wei Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11042 Taiwan
| | - Truc-Ly Thi Duong
- Faculty of Traditional Medicine, Can Tho University of Medicine and Pharmacy Can Tho 900000 Vietnam
| | - Su-Jung Hsu
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11042 Taiwan
- Institute of Fisheries Science, National Taiwan University Taipei 106 Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes Miaoli County 35053 Taiwan
| | - Man-Hsiu Chu
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11042 Taiwan
| | - Yun-Han Wang
- Ph. D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
| | - Thanh-Vu Nguyen
- Biotechnology Center of Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University Taipei 110301 Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University Taipei 110301 Taiwan
- International Master/Ph. D. Program in Medicine, College of Medicine, Taipei Medical University Taipei 110301 Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University Taipei 11031 Taiwan
- International PhD Program for Biomedical Engineering, Taipei Medical University Taipei 110301 Taiwan
| | - Dang-Khoa Nguyen
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh 700000 Vietnam
| | - Thanh-Hoa Vo
- University of Health Sciences, Vietnam National University Ho Chi Minh City Ho Chi Minh 700000 Vietnam
- Center for Discovery and Development of Healthcare Product, Vietnam National University Ho Chi Minh City Ho Chi Minh 700000 Vietnam
| | - Ching-Kuo Lee
- Ph. D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11042 Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University Taipei 11042 Taiwan
- Department of Chemistry, Chung Yuan Christian University Zhongli District Taoyuan 32023 Taiwan
| |
Collapse
|
32
|
Han H, Wen Z, Yang M, Wang C, Ma Y, Chen Q, Jiang D, Xu Y, Fazal A, Jie W, Lv X, Yin T, Lin H, Lu G, Qi J, Yang Y, Xu G. Shikonin Derivative Suppresses Colorectal Cancer Cells Growth via Reactive Oxygen Species-Mediated Mitochondrial Apoptosis and PI3K/AKT Pathway. Chem Biodivers 2025; 22:e202403291. [PMID: 40022742 DOI: 10.1002/cbdv.202403291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers globally, ranking as the third most prevalent and second most lethal malignancy worldwide. The standard treatment for CRC typically involves a combination of surgery, radiotherapy, and chemotherapy. Despite advancements in CRC treatment, the prognosis remains unsatisfactory, primarily due to unclear mechanisms underlying tumorigenesis and the aggression of CRC. The aberrant activation of the PI3K/AKT pathway is frequently implicated in the initiation, progression, and metastasis of CRC. Studies have demonstrated that shikonin (SK) exerts anti-cancer effects. In this study, we evaluated the anti-tumor activities of a series of semi-synthesized SK derivatives against CRC cells. Our findings revealed that the SK derivative (M12) significantly inhibited the proliferation and colony formation of CRC cells, reduced cell migration, and induced apoptosis. Mechanistically, M12 enhanced the production of reactive oxygen species and downregulated the mitochondrial membrane potential, ultimately leading to mitochondrial apoptosis. Furthermore, M12 exhibited anti-CRC effects by modulating the PI3K/AKT signaling pathway and significantly suppressed tumorigenicity without causing notable adverse effects in mice. Therefore, targeting the PI3K/AKT pathway could be a promising treatment for CRC. M12 appears to be a promising candidate for the effective and safe treatment of CRC.
Collapse
Affiliation(s)
- Hongwei Han
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Changyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yudi Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Qingqing Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dexing Jiang
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Ye Xu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wencai Jie
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaoran Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yonghua Yang
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Guohua Xu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
33
|
Soulat A, Mohsenpour T, Roshangar L, Moaddab SY, Soulat F. Innovative Therapeutic Approach Targeting Colon Cancer Stem Cells: Transitional Cold Atmospheric Plasma. ACS OMEGA 2025; 10:12109-12121. [DOI: https:/doi.org/10.1021/acsomega.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Affiliation(s)
- Abolfazl Soulat
- Department of Atomic and Molecular Physics, Faculty of Sciences
- University of Mazandaran
| | - Taghi Mohsenpour
- Department of Atomic and Molecular Physics, Faculty of Sciences
- University of Mazandaran
| | - Leila Roshangar
- Department of Histology, Faculty of Medicine
- Tabriz University of Medical Sciences
| | | | - Fatemeh Soulat
- Applied Chemistry laboratory, Department of Chemistry, Faculty of Basic Science
- Azarbaijan Shahid Madani University (ASMU)
| |
Collapse
|
34
|
Yang M, Hu J, Tian F, Xia M, Zhou Z, Li W. Effects of Flurochloridone on the Developmental Toxicity in Zebrafish (Danio rerio) Embryo. ENVIRONMENTAL TOXICOLOGY 2025; 40:674-682. [PMID: 39655881 DOI: 10.1002/tox.24460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 03/18/2025]
Abstract
Flurochloridone (FLC) is a selective herbicide that can cause reproductive toxicity in male rats. However, limited information is available regarding the toxicity of FLC in the developmental stages of aquatic organisms. This study aimed to investigate the effects of FLC exposure during embryonic development and elucidate its potential mechanism of action. Zebrafish embryos were exposed to 6.25, 12.5, 25, and 50 μg/mL FLC for 4-144 hpf. The developmental status of embryos was recorded; the indicators of oxidative stress and embryonic apoptosis were determined. We found that FLC exposure caused severe embryonic malformations, such as pericardial edema, spinal curvature, and growth retardation, accompanied by a decreased hatching and survival rate. After exposure until 144 h postfertilization, the median lethal concentration (LC50) of FLC in zebrafish embryos was 36.9 μg/mL. Subsequently, FLC induced the accumulation of reactive oxygen species and malondialdehyde, enhanced the activity of superoxide dismutase, and activated the Keap1-Nrf2 signaling pathway. Further studies confirmed that FLC can induce apoptosis in zebrafish embryos through the activation of caspase. These results suggest that FLC induced developmental toxicity in zebrafish embryos, which provides new evidence regarding FLC toxicity in aquatic organisms and to assess human health risks.
Collapse
Affiliation(s)
- Mingjun Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jingying Hu
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Fang Tian
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Minjie Xia
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory for Public Health Safety/Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai, China
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| |
Collapse
|
35
|
Soulat A, Mohsenpour T, Roshangar L, Moaddab SY, Soulat F. Innovative Therapeutic Approach Targeting Colon Cancer Stem Cells: Transitional Cold Atmospheric Plasma. ACS OMEGA 2025; 10:12109-12121. [PMID: 40191350 PMCID: PMC11966581 DOI: 10.1021/acsomega.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025]
Abstract
Transitional cold atmospheric plasma (TCAP) represents a novel technique for generating plasma remotely from a primary source. It consists of a partially nonthermal ionized gas mixture containing charged and neutral particles, photons, and free radicals. In recent years, TCAP has attracted considerable attention in biomedical applications. In order to evaluate colon cancer stem cells' (CCSCs) proliferation, apoptotic induction, inflammatory response, and survival, TCAP was utilized both directly and indirectly in this study. Using argon and helium gases, TCAP was continuously delivered in two stages during the experiment. For direct state, TCAP was irradiated onto CCSCs for 3 and 5 min. In the indirect technique, Matrigel was treated with TCAP for 5 min before the introduction of cells. In vitro assays demonstrated that TCAP exposure significantly reduced the viability of CCSCs; helium gas and direct application had greater impacts than argon. Numerous investigations confirmed the induction of apoptosis, showing that the treated groups had more apoptotic cells and altered cellular structures than controls (****p < 0.0001). A substantial increase in the Bax/Bcl-2 ratio was found by analyzing the expression of the Bax and Bcl-2 genes, indicating increased susceptibility to apoptosis (*p = 0.0177 and ***p = 0.0004). The higher efficacy of the direct helium mode was further highlighted by inflammatory marker analysis, which showed a significant reduction in interleukin-6 and interleukin-8 expression in cells directly treated with TCAP-helium compared to TCAP-argon (**p = 0.0015 and ***p = 0.0007). Lastly, the proliferation test, which relies on K i-67 expression, demonstrated a noteworthy decline in all TCAP-treated groups, with the direct helium group exhibiting the most robust impact (**p = 0.0014). Overall, the findings highlight the potential of TCAP, particularly with helium, as a promising approach for selectively targeting CCSCs and providing insights into its therapeutic mechanisms for cancer treatment. TCAP, therefore, emerges as a unique therapeutic strategy with potential applications in cancer stem cell-targeted therapies.
Collapse
Affiliation(s)
- Abolfazl Soulat
- Department
of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 4741613534 Babolsar, Iran
| | - Taghi Mohsenpour
- Department
of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 4741613534 Babolsar, Iran
| | - Leila Roshangar
- Department
of Histology, Faculty of Medicine, Tabriz
University of Medical Sciences, 5166614766 Tabriz, Iran
| | - Seyyed Yaghoub Moaddab
- Liver
and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, 5166614766 Tabriz, Iran
| | - Fatemeh Soulat
- Applied
Chemistry laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University (ASMU), 5375171379 Tabriz, Iran
| |
Collapse
|
36
|
Sadikan MZ, Lambuk L, Reshidan N, Ahmad Hairi H, Abd Ghapor AA, Mohamud R, Abdul Nasir NA. Molecular Mechanisms of Vitamin E in Ocular Neurodegenerative Disorders: An Update on the Emerging Evidence and Therapeutic Implications. J Ocul Pharmacol Ther 2025; 41:89-100. [PMID: 39778903 DOI: 10.1089/jop.2024.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Vitamin E is renowned for its potent antioxidant properties, crucial for shielding cells against oxidative stress and damage. Deficiency in this vitamin can lead to various health issues, including neurodegenerative diseases, due to its pivotal role in preserving cell membrane integrity and combating cellular oxidative damage. While its importance for overall health, including neurodegeneration, is acknowledged, the specific correlation between vitamin E deficiency and distinct ocular neurodegenerative disorders need to be further explored. This review delves into the molecular mechanisms of vitamin E in ocular neurodegenerative disorders; diabetic retinopathy, age-related macular degeneration, glaucoma, and cataracts, and emphasising the therapeutic implications drawn from existing evidence. Relationship between vitamin E and ocular neurodegenerative disorders is widely researched on, with its primary protective mechanisms attributed to its antioxidant and anti-inflammatory properties. However, studies on the supplementation of vitamin E among human subjects present mixed results, suggesting its complexities and variability depending on factors such as the specific disorder, disease stage, genetic differences, and form of vitamin E utilized. In conclusion, while vitamin E holds promise in mitigating ocular neurodegeneration through its antioxidant and anti-inflammatory properties, its supplementation's efficacy remains nuanced and context dependent. More research works are essential to elucidate its precise role and therapeutic potential in combating various ocular neurodegenerative disorders.
Collapse
Affiliation(s)
- Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia, Melaka, Malaysia
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nurhidayah Reshidan
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Selangor, Malaysia
| | - Haryati Ahmad Hairi
- Department of Biochemistry, Faculty of Medicine, Manipal University College Malaysia, Melaka, Malaysia
| | - Afiqq Aiman Abd Ghapor
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nurul Alimah Abdul Nasir
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
- Department of Medical Education, Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| |
Collapse
|
37
|
Zhang D, Li F, Sun C, Chen C, Qin H, Wu X, Jiang M, Zhou K, Yao C, Hu Y. Inhibition of PGAM5 hyperactivation reduces neuronal apoptosis in PC12 cells and experimental vascular dementia rats. Arch Gerontol Geriatr 2025; 131:105732. [PMID: 39754994 DOI: 10.1016/j.archger.2024.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
PURPOSE The incidence of vascular dementia (VaD), as one of the main types of dementia in old age, has been increasing year by year, and exploring its pathogenesis and seeking practical and effective treatment methods are undoubtedly the key to solving this problem. Phosphoglycerate translocase 5 (PGAM5), as a crossroads of multiple signaling pathways, can lead to mitochondrial fission, which in turn triggers the onset and development of necroptosis, and thus PGAM5 may be a novel target for the prevention and treatment of vascular dementia. METHODS Animal model of vascular dementia was established by Two-vessel occlusion (2-VO) method, and cellular model of vascular dementia was established by oxygen glucose deprivation (OGD) method. Neuronal damage was detected in vivo and in vitro in different groups using different concentrations of the PGAM5-specific inhibitor LFHP-1c, and necroptosis and mitochondrial dynamics-related factors were determined. RESULTS In vivo experiments, 10 mg/kg-1 and 20 mg/kg-1 LFHP-1c improved cognitive deficits, reduced neuronal edema and vacuoles, increased the number of nissl bodies, and it could modulate the expression of Caspase family and Bcl-2 family related proteins and mRNAs and ameliorate neuronal damage. Simultaneously, in vitro experiments, 5 μM, 10 μM and 20 μM LFHP-1c increased the activity and migration number of model cells, reduced the number of apoptotic cells, ameliorated the excessive accumulation of intracellular reactive oxygen species, inhibited the over-activation of caspase-family and Bcl-2-family related proteins and mRNAs, and improved the mitochondrial dynamics of the fission and fusion states. Moreover, in vivo and in vitro experiments have shown that LFHP-1c can also upregulate the expression level of BDNF, inhibit the expression content of TNF-α and ROS, regulate the expression of proteins and mRNAs related to the RIPK1/RIPK3/MLKL pathway and mitochondrial dynamics, and reduce neuronal apoptosis. CONCLUSIONS Inhibition of PGAM5 expression level can reduce neuronal damage caused by chronic cerebral ischemia and hypoxia, which mainly prevents necroptosis by targeting the RIPK1/RIPK3/MLKL signaling pathway and regulates the downstream mitochondrial dynamics homeostasis system to prevent excessive mitochondrial fission, thus improving cognition and exerting cerebroprotective effects.
Collapse
Affiliation(s)
- Ding Zhang
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China; Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Fangcun Li
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China; Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Chunying Sun
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Canrong Chen
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Hongling Qin
- Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Xuzhou Wu
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Minghe Jiang
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Keqing Zhou
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Chun Yao
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China.
| | - Yueqiang Hu
- Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China.
| |
Collapse
|
38
|
Jakovljevic S, Canovic P, Spasic M, Zivkovic M, Zaric M, Zivkovic Zaric R, Franich A, Rajkovic S, Todorovic Z, Relic N, Zivic M, Mirkovic N. DNA/BSA Binding Affinity and Cytotoxicity of Dinuclear Palladium(II) Complexes with Amino Acids as Ligands. Molecules 2025; 30:1534. [PMID: 40286104 PMCID: PMC11990606 DOI: 10.3390/molecules30071534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
This study investigates the synthesis, characterization, and cytotoxicity of dinuclear palladium(II) complexes with glycine (Pd1), alanine (Pd2), and methionine (Pd3) as ligands. UV-Vis and fluorescence spectroscopy were used to investigate the complexes' interactions with calf thymus DNA (CT-DNA) and bovine serum albumin. The obtained measurements demonstrate that Pd1 and Pd2 have stronger binding affinities for CT-DNA compared to Pd3, with Pd3 exhibiting the most significant cytotoxicity against the MDA-MB-231 cancer cell line. The binding behavior was quantified by calculating intrinsic binding constants (Kb) and Stern-Volmer constants (Ksv), showing that Pd1 and Pd2 interact more effectively with DNA, possibly due to less steric hindrance in their chelation. Cytotoxic activity was evaluated using an MTT assay, and the results confirm that Pd3, with methionine as the ligand, exhibited superior antitumor effects, inducing apoptosis through caspase-3 activation. The complexes also showed a strong affinity for BSA, indicating their potential for biological interaction. These discoveries shed light on the processes of palladium(II) complexes in biological systems, highlighting their DNA and protein-binding capabilities, as well as their anticancer potential. Further research is required to explore their pharmacokinetics and possible clinical applications.
Collapse
Affiliation(s)
- Stefan Jakovljevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic Street 69, 34000 Kragujevac, Serbia; (S.J.); (N.M.)
- Department of General Surgery, University Clinical Center Kragujevac, Zmaj Jovina Street 30, 34000 Kragujevac, Serbia
| | - Petar Canovic
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic Street 69, 34000 Kragujevac, Serbia; (P.C.); (M.Z.)
| | - Marko Spasic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic Street 69, 34000 Kragujevac, Serbia; (S.J.); (N.M.)
- Department of General Surgery, University Clinical Center Kragujevac, Zmaj Jovina Street 30, 34000 Kragujevac, Serbia
| | - Marija Zivkovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic Street 69, 34000 Kragujevac, Serbia
| | - Milan Zaric
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic Street 69, 34000 Kragujevac, Serbia; (P.C.); (M.Z.)
| | - Radica Zivkovic Zaric
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic Street 69, 34000 Kragujevac, Serbia;
- Department of Clinical Pharmacology, University Clinical Center Kragujevac, Zmaj Jovina Street 30, 34000 Kragujevac, Serbia
| | - Andjela Franich
- Department of Chemistry, Faculty of Sciences, University of Kragujevac, Radoje Domanovic Street 12, 34000 Kragujevac, Serbia; (A.F.); (S.R.)
| | - Snezana Rajkovic
- Department of Chemistry, Faculty of Sciences, University of Kragujevac, Radoje Domanovic Street 12, 34000 Kragujevac, Serbia; (A.F.); (S.R.)
| | - Zeljko Todorovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic Street 69, 34000 Kragujevac, Serbia;
- Clinic for Hematology, University Clinical Center Kragujevac, Zmaj Jovina Street 30, 34000 Kragujevac, Serbia
| | - Nenad Relic
- Department of Otorhinolaryngology, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic Street 69, 34000 Kragujevac, Serbia;
- Clinic of Otorhinolaryngology, University Clinical Center Kragujevac, Zmaj Jovina Street 30, 34000 Kragujevac, Serbia
| | - Milos Zivic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic Street 69, 34000 Kragujevac, Serbia;
- Department of Maxillofacial Surgery, Clinic of Otorhinolaryngology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Nikola Mirkovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic Street 69, 34000 Kragujevac, Serbia; (S.J.); (N.M.)
- Department of Vascular Surgery Center, University Clinical Center Kragujevac, Zmaj Jovina Street 30, 34000 Kragujevac, Serbia
| |
Collapse
|
39
|
Lin Y, He Q, Chen B, Li Z, Chen C, Deng W, Li H, Yang J, Mai B, Zhang Z, Wang D, Guo H, Tang Y, Yuan K, Mo G, Xu L, Li Y, Wang H, Zhang S. Zuogui Pills alleviate iron overload-induced osteoporosis by attenuating ROS-mediated osteoblast apoptosis via the PI3K-AKT pathway and mitigating mitochondrial damage. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119455. [PMID: 39971012 DOI: 10.1016/j.jep.2025.119455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuogui Pill (ZGP) is a classic herbal formula in Traditional Chinese Medicine, primarily used to tonify the kidney and replenish essence, and is widely applied in treating various kidney deficiency-related conditions. Over time, ZGP has demonstrated significant efficacy in addressing symptoms such as fatigue, weakness, and soreness of the lower back and knees, which are often caused by kidney deficiency. According to Traditional Chinese Medicine theory, the kidneys govern the bones, meaning that sufficient kidney essence is closely related to bone strength. By nourishing the kidneys and replenishing essence, ZGP helps to increase bone density and improve bone microstructure, making it an important therapeutic option for osteoporosis. AIM OF THE STUDY To investigate the protective effects of ZGP in iron overload-induced osteoporosis and elucidate its molecular mechanisms through the activation of the Phosphoinositide 3-Kinase (PI3K)/Protein Kinase B (AKT) and Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1) pathways, which reduce oxidative stress, inhibit osteoblast apoptosis, and promote osteoblast differentiation and mineralization. MATERIALS AND METHODS An in vivo mouse model of iron overload-induced osteoporosis and an in vitro MC3T3-E1 osteoblast model were used. In vitro experiments involved the use of ZGP containing-serum, along with transcriptomic analysis, Western blot, flow cytometry, TUNEL staining, and immunofluorescence, to assess the effects on oxidative stress, mitochondrial function, and apoptosis. In vivo experiments evaluated the effects of ZGP on bone mass, oxidative stress, and apoptosis using Micro-computed tomography (micro-CT), Hematoxylin and eosin staining (H&E), TUNEL staining, and immunohistochemistry. RESULTS The study found that ZGP containing-serum significantly enhanced the viability of osteoblasts induced by iron overload and reduced apoptosis through the reactive oxygen species (ROS)-mediated Phosphoinositide 3-Kinase (PI3K)/Protein Kinase B (AKT) pathway while mitigating mitochondrial damage. In vivo, micro-computed tomography results showed that ZGP improved bone mass, and decreased ROS and apoptosis, consistent with the in vitro findings. CONCLUSION ZGP demonstrates significant antioxidant and anti-apoptotic effects in iron overload-induced osteoporosis, primarily through the ROS-mediated PI3K/AKT pathway and by reducing mitochondrial damage. These findings suggest that ZGP may be a promising therapeutic agent for treating osteoporosis associated with iron overload.
Collapse
Affiliation(s)
- Yuewei Lin
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi He
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Baihao Chen
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Zuang Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Chuyi Chen
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Wei Deng
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Haishan Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Jiamin Yang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Bin Mai
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Zhen Zhang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Dongping Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Huizhi Guo
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China
| | - Yongchao Tang
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China
| | - Kai Yuan
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China
| | - Guoye Mo
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China
| | - Liangliang Xu
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China
| | - Yongxian Li
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China
| | - Haibin Wang
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China
| | - Shuncong Zhang
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou, 510405, PR China.
| |
Collapse
|
40
|
Perner F, Pahl HL, Zeiser R, Heidel FH. Malignant JAK-signaling: at the interface of inflammation and malignant transformation. Leukemia 2025:10.1038/s41375-025-02569-8. [PMID: 40140631 DOI: 10.1038/s41375-025-02569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
The JAK pathway is central to mammalian cell communication, characterized by rapid responses, receptor versatility, and fine-tuned regulation. It involves Janus kinases (JAK1, JAK2, JAK3, TYK2), which are activated when natural ligands bind to receptors, leading to autophosphorylation and activation of STAT transcription factors [1, 2]. JAK-dependent signaling plays a pivotal role in coordinating cell communication networks across a broad spectrum of biological systems including development, immune responses, cell growth, and differentiation. JAKs are frequently mutated in the aging hematopoietic system [3, 4] and in hematopoietic cancers [5]. Thus, dysregulation of the pathway results in various diseases, including cancers and immune disorders. The binding of extracellular ligands to class I and II cytokine receptors initiates a critical signaling cascade through the activation of Janus kinases (JAKs). Upon ligand engagement, JAKs become activated and phosphorylate specific tyrosine residues on the receptor, creating docking sites for signal transducer and activator of transcription (STAT) proteins. Subsequent JAK-mediated phosphorylation of STATs enables their dimerization and nuclear translocation, where they function as transcription factors to modulate gene expression. Under physiological conditions, JAK-signaling is a tightly regulated mechanism that governs cellular responses to external cues, such as cytokines and growth factors, ensuring homeostasis and maintaining the functional integrity of tissues and organs. Highly defined regulation of JAK-signaling is essential for balancing cellular responses to inflammatory stimuli and growth signals, thus safeguarding tissue health. In contrast, dysregulated JAK-signaling results in chronic inflammation and unrestrained cellular proliferation associated with various diseases. Understanding the qualitative and quantitative differences at the interface of physiologic JAK-signaling and its aberrant activation in disease is crucial for the development of targeted therapies that precisely tune this pathway to target pathologic activation patterns while leaving homeostatic processes largely unaffected. Consequently, pharmaceutical research has targeted this pathway for drug development leading to the approval of several substances with different selectivity profiles towards individual JAKs. Yet, the precise impact of inhibitor selectivity and the complex interplay of different functional modules within normal and malignant cells remains incompletely understood. In this review, we summarize the current knowledge on JAK-signaling in health and disease and highlight recent advances and future directions in the field.
Collapse
Affiliation(s)
- Florian Perner
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
| | - Heike L Pahl
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian H Heidel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
- Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany.
- Cellular Therapy Center (CTC), Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
41
|
Liu S, Wu J, Sun Y, Xu Y, Zhou S, Luo P, Wang Z, Chen D, Liang X, Kang Z, Zheng L. A novel key virulence factor, FoSSP71, inhibits plant immunity and promotes pathogenesis in Fusarium oxysporum f. sp. cubense. Microbiol Spectr 2025:e0294024. [PMID: 40130862 DOI: 10.1128/spectrum.02940-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/31/2025] [Indexed: 03/26/2025] Open
Abstract
Fusarium wilt of banana (Musa spp.), caused by Fusarium oxysporum f. sp. cubense (Foc), poses a significant threat to the global banana industry. Particularly, tropical race 4 of Foc exhibits high pathogenicity toward the major commercial banana cultivar Cavendish, and there are no effective control measures available. Here, we characterize a novel effector protein, FoSSP71, from Foc, which was significantly induced during the early stages of the Foc4 banana interaction and could suppress BAX-triggered programmed cell death in Nicotiana benthamiana. Transient expression of FoSSP71 in N. benthamiana leaves could weaken the upregulation expression of genes involved in the SA signaling pathway induced by flg22 and significantly reduce both reactive oxygen species bursts and callose accumulation. To verify the function of FoSSP71, a FoSSP71 deletion mutant was created. The FoSSP71 deletion mutant displayed a reduced growth rate in F. oxysporum and a marked reduction in virulence toward bananas compared to the wild type (WT). Furthermore, the expression levels of PR3 and PR10 were significantly downregulated in bananas infected with the ΔFoSSP71 strain compared to bananas infected with the WT strain. These findings indicate that FoSSP71 is essential for Foc4 pathogenicity and plays a key virulence role during Fusarium invasion. Therefore, FoSSP71 presents a potential target for future Fusarium wilt control, offering a scientific foundation for breeding disease-resistant banana varieties and developing novel control measures.IMPORTANCEEffector proteins are critical virulence factors for fungi, playing essential roles during the fungal infection of plants. In this study, we identified a novel effector protein, FoSSP71, which is an important regulatory protein involved in the invasion of bananas by Fusarium oxysporum f. sp. cubense race 4 (Foc4). Understanding its regulatory mechanisms is necessary. Our research indicates that FoSSP71 is an essential virulence factor for Foc4, as it suppresses plant immune responses by inhibiting the accumulation of reactive oxygen species and callose. The Foc4 mutant lacking FoSSP71 showed significantly reduced pathogenicity toward bananas, demonstrating that FoSSP71 is a potential target for controlling banana wilt disease. These findings provide a scientific basis for breeding banana varieties resistant to wilt disease and for developing new disease control strategies, which are crucial for the sustainable development of the global banana industry.
Collapse
Affiliation(s)
- Shuang Liu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, China
| | - Junyu Wu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, China
| | - Yinhui Sun
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, China
| | - Yun Xu
- School of Life and Health Sciences, Hainan University, Haikou, Hainan, China
| | - Siyu Zhou
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, China
| | - Peiping Luo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, China
| | - Zhibiao Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, China
| | - Daipeng Chen
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Li Zheng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, China
| |
Collapse
|
42
|
Villegas C, González-Chavarría I, Burgos V, Cabrera-Pardo JR, Schmidt B, Paz C. Erioflorin and Erioflorin Acetate Induce Cell Death in Advanced Prostate Cancer Through ROS Increase and NF-κB Inhibition. J Xenobiot 2025; 15:45. [PMID: 40126263 PMCID: PMC11932318 DOI: 10.3390/jox15020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Germacranes are a type of sesquiterpene lactones with anti-inflammatory and cytotoxic properties against cancer cell lines. In this in vitro study, erioflorin and erioflorin acetate were isolated and purified from the leaves of Podanthus mitiqui Lindl (Mitique or Mitriu), a shrub endemic to Chile and traditionally used in Mapuche medicine to treat urinary and digestive disorders. Their effects on advanced prostate cancer cell lines (DU-145 and 22Rv1) were evaluated. Cytotoxicity was assessed using real-time cell death and clonogenic assays. Apoptosis was determined by measuring reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), and apoptotic cell percentage through flow cytometry. Gene expression of BAX and BCL-2 was analyzed via RT-qPCR, while NF-κB activation was studied in DU-145 cells and human monocytic NF-κB reporter assays using LPS stimulation and alkaline phosphatase activity quantification. Erioflorin acetate exhibited the highest cytotoxicity, with IC50 values of 35.1 µM (22Rv1) and 27.3 µM (DU-145), compared to erioflorin, which had IC50 values of 50.3 µM and 56.5 µM, respectively. Both compounds increased ROS levels, reduced ΔΨm, and induced apoptosis. RT-qPCR analysis revealed that erioflorin elevated the BAX/BCL-2 ratio, and both compounds inhibited NF-κB activation by preventing IκBα phosphorylation. In conclusion, the findings demonstrate that erioflorin and erioflorin acetate exert significant in vitro cytotoxic and cytostatic effects on prostate cancer cells, supporting their potential as natural candidates for prostate cancer therapy.
Collapse
Affiliation(s)
- Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
| | - Viviana Burgos
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Temuco 4780000, Chile;
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Avenida Collao 1202, Concepción 4051381, Chile;
| | - Bernd Schmidt
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
| |
Collapse
|
43
|
Wyżewski Z, Gregorczyk-Zboroch KP, Mielcarska MB, Świtlik W, Niedzielska A. Bid Protein: A Participant in the Apoptotic Network with Roles in Viral Infections. Int J Mol Sci 2025; 26:2385. [PMID: 40141030 PMCID: PMC11942203 DOI: 10.3390/ijms26062385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The BH3-interacting domain death agonist (Bid), a proapoptotic signaling molecule of the B-cell lymphoma 2 (Bcl-2) family, is a key regulator of mitochondrial outer membrane (MOM) permeability. Uniquely positioned at the intersection of extrinsic and intrinsic apoptosis pathways, Bid links death receptor signaling to the mitochondria-dependent cascade and can also be activated by endoplasmic reticulum (ER) stress. In its active forms, cleaved Bid (cBid) and truncated Bid (tBid), it disrupts MOM integrity via Bax/Bak-dependent and independent mechanisms. Apoptosis plays a dual role in viral infections, either promoting or counteracting viral propagation. Consequently, viruses modulate Bid signaling to favor their replication. The deregulation of Bid activity contributes to oncogenic transformation, inflammation, immunosuppression, neurotoxicity, and pathogen propagation during various viral infections. In this work, we explore Bid's structure, function, activation processes, and mitochondrial targeting. We describe its role in apoptosis induction and its involvement in infections with multiple viruses. Additionally, we discuss the therapeutic potential of Bid in antiviral strategies. Understanding Bid's signaling pathways offers valuable insights into host-virus interactions and the pathogenesis of infections. This knowledge may facilitate the development of novel therapeutic approaches to combat virus-associated diseases effectively.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Karolina Paulina Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Weronika Świtlik
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
| | - Adrianna Niedzielska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| |
Collapse
|
44
|
Ogawa A, Izumikawa K, Tate S, Isoyama S, Mori M, Fujiwara K, Watanabe S, Ohga T, Jo U, Taniyama D, Kitajima S, Tanaka S, Onji H, Kageyama SI, Yamamoto G, Saito H, Morita TY, Okada M, Natsumeda M, Nagahama M, Kobayashi J, Ohashi A, Sasanuma H, Higashiyama S, Dan S, Pommier Y, Murai J. SLFN11-mediated ribosome biogenesis impairment induces TP53-independent apoptosis. Mol Cell 2025; 85:894-912.e10. [PMID: 39909041 PMCID: PMC11890970 DOI: 10.1016/j.molcel.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025]
Abstract
Impairment of ribosome biogenesis (RiBi) triggered by inhibition of ribosomal RNA (rRNA) synthesis and processing leads to various biological effects. We report that Schlafen 11 (SLFN11) induces TP53-independent apoptosis through RiBi impairment. Upon replication stress, SLFN11 inhibits rRNA synthesis with RNA polymerase I accumulation and increased chromatin accessibility in the ribosomal DNA (rDNA) genes. SLFN11-dependent RiBi impairment preferentially depletes short-lived proteins, particularly MCL1, leading to apoptosis in response to replication stress. SLFN11's Walker B motif (E669), DNA-binding site (K652), dephosphorylation site for single-strand DNA binding (S753), and RNase sites (E209/E214) are all required for the SLFN11-mediated RiBi impairment. Comparable effects were obtained with direct RNA polymerase I inhibitors and other RiBi inhibitory conditions regardless of SLFN11. These findings were extended across 34 diverse human cancer cell lines. Thus, we demonstrate that RiBi impairment is a robust inactivator of MCL1 and an additional proapoptotic mechanism by which SLFN11 sensitizes cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Akane Ogawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Keiichi Izumikawa
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Sota Tate
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Toon, Ehime 791-0295, Japan; Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Sho Isoyama
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Kohei Fujiwara
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Soyoka Watanabe
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Takayuki Ohga
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Ukhyun Jo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20814, USA
| | - Daiki Taniyama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20814, USA
| | - Shojiro Kitajima
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Soichiro Tanaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Hiroshi Onji
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Shun-Ichiro Kageyama
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Gaku Yamamoto
- Division of Collaborative Research and Development, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Hitoshi Saito
- Division of Collaborative Research and Development, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Tomoko Yamamori Morita
- Division of Collaborative Research and Development, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Masayasu Okada
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Manabu Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Advanced Treatment of Neurological Diseases Branch, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Junya Kobayashi
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Narita, Tokyo 286-0048, Japan
| | - Akihiro Ohashi
- Division of Collaborative Research and Development, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Hiroyuki Sasanuma
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-0057, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Toon, Ehime 791-0295, Japan; Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; Department of Oncogenesis and Tumor Regulation, Osaka International Cancer Institute, Osaka 103-0027, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20814, USA.
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan; Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Toon, Ehime 791-0295, Japan; Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
45
|
Dang J, Bian P, Chen C, Chen C, Shan W, Cai L, Li Y, Tan H, Xu B, Guan M, Guo Y. Impact of POU3F4 mutation on cochlear development and auditory function. Cell Commun Signal 2025; 23:121. [PMID: 40045370 PMCID: PMC11884022 DOI: 10.1186/s12964-025-02133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/27/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Hearing loss, a major public health issue, affects 1.33 per 1,000 live births worldwide. Genetic factors contribute to over half of congenital cases, with X-linked inheritance accounting for 1-5%. POU3F4 mutations are associated with approximately 50% of X-linked non-syndrome hearing loss cases. POU3F4 plays a critical role in cochlear development by regulating otic mesenchyme cell differentiation. The study investigates the impact of a novel POU3F4 p.E294G mutation on cochlear structure and function using cellular and animal model. METHODS The study utilized immortalized lymphoblastoid cell lines, POU3F4 overexpressed HEK293 cells and generated Pou3f4 knock-in (Pou3f4KI) mice via CRISPR/Cas9 to introduce the p.E294G mutation. Alterations in expression and subcellular localization of POU3F4 were detected at the cellular level. Auditory function was assessed using auditory brainstem response testing. Cochlear structure was analyzed through histology, immunohistochemistry, scanning electron microscopy, and transmission electron microscopy. RNA sequencing, qPCR and Western blot were conducted to evaluate gene expression and mitochondrial function. RESULTS The transcription of POU3F4 was abnormal and the expression was normal in lymphoblastoid cell lines. Abnormal nuclear localization of POU3F4 p.E294G was found in overexpressed HEK293 cells. Pou3f4KI mice exhibited cochlear malformations, including modiolus hypoplasia and reduced stria vascularis cell populations. Auditory testing revealed progressive hearing loss. Pou3f4 affect mitochondrial protein expression by affecting the expression of TFAM. Mitochondrial dysfunction was evident, with reduced oxidative phosphorylation (OXPHOS) complex assembly and activity, decreased ATP levels. The level of reactive oxygen species, mitochondrial fission and apoptosis in cochlea were elevated. CONCLUSIONS The POU3F4 p.E294G resulted in abnormal nuclear localization. Pou3f4 mutant disrupts cochlear development and function, impairs mitochondrial integrity, induces oxidative stress, and promotes apoptosis, leading to progressive hearing loss. The findings enhance the understanding of POU3F4-related hearing loss mechanisms and highlight the importance of early genetic screening and audiological monitoring.
Collapse
Affiliation(s)
- Jiong Dang
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
| | - Panpan Bian
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
| | - Chao Chen
- Center for Mitochondrial Biomedicine, Department of Ophthalmology, Zhejiang University School of Medicine, Yiwu, China
| | - Chi Chen
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
| | - Wenqi Shan
- Center for Mitochondrial Biomedicine, Department of Ophthalmology, Zhejiang University School of Medicine, Yiwu, China
| | - Luhang Cai
- Center for Mitochondrial Biomedicine, Department of Ophthalmology, Zhejiang University School of Medicine, Yiwu, China
| | - Yong Li
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
| | - Huan Tan
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China
| | - Baicheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China.
| | - Minxin Guan
- Center for Mitochondrial Biomedicine, Department of Ophthalmology, Zhejiang University School of Medicine, Yiwu, China.
| | - Yufen Guo
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, PR China.
| |
Collapse
|
46
|
Sun Y, Houde D, Iacob RE, Baird J, Swift RV, Holliday M, Shi X, Sidoli S, Brenowitz M. Hydrogen/Deuterium Exchange and Protein Oxidative Footprinting with Mass Spectrometry Collectively Discriminate the Binding of Small-Molecule Therapeutics to Bcl-2. Anal Chem 2025; 97:4329-4340. [PMID: 39969248 PMCID: PMC11887655 DOI: 10.1021/acs.analchem.4c04516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/13/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025]
Abstract
Characterizing protein-ligand interactions is crucial to understanding cellular metabolism and guiding drug discovery and development. Herein, we explore complementing hydrogen/deuterium exchange mass spectrometry (HDX-MS) with a recently developed Fenton chemistry-based approach to protein oxidative footprinting mass spectrometry (OX-MS) to discriminate the binding of small-molecule therapeutics. Using drug-dependent perturbation as the experimental report, this combination of techniques more clearly differentiates the in-solution binding profiles of Venetoclax (ABT-199, GDC-0199-AbbVie and Genentech) and a drug candidate S55746 (Servier) to the apoptotic regulatory protein Bcl-2 than either technique alone. These results highlight the value of combining these methods to compare compounds in drug discovery and development. To better understand the structural context of the HDX-MS and OX-MS drug-dependent perturbations, we mapped these data on Bcl-2-Venetoclax and Bcl-2-S55746 cocrystal structures and compared these results with the structure of apo Bcl-2. HDX-MS shows that Venetoclax more strongly impacts the protein backbone compared to S55746. OX-MS reveals oxidation perturbations rationalized by direct side-chain protection as well as by crystallographically observed drug-induced protein restructuring. Both methods report the perturbation of some, but not all, residues mapped within 4 Å of the bound drugs in the crystal structures. Concordant characterization of backbone and side-chain accessibility will enhance our understanding of in-solution protein structure dynamics and protein-ligand interactions during drug discovery, development, and characterization, particularly when high-resolution structures are lacking.
Collapse
Affiliation(s)
- Yan Sun
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Damian Houde
- Relay
Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Roxana E. Iacob
- Relay
Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Jason Baird
- Relay
Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Robert V. Swift
- Relay
Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Michael Holliday
- Relay
Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Xuyan Shi
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Simone Sidoli
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Michael Brenowitz
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
- Department
of Molecular Pharmacology, Albert Einstein
College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
47
|
Wang F, Zhou J, Liu W, Wang W, Tian B, Liu J, Zhang H, He P, Yang X, Yang L, Wang Y. Mogrol Regulates the Expression of ATPase Na+/K+ Transport Subunit 3, Inhibits Cardiomyocyte Apoptosis, and Plays a Protective Role Against Myocardial Infarction. Drug Des Devel Ther 2025; 19:1489-1502. [PMID: 40051467 PMCID: PMC11884411 DOI: 10.2147/dddt.s490484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Background With the advancements in medical technology, the death rate from myocardial infarction (MI), a prevalent heart illness, has gradually decreased; however, treatment hurdles and diagnostic issues remain. Mogrol is a naturally occurring plant extract with specific biological activities such as antioxidant, anti-inflammatory, antitumor, and hypoglycemic effects. These biological activities make it a potential therapeutic drug or research subject; however, its function in MI remains unclear. Methods Potential targets of mogrol were searched using the MI Disease Database through online databases. Among the three intersecting genes, we focused on ATPase Na+/K+ transporting subunit 3A3, which is expressed at low levels in patients with MI. The preventive effect of mogrol against MI was investigated using cardiac ultrasonography, Western blotting, qPCR assay, Cell counting kit-8, Ca2+ concentration measurement, Na+/K+-ATPase, and flow cytometry. Results The findings demonstrated that mogrol upregulated Ca2+ concentration and ATPase Na+/K+ transporting subunit 3 protein levels in cardiomyocytes and tissues, downregulated the apoptosis-related proteins B-cell lymphoma 2-like protein 4, cleaved-caspase-3, and upregulated B-cell lymphoma 2. These effects enhanced cardiac function, prevented cardiomyocyte apoptosis, encouraged cardiomyocyte proliferation, and protected mice from MI. Knocking down ATP1A3 can reverse the protective effect of Mogrol. Conclusion Mogrol may have a protective effect on myocardial infarction by regulating Ca2+ concentration and the level of the ATPase Na+/K+ transport subunit 3 protein, as well as by regulating apoptosis-related proteins. Further revealing the pharmacokinetics of mogrol in vivo is expected to make it a subsequent drug for the treatment of cardiac infarction.
Collapse
Affiliation(s)
- Feng Wang
- Echocardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Jinling Zhou
- Echocardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Weiwei Liu
- Echocardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Wei Wang
- Echocardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Boyan Tian
- Echocardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Jinyu Liu
- Echocardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Han Zhang
- Echocardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Peina He
- Echocardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Xiaoyun Yang
- Echocardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Li Yang
- Echocardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Yueheng Wang
- Echocardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| |
Collapse
|
48
|
Xu P, Chen J, Li D, Shen L, Zhang Y, Peng R, He Y. Cirsiliol suppresses the proliferation of human oral cancer cells by targeting topoisomerase I. 3 Biotech 2025; 15:65. [PMID: 39990817 PMCID: PMC11845633 DOI: 10.1007/s13205-025-04221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Oral cancer poses a significant global health challenge, with increasing incidence rates and substantial morbidity and mortality. This study aimed to investigate the antiproliferative effects of cirsiliol in human oral cancer cells. Results from the MTT cell viability assay showed that cirsiliol significantly (p < 0.05) inhibited the growth of all oral cancer cell lines tested, with the IC50 values ranging from 12 to 25 μM. The lowest IC50 of 12 μM was observed against SCC-1 and SCC-25 cell lines, while the IC50 for normal hTRET-OME cells was 75 μM, approximately 6 times higher than against the oral cancer cells. Further molecular analysis revealed that cirsiliol disrupted cellular morphology in SCC-1 and SCC-25 cells with minor effects on the normal hTRET-OME cells. Annexin V/PI staining indicated that the percentage of SCC-1 and SCC-25 apoptotic cells increased significantly from 4.70 and 5.27% in controls to 31.4 and 35.28% at 24 μM cirsiliol, respectively. This effect correlated with an upregulation of Bax, downregulation of Bcl-2, and increased p53 expression. Nonetheless, the apoptotic effects of cirsiliol were considerably lower in normal hTRET-OME cells. Western blotting together with molecular docking analysis suggested that cirsiliol may inhibit the expression of topoisomerase I. Additionally, wound healing and transwell assays demonstrated that cirsiliol significantly (p < 0.05) suppressed the migration and invasion of SCC-1 and SCC-25 cells. In conclusion, these findings indicate that cirsiliol induces apoptosis in oral cancer cells through the inhibition of topoisomerase I.
Collapse
Affiliation(s)
- Ping Xu
- Department of Stomatology, The General Hospital of Western Theater Command, Chengdu, 610038 Sichuan People’s Republic of China
| | - Jun Chen
- Department of Stomatology, The General Hospital of Western Theater Command, Chengdu, 610038 Sichuan People’s Republic of China
| | - Dongwen Li
- Department of Stomatology, The General Hospital of Western Theater Command, Chengdu, 610038 Sichuan People’s Republic of China
| | - Lu Shen
- Department of Stomatology, The General Hospital of Western Theater Command, Chengdu, 610038 Sichuan People’s Republic of China
| | - Yangyi Zhang
- Department of Stomatology, The General Hospital of Western Theater Command, Chengdu, 610038 Sichuan People’s Republic of China
| | - Ruiting Peng
- Department of Stomatology, The General Hospital of Western Theater Command, Chengdu, 610038 Sichuan People’s Republic of China
| | - Yong He
- Department of Stomatology, The General Hospital of Western Theater Command, Chengdu, 610038 Sichuan People’s Republic of China
| |
Collapse
|
49
|
Spiess KL, Geden MJ, Romero SE, Hollville E, Hammond ES, Patterson RL, Girardi QB, Deshmukh M. Apoptosis signaling is activated as a transient pulse in neurons. Cell Death Differ 2025; 32:521-529. [PMID: 39462068 PMCID: PMC11894145 DOI: 10.1038/s41418-024-01403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Apoptosis is a fundamental process of all mammalian cells but exactly how it is regulated in different primary cells remains less explored. In most contexts, apoptosis is engaged to eliminate cells. However, postmitotic cells such as neurons must efficiently balance the need for developmental apoptosis versus the physiological needs for their long-term survival. Neurons are capable of reversing the commitment to death even after the point of cytochrome c release. This ability of neurons to recover from an apoptotic signal suggests that activation of the apoptotic pathway in neurons could be much more transient than is currently recognized. Here, we investigated whether the apoptotic pathway in neurons is a persistent signal or a transient pulse in continuous presence of apoptotic stimulus. We have examined this at three key steps in apoptotic signaling: phosphorylation of c-Jun, induction of the BH3-only family proteins and Bax activation. Strikingly, we found all three of these events occur as transient signals following Nerve Growth Factor (NGF) deprivation-induced apoptosis in sympathetic neurons. This transient apoptosis signal would effectively allow neurons to reset and permit recovery if the apoptotic stimulus is reversed. Excitingly, we have also discovered that a neuron's ability to recover from an apoptotic signal is dependent on expression of the anti-apoptotic Bcl-2 family protein Bcl-xL. Bcl-xL-deficient neurons lose the ability to recover from NGF deprivation even if NGF is restored. Additionally, we show that recovery from a previous exposure to NGF deprivation is protective against subsequent deprivation. Together, these results define a novel mechanism by which apoptosis is regulated in neurons where the transient pulse of the apoptotic signaling supports neuronal resilience.
Collapse
Affiliation(s)
- Keeley L Spiess
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
| | - Matthew J Geden
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Selena E Romero
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Emilie Hollville
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Quintin B Girardi
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Mohanish Deshmukh
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
50
|
Liu H, Wang H, Lin X, Xu M, Lan W, Wang J. Harnessing natural saponins: Advancements in mitochondrial dysfunction and therapeutic applications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156383. [PMID: 39848019 DOI: 10.1016/j.phymed.2025.156383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Mitochondrial dysfunction plays a crucial role in the development of a variety of diseases, notably neurodegenerative disorders, cardiovascular diseases, metabolic syndrome, and cancer. Natural saponins, which are intricate glycosides characterized by steroidal or triterpenoid structures, have attracted interest due to their diverse pharmacological benefits, including anti-inflammatory, antiviral, and anti-aging effects. PURPOSE This review synthesizes recent advancements in understanding mitochondrial dysfunction and explores how saponins can modulate mitochondrial function. It focuses on their potential applications in neuroprotection, cardiovascular health, and oncology. STUDY DESIGN The review incorporates a comprehensive literature analysis, highlighting the interplay between saponins and mitochondrial signaling pathways. Specific attention is given to the effects of saponins like ginsenoside Rg2 and 20(S)-protopanaxatriol on mitophagy and their neuroprotective, anti-aging, and synergistic therapeutic effects when combined. METHODS We conducted a comprehensive review of current research and clinical trials using PubMed, Google Scholar, and SciFinder databases. The search focused on saponins' role in mitochondrial function and their therapeutic effects, including "saponins", "mitochondria" and "mitochondrial function". The analysis primarily focused on articles published between 2011 and 2024. RESULTS The findings indicate that certain saponins can enhance mitophagy and modulate mitochondrial signaling pathways, showing promise in neuroprotection and anti-aging. Additionally, combinations of saponins have demonstrated synergistic effects in myocardial protection and cancer therapy, potentially improving therapeutic outcomes. CONCLUSION Although saponins exhibit significant potential in modulating mitochondrial functions and developing innovative therapeutic strategies, their clinical applications are constrained by low bioavailability. Rigorous clinical trials are essential to translate these findings into effective clinical therapies, ultimately improving patient outcomes through a deeper understanding of saponins' impact on mitochondrial function.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Department of pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610000, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyu Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Min Xu
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Department of pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610000, China
| | - Wenying Lan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinlian Wang
- Traditional Chinese Medicine Hospital of Meishan, Meishan 620010, China.
| |
Collapse
|