1
|
Chernetsov N, Utvenko G. Do first-time avian migrants know where they are going: the clock-and-compass concept today. Front Physiol 2025; 16:1562569. [PMID: 40303593 PMCID: PMC12037376 DOI: 10.3389/fphys.2025.1562569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
What if your life depended on finding a place you've never been-without a GPS device, a guide, or any way of knowing where to go? For young songbirds, this is the reality of their first migration. While this once puzzled researchers studying bird migration, advances in the field have since uncovered that many songbirds rely on an inherited genetic program to guide their remarkable solo journeys. Today, the most widely accepted theory explaining how young birds of species that migrate solitary and do not follow experienced conspecifics find their way to wintering grounds is the 'clock-and-compass' concept. According to this concept, naïve migrants follow a certain compass direction for a pre-defined period. In the simplest case, when the program runs out, they find themselves in their species-specific non-breeding range. However, recent research suggests that this process might be significantly more complex. New data indicate that first-time migrants may not have a complete map but rather a system of beacons. This system could be based, for example, on geomagnetic cues or other cues that help first-year birds navigate their location along the migration route. To date, a significant body of evidence has been gathered to revise the classic 'clock and compass' program. It is likely that first-time migrants of many species (although perhaps not all) are capable of varying degrees of location control based on innate information. The question of what data sources they use and how precise their control remains open for further investigation.
Collapse
Affiliation(s)
- Nikita Chernetsov
- Ornithology Lab, Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
- Department of Vertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| | - Gleb Utvenko
- Biological Station Rybachy, Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
2
|
Feng C, Zhang L, Zhou X, Lu S, Guo R, Song C, Zhang X. Redox imbalance drives magnetic property and function changes in mice. Redox Biol 2025; 81:103561. [PMID: 40020452 PMCID: PMC11910372 DOI: 10.1016/j.redox.2025.103561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
The magnetic properties of substances directly determine their response to an externally applied magnetic field, which are closely associated with magnetoreception, magnetic resonance imaging (MRI), and magnetic bioeffects. However, people's understanding of the magnetic properties of living organisms remains limited. In this study, we utilized NRF2 (nuclear factor erythroid 2-related factor 2) deficient mice to investigate the contribution of redox (oxidation-reduction) homeostasis, in which the key process is the transfer of electron, a direct target of magnetic field and origin of paramagnetism. Our results show that the NRF2-/- mice exhibit significantly altered systemic redox state, accompanied by increased magnetic susceptibility, particularly in the liver and spleen. Further analyses reveal that the levels of paramagnetic reactive oxygen species (ROS) in these tissues are markedly elevated compared to wild-type mice. Moreover, the concentrations of Fe2+ and Fe3+ are significantly elevated in NRF2-/- mice, which are directly correlated with the increased magnetic susceptibility. The disrupted redox balance in NRF2-/- mice not only exacerbates oxidative stress and iron deposition, but also induces impairment to the liver and spleen. The findings highlight the combined effects of ROS and iron metabolism in driving magnetic susceptibility changes, providing valuable theoretical insights for further research into magnetic bioeffects and organ-specific sensitivity to magnetic fields.
Collapse
Affiliation(s)
- Chuanlin Feng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiaoyuan Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230039, China
| | - Shiyu Lu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Ruowen Guo
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Song
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Xin Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230039, China.
| |
Collapse
|
3
|
Vortman Y, Fitak R, Natan E. Magnetoreception and the ruling hypothesis. J Exp Biol 2025; 228:jeb250252. [PMID: 40207401 DOI: 10.1242/jeb.250252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Whereas science is written by humans and cannot escape emotions intervening with scientific thought, the scientific community should be on guard against unnoticeably adopting a favorite hypothesis. When adopting a favorite hypothesis, scientists tend to review their work in favor of this hypothesis and reject contradictory data. In 1890, Thomas Chrowder Chamberlin first described this phenomenon as when 'the search for facts, and their interpretation are dominated by affection for the favored theory until it appears to its advocate to have been overwhelmingly established'. The favorite hypothesis can then quickly transition into a ruling hypothesis, leading to an unconscious bias in favor of supporting evidence and neglect of contradictory observations. This is especially problematic when a scientific field adopts a favorite hypothesis. In this Commentary, we suggest that the field of animal magnetoreception - in particular mechanisms based on radical-pair chemistry and cryptochrome proteins - may be under the reign of a ruling hypothesis. We argue that repeatedly, conclusions are unfounded or otherwise not consistent with the results presented. We use the case of magnetoreception - the only sense that remains without a clearly described receptor - to raise general awareness of the phenomenon of a ruling hypothesis in the scientific community. We emphasize the distinction between the scientist and the scientific community suffering from a hypothesis regime, and further highlight suggestions to mitigate the risk of working under a ruling hypothesis.
Collapse
Affiliation(s)
- Yoni Vortman
- Department of Animal Sciences, Hula Research Center, Tel Hai Academic College, Upper Galilee, 1220800, Israel
- MIGAL - Galilee Research Institute, Kiryat Shmona, 11016, Israel
| | - Robert Fitak
- Department of Biology, Genomics & Bioinformatics Cluster, University of Central Florida, 4110 Libra Dr., Orlando, FL 32816, USA
| | | |
Collapse
|
4
|
Majewska M, Hanić M, Bartölke R, Schmidt J, Bożek J, Gerhards L, Mouritsen H, Koch KW, Solov’yov IA, Brand I. European Robin Cryptochrome-4a Associates with Lipid Bilayers in an Ordered Manner, Fulfilling a Molecular-Level Condition for Magnetoreception. ACS Chem Biol 2025; 20:592-606. [PMID: 39982451 PMCID: PMC11934094 DOI: 10.1021/acschembio.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/22/2025]
Abstract
Since the middle of the 20th century, long-distance avian migration has been known to rely partly on geomagnetic field. However, the underlying sensory mechanism is still not fully understood. Cryptochrome-4a (ErCry4a), found in European robin (Erithacus rubecula), a night-migratory songbird, has been suggested to be a magnetic sensory molecule. It is sensitive to external magnetic fields via the so-called radical-pair mechanism. ErCry4a is primarily located in the outer segments of the double-cone photoreceptor cells in the eye, which contain stacked and highly ordered membranes that could facilitate the anisotropic attachment of ErCry4a needed for magnetic compass sensing. Here, we investigate possible interactions of ErCry4a with a model membrane that mimics the lipid composition of outer segments of vertebrate photoreceptor cells using experimental and computational approaches. Experimental results show that the attachment of ErCry4a to the membrane could be controlled by the physical state of lipid molecules (average area per lipid) in the outer leaflet of the lipid bilayer. Furthermore, polarization modulation infrared reflection absorption spectroscopy allowed us to determine the conformation, motional freedom, and average orientation of the α-helices in ErCry4a in a membrane-associated state. Atomistic molecular dynamics studies supported the experimental results. A ∼ 1000 kcal mol-1 decrease in the interaction energy as a result of ErCry4a membrane binding was determined compared to cases where no protein binding to the membrane occurred. At the molecular level, the binding seems to involve negatively charged carboxylate groups of the phosphoserine lipids and the C-terminal residues of ErCry4a. Our study reveals a potential direct interaction of ErCry4a with the lipid membrane and discusses how this binding could be an essential step for ErCry4a to propagate a magnetic signal further and thus fulfill a role as a magnetoreceptor.
Collapse
Affiliation(s)
- Marta Majewska
- Institute
of Chemistry, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
| | - Maja Hanić
- Institute
of Physics, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
| | - Rabea Bartölke
- Animal
Navigation, Institute of Biology and Environmental Sciences, School
of Mathematics and Science, Carl von Ossietzky
Universität Oldenburg, Oldenburg D-26111, Germany
| | - Jessica Schmidt
- Animal
Navigation, Institute of Biology and Environmental Sciences, School
of Mathematics and Science, Carl von Ossietzky
Universität Oldenburg, Oldenburg D-26111, Germany
| | - Justyna Bożek
- Institute
of Chemistry, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
| | - Luca Gerhards
- Institute
of Physics, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
| | - Henrik Mouritsen
- Animal
Navigation, Institute of Biology and Environmental Sciences, School
of Mathematics and Science, Carl von Ossietzky
Universität Oldenburg, Oldenburg D-26111, Germany
- Research
Center for Neurosensory Sciences, Carl von
Ossietzky Universität Oldenburg, Oldenburg D-26111, Germany
| | - Karl-Wilhelm Koch
- Research
Center for Neurosensory Sciences, Carl von
Ossietzky Universität Oldenburg, Oldenburg D-26111, Germany
- Division
of Biochemistry, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, Oldenburg D-26111, Germany
| | - Ilia A. Solov’yov
- Institute
of Physics, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
- Research
Center for Neurosensory Sciences, Carl von
Ossietzky Universität Oldenburg, Oldenburg D-26111, Germany
- Institute
of Physics, Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| | - Izabella Brand
- Institute
of Chemistry, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
- Research
Center for Neurosensory Sciences, Carl von
Ossietzky Universität Oldenburg, Oldenburg D-26111, Germany
| |
Collapse
|
5
|
Seth PK, Heyers D, Satish B, Mendoza E, Haase K, Borowsky L, Musielak I, Koch KW, Feederle R, Scharff C, Dedek K, Mouritsen H. AAV-mediated transduction of songbird retina. Front Physiol 2025; 16:1549585. [PMID: 40177359 PMCID: PMC11961912 DOI: 10.3389/fphys.2025.1549585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Genetic manipulation of murine retinal tissue through ocular administration of adeno-associated viruses (AAVs) has become a standard technique to investigate a multitude of mechanisms underlying retinal physiology. Resultantly, developments of recombinant viral vectors with improved transduction efficiency and further methodological improvements have mostly focused on murine tissue, whereas AAVs successfully targeting avian retinae have remained scarce. Methodology Using a custom-designed injection setup, we identified a viral serotype with the capability to successfully induce widespread transduction of the bird retina. Results Intravitreal administration of an AAV type 2/9 encoding for enhanced green fluorescent protein (EGFP) in night-migratory European robins (Erithacus rubecula) resulted in transduction coverages of up to 60% within retinal tissue. Subsequent immunohistochemical analyses revealed that the AAV2/9-EGFP serotype almost exclusively targeted photoreceptors: rods, various single cones (UV, blue, green, and red cones), and both (accessory and principal) members of double cones. Discussion The consistently high and photoreceptor-specific transduction efficiency makes the AAV2/9 serotype a powerful tool for carrying out genetic manipulations in avian retinal photoreceptors, thus opening a wealth of opportunities to investigate physiological aspects underlying retinal processing in birds, such as physiological recordings and/or post-transductional behavioural readouts for future vision-related research.
Collapse
Affiliation(s)
- Pranav Kumar Seth
- Neurosensorics Group/Animal Navigation, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Dominik Heyers
- Neurosensorics Group/Animal Navigation, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Baladev Satish
- Neurosensorics Group/Animal Navigation, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Ezequiel Mendoza
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Katrin Haase
- Neurosensorics Group/Animal Navigation, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lisa Borowsky
- Neurosensorics Group/Animal Navigation, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Isabelle Musielak
- Neurosensorics Group/Animal Navigation, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Research Centre for Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Karin Dedek
- Neurosensorics Group/Animal Navigation, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Henrik Mouritsen
- Neurosensorics Group/Animal Navigation, Institute of Biology and Environmental Sciences, Carl on Ossietzky University of Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Ziegenbalg L, Güntürkün O, Winklhofer M. Extremely low frequency magnetic field distracts zebrafish from a visual cognitive task. Sci Rep 2025; 15:8589. [PMID: 40074776 PMCID: PMC11903689 DOI: 10.1038/s41598-025-90194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Electromagnetic fields emitted from overhead power lines and subsea cables are widely regarded to be a disruptive factor for animals using the natural magnetic field as orientation cue for guiding their directed movements. However, it is not known if anthropogenic electromagnetic fields also have the potential to disturb animals attending to information from other sensory modalities. To find out, we trained adult zebrafish (Danio rerio) individually to perform avoidance behavior in response to a visual signal (green LED light spot), which in the exposure group was presented simultaneously with a sinusoidally changing magnetic field (0.3 Hz, group A: 0.015 mT, group B: 0.06 mT). Despite the salience of the visual signal, which was both sufficient and necessary to elicit conditioned avoidance responses, the 0.06 mT magnetic condition had a negative impact on learning performance and response behavior. This suggests that extremely low frequency technical magnetic fields of Earth strength amplitude can act as cross-modal distractor that diverts the attention of animals away from environmentally relevant cues based on nonmagnetic sensory modalities. Our research highlights the need to study the role of anthropogenic magnetic fields as sensory pollutant beyond the scope of magnetic orientation behavior.
Collapse
Affiliation(s)
- Laura Ziegenbalg
- AG Sensory Biology of Animals, Institute for Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Michael Winklhofer
- AG Sensory Biology of Animals, Institute for Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany.
- Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
7
|
Demšar U, Zein B, Long JA. A new data-driven paradigm for the study of avian migratory navigation. MOVEMENT ECOLOGY 2025; 13:16. [PMID: 40069784 PMCID: PMC11900352 DOI: 10.1186/s40462-025-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Avian navigation has fascinated researchers for many years. Yet, despite a vast amount of literature on the topic it remains a mystery how birds are able to find their way across long distances while relying only on cues available locally and reacting to those cues on the fly. Navigation is multi-modal, in that birds may use different cues at different times as a response to environmental conditions they find themselves in. It also operates at different spatial and temporal scales, where different strategies may be used at different parts of the journey. This multi-modal and multi-scale nature of navigation has however been challenging to study, since it would require long-term tracking data along with contemporaneous and co-located information on environmental cues. In this paper we propose a new alternative data-driven paradigm to the study of avian navigation. That is, instead of taking a traditional theory-based approach based on posing a research question and then collecting data to study navigation, we propose a data-driven approach, where large amounts of data, not purposedly collected for a specific question, are analysed to identify as-yet-unknown patterns in behaviour. Current technological developments have led to large data collections of both animal tracking data and environmental data, which are openly available to scientists. These open data, combined with a data-driven exploratory approach using data mining, machine learning and artificial intelligence methods, can support identification of unexpected patterns during migration, and lead to a better understanding of multi-modal navigational decision-making across different spatial and temporal scales.
Collapse
Affiliation(s)
- Urška Demšar
- School of Geography & Sustainable Development, University of St Andrews, Irvine Building, North Street, St Andrews, KT16 9AL, Scotland, UK.
| | - Beate Zein
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Jed A Long
- Department of Geography and Environment, Centre for Animals on the Move, Western University, London, ON, Canada
| |
Collapse
|
8
|
Hore PJ. Magneto-oncology: a radical pair primer. Front Oncol 2025; 15:1539718. [PMID: 40123899 PMCID: PMC11925880 DOI: 10.3389/fonc.2025.1539718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/14/2025] [Indexed: 03/25/2025] Open
Abstract
There are few well-established biophysical mechanisms by which external magnetic fields can influence the biochemistry of molecules in living systems. The radical pair mechanism is arguably the most promising. In this mini-review I summarize the characteristics of radical pairs in a way that may be useful to those engaged in the field of magneto-oncology. The intention is to help researchers decide whether an observed biomedical magnetic field effect could have its origin in radical pair biochemistry. Armed with a physically plausible interaction mechanism, it may be possible to devise and refine a theoretical model and thereby iteratively optimise therapeutic protocols. Such an approach may also help identify experimental artefacts.
Collapse
Affiliation(s)
- P. J. Hore
- Department of Chemistry, Oxford University, Oxford, United Kingdom
| |
Collapse
|
9
|
Günther A, Balaji V, Leberecht B, Forst JJ, Rotov AY, Woldt T, Abdulazhanova D, Mouritsen H, Dedek K. Morphology and connectivity of retinal horizontal cells in two avian species. Front Cell Neurosci 2025; 19:1558605. [PMID: 40103750 PMCID: PMC11914121 DOI: 10.3389/fncel.2025.1558605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
In the outer vertebrate retina, the visual signal is separated into intensity and wavelength information. In birds, seven types of photoreceptors (one rod, four single cones, and two members of the double cone) mediate signals to >20 types of second-order neurons, the bipolar cells and horizontal cells. Horizontal cells contribute to color and contrast processing by providing feedback signals to photoreceptors and feedforward signals to bipolar cells. In fish, reptiles, and amphibians they either encode intensity or show color-opponent responses. Yet, for the bird retina, the number of horizontal cell types is not fully resolved and even more importantly, the synapses between photoreceptors and horizontal cells have never been quantified for any bird species. With a combination of light microscopy and serial EM reconstructions, we found four different types of horizontal cells in two distantly related species, the domestic chicken and the European robin. In agreement with some earlier studies, we confirmed two highly abundant cell types (H1, H2) and two rare cell types (H3, H4), of which H1 is an axon-bearing cell, whereas H2-H4 are axonless. H1 cells made chemical synapses with one type of bipolar cell and an interplexiform amacrine cell at their soma. Dendritic contacts of H1-H4 cells to photoreceptors were type-specific and similar to the turtle retina, which confirms the high degree of evolutionary conservation in the vertebrate outer retina. Our data further suggests that H1 and potentially H2 cells may encode intensity, whereas H3 and H4 may represent color opponent horizontal cells which may contribute to the birds' superb color and/or high acuity vision.
Collapse
Affiliation(s)
- Anja Günther
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Vaishnavi Balaji
- Neurosensory/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Bo Leberecht
- Neurosensory/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Julia J Forst
- Neurosensory/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Alexander Y Rotov
- Neurosensory/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Tobias Woldt
- Neurosensory/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Dinora Abdulazhanova
- Neurosensory/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Henrik Mouritsen
- Neurosensory/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Neurosensory/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Levi A, Meir O, Vilk O, Nathan R, Toledo S, Kolodny O, Vortman Y. Homing through ecological barriers in Balkan pond turtles. Biol Lett 2025; 21:20240442. [PMID: 40132654 PMCID: PMC11936673 DOI: 10.1098/rsbl.2024.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/28/2024] [Accepted: 02/05/2025] [Indexed: 03/27/2025] Open
Abstract
Homing behaviour, the tendency to return home from a place outside an individual's home, requires an ability to navigate by integrating inputs from natural cues. While navigation has been extensively studied, it remains taxonomically biased, mainly focusing on birds. We used the ATLAS tracking system to test homing behaviour of the Balkan pond turtle (Mauremys rivulata), a semi-aquatic reptile. Thirty-six turtles were displaced up to 2.5 km from their capture location and tracked to test for homing behaviour. Another five individuals were released in their capture location as a baseline for local movement. A correlated random-walk model was developed, simulating movement patterns fitted to match turtle movements. Most displaced turtles successfully returned or headed towards their home range within 1-3 days, travelling significantly greater daily distances within those days. Homing turtles showed a more direct and shorter delay than simulated or undisplaced turtles. Our high-resolution tracking revealed that water conduits served as eco-hydrological barriers, causing substantial delays or preventing turtles from passing through the water. Taken together, we demonstrate the navigation capability of the Balkan pond turtle, placing this species as a potential model system for navigation research and conservation biology, specifically as an indicator of wetland connectivity.
Collapse
Affiliation(s)
- Anat Levi
- Hula Research Center, Department of Animal Sciences, Tel-Hai Academic College, Upper Galilee, North District, Israel
- Movement Ecology Lab, Department of Ecology, Evolution and Behavior, Hebrew University of Jerusalem Faculty of Science, Jerusalem, Israel
| | - Omri Meir
- Department of Animal Sciences, Tel-Hai Academic College, Upper Galilee, Israel
| | - Ohad Vilk
- Movement Ecology Lab, Department of Ecology, Evolution and Behavior, Hebrew University of Jerusalem Faculty of Science, Jerusalem, Israel
| | - Ran Nathan
- Movement Ecology Lab, Department of Ecology, Evolution and Behavior, Hebrew University of Jerusalem Faculty of Science, Jerusalem, Israel
| | - Sivan Toledo
- Tel Aviv University Blavatnik School of Computer Science, Tel Aviv, Israel
| | - Oren Kolodny
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoni Vortman
- Hula Research Center, Department of Animal Sciences, Tel-Hai Academic College, Upper Galilee, North District, Israel
- MIGAL - Galilee Research Institute, Kiryat Shemona, Israel
| |
Collapse
|
11
|
Verhelst P, Pauwels I, Pohl L, Reubens J, Schilt B, Hermans A. Electromagnetic fields and diadromous fish spawning migration: An urgent call for knowledge. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106857. [PMID: 39571480 DOI: 10.1016/j.marenvres.2024.106857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 02/09/2025]
Abstract
Diadromous fish species are characterised by spawning migrations between freshwater and marine environments, where they traverse through estuaries and close to coasts. This species group has declined substantially over the past decades due to anthropogenic effects such as habitat fragmentation and loss and overfishing. A rising potential threat to their population recovery is the increasing installation of subsea power cables (SPCs) which generate electromagnetic fields (EMF) as they transport energy from offshore wind farms to land. At least a part of the diadromous species are able to detect EMF, yet it is currently unknown whether EMF by SPCs affect their spawning migrations. With the increasing demand to offshore wind energy production and consequently the establishment of SPCs, the interaction between these SPCs and migrating diadromous fish species will rise in the near future. Consequently, there is an urgent need for knowledge on the impact of SPC-induced EMF on diadromous fish spawning migrations. Such knowledge can be obtained through a combination of lab and in situ experiments. International policy guidelines on the practicalities of deploying SPCs need to be established, taking into account the most up-to-date knowledge on the effect of SPC-induced EMF on diadromous fish spawning migrations.
Collapse
Affiliation(s)
- Pieterjan Verhelst
- Research Institute for Nature and Forest (INBO), Havenlaan 88, box 73, 1000 Brussels, Belgium.
| | - Ine Pauwels
- Research Institute for Nature and Forest (INBO), Havenlaan 88, box 73, 1000 Brussels, Belgium
| | - Lotte Pohl
- Flanders Marine Institute (VLIZ), Jacobsenstraat 1, 8400 Ostend, Belgium
| | - Jan Reubens
- Flanders Marine Institute (VLIZ), Jacobsenstraat 1, 8400 Ostend, Belgium
| | - Britte Schilt
- Witteveen+Bos Engineering and consultancy, Daalsesingel 51c, 3511 SW Utrecht, the Netherlands
| | - Annemiek Hermans
- Witteveen+Bos Engineering and consultancy, Daalsesingel 51c, 3511 SW Utrecht, the Netherlands; Marine Animal Ecology Group, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
| |
Collapse
|
12
|
Utvenko G, Gorvat P, Grebenkova A, Pakhomov A, Chernetsov N. Magnetic orientation of marsh warblers (Acrocephalus palustris) and spotted flycatchers (Muscicapa striata) after simulated crossing of the magnetic equator. J Exp Biol 2025; 228:JEB248169. [PMID: 39887299 DOI: 10.1242/jeb.248169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025]
Abstract
Every year, billions of birds migrate to optimize their foraging, shelter and breeding. They use an inclination compass, which, unlike the technical compass, distinguishes between the directions towards the magnetic equator from the magnetic pole based on magnetic inclination angles, which range from ±90 deg at the poles to 0 deg at the equator. During autumn migration, some species cross the magnetic equator, where field lines are horizontal, i.e. the inclination angle is 0 deg. At this point, the avian magnetic compass becomes ambiguous, because the birds can no longer distinguish 'to the pole' from 'to the equator'. Experiments with bobolinks and garden warblers have shown that these birds adaptively change their orientation when exposed to a horizontal magnetic field. We tested this in marsh warblers and spotted flycatchers, but they showed no such response, suggesting they may use other cues. This indicates that different species may rely on varying stimuli, and the current experimental models may not be universally applicable.
Collapse
Affiliation(s)
- Gleb Utvenko
- Biological Station Rybachy, Zoological Institute of the Russian Academy of Sciences, 238535 Rybachy, Kaliningrad Region, Russia
| | - Polina Gorvat
- Biological Station Rybachy, Zoological Institute of the Russian Academy of Sciences, 238535 Rybachy, Kaliningrad Region, Russia
- Department of Vertebrate Zoology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anastasia Grebenkova
- Biological Station Rybachy, Zoological Institute of the Russian Academy of Sciences, 238535 Rybachy, Kaliningrad Region, Russia
- Department of Vertebrate Zoology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexander Pakhomov
- Biological Station Rybachy, Zoological Institute of the Russian Academy of Sciences, 238535 Rybachy, Kaliningrad Region, Russia
| | - Nikita Chernetsov
- Ornithology Lab, Zoological Institute of the Russian Academy of Sciences, 199034 St Petersburg, Russia
- Department of Vertebrate Zoology, St Petersburg State University, 199034 St Petersburg, Russia
| |
Collapse
|
13
|
Denton MCJ, Smith LD, Xu W, Pugsley J, Toghill A, Kattnig DR. Magnetosensitivity of tightly bound radical pairs in cryptochrome is enabled by the quantum Zeno effect. Nat Commun 2024; 15:10823. [PMID: 39737951 PMCID: PMC11686217 DOI: 10.1038/s41467-024-55124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
The radical pair mechanism accounts for the magnetic field sensitivity of a large class of chemical reactions and is hypothesised to underpin numerous magnetosensitive traits in biology, including the avian compass. Traditionally, magnetic field sensitivity in this mechanism is attributed to radical pairs with weakly interacting, well-separated electrons; closely bound pairs were considered unresponsive to weak fields due to arrested spin dynamics. In this study, we challenge this view by examining the FAD-superoxide radical pair within cryptochrome, a protein hypothesised to function as a biological magnetosensor. Contrary to expectations, we find that this tightly bound radical pair can respond to Earth-strength magnetic fields, provided that the recombination reaction is strongly asymmetric-a scenario invoking the quantum Zeno effect. These findings present a plausible mechanism for weak magnetic field effects in biology, suggesting that even closely associated radical pairs, like those involving superoxide, may play a role in magnetic sensing.
Collapse
Affiliation(s)
- Matt C J Denton
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK
| | - Luke D Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK
| | - Wenhao Xu
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK
| | - Jodeci Pugsley
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK
| | - Amelia Toghill
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK
| | - Daniel R Kattnig
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK.
- Department of Physics, University of Exeter, Stocker Rd, Exeter, Devon, EX4 4QL, UK.
| |
Collapse
|
14
|
Li C, Chen Z, Xiao M, Liu J, Huang Y, Zhu Z, Liu Y, Pan L, An X, Hua W, He L. Magneto-Photonic Effect of Fe 3O 4@SiO 2 Nanorods for Visualizing the Direction of Magnetic Fields with High Spatiotemporal Resolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70656-70664. [PMID: 39663800 DOI: 10.1021/acsami.4c16841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
In this work, we demonstrate the visualization of the complex magnetic fields by utilizing the magneto-photonic effect of Fe3O4@SiO2 nanorod suspension with one-to-one correspondence between the visible colors and magnetic field directions. The selected anisotropic nanorods possess appropriate saturated magnetization and high electrostatic repulsion, which is magnetically direction-responsive but strength-insensitive, accurately detecting the field direction while eliminating the influence from intensity. The combined experiment-simulation study validates the accuracy of the simulation, allowing us to further determine the intensity distribution of the magnetic field. The packed photonic device's high spatial (∼20 μm) and temporal (∼1 ms) resolutions were confirmed by time-resolved ultrasmall-angle X-ray scattering (USXAS) tests, as well as observations using an optical microscope and a high-speed camera. Our work provides a new technique for visualizing magnetic fields and opens an avenue toward further studying and utilizing complex magnetic fields for various purposes.
Collapse
Affiliation(s)
- Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Zhijie Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Mengqi Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Jingjing Liu
- Institute of Information Technology, Suzhou Institute of Trade and Commerce, Suzhou 215009, Jiangsu, P.R. China
| | - Yang Huang
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Zhijie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Yonghao Liu
- The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Liangbin Pan
- The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Wenqiang Hua
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute Chinese Academy of Sciences, Shanghai 201204, PR China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| |
Collapse
|
15
|
Zhuo H, Yang Z, Zhang C, Xu N, Xue B, Zhu Z, Xie Y. A Biomimetic Pose Estimation and Target Perception Strategy for Transmission Line Maintenance UAVs. Biomimetics (Basel) 2024; 9:745. [PMID: 39727749 DOI: 10.3390/biomimetics9120745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/19/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
High-voltage overhead power lines serve as the carrier of power transmission and are crucial to the stable operation of the power system. Therefore, it is particularly important to detect and remove foreign objects attached to transmission lines, as soon as possible. In this context, the widespread promotion and application of smart robots in the power industry can help address the increasingly complex challenges faced by the industry and ensure the efficient, economical, and safe operation of the power grid system. This article proposes a bionic-based UAV pose estimation and target perception strategy, which aims to address the lack of pattern recognition and automatic tracking capabilities of traditional power line inspection UAVs, as well as the poor robustness of visual odometry. Compared with the existing UAV environmental perception solutions, the bionic target perception algorithm proposed in this article can efficiently extract point and line features from infrared images and realize the target detection and automatic tracking function of small multi-rotor drones in the power line scenario, with low power consumption.
Collapse
Affiliation(s)
- Haoze Zhuo
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
- Electric Power Research Institute of Guangxi Power Grid Co., Ltd., Nanning 530000, China
| | - Zhong Yang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Chi Zhang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Nuo Xu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Bayang Xue
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Zekun Zhu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yucheng Xie
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
16
|
Panagopoulos DJ, Karabarbounis A, Chrousos GP. Biophysical mechanism of animal magnetoreception, orientation and navigation. Sci Rep 2024; 14:30053. [PMID: 39627252 PMCID: PMC11615392 DOI: 10.1038/s41598-024-77883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
We describe a biophysical mechanism for animal magnetoreception, orientation and navigation in the geomagnetic field (GMF), based on the ion forced oscillation (IFO) mechanism in animal cell membrane voltage-gated ion channels (VGICs) (IFO-VGIC mechanism). We review previously suggested hypotheses. We describe the structure and function of VGICs and argue that they are the most sensitive electromagnetic sensors in all animals. We consider the magnetic force exerted by the GMF on a mobile ion within a VGIC of an animal with periodic velocity variation. We apply this force in the IFO equation resulting in solution connecting the GMF intensity with the velocity variation rate. We show that animals with periodic velocity variations, receive oscillating forces on their mobile ions within VGICs, which are forced to oscillate exerting forces on the voltage sensors of the channels, similar or greater to the forces from membrane voltage changes that normally induce gating. Thus, the GMF in combination with the varying animal velocity can gate VGICs and alter cell homeostasis in a degree depending, for a given velocity and velocity variation rate, on GMF intensity (unique in each latitude) and the angle between velocity and GMF axis, which determine animal position and orientation.
Collapse
Affiliation(s)
- Dimitris J Panagopoulos
- Choremeion Research Laboratory, 1st Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
- Electromagnetic Field-Biophysics Research Laboratory, Athens, Greece.
| | - Andreas Karabarbounis
- Department of Physics, Section of Nuclear and Particle Physics, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Choremeion Research Laboratory, 1st Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
- Medical School, University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair On Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
17
|
Pabst K, Gkanias E, Webb B, Homberg U, Endres D. A computational model for angular velocity integration in a locust heading circuit. PLoS Comput Biol 2024; 20:e1012155. [PMID: 39705331 DOI: 10.1371/journal.pcbi.1012155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 01/06/2025] [Accepted: 11/25/2024] [Indexed: 12/22/2024] Open
Abstract
Accurate navigation often requires the maintenance of a robust internal estimate of heading relative to external surroundings. We present a model for angular velocity integration in a desert locust heading circuit, applying concepts from early theoretical work on heading circuits in mammals to a novel biological context in insects. In contrast to similar models proposed for the fruit fly, this circuit model uses a single 360° heading direction representation and is updated by neuromodulatory angular velocity inputs. Our computational model was implemented using steady-state firing rate neurons with dynamical synapses. The circuit connectivity was constrained by biological data, and remaining degrees of freedom were optimised with a machine learning approach to yield physiologically plausible neuron activities. We demonstrate that the integration of heading and angular velocity in this circuit is robust to noise. The heading signal can be effectively used as input to an existing insect goal-directed steering circuit, adapted for outbound locomotion in a steady direction that resembles locust migration. Our study supports the possibility that similar computations for orientation may be implemented differently in the neural hardware of the fruit fly and the locust.
Collapse
Affiliation(s)
- Kathrin Pabst
- Department of Psychology, Philipps-Universität Marburg, Marburg, Hesse, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg, Justus Liebig Universität Giessen, and Technische Universität Darmstadt, Hesse, Germany
| | - Evripidis Gkanias
- School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Barbara Webb
- School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Uwe Homberg
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg, Justus Liebig Universität Giessen, and Technische Universität Darmstadt, Hesse, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, Hesse, Germany
| | - Dominik Endres
- Department of Psychology, Philipps-Universität Marburg, Marburg, Hesse, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg, Justus Liebig Universität Giessen, and Technische Universität Darmstadt, Hesse, Germany
| |
Collapse
|
18
|
Tian L, Ren J, Luo Y, Li Y, Guo W, Zhang B, Pan Y. Potential health risks of hypomagnetic field for manned deep-space explorations. Natl Sci Rev 2024; 11:nwae395. [PMID: 39660302 PMCID: PMC11629523 DOI: 10.1093/nsr/nwae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 12/12/2024] Open
Affiliation(s)
- Lanxiang Tian
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, China
| | - Jie Ren
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, China
| | - Yukai Luo
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China
| | - Bingfang Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, China
| |
Collapse
|
19
|
Deviers J, Cailliez F, de la Lande A, Kattnig DR. Avian cryptochrome 4 binds superoxide. Comput Struct Biotechnol J 2024; 26:11-21. [PMID: 38204818 PMCID: PMC10776438 DOI: 10.1016/j.csbj.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Flavin-binding cryptochromes are blue-light sensitive photoreceptors that have been implicated with magnetoreception in some species. The photocycle involves an intra-protein photo-reduction of the flavin cofactor, generating a magnetosensitive radical pair, and its subsequent re-oxidation. Superoxide (O2 • - ) is generated in the re-oxidation with molecular oxygen. The resulting O2 • - -containing radical pairs have also been hypothesised to underpin various magnetosensitive traits, but due to fast spin relaxation when tumbling in solution would require immobilisation. We here describe our insights in the binding of superoxide to cryptochrome 4 from C. livia based on extensive all-atom molecular dynamics studies and density-functional theory calculations. The positively charged "crypt" region that leads to the flavin binding pocket transiently binds O2 • - at 5 flexible binding sites centred on arginine residues. Typical binding times amounted to tens of nanoseconds, but exceptional binding events extended to several hundreds of nanoseconds and slowed the rotational diffusion, thereby realising rotational correlation times as large as 1 ns. The binding sites are particularly efficient in scavenging superoxide escaping from a putative generation site close to the flavin-cofactor, possibly implying a functional relevance. We discuss our findings in view of a potential magnetosensitivity of biological flavin semiquinone/superoxide radical pairs.
Collapse
Affiliation(s)
- Jean Deviers
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Fabien Cailliez
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Aurélien de la Lande
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Daniel R. Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
| |
Collapse
|
20
|
Sotoodehfar A, Rishabh, Zadeh-Haghighi H, Simon C. Quantum theory of a potential biological magnetic field sensor: Radical pair mechanism in flavin adenine dinucleotide biradicals. Comput Struct Biotechnol J 2024; 26:70-77. [PMID: 39697355 PMCID: PMC11652833 DOI: 10.1016/j.csbj.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Recent studies in vitro and in vivo suggest that flavin adenine dinucleotide (FAD) on its own might be able to act as a biological magnetic field sensor. Motivated by these observations, in this study, we develop a detailed quantum theoretical model for the radical pair mechanism (RPM) for the flavin adenine biradical within the FAD molecule. We use the results of existing molecular dynamics simulations to determine the time-varying distance between the radicals on FAD, which we then feed into a quantum master equation treatment of the RPM. In contrast to previous semi-classical models, which are limited to the low-field and high-field cases, our quantum model can predict the full magnetic field dependence of the transient absorption signal. Our model's predictions are consistent with experiments at physiological pH values.
Collapse
Affiliation(s)
- Amirhosein Sotoodehfar
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Rishabh
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
21
|
Yee C, Bartölke R, Görtemaker K, Schmidt J, Leberecht B, Mouritsen H, Koch KW. Comparison of retinol binding protein 1 with cone specific G-protein as putative effector molecules in cryptochrome signalling. Sci Rep 2024; 14:28326. [PMID: 39550406 PMCID: PMC11569197 DOI: 10.1038/s41598-024-79699-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Vision and magnetoreception in navigating songbirds are strongly connected as recent findings link a light dependent radical-pair mechanism in cryptochrome proteins to signalling pathways in cone photoreceptor cells. A previous yeast-two-hybrid screening approach identified six putative candidate proteins showing binding to cryptochrome type 4a. So far, only the interaction of the cone specific G-protein transducin α-subunit was investigated in more detail. In the present study, we compare the binding features of the G-protein α-subunit with those of another candidate from the yeast-two-hybrid screen, cellular retinol binding protein. Purified recombinant European robin retinol binding protein bound retinol with high affinity, displaying an EC50 of less than 5 nM, thereby demonstrating its functional state. We applied surface plasmon resonance and a Förster resonance transfer analysis to test for interactions between retinol binding protein and cryptochrome 4a. In the absence of retinol, we observed no robust binding events, which contrasts the strong interaction we observed between cryptochrome 4a and the G-protein α-subunit. We conclude that retinol binding protein is unlikely to be involved in the primary magnetosensory signalling cascade.
Collapse
Affiliation(s)
- Chad Yee
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Rabea Bartölke
- Neurosensorics/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Katharina Görtemaker
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Jessica Schmidt
- Neurosensorics/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Bo Leberecht
- Animal Biodiversity and Evolutionary Biology, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Henrik Mouritsen
- Neurosensorics/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany.
- Research Center for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany.
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany.
- Research Center for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
22
|
Packmor F, Kishkinev D, Zechmeister T, Mouritsen H, Holland RA. Migratory birds can extract positional information from magnetic inclination and magnetic declination alone. Proc Biol Sci 2024; 291:rspb20241363. [PMID: 39532133 DOI: 10.1098/rspb.2024.1363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/23/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Migratory birds are able to navigate over great distances with remarkable accuracy. The mechanism they use to achieve this feat is thought to involve two distinct steps: locating their position (the 'map') and heading towards the direction determined (the 'compass'). For decades, this map-and-compass concept has shaped our perception of navigation in animals, although the nature of the map remains debated. However, some recent studies suggest the involvement of the Earth's magnetic field in the map step. Here, we tested whether migratory songbirds, Eurasian reed warblers (Acrocephalus scirpaceus), can determine their position based on two magnetic field components that are also associated with direction finding, i.e. magnetic inclination and magnetic declination. During a virtual magnetic displacement experiment, the birds were exposed to altered magnetic inclination and magnetic declination values that would indicate a displacement from their natural migratory corridor, but the total intensity of the field remained unchanged, creating a spatial mismatch between these components. The response was a change in the birds' migratory direction consistent with a compensatory re-orientation. This suggests that birds can extract positional as well as directional information from these cues, even when they are in conflict with another component of the magnetic field. It remains to be seen whether birds use the total intensity of Earth's magnetic field for navigation.
Collapse
Affiliation(s)
- Florian Packmor
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
- Lower Saxon Wadden Sea National Park Authority, Wilhelmshaven 26382, Germany
| | - Dmitry Kishkinev
- School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK
| | | | - Henrik Mouritsen
- Research group 'Neurosensorik/Animal Navigation', Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg 26129, Germany
- Research Center for Neurosensory Sciences, University of Oldenburg, Oldenburg 26129, Germany
| | - Richard A Holland
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
23
|
Brooks WE. Offshore vagrancy in passerines is predicted by season, wind-drift, and species characteristics. MOVEMENT ECOLOGY 2024; 12:64. [PMID: 39267123 PMCID: PMC11391667 DOI: 10.1186/s40462-024-00504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Migratory birds accomplish remarkable feats of long-distance navigation. Vagrants, few individuals who migrate to incorrect locations, reveal conditions where orientation and navigation fail. Studies of vagrancy on a continental scale reveal the importance of external factors such as strong winds driving birds off course, clouds obscuring migratory landmarks, and natural disruptions in the Earth's magnetic field interfering with migratory orientation. Species may also possess characteristics that make them more prone to vagrancy. The external drivers of vagrancy on a smaller scale are less understood. METHODS I used eBird, a community science dataset comprising millions of bird observations, to study land passerines observed over the Pacific Ocean, here termed offshore vagrants. These data present the opportunity to study a particular case of vagrancy: small-scale displacement into highly inhospitable areas. I modeled how season, wind, lack of visibility, interference with magnetoreception, and species differences may predict offshore vagrancy. Then, I modeled how species vagrancy likelihood is predicted by morphological and life history traits. RESULTS Vagrancy was more common in the fall and positively associated with stronger tail winds in the spring. Species with greater preference for understory foraging habitat were less likely to occur as vagrants. Species vagrancy likelihood was higher in birds with a longer migration distance and rounded wings, but the relationship was weaker in birds with a pointed wings. Brown-headed Cowbirds were the most common offshore species in terms of absolute number of records and proportional to onshore frequency. CONCLUSIONS Offshore community science records proved revealing of mechanisms for small scale vagrancy in passerines. Offshore vagrancy can be driven by wind drift in the spring, but not in the fall despite higher overall levels of vagrancy. Life history characteristics like foraging habitat preference and migration duration may make some species more vulnerable to the effects of wind drift. Species with longer migrations may have more time to encounter vagrancy causing events, but greater aerodynamic efficiency may counteract this effect.
Collapse
Affiliation(s)
- William E Brooks
- George Mason University, Fairfax, VA, 22030, USA.
- Department of Biology, George Mason University, Science and Technology Campus, 10900 University Boulevard, Manassas, VA, 20110, USA.
| |
Collapse
|
24
|
Yang ZS, Gao S, Zhang JL. Magnetic manipulation of the reactivity of singlet oxygen: from test tubes to living cells. Natl Sci Rev 2024; 11:nwae069. [PMID: 39144743 PMCID: PMC11321247 DOI: 10.1093/nsr/nwae069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/14/2024] [Accepted: 02/17/2024] [Indexed: 08/16/2024] Open
Abstract
Although magnetism undoubtedly influences life on Earth, the science behind biological magnetic sensing is largely a mystery, and it has proved challenging, especially in the life sciences, to harness the interactions of magnetic fields (MFs) with matter to achieve specific ends. Using the well-established radical pair (RP) mechanism, we here demonstrate a bottom-up strategy for the exploitation of MF effects in living cells by translating knowledge from studies of RP reactions performed in vitro. We found an unprecedented MF dependence of the reactivity of singlet oxygen (1O2) towards electron-rich substrates (S) such as anthracene, lipids and iodide, in which [S ˙+ O2 ˙-] RPs are formed as a basis for MFs influencing molecular redox events in biological systems. The close similarity of the observed MF effects on the biologically relevant process of lipid peroxidation in solution, in membrane mimics and in living cells, shows that MFs can reliably be used to manipulate 1O2-induced cytotoxicity and cell-apoptosis-related protein expression. These findings led to a 'proof-of-concept' study on MF-assisted photodynamic therapy in vivo, highlighting the potential of MFs as a non-invasive tool for controlling cellular events.
Collapse
Affiliation(s)
- Zi-Shu Yang
- Institute of Inorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Song Gao
- Institute of Inorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Spin-X Institute and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, China
- Institute of Inorganic and Material Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Jun-Long Zhang
- Institute of Inorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
25
|
Liu YF, Li YL, Xing TF, Xue DX, Liu JX. Genetic architecture of long-distance migration and population genomics of the endangered Japanese eel. iScience 2024; 27:110563. [PMID: 39165844 PMCID: PMC11334786 DOI: 10.1016/j.isci.2024.110563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
The Japanese eel (Anguilla japonica), a flagship anguillid species for conservation, is known for its long-distance-oriented migration. However, our understanding of the genetic architecture underlying long-distance migration and population genomic characteristics of A. japonica is still limited. Here, we generated a high-quality chromosome-level genome assembly and conducted whole-genome resequencing of 218 individuals to explore these aspects. Strong signals of selection were found on genes involved in long-distance aerobic exercise and navigation, which might be associated with evolutionary adaptation to long-distance migrations. Low genetic diversity was detected, which might result from genetic drift associated with demographic declines. Both mitochondrial and nuclear genomic datasets supported the existence of a single panmictic population for Japanese eel, despite signals of single-generation selection. Candidate genes for local selection involved in functions like development and circadian rhythm. The findings can provide insights to adaptative evolution to long-distance migration and inform conservation efforts for A. japonica.
Collapse
Affiliation(s)
- Yan-Fang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Teng-Fei Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Dong-Xiu Xue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
26
|
Günther A, Haverkamp S, Irsen S, Watkins PV, Dedek K, Mouritsen H, Briggman KL. Species-specific circuitry of double cone photoreceptors in two avian retinas. Commun Biol 2024; 7:992. [PMID: 39143253 PMCID: PMC11325025 DOI: 10.1038/s42003-024-06697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
In most avian retinas, double cones (consisting of a principal and accessory member) outnumber other photoreceptor types and have been associated with various functions, such as encoding luminance, sensing polarized light, and magnetoreception. However, their down-stream circuitry is poorly understood, particularly across bird species. Analysing species differences is important to understand changes in circuitry driven by ecological adaptations. We compare the ultrastructure of double cones and their postsynaptic bipolar cells between a night-migratory European robin and non-migratory chicken. We discover four previously unidentified bipolar cell types in the European robin retina, including midget-like bipolar cells mainly connected to one principal member. A downstream ganglion cell reveals a complete midget-like circuit similar to a circuit in the peripheral primate retina. Additionally, we identify a selective circuit transmitting information from a specific subset of accessory members. Our data highlight species-specific differences in double cone to bipolar cell connectivity, potentially reflecting ecological adaptations.
Collapse
Affiliation(s)
- Anja Günther
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior-caesar, Bonn, Germany.
| | - Silke Haverkamp
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior-caesar, Bonn, Germany
| | - Stephan Irsen
- Electron Microscopy and Analytics, Max Planck Institute for Neurobiology of Behavior-caesar, Bonn, Germany
| | - Paul V Watkins
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior-caesar, Bonn, Germany
| | - Karin Dedek
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, Oldenburg, Germany
| | - Henrik Mouritsen
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, Oldenburg, Germany
| | - Kevin L Briggman
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior-caesar, Bonn, Germany.
| |
Collapse
|
27
|
Karwinkel T, Peter A, Holland RA, Thorup K, Bairlein F, Schmaljohann H. A conceptual framework on the role of magnetic cues in songbird migration ecology. Biol Rev Camb Philos Soc 2024; 99:1576-1593. [PMID: 38629349 DOI: 10.1111/brv.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 07/06/2024]
Abstract
Migrating animals perform astonishing seasonal movements by orienting and navigating over thousands of kilometres with great precision. Many migratory species use cues from the sun, stars, landmarks, olfaction and the Earth's magnetic field for this task. Among vertebrates, songbirds are the most studied taxon in magnetic-cue-related research. Despite multiple studies, we still lack a clear understanding of when, where and how magnetic cues affect the decision-making process of birds and hence, their realised migratory behaviour in the wild. This understanding is especially important to interpret the results of laboratory experiments in an ecologically appropriate way. In this review, we summarise the current findings about the role of magnetic cues for migratory decisions in songbirds. First, we review the methodological principles for orientation and navigation research, specifically by comparing experiments on caged birds with experiments on free-flying birds. While cage experiments can show the sensory abilities of birds, studies with free-flying birds can characterise the ecological roles of magnetic cues. Second, we review the migratory stages, from stopover to endurance flight, in which songbirds use magnetic cues for their migratory decisions and incorporate this into a novel conceptual framework. While we lack studies examining whether and when magnetic cues affect orientation or navigation decisions during flight, the role of magnetic cues during stopover is relatively well studied, but mostly in the laboratory. Notably, many such studies have produced contradictory results so that understanding the biological importance of magnetic cues for decisions in free-flying songbirds is not straightforward. One potential explanation is that reproducibility of magnetic-cue experiments is low, probably because variability in the behavioural responses of birds among experiments is high. We are convinced that parts of this variability can be explained by species-specific and context-dependent reactions of birds to the study conditions and by the bird's high flexibility in whether they include magnetic cues in a decision or not. Ultimately, this review should help researchers in the challenging field of magnetoreception to design experiments meticulously and interpret results of such studies carefully by considering the migration ecology of their focal species.
Collapse
Affiliation(s)
- Thiemo Karwinkel
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| | - Annika Peter
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| | - Richard A Holland
- School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Kasper Thorup
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Franz Bairlein
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell, 78315, Germany
| | - Heiko Schmaljohann
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| |
Collapse
|
28
|
Luo J, Benjamin P, Gerhards L, Hogben HJ, Hore PJ. Orientation of birds in radiofrequency fields in the absence of the Earth's magnetic field: a possible test for the radical pair mechanism of magnetoreception. J R Soc Interface 2024; 21:20240133. [PMID: 39110232 PMCID: PMC11305414 DOI: 10.1098/rsif.2024.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 08/10/2024] Open
Abstract
The magnetic compass sense of migratory songbirds is thought to derive from magnetically sensitive photochemical reactions in cryptochromes located in photoreceptor cells in the birds' retinas. More specifically, transient radical pairs formed by light-activation of these proteins have been proposed to account for the birds' ability to orient themselves using the Earth's magnetic field and for the observation that radiofrequency magnetic fields, superimposed on the Earth's magnetic field, can disrupt this ability. Here, by means of spin dynamics simulations, we show that it may be possible for the birds to orient in a monochromatic radiofrequency field in the absence of the Earth's magnetic field. If such a behavioural test were successful, it would provide powerful additional evidence for a radical pair mechanism of avian magnetoreception.
Collapse
Affiliation(s)
- Jiate Luo
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Luca Gerhards
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | - P. J. Hore
- Department of Chemistry, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Bai Y, Shao S, Zhang J, Zhao X, Fang C, Wang T, Wang Y, Zhao H. A Review of Brain-Inspired Cognition and Navigation Technology for Mobile Robots. CYBORG AND BIONIC SYSTEMS 2024; 5:0128. [PMID: 38938902 PMCID: PMC11210290 DOI: 10.34133/cbsystems.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/23/2024] [Indexed: 06/29/2024] Open
Abstract
Brain-inspired navigation technologies combine environmental perception, spatial cognition, and target navigation to create a comprehensive navigation research system. Researchers have used various sensors to gather environmental data and enhance environmental perception using multimodal information fusion. In spatial cognition, a neural network model is used to simulate the navigation mechanism of the animal brain and to construct an environmental cognition map. However, existing models face challenges in achieving high navigation success rate and efficiency. In addition, the limited incorporation of navigation mechanisms borrowed from animal brains necessitates further exploration. On the basis of the brain-inspired navigation process, this paper launched a systematic study on brain-inspired environment perception, brain-inspired spatial cognition, and goal-based navigation in brain-inspired navigation, which provides a new classification of brain-inspired cognition and navigation techniques and a theoretical basis for subsequent experimental studies. In the future, brain-inspired navigation technology should learn from more perfect brain-inspired mechanisms to improve its generalization ability and be simultaneously applied to large-scale distributed intelligent body cluster navigation. The multidisciplinary nature of brain-inspired navigation technology presents challenges, and multidisciplinary scholars must cooperate to promote the development of this technology.
Collapse
Affiliation(s)
- Yanan Bai
- School of Computer Science and Engineering,
Northeastern University, Shenyang 110819, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation,
Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing,
Chinese Academy of Sciences, Shenyang 110169, China
| | - Shiliang Shao
- State Key Laboratory of Robotics, Shenyang Institute of Automation,
Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing,
Chinese Academy of Sciences, Shenyang 110169, China
| | - Jin Zhang
- School of Computer Science and Engineering,
Northeastern University, Shenyang 110819, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation,
Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing,
Chinese Academy of Sciences, Shenyang 110169, China
| | - Xianzhe Zhao
- School of Computer Science and Engineering,
Northeastern University, Shenyang 110819, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation,
Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing,
Chinese Academy of Sciences, Shenyang 110169, China
| | - Chuxi Fang
- School of Computer Science and Engineering,
Northeastern University, Shenyang 110819, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation,
Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing,
Chinese Academy of Sciences, Shenyang 110169, China
| | - Ting Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation,
Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing,
Chinese Academy of Sciences, Shenyang 110169, China
| | - Yongliang Wang
- Department of Artificial Intelligence,
University of Groningen, Groningen 9747 AG, Netherlands
| | - Hai Zhao
- School of Computer Science and Engineering,
Northeastern University, Shenyang 110819, China
| |
Collapse
|
30
|
Gao B, Hu G, Chapman JW. Effects of nocturnal celestial illumination on high-flying migrant insects. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230115. [PMID: 38705175 PMCID: PMC11070249 DOI: 10.1098/rstb.2023.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/27/2024] [Indexed: 05/07/2024] Open
Abstract
Radar networks hold great promise for monitoring population trends of migrating insects. However, it is important to elucidate the nature of responses to environmental cues. We use data from a mini-network of vertical-looking entomological radars in the southern UK to investigate changes in nightly abundance, flight altitude and behaviour of insect migrants, in relation to meteorological and celestial conditions. Abundance of migrants showed positive relationships with air temperature, indicating that this is the single most important variable influencing the decision to initiate migration. In addition, there was a small but significant effect of moonlight illumination, with more insects migrating on full moon nights. While the effect of nocturnal illumination levels on abundance was relatively minor, there was a stronger effect on the insects' ability to orientate close to downwind: flight headings were more tightly clustered on nights when the moon was bright and when cloud cover was sparse. This indicates that nocturnal illumination is important for the navigational mechanisms used by nocturnal insect migrants. Further, our results clearly show that environmental conditions such as air temperature and light levels must be considered if long-term radar datasets are to be used to assess changing population trends of migrants. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Boya Gao
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- Centre of Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- Centre of Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Jason W. Chapman
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- Centre of Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
31
|
Kretschmer K, Frederiksen A, Reinholdt P, Kongsted J, Solov’yov IA. Understanding the Red Shift in the Absorption Spectrum of the FAD Cofactor in ClCry4 Protein. J Phys Chem B 2024; 128:5320-5326. [PMID: 38805723 PMCID: PMC11163422 DOI: 10.1021/acs.jpcb.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
It is still a puzzle that has not been entirely solved how migratory birds utilize the Earth's magnetic field for biannual migration. The most consistent explanation thus far is rooted in the modulation of the biological function of the cryptochrome 4 (Cry4) protein by an external magnetic field. This phenomenon is closely linked with the flavin adenine dinucleotide (FAD) cofactor that is noncovalently bound in the protein. Cry4 is activated by blue light, which is absorbed by the FAD cofactor. Subsequent electron and proton transfers trigger radical pair formation in the protein, which is sensitive to the external magnetic field. An important long-lasting redox state of the FAD cofactor is the signaling (FADH•) state, which is present after the transient electron transfer steps have been completed. Recent experimental efforts succeeded in crystallizing the Cry4 protein from Columbia livia (ClCry4) with all of the important residues needed for protein photoreduction. This specific crystallization of Cry4 protein so far is the only avian cryptochrome crystal structure available, which, however, has great similarity to the Cry4 proteins of night migratory birds. The previous experimental studies of the ClCry4 protein included the absorption properties of the protein in its different redox states. The absorption spectrum of the FADH• state demonstrated a peculiar red shift compared to the photoabsorption properties of the FAD cofactor in its FADH• state in other Cry proteins from other species. The aim of this study is to understand this red shift by employing the tools of computational microscopy and, in particular, a QM/MM approach that relies on the polarizable embedding approximation.
Collapse
Affiliation(s)
- Katarina Kretschmer
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Anders Frederiksen
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK 5230 Odense, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK 5230 Odense, Denmark
| | - Ilia A. Solov’yov
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory
Science, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky
Str. 9-11, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
32
|
Pot MT, Visser ME, Helm B, von Rönn JAC, van der Jeugd HP. Revisiting Perdeck's massive avian migration experiments debunks alternative social interpretations. Biol Lett 2024; 20:20240217. [PMID: 38955225 DOI: 10.1098/rsbl.2024.0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
Whether avian migrants can adapt to their changing world depends on the relative importance of genetic and environmental variation for the timing and direction of migration. In the classic series of field experiments on avian migration, A. C. Perdeck discovered that translocated juveniles failed to reach goal areas, whereas translocated adults performed 'true-goal navigation'. His translocations of > 14 000 common starlings (Sturnus vulgaris) suggested that genetic mechanisms guide juveniles into a population-specific direction, i.e. 'vector navigation'. However, alternative explanations involving social learning after release in juveniles could not be excluded. By adding historical data from translocation sites, data that was unavailable in Perdeck's days, and by integrated analyses including the original data, we could not explain juvenile migrations from possible social information upon release. Despite their highly social behaviour, our findings are consistent with the idea that juvenile starlings follow inherited information and independently reach their winter quarters. Similar to more solitarily migrating songbirds, starlings would require genetic change to adjust the migration route in response to global change.
Collapse
Affiliation(s)
- Morrison T Pot
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Vogeltrekstation - Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Barbara Helm
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Swiss Ornithological Institute, Sempach, Lucerne, Switzerland
| | | | - Henk P van der Jeugd
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Vogeltrekstation - Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
33
|
Shirdhankar RN, Malkemper EP. Cognitive maps and the magnetic sense in vertebrates. Curr Opin Neurobiol 2024; 86:102880. [PMID: 38657284 DOI: 10.1016/j.conb.2024.102880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Navigation requires a network of neurons processing inputs from internally generated cues and external landmarks. Most studies on the neuronal basis of navigation in vertebrates have focused on rats and mice and the canonical senses vision, hearing, olfaction, and somatosensation. Some animals have evolved the ability to sense the Earth's magnetic field and use it for orientation. It can be expected that in these animals magnetic cues are integrated with other sensory cues in the cognitive map. We provide an overview of the behavioral evidence and brain regions involved in magnetic sensing in support of this idea, hoping that this will guide future experiments.
Collapse
Affiliation(s)
- Runita N Shirdhankar
- Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior - Caesar, Ludwig-Erhard-Allee 2, Bonn 53175, Germany; International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - E Pascal Malkemper
- Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior - Caesar, Ludwig-Erhard-Allee 2, Bonn 53175, Germany.
| |
Collapse
|
34
|
Zhou X, Zhang L, Zhang P, Xu H, Song J, Chang Y, Cai T, Xie C. Comparative transcriptomic analysis revealed important processes underlying the static magnetic field effects on Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1390031. [PMID: 38863539 PMCID: PMC11165219 DOI: 10.3389/fpls.2024.1390031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
Static magnetic field (SMF) plays important roles in various biological processes of many organisms including plants, though the molecular mechanism remains largely unclear. Here in this study, we evaluated different magnetic setups to test their effects on growth and development on Arabidopsis (Arabidopsis thaliana), and discovered that plant growth was significantly enhanced by inhomogeneous SMF generated by a regular triangular prism magnet perpendicular to the direction of gravity. Comparative transcriptomic analysis revealed that auxin synthesis and signal transduction genes were upregulated by SMF exposure. SMF also facilitated plants to maintain the iron homeostasis. The expression of iron metabolism-related genes was downregulated by SMF, however, the iron content in plant tissues remains relatively unchanged. Furthermore, SMF exposure also helped the plants to reduce ROS level and synergistically maintain the oxidant balance by enhanced activity of antioxidant enzymes and accumulation of nicotinamide. Taken together, our data suggested that SMF is involved in regulating the growth and development of Arabidopsis thaliana through maintaining iron homeostasis and balancing oxidative stress, which could be beneficial for plant survival and growth. The work presented here would extend our understanding of the mechanism and the regulatory network of how magnetic field affects the plant growth, which would provide insights into the development of novel plant synthetic biology technologies to engineer stress-resistant and high-yielding crops.
Collapse
Affiliation(s)
- Xiujuan Zhou
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Lin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, China
| | - Peng Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Hang Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jialei Song
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yafei Chang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Tiantian Cai
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Institute of Quantum Sensing, Zhejiang University, Hangzhou, China
| | - Can Xie
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Institute of Quantum Sensing, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Karwinkel T, Winklhofer M, Allenstein D, Brust V, Christoph P, Holland RA, Hüppop O, Steen J, Bairlein F, Schmaljohann H. A refined magnetic pulse treatment method for magnetic navigation experiments with adequate sham control: a case study on free-flying songbirds. J R Soc Interface 2024; 21:20230745. [PMID: 38745460 PMCID: PMC11285864 DOI: 10.1098/rsif.2023.0745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Migratory songbirds may navigate by extracting positional information from the geomagnetic field, potentially with a magnetic-particle-based receptor. Previous studies assessed this hypothesis experimentally by exposing birds to a strong but brief magnetic pulse aimed at remagnetizing the particles and evoking an altered behaviour. Critically, such studies were not ideally designed because they lacked an adequate sham treatment controlling for the induced electric field that is fundamentally associated with a magnetic pulse. Consequently, we designed a sham-controlled magnetic-pulse experiment, with sham and treatment pulse producing a similar induced electric field, while limiting the sham magnetic field to a value that is deemed insufficient to remagnetize particles. We tested this novel approach by pulsing more than 250 wild, migrating European robins (Erithacus rubecula) during two autumn seasons. After pulsing them, five traits of free-flight migratory behaviour were observed, but no effect of the pulse could be found. Notably, one of the traits, the migratory motivation of adults, was significantly affected in only one of the two study years. Considering the problem of reproducing experiments with wild animals, we recommend a multi-year approach encompassing large sample size, blinded design and built-in sham control to obtain future insights into the role of magnetic-particle-based magnetoreception in bird navigation.
Collapse
Affiliation(s)
- Thiemo Karwinkel
- Institute of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
- School of Mathematics and Science, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114–118, Oldenburg 26129, Germany
| | - Michael Winklhofer
- School of Mathematics and Science, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114–118, Oldenburg 26129, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114–118, Oldenburg 26129, Germany
| | - Dario Allenstein
- Institute of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
- School of Mathematics and Science, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114–118, Oldenburg 26129, Germany
| | - Vera Brust
- Institute of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Paula Christoph
- Institute of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
- School of Mathematics and Science, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114–118, Oldenburg 26129, Germany
- Institute of Landscape Ecology, Westfälische Wilhelms-Universität Münster, Heisenbergstr. 2, Münster 48149, Germany
| | - Richard A. Holland
- School of Environmental and Natural Sciences, University of Bangor, Deiniol Road, Bangor LL57 2UW, UK
| | - Ommo Hüppop
- Institute of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Jan Steen
- Institute of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
- Institute of Landscape Ecology, Westfälische Wilhelms-Universität Münster, Heisenbergstr. 2, Münster 48149, Germany
| | - Franz Bairlein
- Institute of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
- Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell 78315, Germany
| | - Heiko Schmaljohann
- Institute of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
- School of Mathematics and Science, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114–118, Oldenburg 26129, Germany
| |
Collapse
|
36
|
Zupanc GKH, Homberg U, Rössler W, Warrant EJ, Arikawa K, Simmons AM, Helfrich-Förster C. Getting a glimpse into the sensory worlds of animals: the Editors' and Readers' Choice Awards 2024. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:347-351. [PMID: 38722557 DOI: 10.1007/s00359-024-01703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The Editors' and Readers' Choice Awards were established in 2022 to celebrate some of the outstanding articles published every year in the Journal of Comparative Physiology A. The recipients of the 2024 Editors' Choice Awards were selected based on votes cast by the Editorial Board on articles published in 2023. In the category Original Paper, this distinction goes to 'Views from 'crabworld': the spatial distribution of light in a tropical mudflat' by Jochen Zeil (J Comp Physiol A 209:859-876, 2023); and in the category Review Article to 'Olfactory navigation in arthropods' by Theresa J. Steele and colleagues (J Comp Physiol A 209:467-488, 2023). The winners of the 2024 Readers' Choice Awards were determined by the number of online accesses of articles published in 2022. In the category Original Paper, the winner is 'Broadband 75-85 MHz radiofrequency fields disrupt magnetic compass orientation in night‑migratory songbirds consistent with a flavin‑based radical pair magnetoreceptor' by Bo Leberecht and colleagues (J Comp Physiol A 208:97-106, 2022). In the category Review Article, the winner is 'Magnetic maps in animal navigation' by Kenneth J. Lohmann and colleagues (J Comp Physiol A 208:41-67, 2022), which already won the Editors' Choice Award in 2023.
Collapse
Affiliation(s)
| | - Uwe Homberg
- Department of Biology, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Eric J Warrant
- Department of Biology, University of Lund, Lund, 22362, Sweden
| | - Kentaro Arikawa
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0115, Japan
| | - Andrea Megela Simmons
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, 02912, USA
| | | |
Collapse
|
37
|
Schuhmann F, Ramsay JL, Kattnig DR, Solov’yov IA. Structural Rearrangements of Pigeon Cryptochrome 4 Undergoing a Complete Redox Cycle. J Phys Chem B 2024; 128:3844-3855. [PMID: 38568745 PMCID: PMC11056986 DOI: 10.1021/acs.jpcb.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Cryptochrome is currently the major contender of a protein to underpin magnetoreception, the ability to sense the Earth's magnetic field. Among various types of cryptochromes, cryptochrome 4 has been identified as the likely magnetoreceptor in migratory birds. All-atom molecular dynamics (MD) studies have offered first insights into the structural dynamics of cryptochrome but are limited to a short time scale due to large computational demands. Here, we employ coarse-grained MD simulations to investigate the emergence of long-lived states and conformational changes in pigeon cryptochrome 4. Our coarse-grained simulations complete the picture by permitting observation on a significantly longer time scale. We observe conformational transitions in the phosphate-binding loop of pigeon cryptochrome 4 upon activation and identify prominent motions in residues 440-460, suggesting a possible role as a signaling state of the protein or as a gated interaction site for forming protein complexes that might facilitate downstream processes. The findings highlight the importance of considering longer time scales in studying cryptochrome dynamics and magnetoreception. Coarse-grained MD simulations offer a valuable tool to unravel the complex behavior of cryptochrome proteins and shed new light on the mechanisms underlying their role in magnetoreception. Further exploration of these conformational changes and their functional implications may contribute to a deeper understanding of the molecular mechanisms of magnetoreception in birds.
Collapse
Affiliation(s)
- Fabian Schuhmann
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26129, Germany
- Niels
Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark
| | - Jessica L. Ramsay
- Living
Systems Institute and Department of Physics, University of Exeter, Stocker Rd., Exeter EX4
4QD, U.K.
| | - Daniel R. Kattnig
- Living
Systems Institute and Department of Physics, University of Exeter, Stocker Rd., Exeter EX4
4QD, U.K.
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26129, Germany
- Research
Centre for Neurosensory Science, Carl von
Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, Oldenburg 26129, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, Oldenburg 26129, Germany
| |
Collapse
|
38
|
Frederiksen A, Aldag M, Solov’yov IA, Gerhards L. Activation of Cryptochrome 4 from Atlantic Herring. BIOLOGY 2024; 13:262. [PMID: 38666874 PMCID: PMC11048568 DOI: 10.3390/biology13040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Marine fish migrate long distances up to hundreds or even thousands of kilometers for various reasons that include seasonal dependencies, feeding, or reproduction. The ability to perceive the geomagnetic field, called magnetoreception, is one of the many mechanisms allowing some fish to navigate reliably in the aquatic realm. While it is believed that the photoreceptor protein cryptochrome 4 (Cry4) is the key component for the radical pair-based magnetoreception mechanism in night migratory songbirds, the Cry4 mechanism in fish is still largely unexplored. The present study aims to investigate properties of the fish Cry4 protein in order to understand the potential involvement in a radical pair-based magnetoreception. Specifically, a computationally reconstructed atomistic model of Cry4 from the Atlantic herring (Clupea harengus) was studied employing classical molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) methods to investigate internal electron transfers and the radical pair formation. The QM/MM simulations reveal that electron transfers occur similarly to those found experimentally and computationally in Cry4 from European robin (Erithacus rubecula). It is therefore plausible that the investigated Atlantic herring Cry4 has the physical and chemical properties to form radical pairs that in turn could provide fish with a radical pair-based magnetic field compass sensor.
Collapse
Affiliation(s)
- Anders Frederiksen
- Institute of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, 26129 Oldenburg, Germany; (A.F.); (M.A.); (I.A.S.)
| | - Mandus Aldag
- Institute of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, 26129 Oldenburg, Germany; (A.F.); (M.A.); (I.A.S.)
| | - Ilia A. Solov’yov
- Institute of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, 26129 Oldenburg, Germany; (A.F.); (M.A.); (I.A.S.)
- Research Centre for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, 26129 Oldenburg, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky University of Oldenburg, Ammerländer Heerstr. 114-118, 26129 Oldenburg, Germany
| | - Luca Gerhards
- Institute of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, 26129 Oldenburg, Germany; (A.F.); (M.A.); (I.A.S.)
| |
Collapse
|
39
|
Hermans A, Winter HV, Gill AB, Murk AJ. Do electromagnetic fields from subsea power cables effect benthic elasmobranch behaviour? A risk-based approach for the Dutch Continental Shelf. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123570. [PMID: 38360387 DOI: 10.1016/j.envpol.2024.123570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Subsea power cables cause electromagnetic fields (EMFs) into the marine environment. Elasmobranchs (rays, skates, sharks) are particularly sensitive to EMFs as they use electromagnetic-receptive sensory systems for orientation, navigation, and locating conspecifics or buried prey. Cables may intersect with egg laying sites, mating, pupping, and nursery grounds, foraging habitat and migration routes of elasmobranchs and the effects of encountering EMFs on species of elasmobranchs are largely unknown. Demonstrated behavioural effects are attraction, disturbance and indifference, depending on EMF characteristics, exposed life stage, exposure level and duration. We estimated exposure levels of elasmobranchs to subsea power cable EMFs, based on modelled magnetic fields in the Dutch Continental Shelf and compared these to reported elasmobranch sensory sensitivity ranges and experimental effect levels. We conclude that the risk from subsea power cables has a large uncertainty and varies per life stage and species ecology. Based on estimated no-observed effect levels (from 10-3 to 10-1 μT) we discuss what will probably be the most affected species and life stage for six common benthic elasmobranchs in the Southern North Sea. We then identify critical knowledge gaps for reducing the uncertainty in the risk assessments for EMFs effects on benthic elasmobranchs.
Collapse
Affiliation(s)
- Annemiek Hermans
- Marine Animal Ecology Group, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, the Netherlands.
| | - Hendrik V Winter
- Wageningen Marine Research, Wageningen University and Research, P.O. 68, 1970 AB, IJmuiden, the Netherlands
| | - Andrew B Gill
- Cefas, Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, NR33 0HT, UK
| | - Albertinka J Murk
- Marine Animal Ecology Group, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
| |
Collapse
|
40
|
Cellini A, Shankar MK, Nimmrich A, Hunt LA, Monrroy L, Mutisya J, Furrer A, Beale EV, Carrillo M, Malla TN, Maj P, Vrhovac L, Dworkowski F, Cirelli C, Johnson PJM, Ozerov D, Stojković EA, Hammarström L, Bacellar C, Standfuss J, Maj M, Schmidt M, Weinert T, Ihalainen JA, Wahlgren WY, Westenhoff S. Directed ultrafast conformational changes accompany electron transfer in a photolyase as resolved by serial crystallography. Nat Chem 2024; 16:624-632. [PMID: 38225270 PMCID: PMC10997514 DOI: 10.1038/s41557-023-01413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024]
Abstract
Charge-transfer reactions in proteins are important for life, such as in photolyases which repair DNA, but the role of structural dynamics remains unclear. Here, using femtosecond X-ray crystallography, we report the structural changes that take place while electrons transfer along a chain of four conserved tryptophans in the Drosophila melanogaster (6-4) photolyase. At femto- and picosecond delays, photoreduction of the flavin by the first tryptophan causes directed structural responses at a key asparagine, at a conserved salt bridge, and by rearrangements of nearby water molecules. We detect charge-induced structural changes close to the second tryptophan from 1 ps to 20 ps, identifying a nearby methionine as an active participant in the redox chain, and from 20 ps around the fourth tryptophan. The photolyase undergoes highly directed and carefully timed adaptations of its structure. This questions the validity of the linear solvent response approximation in Marcus theory and indicates that evolution has optimized fast protein fluctuations for optimal charge transfer.
Collapse
Affiliation(s)
- Andrea Cellini
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Madan Kumar Shankar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Leigh Anna Hunt
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Leonardo Monrroy
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Jennifer Mutisya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | | | | | | | - Tek Narsingh Malla
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Piotr Maj
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Lidija Vrhovac
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | | | | | | | | | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | - Michał Maj
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Janne A Ihalainen
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
41
|
Hamacher C, Degen R, Franke M, Switacz VK, Fleck D, Katreddi RR, Hernandez-Clavijo A, Strauch M, Horio N, Hachgenei E, Spehr J, Liberles SD, Merhof D, Forni PE, Zimmer-Bensch G, Ben-Shaul Y, Spehr M. A revised conceptual framework for mouse vomeronasal pumping and stimulus sampling. Curr Biol 2024; 34:1206-1221.e6. [PMID: 38320553 PMCID: PMC10965388 DOI: 10.1016/j.cub.2024.01.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
The physiological performance of any sensory organ is determined by its anatomy and physical properties. Consequently, complex sensory structures with elaborate features have evolved to optimize stimulus detection. Understanding these structures and their physical nature forms the basis for mechanistic insights into sensory function. Despite its crucial role as a sensor for pheromones and other behaviorally instructive chemical cues, the vomeronasal organ (VNO) remains a poorly characterized mammalian sensory structure. Fundamental principles of its physico-mechanical function, including basic aspects of stimulus sampling, remain poorly explored. Here, we revisit the classical vasomotor pump hypothesis of vomeronasal stimulus uptake. Using advanced anatomical, histological, and physiological methods, we demonstrate that large parts of the lateral mouse VNO are composed of smooth muscle. Vomeronasal smooth muscle tissue comprises two subsets of fibers with distinct topography, structure, excitation-contraction coupling, and, ultimately, contractile properties. Specifically, contractions of a large population of noradrenaline-sensitive cells mediate both transverse and longitudinal lumen expansion, whereas cholinergic stimulation targets an adluminal group of smooth muscle fibers. The latter run parallel to the VNO's rostro-caudal axis and are ideally situated to mediate antagonistic longitudinal constriction of the lumen. This newly discovered arrangement implies a novel mode of function. Single-cell transcriptomics and pharmacological profiling reveal the receptor subtypes involved. Finally, 2D/3D tomography provides non-invasive insight into the intact VNO's anatomy and mechanics, enables measurement of luminal fluid volume, and allows an assessment of relative volume change upon noradrenergic stimulation. Together, we propose a revised conceptual framework for mouse vomeronasal pumping and, thus, stimulus sampling.
Collapse
Affiliation(s)
- Christoph Hamacher
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Rudolf Degen
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany; Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, 52074 Aachen, Germany
| | - Melissa Franke
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Victoria K Switacz
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany; Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, 52074 Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Raghu Ram Katreddi
- Department of Biological Sciences, The RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Andres Hernandez-Clavijo
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Martin Strauch
- Institute of Imaging and Computer Vision, RWTH Aachen University, 52074 Aachen, Germany
| | - Nao Horio
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Enno Hachgenei
- Department of Production Metrology, Fraunhofer Institute for Production Technology, 52074 Aachen, Germany
| | - Jennifer Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Stephen D Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dorit Merhof
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, 52074 Aachen, Germany; Institute of Imaging and Computer Vision, RWTH Aachen University, 52074 Aachen, Germany
| | - Paolo E Forni
- Department of Biological Sciences, The RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Geraldine Zimmer-Bensch
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, 52074 Aachen, Germany; Department of Neuroepigenetics, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany; Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
42
|
Gill JP, Taylor BK. Navigation by magnetic signatures in a realistic model of Earth's magnetic field. BIOINSPIRATION & BIOMIMETICS 2024; 19:036006. [PMID: 38452388 DOI: 10.1088/1748-3190/ad3120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Certain animal species use the Earth's magnetic field (i.e. magnetoreception) alongside their other sensory modalities to navigate long distances that include continents and oceans. It is hypothesized that several animals use geomagnetic parameters, such as field intensity and inclination, to recognize specific locations or regions, potentially enabling migration without a pre-surveyed map. However, it is unknown how animals use geomagnetic information to generate guidance commands, or where in the world this type of strategy would maximize an animal's fitness. While animal experiments have been invaluable in advancing this area, the phenomenon is difficult to studyin vivoorin situ, especially on the global scale where the spatial layout of the geomagnetic field is not constant. Alongside empirical animal experiments, mathematical modeling and simulation are complementary tools that can be used to investigate animal navigation on a global scale, providing insights that can be informative across a number of species. In this study, we present a model in which a simulated animal (i.e. agent) navigates via an algorithm which determines travel heading based on local and goal magnetic signatures (here, combinations of geomagnetic intensity and inclination) in a realistic model of Earth's magnetic field. By varying parameters of the navigation algorithm, different regions of the world can be made more or less reliable to navigate. We present a mathematical analysis of the system. Our results show that certain regions can be navigated effectively using this strategy when these parameters are properly tuned, while other regions may require more complex navigational strategies. In a real animal, parameters such as these could be tuned by evolution for successful navigation in the animal's natural range. These results could also help with developing engineered navigation systems that are less reliant on satellite-based methods.
Collapse
Affiliation(s)
- Jeffrey P Gill
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Brian K Taylor
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| |
Collapse
|
43
|
Green DA, Polidori S, Stratton SM. Modular switches shift monarch butterfly migratory flight behavior at their Mexican overwintering sites. iScience 2024; 27:109063. [PMID: 38420583 PMCID: PMC10901092 DOI: 10.1016/j.isci.2024.109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Eastern North American migratory monarch butterflies exhibit migratory behavioral states in fall and spring characterized by sun-dependent oriented flight. However, it is unclear how monarchs transition between these behavioral states at their overwintering site. Using a modified Mouritsen-Frost flight simulator, we confirm individual directionality and compass-based orientation (leading to group orientation) in fall migrants, and also uncover sustained flight propensity and direction-based flight reinforcement as distinctly migratory behavioral traits. By testing monarchs at their Mexican overwintering sites, we show that overwintering monarchs show reduced propensity for sustained flight and lose individual directionality, leading to the loss of group-level orientation. Overwintering fliers orient axially in a time-of-day dependent manner, which may indicate local versus long-distance directional heading. These results support a model of migratory flight behavior in which modular, state-dependent switches for flight propensity and orientation control are highly dynamic and are controlled in season- and location-dependent manners.
Collapse
Affiliation(s)
- Delbert A. Green
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Sean Polidori
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Samuel M. Stratton
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
Jiang C, Xu H, Yang L, Liu J, Li Y, Takei K, Xu W. Neuromorphic antennal sensory system. Nat Commun 2024; 15:2109. [PMID: 38453967 PMCID: PMC10920631 DOI: 10.1038/s41467-024-46393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Insect antennae facilitate the nuanced detection of vibrations and deflections, and the non-contact perception of magnetic or chemical stimuli, capabilities not found in mammalian skin. Here, we report a neuromorphic antennal sensory system that emulates the structural, functional, and neuronal characteristics of ant antennae. Our system comprises electronic antennae sensor with three-dimensional flexible structures that detects tactile and magnetic stimuli. The integration of artificial synaptic devices adsorbed with solution-processable MoS2 nanoflakes enables synaptic processing of sensory information. By emulating the architecture of receptor-neuron pathway, our system realizes hardware-level, spatiotemporal perception of tactile contact, surface pattern, and magnetic field (detection limits: 1.3 mN, 50 μm, 9.4 mT). Vibrotactile-perception tasks involving profile and texture classifications were accomplished with high accuracy (> 90%), surpassing human performance in "blind" tactile explorations. Magneto-perception tasks including magnetic navigation and touchless interaction were successfully completed. Our work represents a milestone for neuromorphic sensory systems and biomimetic perceptual intelligence.
Collapse
Affiliation(s)
- Chengpeng Jiang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, China
- Shenzhen Research Institute of Nankai University, Shenzhen, China
| | - Honghuan Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, China
- Shenzhen Research Institute of Nankai University, Shenzhen, China
| | - Lu Yang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, China
- Shenzhen Research Institute of Nankai University, Shenzhen, China
| | - Jiaqi Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, China
- Shenzhen Research Institute of Nankai University, Shenzhen, China
| | - Yue Li
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, China
- Shenzhen Research Institute of Nankai University, Shenzhen, China
| | - Kuniharu Takei
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan.
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, China.
- Shenzhen Research Institute of Nankai University, Shenzhen, China.
| |
Collapse
|
45
|
Jeffery KJ. The mosaic structure of the mammalian cognitive map. Learn Behav 2024; 52:19-34. [PMID: 38231426 PMCID: PMC10923978 DOI: 10.3758/s13420-023-00618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/18/2024]
Abstract
The cognitive map, proposed by Tolman in the 1940s, is a hypothetical internal representation of space constructed by the brain to enable an animal to undertake flexible spatial behaviors such as navigation. The subsequent discovery of place cells in the hippocampus of rats suggested that such a map-like representation does exist, and also provided a tool with which to explore its properties. Single-neuron studies in rodents conducted in small singular spaces have suggested that the map is founded on a metric framework, preserving distances and directions in an abstract representational format. An open question is whether this metric structure pertains over extended, often complexly structured real-world space. The data reviewed here suggest that this is not the case. The emerging picture is that instead of being a single, unified construct, the map is a mosaic of fragments that are heterogeneous, variably metric, multiply scaled, and sometimes laid on top of each other. Important organizing factors within and between fragments include boundaries, context, compass direction, and gravity. The map functions not to provide a comprehensive and precise rendering of the environment but rather to support adaptive behavior, tailored to the species and situation.
Collapse
Affiliation(s)
- Kate J Jeffery
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
46
|
Beetz MJ. A perspective on neuroethology: what the past teaches us about the future of neuroethology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:325-346. [PMID: 38411712 PMCID: PMC10995053 DOI: 10.1007/s00359-024-01695-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
For 100 years, the Journal of Comparative Physiology-A has significantly supported research in the field of neuroethology. The celebration of the journal's centennial is a great time point to appreciate the recent progress in neuroethology and to discuss possible avenues of the field. Animal behavior is the main source of inspiration for neuroethologists. This is illustrated by the huge diversity of investigated behaviors and species. To explain behavior at a mechanistic level, neuroethologists combine neuroscientific approaches with sophisticated behavioral analysis. The rapid technological progress in neuroscience makes neuroethology a highly dynamic and exciting field of research. To summarize the recent scientific progress in neuroethology, I went through all abstracts of the last six International Congresses for Neuroethology (ICNs 2010-2022) and categorized them based on the sensory modalities, experimental model species, and research topics. This highlights the diversity of neuroethology and gives us a perspective on the field's scientific future. At the end, I highlight three research topics that may, among others, influence the future of neuroethology. I hope that sharing my roots may inspire other scientists to follow neuroethological approaches.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
47
|
Morandi-Raikova A, Rosa-Salva O, Simdianova A, Vallortigara G, Mayer U. Hierarchical processing of feature, egocentric and relational information for spatial orientation in domestic chicks. J Exp Biol 2024; 227:jeb246447. [PMID: 38323420 DOI: 10.1242/jeb.246447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
Animals can use different types of information for navigation. Domestic chicks (Gallus gallus) prefer to use local features as a beacon over spatial relational information. However, the role of egocentric navigation strategies is less understood. Here, we tested domestic chicks' egocentric and allocentric orientation abilities in a large circular arena. In experiment 1, we investigated whether domestic chicks possess a side bias during viewpoint-dependent egocentric orientation, revealing facilitation for targets on the chicks' left side. Experiment 2 showed that local features are preferred over viewpoint-dependent egocentric information when the two conflict. Lastly, in experiment 3, we found that in a situation where there is a choice between egocentric and allocentric spatial relational information provided by free-standing objects, chicks preferentially rely on egocentric information. We conclude that chicks orient according to a hierarchy of cues, in which the use of the visual appearance of an object is the dominant strategy, followed by viewpoint-dependent egocentric information and finally by spatial relational information.
Collapse
Affiliation(s)
- Anastasia Morandi-Raikova
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| | - Aleksandra Simdianova
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| |
Collapse
|
48
|
Laurien M, Spiecker L, Luhrmann L, Mende L, Dammann W, Clemmesen C, Gerlach G. Time-compensated sun compass in juvenile sprat (Sprattus sprattus) reveals the onset of migratory readiness. J Exp Biol 2024; 227:jeb246188. [PMID: 38291981 DOI: 10.1242/jeb.246188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Sprat (Sprattus sprattus) is one of the most commercially exploited fish species in the Baltic Sea and expresses a pronounced seasonal migration pattern. Spawning takes place, among other places, in the Kiel Bight and Kiel Fjord in early summer. Juvenile sprat leave the nursery areas in late summer/early autumn to move to their feeding and overwintering grounds. What kind of orientation mechanisms sprat use for migration is not known yet. This study shows that juvenile sprat can use a time-compensated sun compass, heading towards the northeast, in the direction of their proposed overwintering grounds in Bornholm Basin. The sprats tested at the end of August oriented themselves in the predicted direction, whereas the sprats tested at the beginning of August only showed a random orientation. For the first time, this demonstrates the onset of migratory readiness in juvenile sprat, indicating the preparation for starting their migration.
Collapse
Affiliation(s)
- Malien Laurien
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Lisa Spiecker
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Lena Luhrmann
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Lara Mende
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Wiebke Dammann
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Catriona Clemmesen
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
| | - Gabriele Gerlach
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity HIFMB Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
49
|
Gu Z, Dixon A, Zhan X. Genetics and Evolution of Bird Migration. Annu Rev Anim Biosci 2024; 12:21-43. [PMID: 37906839 DOI: 10.1146/annurev-animal-021122-092239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Bird migration has long been a subject of fascination for humankind and is a behavior that is both intricate and multifaceted. In recent years, advances in technology, particularly in the fields of genomics and animal tracking, have enabled significant progress in our understanding of this phenomenon. In this review, we provide an overview of the latest advancements in the genetics of bird migration, with a particular focus on genomics, and examine various factors that contribute to the evolution of this behavior, including climate change. Integration of research from the fields of genomics, ecology, and evolution can enhance our comprehension of the complex mechanisms involved in bird migration and inform conservation efforts in a rapidly changing world.
Collapse
Affiliation(s)
- Zhongru Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
- Cardiff University-Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
| | - Andrew Dixon
- Mohamed Bin Zayed Raptor Conservation Fund, Abu Dhabi, United Arab Emirates
| | - Xiangjiang Zhan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
- Cardiff University-Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
50
|
Shakhparonov VV, Bolshakova AA, Koblikova EO, Tsoi JA. European common frogs determine migratory direction by inclination magnetic compass and show diurnal variation in orientation. J Exp Biol 2024; 227:jeb246150. [PMID: 38264865 DOI: 10.1242/jeb.246150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Animals can use two variants of the magnetic compass: the 'polar compass' or the 'inclination compass'. Among vertebrates, the compass type has been identified for salmon, mole rats, birds, turtles and urodeles. However, no experiments have been conducted to determine the compass variant in anurans. To elucidate this, we performed a series of field and laboratory experiments on males of the European common frog during the spawning season. In field experiments in a large circular arena, we identified the direction of the stereotypic migration axis for a total of 581 frogs caught during migration from river to pond or in a breeding pond. We also found that motivation of the frogs varied throughout the day, probably to avoid deadly night freezes, which are common in spring. The laboratory experiments were conducted on a total of 450 frogs in a T-maze placed in a three-axis Merritt coil system. The maze arms were positioned parallel to the natural migration axis inferred on the basis of magnetic field. Both vertical and horizontal components of the magnetic field were altered, and frogs were additionally tested in a vertical magnetic field. We conclude that European common frogs possess an inclination magnetic compass, as for newts, birds and sea turtles, and potentially use it during the spring migration. The vertical magnetic field confuses the frogs, apparently as a result of the inability to choose a direction. Notably, diurnal variation in motivation of the frogs was identical to that in nature, indicating the presence of internal rhythms controlling this process.
Collapse
Affiliation(s)
- Vladimir V Shakhparonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, pr. Torez 44, Saint-Petersburg 194223, Russia
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory, 1, k.12, Moscow 119234, Russia
| | - Alisa A Bolshakova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory, 1, k.12, Moscow 119234, Russia
| | - Eugenia O Koblikova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory, 1, k.12, Moscow 119234, Russia
| | - Julia A Tsoi
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory, 1, k.12, Moscow 119234, Russia
| |
Collapse
|