1
|
Dhar B, Sajid M. On improving public health after COVID-19 epidemic: A fractal-fractional mathematical solutions with short memory effect and efficient optimal strategies. PLoS One 2025; 20:e0321195. [PMID: 40435157 PMCID: PMC12118899 DOI: 10.1371/journal.pone.0321195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/03/2025] [Indexed: 06/01/2025] Open
Abstract
As per the report of W.H.O. about 7 million people died in India till date due to COVID-19 infection. The transmission of COVID-19 infection can affect the temporal and geographic diversity of environmental pollution, thereby disrupting "planetary health" and livelihood. The consensus is that COVID-19 could have significant long-lasting effects on ecosystem and society. It is possible to reach an agreement to create and maintain an ecologically sound environment and a circular bio-economy to try to solve these issues. For the first time, a fractional mathematical model is formulated where the infection is considered due to unhygienic environment with a synergy between mathematical fractal parameters and biology of the disease transmission. Other mathematical analysis such as the boundedness of solutions, the wellposedness of the proposed model concerning existence results, etc. are investigated. Additionally, evaluation of vaccine-clearance equilibrium point is performed. Sensitivity parameters analysis and model's stability also steps in. To get numerical results, the "Adams-Bashforth-Moulton" method with slight modification in the kernel is used. The fractional parameters: memory effect and fractional diffusion shows a good performance of the proposed model in depicting the disease dynamics. Consequences of follow-up optimal control functions in Susceptives and Vaccinated individuals, where feasible strategies in terms of the control maps are presented.
Collapse
Affiliation(s)
- Biplab Dhar
- Applied Science Cluster—Mathematics, UPES Dehradun, Uttarakhand, India
| | - Mohammad Sajid
- Department of Mechanical Engineering, College of Engineering, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
2
|
Sen I, Trzaskalski NA, Hsiao YT, Liu PP, Shimizu I, Derumeaux GA. Aging at the Crossroads of Organ Interactions: Implications for the Heart. Circ Res 2025; 136:1286-1305. [PMID: 40403108 DOI: 10.1161/circresaha.125.325637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 05/24/2025]
Abstract
Aging processes underlie common chronic cardiometabolic diseases such as heart failure and diabetes. Cross-organ/tissue interactions can accelerate aging through cellular senescence, tissue wasting, accelerated atherosclerosis, increased vascular stiffness, and reduction in blood flow, leading to organ remodeling and premature failure. This interorgan/tissue crosstalk can accelerate aging-related dysfunction through inflammation, senescence-associated secretome, and metabolic and mitochondrial changes resulting in increased oxidative stress, microvascular dysfunction, cellular reprogramming, and tissue fibrosis. This may also underscore the rising incidence and co-occurrence of multiorgan dysfunction in cardiometabolic aging in the population. Examples include interactions between the heart and the lungs, kidneys, liver, muscles, and brain, among others. However, this phenomenon can also present new translational opportunities for identifying diagnostic biomarkers to define early risks of multiorgan dysfunction, gain mechanistic insights, and help to design precision-directed therapeutic interventions. Indeed, this opens new opportunities for therapeutic development in targeting multiple organs simultaneously to disrupt the crosstalk-driven process of mutual disease acceleration. New therapeutic targets could provide synergistic benefits across multiple organ systems in the same at-risk patient. Ultimately, these approaches may together slow the aging process itself throughout the body. In the future, with patient-centered multisystem coordinated approaches, we can initiate a new paradigm of multiorgan early risk prediction and tailored intervention. With emerging tools including artificial intelligence-assisted risk profiling and novel preventive strategies (eg, RNA-based therapeutics), we may be able to mitigate multiorgan cardiometabolic dysfunction much earlier and, perhaps, even slow the aging process itself.
Collapse
Affiliation(s)
- Ilke Sen
- Department of Physiology, INSERM U955 (Institut national de la santé et de la recherche médicale, Unité 955), Assistance Publique-Hôpitaux de Paris (AP-HP), Henri Mondor Hospital, Fédération Hospitalo-Universitaire (FHU SENCODE), Ecole Universitaire de Recherche LIVE (EUR LIVE), Université Paris-Est Créteil, France (I. Sen, G.A.D.)
| | - Natasha A Trzaskalski
- University of Ottawa Heart Institute, Brain-Heart Interconnectome, University of Ottawa, Ontario, Canada (N.A.T., P.P.L.)
| | - Yung-Ting Hsiao
- Department of Cardiovascular Aging, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan (Y.-T.H., I. Shimizu)
| | - Peter P Liu
- University of Ottawa Heart Institute, Brain-Heart Interconnectome, University of Ottawa, Ontario, Canada (N.A.T., P.P.L.)
| | - Ippei Shimizu
- Department of Cardiovascular Aging, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan (Y.-T.H., I. Shimizu)
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (I. Shimizu)
| | - Geneviève A Derumeaux
- Department of Physiology, INSERM U955 (Institut national de la santé et de la recherche médicale, Unité 955), Assistance Publique-Hôpitaux de Paris (AP-HP), Henri Mondor Hospital, Fédération Hospitalo-Universitaire (FHU SENCODE), Ecole Universitaire de Recherche LIVE (EUR LIVE), Université Paris-Est Créteil, France (I. Sen, G.A.D.)
| |
Collapse
|
3
|
Renz A, Hohner M, Jami R, Breitenbach M, Josephs-Spaulding J, Dürrwald J, Best L, Dulière V, Mialon C, Bader SM, Marinos G, Leonidou N, Cabreiro F, Pellegrini M, Doerflinger M, Rosa-Calatrava M, Pizzorno A, Dräger A, Schindler M, Kaleta C. Metabolic modeling elucidates phenformin and atpenin A5 as broad-spectrum antiviral drugs against RNA viruses. Commun Biol 2025; 8:791. [PMID: 40410544 PMCID: PMC12102274 DOI: 10.1038/s42003-025-08148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/30/2025] [Indexed: 05/25/2025] Open
Abstract
The SARS-CoV-2 pandemic has reemphasized the urgent need for broad-spectrum antiviral therapies. We developed a computational workflow using scRNA-Seq data to assess cellular metabolism during viral infection. With this workflow we predicted the capacity of cells to sustain SARS-CoV-2 virion production in patients and found a tissue-wide induction of metabolic pathways that support viral replication. Expanding our analysis to influenza A and dengue viruses, we identified metabolic targets and inhibitors for potential broad-spectrum antiviral treatment. These targets were highly enriched for known interaction partners of all analyzed viruses. Indeed, phenformin, an NADH:ubiquinone oxidoreductase inhibitor, suppressed SARS-CoV-2 and dengue virus replication. Atpenin A5, blocking succinate dehydrogenase, inhibited SARS-CoV-2, dengue virus, respiratory syncytial virus, and influenza A virus with high selectivity indices. In vivo, phenformin showed antiviral activity against SARS-CoV-2 in a Syrian hamster model. Our work establishes host metabolism as druggable for broad-spectrum antiviral strategies, providing invaluable tools for pandemic preparedness.
Collapse
Affiliation(s)
- Alina Renz
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Mirjam Hohner
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site, Tübingen, Germany
| | - Raphaël Jami
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site, Tübingen, Germany
| | - Maximilian Breitenbach
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site, Tübingen, Germany
| | - Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein, Kiel, Germany
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Johanna Dürrwald
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Lena Best
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein, Kiel, Germany
| | - Victoria Dulière
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France-Canada, Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Canada, Centre International de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, Lyon, France
| | - Chloé Mialon
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France-Canada, Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Canada, Centre International de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, Lyon, France
| | - Stefanie M Bader
- Division of Infectious Diseases and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Georgios Marinos
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein, Kiel, Germany
| | - Nantia Leonidou
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site, Tübingen, Germany
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Filipe Cabreiro
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marc Pellegrini
- Division of Infectious Diseases and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Marcel Doerflinger
- Division of Infectious Diseases and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France-Canada, Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Canada, Centre International de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, Lyon, France
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France-Canada, Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Canada, Centre International de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, Lyon, France
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany.
- German Center for Infection Research (DZIF), partner site, Tübingen, Germany.
- Data Analytics and Bioinformatics Research Group, Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
- German Center for Infection Research (DZIF), partner site, Tübingen, Germany.
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein, Kiel, Germany.
| |
Collapse
|
4
|
Li Z, Fan H, Xiong J, Tian M, Ye C, Liu S, Li G, Segbo JAG, Wu K, Zhu C. Vesicular Stomatitis Virus Induces NF-κB-Dependent Senescence to Mediate Persistent Inflammation and Injury. Viral Immunol 2025. [PMID: 40401441 DOI: 10.1089/vim.2025.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Abstract
Cell senescence, induced by various internal and external stresses, plays a significant role in the development of various diseases such as cancer, neurodegeneration, and infections. Viral infections can also induce cellular senescence, known as virus-induced senescence (VIS), which occurs in close correlation with the severity of the viral infections. However, due to the unclear mechanisms underlying VIS, the effective inhibition of VIS during viral infections is challenging, leading to rapid disease progression. This study utilized the widely used vesicular stomatitis virus (VSV) model virus to simulate RNA virus infections for exploring the mechanisms by which RNA viruses induce cellular senescence. The results indicated that VSV infection, both in vitro and in vivo, could significantly induce the upregulation of senescence-associated markers and the secretion of the senescence-associated secretory phenotype (SASP), promoting the senescence process. Further research found that the activation of the NF-κB pathway played a crucial role in VSV-induced cellular senescence. Targeted inhibition of the NF-κB pathway could reduce the level of organ senescence induced by viral infections, decrease the expression of SASP inflammatory factors, and ameliorate tissue damage in mice. Overall, our findings reveal the mechanisms underlying RNA virus-associated VIS and provide potential targets for inhibiting the occurrence of VIS and preventing disease progression.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Hong Fan
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Jiali Xiong
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Chenglin Ye
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Guangli Li
- Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, PR China
| | | | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
5
|
Ryan P, Lee J. In vitro senescence and senolytic functional assays. Biomater Sci 2025. [PMID: 40375674 DOI: 10.1039/d4bm01684j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
A detailed understanding of aging biology and the development of anti-aging therapeutic strategies remain imperative yet inherently challenging due to the protracted nature of aging. Cellular senescence arises naturally through replicative exhaustion and is accelerated by clinical treatments or environmental stressors. The accumulation of senescent cells-defined by a loss of mitogenic potential, resistance to apoptosis, and acquisition of a pro-inflammatory secretory phenotype-has been implicated as a key driver of chronic disease, tissue degeneration, and organismal aging. Recent studies have highlighted the therapeutic promise of senolytic drugs, which selectively eliminate senescent cells. Compelling results from preclinical animal studies and ongoing clinical trials underscore this potential. However, the clinical translation of senolytics requires further pharmacological validation to refine selectivity, minimize toxicity, and determine optimal dosing. Equally important is the evaluation of senolytics' potential to restore tissue structure and function by reducing the senescent cell burden. In vitro tissue culture models offer a powerful platform to advance these efforts. This review summarizes the current landscape of in vitro systems used for inducing cellular senescence-referred to as "senescence assays"-and for screening senolytic drugs-referred to as "senolytic assays". We conclude by discussing key challenges to improving mechanistic insight, predictive accuracy, and clinical relevance in senolytic drug development, as well as emerging applications of senolytic therapies.
Collapse
Affiliation(s)
- Patrick Ryan
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
| | - Jungwoo Lee
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
6
|
Manurung MD, Heieis GA, König M, Azimi S, Ndao M, Veldhuizen T, Hoving D, Hoekstra PT, Kruize YCM, Wammes LJ, Menafra R, Cisse M, Mboup S, Dieye A, Kloet S, Tahapary DL, Supali T, Wuhrer M, Hokke CH, Everts B, Mahfouz A, Jochems SP, Yazdanbakhsh M, Mbow M. Systems analysis unravels a common rural-urban gradient in immunological profile, function, and metabolic dependencies. SCIENCE ADVANCES 2025; 11:eadu0419. [PMID: 40305616 PMCID: PMC12042899 DOI: 10.1126/sciadv.adu0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025]
Abstract
Urbanization affects environmental exposures and lifestyle, shaping immune system variation and influencing disease susceptibility and vaccine responses. Here, we present systems analysis of immune profiles across the rural-urban gradient, comparing rural and urban Senegalese with urban Dutch individuals. By integrating single-cell phenotyping, metabolic profiling, and functional analysis, we reveal a trajectory of immune remodeling along the gradient. This includes enrichment of proinflammatory CD11c+ B cells associated with altered IgG Fc glycosylation, adaptive NK cells with reduced responsiveness to accessory cytokines, and CD161+CD4+T cells with enhanced cytokine production in rural settings. Metabolic perturbation studies demonstrated distinct dependencies on glycolysis, pentose phosphate pathway, and fatty acid synthesis for cellular cytokine responses across populations. We validate core rural-urban immune signatures in an independent Indonesian cohort, suggesting shared immunological adaptations to urbanization across ancestries and geographical areas. Our findings provide insights into rural-urban immune function in understudied populations.
Collapse
Affiliation(s)
- Mikhael D. Manurung
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Graham A. Heieis
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Marion König
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Shohreh Azimi
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Malick Ndao
- Department of Immunology, Faculty of Medicine, Pharmacy, and Odontology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
| | - Tom Veldhuizen
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Dennis Hoving
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Pytsje T. Hoekstra
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Yvonne C. M. Kruize
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Linda J. Wammes
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Roberta Menafra
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, Netherlands
| | - Marouba Cisse
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
- Department of Immunology, Faculty of Medicine, Pharmacy, and Odontology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
| | - Souleymane Mboup
- Institute of Health Research, Epidemiological Surveillance, and Training, Dakar, Senegal
| | - Alioune Dieye
- Department of Immunology, Faculty of Medicine, Pharmacy, and Odontology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
| | - Susan Kloet
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, Netherlands
| | - Dicky L. Tahapary
- Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Taniawati Supali
- Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelis H. Hokke
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Bart Everts
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Ahmed Mahfouz
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Simon P. Jochems
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Moustapha Mbow
- Department of Immunology, Faculty of Medicine, Pharmacy, and Odontology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
| |
Collapse
|
7
|
Xi Y, Zhou Z, Chang T, Dou G, Chu Z. Acute Macular Neuroretinopathy Mediated by COVID-19 Infection: Insights into its Clinical Features and Pathogenesis. FRONT BIOSCI-LANDMRK 2025; 30:26412. [PMID: 40302322 DOI: 10.31083/fbl26412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 05/02/2025]
Abstract
Acute macular neuroretinopathy (AMN) is a rare retinal condition that predominantly affects young females. The incidence of AMN increased significantly during the COVID-19 pandemic, thereby providing a unique opportunity to elucidate the etiology of this disease. In the present study, 24 articles reporting 59 patients were reviewed. The average age of the patients was 33.51 ± 14.02 years, ranging from 16 to 75 years, with females comprising 71.19% of the cases. The average duration of ocular symptoms post-infection was 8.22 ± 10.69 days, ranging from 4 to 150 days. This study investigated the potential pathogenesis of AMN, including the impact of COVID-19 on retinal neurovascular structure and function, immune-mediated inflammatory factor production, blood-retinal barrier disruption, and retinal microvascular damage, as well as potential clinical therapeutic interventions. This research provides a theoretical framework that can inform further investigations of AMN.
Collapse
Affiliation(s)
- Yixuan Xi
- College of Life Sciences, Northwestern University, 710069 Xi'an, Shaanxi, China
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, Shaanxi, China
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi'an First Hospital, 710002 Xi'an, Shaanxi, China
| | - Ziyi Zhou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, Shaanxi, China
| | - Tianfang Chang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, Shaanxi, China
| | - Guorui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, Shaanxi, China
| | - Zhaojie Chu
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi'an First Hospital, 710002 Xi'an, Shaanxi, China
- Shaanxi Institute of Ophthalmology, 710021 Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Casanova V, Rodríguez-Agustín A, Ayala-Suárez R, Moraga E, Maleno MJ, Mallolas J, Martínez E, Sánchez-Palomino S, Miró JM, Alcamí J, Climent N. HIV-Tat upregulates the expression of senescence biomarkers in CD4 + T-cells. Front Immunol 2025; 16:1568762. [PMID: 40342418 PMCID: PMC12058733 DOI: 10.3389/fimmu.2025.1568762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Current antiretroviral therapy (ART) for HIV infection reduces plasma viral loads to undetectable levels and has increased the life expectancy of people with HIV (PWH). However, this increased lifespan is accompanied by signs of accelerated aging and a higher prevalence of age-related comorbidities. Tat (Trans-Activator of Transcription) is a key protein for viral replication and pathogenesis. Tat is encoded by 2 exons, with the full-length Tat ranging from 86 to 101 aa (Tat101). Introducing a stop codon in position 73 generates a 1 exon, synthetic 72aa Tat (Tat72). Intracellular, full-length Tat activates the NF-κB pro-inflammatory pathway and increases antiapoptotic signals and ROS generation. These effects may initiate a cellular senescence program, characterized by cell cycle arrest, altered cell metabolism, and increased senescence-associated secretory phenotype (SASP) mediator release However, the precise role of HIV-Tat in inducing a cellular senescence program in CD4+ T-cells is currently unknown. Methods Jurkat Tetoff cell lines stably transfected with Tat72, Tat101, or an empty vector were used. Flow cytometry and RT-qPCR were used to address senescence biomarkers, and 105 mediators were assessed in cell supernatants with an antibody-based membrane array. Key results obtained in Jurkat-Tat cells were addressed in primary, resting CD4+ T-cells by transient electroporation of HIV-Tat-FLAG plasmid DNA. Results In the Jurkat cell model, expression of Tat101 increased the levels of the senescence biomarkers BCL-2, CD87, and p21, and increased the release of sCD30, PDGF-AA, and sCD31, among other factors. Tat101 upregulated CD30 and CD31 co-expression in the Jurkat cell surface, distinguishing these cells from Tat72 and Tetoff Jurkats. The percentage of p21+, p16+, and γ-H2AX+ cells were higher in Tat-expressing CD4+ T-cells, detected as a FLAG+ population compared to their FLAG- (Tat negative) counterparts. Increased levels of sCD31 and sCD26 were also detected in electroporated CD4+ T-cell supernatants. Discussion Intracellular, full-length HIV-Tat expression increases several senescence biomarkers in Jurkat and CD4+ T-cells, and SASP/Aging mediators in cell supernatants. Intracellular HIV-Tat may initiate a cellular senescence program, contributing to the premature aging phenotype observed in PWH.
Collapse
Affiliation(s)
- Víctor Casanova
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Medicine, Universitat de Barcelona (UB), Barcelona, Spain
| | - Andrea Rodríguez-Agustín
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Medicine, Universitat de Barcelona (UB), Barcelona, Spain
| | - Rubén Ayala-Suárez
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Elisa Moraga
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - María José Maleno
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Josep Mallolas
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Infectious Diseases Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Esteban Martínez
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Infectious Diseases Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Reial Academia de Medicina de Catalunya (RAMC), Barcelona, Spain
| | - Sonsoles Sánchez-Palomino
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Medicine, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José M. Miró
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Infectious Diseases Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Reial Academia de Medicina de Catalunya (RAMC), Barcelona, Spain
| | - José Alcamí
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Medicine, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Núria Climent
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Medicine, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
9
|
Liu Q, Qi J, Yu Y, Jiang S. Reply: Comprehensive profiling of lipid metabolic reprogramming expands precision medicine for HCC. Hepatology 2025:01515467-990000000-01250. [PMID: 40258088 DOI: 10.1097/hep.0000000000001364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025]
Affiliation(s)
- Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Jingjing Qi
- Johannes Kepler University Linz, Linz, Austria
| | - Yong Yu
- Johannes Kepler University Linz, Linz, Austria
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong, China
| |
Collapse
|
10
|
Lage SL, Bricker-Holt K, Rocco JM, Rupert A, Donovan FX, Abramzon YA, Chandrasekharappa SC, McNinch C, Cook L, Amaral EP, Rosenfeld G, Dalhuisen T, Eun A, Hoh R, Fehrman E, Martin JN, Deeks SG, Henrich TJ, Peluso MJ, Sereti I. Persistent immune dysregulation and metabolic alterations following SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.16.25325949. [PMID: 40321289 PMCID: PMC12047922 DOI: 10.1101/2025.04.16.25325949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
SARS-CoV-2 can cause a variety of post-acute sequelae including Long COVID19 (LC), a complex, multisystem disease characterized by a broad range of symptoms including fatigue, cognitive impairment, and post-exertional malaise. The pathogenesis of LC is incompletely understood. In this study, we performed comprehensive cellular and transcriptional immunometabolic profiling within a cohort that included SARS-CoV-2-naïve controls (NC, N=30) and individuals with prior COVID-19 (~4-months) who fully recovered (RC, N=38) or went on to experience Long COVID symptoms (N=58). Compared to the naïve controls, those with prior COVID-19 demonstrated profound metabolic and immune alterations at the proteomic, cellular, and epigenetic level. Specifically, there was an enrichment in immature monocytes with sustained inflammasome activation and oxidative stress, elevated arachidonic acid levels, decreased tryptophan, and variation in the frequency and phenotype of peripheral T-cells. Those with LC had increased CD8 T-cell senescence and a distinct transcriptional profile within CD4 and CD8 T-cells and monocytes by single cell RNA sequencing. Our findings support a profound and persistent immunometabolic dysfunction that follows SARS-CoV-2 which may form the pathophysiologic substrate for LC. Our findings suggest that trials of therapeutics that help restore immune and metabolic homeostasis may be warranted to prevent, reduce, or resolve LC symptoms.
Collapse
Affiliation(s)
- Silvia Lucena Lage
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Katherine Bricker-Holt
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Joseph M. Rocco
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Adam Rupert
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research; Frederick, USA
| | - Frank X. Donovan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute; Bethesda, USA
| | - Yevgeniya A. Abramzon
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute; Bethesda, USA
| | | | - Colton McNinch
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Logan Cook
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Eduardo Pinheiro Amaral
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Gabriel Rosenfeld
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Thomas Dalhuisen
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Avery Eun
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Emily Fehrman
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco; San Francisco, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Timothy J. Henrich
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Michael J. Peluso
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Irini Sereti
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| |
Collapse
|
11
|
Huang HC, Fong M, Nowak I, Shcherbinina E, Lobo V, Besavilla DF, Huynh HT, Schön K, Westholm JO, Fernandez C, Patel AAH, Wiel C, Sayin VI, Anastasakis D, Angeletti D, Sarshad AA. Nuclear AGO2 supports influenza A virus replication through type-I interferon regulation. Nucleic Acids Res 2025; 53:gkaf268. [PMID: 40219968 PMCID: PMC11992678 DOI: 10.1093/nar/gkaf268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/03/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
The role of Argonaute (AGO) proteins and the RNA interference (RNAi) machinery in mammalian antiviral response has been debated. Therefore, we set out to investigate how mammalian RNAi impacts influenza A virus (IAV) infection. We reveal that IAV infection triggers nuclear accumulation of AGO2, which is directly facilitated by p53 activation. Mechanistically, we show that IAV induces nuclear AGO2 targeting of TRIM71and type-I interferon-pathway genes for silencing. Accordingly, Tp53-/- mice do not accumulate nuclear AGO2 and demonstrate decreased susceptibility to IAV infection. Hence, the RNAi machinery is highjacked by the virus to evade the immune system and support viral replication. Furthermore, the FDA-approved drug, arsenic trioxide, prevents p53 nuclear translocation, increases interferon response and decreases viral replication in vitro and in a mouse model in vivo. Our data indicate that targeting the AGO2:p53-mediated silencing of innate immunity may offer a promising strategy to mitigate viral infections.
Collapse
Affiliation(s)
- Hsiang-Chi Huang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Michelle Fong
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Iwona Nowak
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Evgeniia Shcherbinina
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Vivian Lobo
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Danica F Besavilla
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Hang T Huynh
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Jakub O Westholm
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, SE-17121 Solna, Sweden
| | - Carola Fernandez
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Angana A H Patel
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Clotilde Wiel
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Volkan I Sayin
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Dimitrios G Anastasakis
- Department of Basic Sciences, School of Medicine, University of Crete, GR 70013 Heraklion ,Greece
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- SciLifeLab, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Aishe A Sarshad
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| |
Collapse
|
12
|
McLarnon T, Watterson S, McCallion S, Cooper E, English AR, Kuan Y, Gibson DS, Murray EK, McCarroll F, Zhang S, Bjourson AJ, Rai TS. Sendotypes predict worsening renal function in chronic kidney disease patients. Clin Transl Med 2025; 15:e70279. [PMID: 40147025 PMCID: PMC11949504 DOI: 10.1002/ctm2.70279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Senescence associated secretory phenotype (SASP) contributes to age-related pathology, however the role of SASP in Chronic Kidney Disease (CKD) is unclear. Here, we employ a variety of omic techniques to show that senescence signatures can separate CKD patients into distinct senescence endotypes (Sendotype). METHODS Using specific numbers of senescent proteins, we clustered CKD patients into two distinct sendotypes based on proteomic expression. These clusters were evaluated with three independent criteria assessing inter and intra cluster distances. Differential expression analysis was then performed to investigate differing proteomic expression between sendotypes. RESULTS These clusters accurately stratified CKD patients, with patients in each sendotype having different clinical profiles. Higher expression of these proteins correlated with worsened disease symptomologies. Biological signalling pathways such as TNF, Janus kinase-signal transducers and activators of transcription (JAK-STAT) and NFKB were differentially enriched between patient sendotypes, suggesting potential mechanisms driving the endotype of CKD. CONCLUSION Our work reveals that, combining clinical features with SASP signatures from CKD patients may help predict whether a patient will have worsening or stable renal trajectory. This has implications for the CKD clinical care pathway and will help clinicians stratify CKD patients accurately. KEY POINTS Senescent proteins are upregulated in severe patients compared to mild patients Senescent proteins can stratify patients based on disease severity High expression of senescent proteins correlates with worsening renal trajectories.
Collapse
Affiliation(s)
- Thomas McLarnon
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Steven Watterson
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Sean McCallion
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Eamonn Cooper
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Andrew R. English
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
- School of Health and Life SciencesTeesside University, Campus HeartMiddlesbroughUK
| | - Ying Kuan
- Western Health and Social Care Trust, Altnagelvin Area HospitalLondonderryUK
| | - David S. Gibson
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Elaine K. Murray
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Frank McCarroll
- Western Health and Social Care Trust, Altnagelvin Area HospitalLondonderryUK
| | - Shu‐Dong Zhang
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Anthony J. Bjourson
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Taranjit Singh Rai
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| |
Collapse
|
13
|
Bruno RR, Wernly B, Artigas A, Fuest K, Schaller SJ, Dannenberg L, Kindgen-Milles D, Kelm M, Beil M, Sviri S, Elhadi M, Joannidis M, Oeyen S, Kondili E, Moreno R, Leaver S, Guidet B, De Lange DW, Flaatten H, Szczeklik W, Jung C. Contemporary assessment of short- and functional 90-days outcome in old intensive care patients suffering from COVID-19. J Crit Care 2025; 86:154984. [PMID: 39631193 DOI: 10.1016/j.jcrc.2024.154984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/22/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE There are limited data about the outcome of old intensive care (ICU) patients suffering from Covid-19 in the post-vaccination era. This study distinguishes the pre- and post-acute illness living conditions of ICU survivors from non-survivors. METHODS This prospective international multicenter study included 642 old (≥ 70 years) ICU patients, including data ranging from pre-illness condition to functional 90-days follow-up. The primary endpoint was the difference of living conditions of ICU-survivors before ICU admission and 90-days after ICU discharge. Secondary outcomes were 90-days mortality, and quality of life. RESULTS A total of 642 patients were included. Significantly more ICU survivors lived at their own homes without support before ICU admission than non-survivors (p = 0.016), while more non-survivors resided in nursing homes (p = 0.016). ICU mortality was 39 %, 30-days and 90 days mortality were 47 %and 55 %. After 90 days, only 22 % maintained the same living conditions. Surviving patients viewed ICU admission positively after 90 days, while relatives were more uncertain. Quality of life indicated a self-reported average score of 60 (50-75). CONCLUSION Living conditions influence the outcome of critically ill old patients suffering from Covid-19. Only a minority returned to their initial habitat after ICU survival. Trial registration numberNCT04321265.
Collapse
Affiliation(s)
- Raphael Romano Bruno
- Heinrich-Heine-University Duesseldorf, Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Duesseldorf, Germany
| | - Bernhard Wernly
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria; Institute of General Practice, Family Medicine and Preventive Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Antonio Artigas
- Department of Intensive Care Medicine, CIBER Enfermedades Respiratorias, Corporacion Sanitaria Universitaria Parc Tauli, Autonomous University of Barcelona, Sabadell, Spain
| | - Kristina Fuest
- Technical University of Munich, School of Medicine and Health, Department of Anesthesiology and Intensive Care Medicine, Munich, Germany
| | - Stefan J Schaller
- Medical University of Vienna, Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Vienna, Austria; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Berlin, Germany
| | - Lisa Dannenberg
- Heinrich-Heine-University Duesseldorf, Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Duesseldorf, Germany
| | | | - Malte Kelm
- Heinrich-Heine-University Duesseldorf, Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Duesseldorf, Germany; Heinrich-Heine University, Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Düsseldorf, Germany; CARID (Cardiovascular Research Institute Düsseldorf), Düsseldorf, Germany
| | - Michael Beil
- Dept. of Medical Intensive Care, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Sigal Sviri
- Dept. of Medical Intensive Care, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | | | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Sandra Oeyen
- Department of Intensive Care 1K12IC, Ghent University Hospital, Ghent, Belgium
| | - Eumorfia Kondili
- Department of Intensive Care Medicine, Intensive Care Unit, University Hospital of Heraklion, Greece
| | - Rui Moreno
- Hospital de São José, Unidade Local de Saúde São José, Centro Clinico Académico de Lisboa (CCAL), Lisboa, Portugal; Faculdade de Ciências da Saúde, Uniuversidade da Beira Interior, Covilhã, Portugal
| | - Susannah Leaver
- General Intensive Care, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Bertrand Guidet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Equipe: Épidémiologie Hospitalière Qualité et Organisation Des Soins, F-75012 Paris, France; Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Antoine, Service de Réanimation Médicale, Paris F-75012, France
| | - Dylan W De Lange
- Department of Intensive Care Medicine, University Medical Center, University Utrecht, the Netherlands
| | - Hans Flaatten
- Department of Clinical Medicine, University of Bergen, Department of Research and Development, Haukeland University Hospital, Bergen, Norway
| | - Wojciech Szczeklik
- Jagiellonian University Medical College, Center for Intensive Care and Perioperative Medicine, Krakow, Poland
| | - Christian Jung
- Heinrich-Heine-University Duesseldorf, Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Duesseldorf, Germany; Heinrich-Heine University, Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Düsseldorf, Germany; CARID (Cardiovascular Research Institute Düsseldorf), Düsseldorf, Germany.
| |
Collapse
|
14
|
Bracken OV, De Maeyer RPH, Akbar AN. Enhancing immunity during ageing by targeting interactions within the tissue environment. Nat Rev Drug Discov 2025; 24:300-315. [PMID: 39875569 DOI: 10.1038/s41573-024-01126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Immunity declines with age. This results in a higher risk of age-related diseases, diminished ability to respond to new infections and reduced response to vaccines. The causes of this immune dysfunction are cellular senescence, which occurs in both lymphoid and non-lymphoid tissue, and chronic, low-grade inflammation known as 'inflammageing'. In this Review article, we highlight how the processes of inflammation and senescence drive each other, leading to loss of immune function. To break this cycle, therapies are needed that target the interactions between the altered tissue environment and the immune system instead of targeting each component alone. We discuss the relative merits and drawbacks of therapies that are directed at eliminating senescent cells (senolytics) and those that inhibit inflammation (senomorphics) in the context of tissue niches. Furthermore, we discuss therapeutic strategies designed to directly boost immune cell function and improve immune surveillance in tissues.
Collapse
Affiliation(s)
| | - Roel P H De Maeyer
- Division of Medicine, University College London, London, UK
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK.
| |
Collapse
|
15
|
Belenki D, Richter-Pechanska P, Shao Z, Bhattacharya A, Lau A, Nabuco Leva Ferreira de Freitas JA, Kandler G, Hick TP, Cai X, Scharnagl E, Bittner A, Schönlein M, Kase J, Pardon K, Brzezicha B, Thiessen N, Bischof O, Dörr JR, Reimann M, Milanovic M, Du J, Yu Y, Chapuy B, Lee S, Leser U, Scheidereit C, Wolf J, Fan DNY, Schmitt CA. Senescence-associated lineage-aberrant plasticity evokes T-cell-mediated tumor control. Nat Commun 2025; 16:3079. [PMID: 40159497 PMCID: PMC11955568 DOI: 10.1038/s41467-025-57429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Cellular senescence is a stress-inducible state switch relevant in aging, tumorigenesis and cancer therapy. Beyond a lasting arrest, senescent cells are characterized by profound chromatin remodeling and transcriptional reprogramming. We show here myeloid-skewed aberrant lineage plasticity and its immunological ramifications in therapy-induced senescence (TIS) of primary human and murine B-cell lymphoma. We find myeloid transcription factor (TF) networks, specifically AP-1-, C/EBPβ- and PU.1-governed transcriptional programs, enriched in TIS but not in equally chemotherapy-exposed senescence-incapable cancer cells. Dependent on these master TF, TIS lymphoma cells adopt a lineage-promiscuous state with properties of monocytic-dendritic cell (DC) differentiation. TIS lymphoma cells are preferentially lysed by T-cells in vitro, and mice harboring DC-skewed Eμ-myc lymphoma experience significantly longer tumor-free survival. Consistently, superior long-term outcome is also achieved in diffuse large B-cell lymphoma patients with high expression of a TIS-related DC signature. In essence, these data demonstrate a therapeutically exploitable, prognostically favorable immunogenic role of senescence-dependent aberrant myeloid plasticity in B-cell lymphoma.
Collapse
MESH Headings
- Cellular Senescence/genetics
- Cellular Senescence/immunology
- Humans
- Animals
- Mice
- T-Lymphocytes/immunology
- Dendritic Cells/immunology
- Cell Lineage
- Cell Differentiation
- Cell Line, Tumor
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/genetics
- Gene Expression Regulation, Neoplastic
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Cell Plasticity
- Female
- Mice, Inbred C57BL
- Proto-Oncogene Proteins
- Trans-Activators
Collapse
Affiliation(s)
- Dimitri Belenki
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Paulina Richter-Pechanska
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Zhiting Shao
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Animesh Bhattacharya
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Andrea Lau
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | | | - Gregor Kandler
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Timon P Hick
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Knowledge Management in Bioinformatics, Institute for Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xiurong Cai
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Eva Scharnagl
- Johannes Kepler University, Medical Faculty, Linz, Austria
| | - Aitomi Bittner
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Martin Schönlein
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Julia Kase
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Katharina Pardon
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | | | - Nina Thiessen
- Core Unit Bioinformatics - CUBI, Berlin Institute of Health, Berlin, Germany
| | - Oliver Bischof
- IMRB, Mondor Institute for Biomedical Research, INSERM U955 - Université Paris Est Créteil, UPEC, Faculté de Médecine de Créteil, Créteil, France
| | - Jan R Dörr
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center (ECRC) of the Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maurice Reimann
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Maja Milanovic
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Campus Benjamin Franklin, Berlin, Germany
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), partner site Berlin, Berlin, Germany
| | - Jing Du
- Medical Research Center and Department of Oncology Binzhou Medical University Hospital, 256600, Binzhou, P.R. China
| | - Yong Yu
- Johannes Kepler University, Medical Faculty, Linz, Austria
| | - Björn Chapuy
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Campus Benjamin Franklin, Berlin, Germany
| | - Soyoung Lee
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Johannes Kepler University, Medical Faculty, Linz, Austria
| | - Ulf Leser
- Knowledge Management in Bioinformatics, Institute for Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claus Scheidereit
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jana Wolf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Mathematics and Computer Science, Free University Berlin, Berlin, Germany
| | - Dorothy N Y Fan
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), partner site Berlin, Berlin, Germany
| | - Clemens A Schmitt
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Johannes Kepler University, Medical Faculty, Linz, Austria.
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), partner site Berlin, Berlin, Germany.
- Kepler University Hospital, Department of Hematology and Oncology, Krankenhausstraße 9, 4020, Linz, Austria.
| |
Collapse
|
16
|
Brügger M, Machahua C, Zumkehr T, Cismaru C, Jandrasits D, Trüeb B, Ezzat S, Oliveira Esteves BI, Dorn P, Marti TM, Zimmer G, Thiel V, Funke-Chambour M, Alves MP. Aging shapes infection profiles of influenza A virus and SARS-CoV-2 in human precision-cut lung slices. Respir Res 2025; 26:112. [PMID: 40128814 PMCID: PMC11934781 DOI: 10.1186/s12931-025-03190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) outbreak revealed the susceptibility of elderly patients to respiratory virus infections, showing cell senescence or subclinical persistent inflammatory profiles and favoring the development of severe pneumonia. METHODS In our study, we evaluated the potential influence of lung aging on the efficiency of replication of influenza A virus (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as determining the pro-inflammatory and antiviral responses of the distal lung tissue. RESULTS Using precision-cut lung slices (PCLS) from donors of different ages, we found that pandemic H1N1 and avian H5N1 IAV replicated in the lung parenchyma with high efficacy. In contrast to these IAV strains, SARS-CoV-2 Early isolate and Delta variant of concern (VOC) replicated less efficiently in PCLS. Interestingly, both viruses showed reduced replication in PCLS from older compared to younger donors, suggesting that aged lung tissue represents a suboptimal environment for viral replication. Regardless of the age-dependent viral loads, PCLS responded to H5N1 IAV infection by an induction of IL-6 and IP10/CXCL10, both at the mRNA and protein levels, and to H1N1 IAV infection by induction of IP10/CXCL10 mRNA. Finally, while SARS-CoV-2 and H1N1 IAV infection were not causing detectable cell death, H5N1 IAV infection led to more cytotoxicity and induced significant early interferon responses. CONCLUSIONS In summary, our findings suggest that aged lung tissue might not favor viral dissemination, pointing to a determinant role of dysregulated immune mechanisms in the development of severe disease.
Collapse
Affiliation(s)
- Melanie Brügger
- Institute of Virology and Immunology, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Carlos Machahua
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Trix Zumkehr
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christiana Cismaru
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute of Virology, Freie Universitaet Berlin, Berlin, Germany
| | - Damian Jandrasits
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Bettina Trüeb
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sara Ezzat
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Blandina I Oliveira Esteves
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas M Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Manuela Funke-Chambour
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marco P Alves
- Institute of Virology and Immunology, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland.
| |
Collapse
|
17
|
Wang L, Tang D. Immunosenescence promotes cancer development: from mechanisms to treatment strategies. Cell Commun Signal 2025; 23:128. [PMID: 40065335 PMCID: PMC11892258 DOI: 10.1186/s12964-025-02082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
The body's innate immune system plays a pivotal role in identifying and eliminating cancer cells. However, as the immune system ages, its functionality can deteriorate, becoming dysfunctional, inefficient, or even inactive-a condition referred to as immunosenescence. This decline significantly increases the risk of malignancies. While the pro-cancer effects of T-cell aging have been widely explored, there remains a notable gap in the literature regarding the impact of aging on innate immune cells, such as macrophages and neutrophils. This review seeks to address this gap, with emphasis on these cell types. Furthermore, although certain cancer immunotherapies, including immune checkpoint inhibitors (ICIs), have demonstrated efficacy across a broad spectrum of cancers, elderly patients are less likely to derive clinical benefit from these treatments. In some cases, they may even experience immune-related adverse events (irAEs). While senolytic strategies have shown promise in exerting anti-cancer effects, their adverse reactions and potential off-target effects present significant challenges. This review aims to elucidate the pro-cancer effects of immunosenescence, its implications for the efficacy and safety of ICIs, and potential anti-aging treatment strategies. In addition, optimizing anti-aging therapies to minimize adverse reactions and enhance therapeutic outcomes remains a critical focus for future research endeavors.
Collapse
Affiliation(s)
- Leihan Wang
- Clinical Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University; Northern Jiangsu People's Hospital; The Yangzhou Clinical Medical College of Xuzhou Medical University; The Yangzhou School of Clinical Medicine of Dalian Medical University; The Yangzhou School of Clinical Medicine of Nanjing Medical University; Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, 225000, China.
| |
Collapse
|
18
|
Suda M, Tchkonia T, Kirkland JL, Minamino T. Targeting senescent cells for the treatment of age-associated diseases. J Biochem 2025; 177:177-187. [PMID: 39727337 DOI: 10.1093/jb/mvae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Cellular senescence, which entails cellular dysfunction and inflammatory factor release-the senescence-associated secretory phenotype (SASP)-is a key contributor to multiple disorders, diseases and the geriatric syndromes. Targeting senescent cells using senolytics has emerged as a promising therapeutic strategy for these conditions. Among senolytics, the combination of dasatinib and quercetin (D + Q) was the earliest and one of the most successful so far. D + Q delays, prevents, alleviates or treats multiple senescence-associated diseases and disorders with improvements in healthspan across various pre-clinical models. While early senolytic therapies have demonstrated promise, ongoing research is crucial to refine them and address such challenges as off-target effects. Recent advances in senolytics include new drugs and therapies that target senescent cells more effectively. The identification of senescence-associated antigens-cell surface molecules on senescent cells-pointed to another promising means for developing novel therapies and identifying biomarkers of senescent cell abundance.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo City, Tokyo 113-8431, Japan
- Division of Endocrinology, Diabetes, & Metabolism, Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, 8687 Melrose Ave, Pacific Design Center, West Hollywood, CA 90069, USA
| | - Tamar Tchkonia
- Division of Endocrinology, Diabetes, & Metabolism, Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, 8687 Melrose Ave, Pacific Design Center, West Hollywood, CA 90069, USA
| | - James L Kirkland
- Division of Endocrinology, Diabetes, & Metabolism, Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, 8687 Melrose Ave, Pacific Design Center, West Hollywood, CA 90069, USA
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo City, Tokyo 113-8431, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
19
|
Yalçın C, Orhan B, Candar Ö, Çubukçu S, Güllü Koca T, Hunutlu FÇ, Yavuz Ş, Akyol MN, Ersal T, Özkocaman V, Özkalemkaş F. A comparison of the effect of three different comorbidity indices on overall survival in patients with chronic myeloid leukemia. Ther Adv Hematol 2025; 16:20406207251323701. [PMID: 40028007 PMCID: PMC11869246 DOI: 10.1177/20406207251323701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
Aims It was aimed at measuring the comorbidities of chronic myeloid leukemia (CML) patients at the time of diagnosis with different comorbidity indices and evaluating their effects on disease prognosis. Methods The comorbidities of the patients were retrospectively screened and calculated in three different comorbidity indices: the ACE-27 Comorbidity Index, the Age-adjusted Charlson Comorbidity Index, and the Elixhauser Comorbidity Index. C-statistic was used to evaluate the ability of comorbidity indices to discriminate mortality. The relationship between the calculated scores and overall survival (OS) was evaluated with the Kaplan-Meier curve. Mortality risk was analyzed with a multivariate Cox regression model. Results A total of 218 CML patients were evaluated, and 211 chronic-phase patients were included in this study. The median age of the patients was 56 years (21-89), and 53% were female. As initial tyrosine kinase inhibitors, 201 (95%) patients were treated with imatinib, 10 (5%) patients with nilotinib. The median follow-up was 94.50 (9-201) months. The median OS was not reached. The most common comorbid conditions were hypertension 23% (n = 48), weight loss 19% (n = 40), diabetes mellitus 13% (n = 27), and cardiovascular disease 9% (n = 19). C-statistic values were 0.76 for ACE-27, 0.41 for ACCI, and 0.32 for ECI scores. In the Cox regression model including comorbidity scores, mortality risk was higher in patients with moderate ACE-27 score (HR: 148.05; 95% CI: 7.89-2751.53; p = 0.012), severe ACE-27 score (HR: 232.36; 95% CI: 14.20-4793.20; p = 0.001), ECOG 3 score (HR: 34.62; 95% CI: 2.67-447.36; p = 0.007), and high ELTS score (HR: 27.52; 95% CI: 1.34-543.68; p = 0.031). Conclusion This study showed that the ACE-27 Comorbidity Index is effective in predicting prognosis in CML patients. Therefore, comorbid conditions should be used more frequently as a prognostic marker at the time of diagnosis.
Collapse
Affiliation(s)
- Cumali Yalçın
- Clinic of Hematology, Kütahya City Hospital, Evliya Çelebi Mahallesi, Okmeydanı Caddesi, Kütahya 43020, Turkey
| | - Bedrettin Orhan
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Ömer Candar
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Sinem Çubukçu
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Tuba Güllü Koca
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Fazıl Çağrı Hunutlu
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Şeyma Yavuz
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Merve Nur Akyol
- Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Tuba Ersal
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Vildan Özkocaman
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Fahir Özkalemkaş
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| |
Collapse
|
20
|
Sanborn MA, Wang X, Gao S, Dai Y, Rehman J. Unveiling the cell-type-specific landscape of cellular senescence through single-cell transcriptomics using SenePy. Nat Commun 2025; 16:1884. [PMID: 39987255 PMCID: PMC11846890 DOI: 10.1038/s41467-025-57047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025] Open
Abstract
Senescent cells accumulate in most tissues with organismal aging, exposure to stressors, or disease progression. It is challenging to identify senescent cells because cellular senescence signatures and phenotypes vary widely across distinct cell types and tissues. Here we developed an analytical algorithm that defines cell-type-specific and universal signatures of cellular senescence across a wide range of cell types and tissues. We utilize 72 mouse and 64 human weighted single-cell transcriptomic signatures of cellular senescence to create the SenePy scoring platform. SenePy signatures better recapitulate in vivo cellular senescence than signatures derived from in vitro senescence studies. We use SenePy to map the kinetics of senescent cell accumulation in healthy aging as well as multiple disease contexts, including tumorigenesis, inflammation, and myocardial infarction. SenePy characterizes cell-type-specific in vivo cellular senescence and could lead to the identification of genes that serve as mediators of cellular senescence and disease progression.
Collapse
Grants
- R01-AG091545 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01HL160469 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-HL152515 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL152515 NHLBI NIH HHS
- R01-HL163978 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL160469 NHLBI NIH HHS
- F31-AG090005 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- T32- HL139439 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F31 AG090005 NIA NIH HHS
- R01 HL163978 NHLBI NIH HHS
- T32 HL139439 NHLBI NIH HHS
- R01 AG091545 NIA NIH HHS
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
Collapse
Affiliation(s)
- Mark A Sanborn
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois, USA.
- Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, Illinois, USA.
| | - Xinge Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois, USA
- Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering and College of Medicine, Chicago, Illinois, USA
| | - Shang Gao
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois, USA
- Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering and College of Medicine, Chicago, Illinois, USA
| | - Yang Dai
- Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering and College of Medicine, Chicago, Illinois, USA
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois, USA.
- Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, Illinois, USA.
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering and College of Medicine, Chicago, Illinois, USA.
- University of Illinois Cancer Center, Chicago, Illinois, USA.
| |
Collapse
|
21
|
Gao X, Hu Y, Zhang Y, Huang Y, Zhang G, Zhang X, Zhou Y, Zhang D. A galactose-tethered tetraphenylethene prodrug mediated apoptosis of senescent cells for osteoporosis treatment. SCIENCE ADVANCES 2025; 11:eadr2833. [PMID: 39970227 PMCID: PMC11838013 DOI: 10.1126/sciadv.adr2833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
Osteoporosis and bone injury healing in elderly patients are major medical challenges, often exacerbated by the accumulation of senescent cells. Herein, we show that TPE-Gal, which contains a tetraphenylethene unit and a galactose moiety, offers a promising molecular therapy designed to light up and eliminate senescent cells through a hydrolysis reaction catalyzed by β-galactosidase, an enzyme overexpressed in senescent cells. The reaction produces TPE-OH, which, in turn, increases reactive oxygen species levels within the senescent cells, leading to noninflammatory apoptosis of senescent cells. This targeted clearance mechanism helps to alleviate osteoporosis symptoms and promotes bone injury healing. Moreover, apoptotic vesicles, which are generated during the process, are partly phagocytosed by macrophages, mimicking physiological metabolic processes. This study opens new avenues for addressing bone health issues through the designed bioclearance of senescent cells, aligning with the body's natural pathways for maintaining homeostasis.
Collapse
Affiliation(s)
- Xin Gao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yichen Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yingfei Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
22
|
Hein MY, Peng D, Todorova V, McCarthy F, Kim K, Liu C, Savy L, Januel C, Baltazar-Nunez R, Sekhar M, Vaid S, Bax S, Vangipuram M, Burgess J, Njoya L, Wang E, Ivanov IE, Byrum JR, Pradeep S, Gonzalez CG, Aniseia Y, Creery JS, McMorrow AH, Sunshine S, Yeung-Levy S, DeFelice BC, Mehta SB, Itzhak DN, Elias JE, Leonetti MD. Global organelle profiling reveals subcellular localization and remodeling at proteome scale. Cell 2025; 188:1137-1155.e20. [PMID: 39742809 DOI: 10.1016/j.cell.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/05/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025]
Abstract
Defining the subcellular distribution of all human proteins and their remodeling across cellular states remains a central goal in cell biology. Here, we present a high-resolution strategy to map subcellular organization using organelle immunocapture coupled to mass spectrometry. We apply this workflow to a cell-wide collection of membranous and membraneless compartments. A graph-based analysis assigns the subcellular localization of over 7,600 proteins, defines spatial networks, and uncovers interconnections between cellular compartments. Our approach can be deployed to comprehensively profile proteome remodeling during cellular perturbation. By characterizing the cellular landscape following HCoV-OC43 viral infection, we discover that many proteins are regulated by changes in their spatial distribution rather than by changes in abundance. Our results establish that proteome-wide analysis of subcellular remodeling provides key insights for elucidating cellular responses, uncovering an essential role for ferroptosis in OC43 infection. Our dataset can be explored at organelles.czbiohub.org.
Collapse
Affiliation(s)
| | - Duo Peng
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | | | | | - Kibeom Kim
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Chad Liu
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Laura Savy
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | | | | | - Sophie Bax
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - James Burgess
- Institute for Computational & Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Leila Njoya
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Eileen Wang
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Serena Yeung-Levy
- Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lu Z, Hu B, He J, Yuan T, Wu Q, Yang K, Zheng W, Huang Y, Xu Y, Wang X, Xu Q. The transcription factor CitPH4 regulates plant defense-related metabolite biosynthesis in citrus. PLANT PHYSIOLOGY 2025; 197:kiaf027. [PMID: 39996402 DOI: 10.1093/plphys/kiaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/12/2024] [Indexed: 02/26/2025]
Abstract
Wild citrus (Citrus L.) exhibits high disease resistance accompanied by high-acidity fruit, whereas cultivated citrus produces tastier fruit but is more susceptible to disease. This is a common phenomenon, but the underlying molecular mechanisms remain unknown. Citrus PH4 (CitPH4) is a key transcription factor promoting citric acid accumulation in fruits. Accordingly, CitPH4 expression decreased during citrus domestication, along with a reduction in citric acid levels. Here, we demonstrate that a CitPH4-knockout mutant exhibits an acidless phenotype and displays substantially lower resistance to citrus diseases. Metabolome and transcriptome analyses of CitPH4-overexpressing citrus callus, Arabidopsis, and CitPH4-knockout citrus fruits revealed that quercetin, pipecolic acid (Pip), and N-hydroxypipecolic acid (NHP) are pivotal defense-related metabolites. Application of quercetin and Pip inhibited the growth of Xcc and Penicillium italicum, while NHP inhibited the growth of P. italicum and Huanglongbing. Biochemical experiments demonstrated that CitPH4 enhances the expression of quercetin and NHP biosynthesis genes by binding to their promoters. Moreover, Pip and quercetin contents were positively associated with citric acid content in the pulp of fruits from natural citrus populations. Finally, the heterologous expression of CitPH4 in Arabidopsis promoted the expression of stress response genes and enhanced its resistance to the fungal pathogen Botrytis cinerea. The overexpression of CitPH4 in tobacco (Nicotiana tabacum) enhanced disease resistance. This study reveals the mechanism by which CitPH4 regulates disease resistance and fruit acidity, providing a conceptual strategy to control fruit acidity and resistance to devastating diseases.
Collapse
Affiliation(s)
- Zhihao Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxian He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinchun Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Weikang Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuantao Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Yu W, Huang R, Sun S, Bu L, Chen X, Di Y, Lin S, Li Q, Yang Y, Ye X, Wang W, Ren R, Xi L, Zhang R, Li Y, Li X, Hou T, Ning Z, Peng Y, Wang D. Reduced functional independence and multimorbidity increases the risk of severe infection among older patients with Omicron: a multicenter retrospective cohort study. BMC Geriatr 2025; 25:84. [PMID: 39915733 PMCID: PMC11800401 DOI: 10.1186/s12877-025-05739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/24/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Multimorbidity and physical function in older adults have been identified as associated with coronavirus disease 2019 (COVID-19) outcomes. This study aimed to investigate whether multimorbidity affects the association of impaired functional independence (FI) with critical COVID-19 among older inpatients during the peak of Omicron infection in China. METHODS This is a multicentre, retrospective cohort study in northeastern China. Patients aged ≥ 60 years, who were diagnosed with COVID-19 at the time of admission or during hospitalisation. The Barthel index was used to assess FI. Patients were classified into independent, mildly dependent, moderately dependent, and severely dependent groups. Disease severity was classified as critical, severe, and non-severe and combined into severe or critical and non-severe. Binary logistic regression analysis was used to investigate any correlation between FI and disease severity. Patients were further stratified by presence or absence of multimorbidity. FINDINGS In this study, of 1598 patients, 530 (33.17%) developed severe or critical infections during the entire hospital stay. Patients with severe dependency had 7.39 times (95% CI: [4.60, 12.15]) higher risk of serious or critical infections than those without dependency. An interaction was noted between reduced FI and multimorbidity (p for interaction < 0.001). Compared to non-multimorbid patients (OR = 3.71, 95% CI: [1.58, 9.16]), multimorbid patients (OR = 10.04, 95% CI: [5.63, 18.57]) had a more pronounced risk of severe or critical infection. CONCLUSIONS Our results provide further scientific evidence on the association between FI, multimorbidity, and disease severity in older COVID-19 patients, contributing to future health decision-making for COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Wan Yu
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Runnian Huang
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Shuning Sun
- Department of Neurology, Liaoning Jinqiu Hospital, Shenyang, China
| | - Li Bu
- Department of Geriatric Respiratory Medicine, Liaoning Jinqiu Hospital, Shenyang, China
| | - Xin Chen
- Department of Internal Medicine, Geriatric Center, The Fourth People's Hospital of Shenyang, China Medical University, Shenyang, China
| | - Yunhua Di
- Department of Endocrinology and Metabolism, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Shuwu Lin
- Department of Geriatrics, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, China
| | - Qian Li
- Department of Internal Medicine, Geriatric Center, The Fourth People's Hospital of Shenyang, China Medical University, Shenyang, China
| | - Yang Yang
- The Second Affiliated Hospital of Shenyang Medical College, Shenyang, China
| | - Xingyue Ye
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, China
| | - Wenxu Wang
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, China
| | - Rui Ren
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, China
| | - Linze Xi
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, China
| | - Ru Zhang
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, China
| | - Yi Li
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, China
| | - Xin Li
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, China
| | - Tianbo Hou
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, China
| | - Zibo Ning
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, China
| | - Yang Peng
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China.
| | - Difei Wang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
25
|
Chi H, Ma L, Zeng F, Wang X, Peng P, Bai X, Zhang T, Yin W, Yu Y, Yang L, Zhou Q, Wei C, Shi W. Senolytic Treatment Alleviates Corneal Allograft Rejection Through Upregulation of Angiotensin-Converting Enzyme 2 (ACE2). Invest Ophthalmol Vis Sci 2025; 66:15. [PMID: 39913165 PMCID: PMC11806429 DOI: 10.1167/iovs.66.2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/01/2025] [Indexed: 02/07/2025] Open
Abstract
Purpose Allograft rejection remains a major cause of failure in high-risk corneal transplants, but the underlying mechanisms are not fully understood. This study aimed to investigate the contribution of transplantation stress-induced cellular senescence to corneal allograft rejection and to elucidate the associated molecular mechanisms. Methods Age-matched murine corneal transplantation models were established. Cellular senescence was evaluated using senescence-associated β-galactosidase (SA-β-Gal) staining, western blot, and immunofluorescence staining. The role of cellular senescence in corneal allograft rejection was analyzed using p16 knockout mice and adoptive transfer experiments. Senolytic treatment with ABT-263 was administered intraperitoneally to evaluate its effects on corneal allograft rejection. RNA sequencing and pharmacological approaches were employed to identify the underlying mechanisms. Results Surgical injury induced a senescence-like phenotype in both donor corneas and recipient corneal beds, characterized by an increased accumulation of SA-β-Gal-positive cells in the corneal endothelium and stroma and elevated expression of senescence markers p16 and p21. Using genetic and adoptive transfer models, transplantation stress-induced senescence was shown to exacerbate corneal allograft rejection. Importantly, clearance of senescent cells by ABT-263 significantly suppressed ocular alloresponses and immune rejection. Mechanistically, RNA sequencing and loss-of-function experiments demonstrated that the anti-rejection effects of senolytic treatment were closely dependent on angiotensin-converting enzyme 2 (ACE2). Conclusions These findings highlight transplantation stress-induced senescence as a pivotal pathogenic factor in corneal allograft rejection. Senolytic therapy emerges as a potential novel strategy to mitigate transplant rejection and improve corneal allograft survival.
Collapse
Affiliation(s)
- Hao Chi
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Fanxing Zeng
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, Jinan, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Peng Peng
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Xiaofei Bai
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Ting Zhang
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, Jinan, China
| | - Wenhui Yin
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Yaoyao Yu
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, Jinan, China
| |
Collapse
|
26
|
Gold NM, Ding Q, Yang Y, Pu S, Cao W, Ge X, Yang P, Okeke MN, Nisar A, Pan Y, Luo Q, Wang X, Xu H, Tian R, Zi M, Zhang X, Li S, He Y. Therapeutic potential of nicotinamide and ABT263 in alcohol-associated liver disease through targeting cellular senescence. MedComm (Beijing) 2025; 6:e70086. [PMID: 39931736 PMCID: PMC11808045 DOI: 10.1002/mco2.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Alcohol-associated liver disease (ALD) is a major cause of liver-related morbidity and mortality, yet clinically effective therapies for ALD remain lacking. Here, we demonstrate that alcohol intake and its metabolite, acetaldehyde (ACH), induce senescence in the liver and liver cells, respectively. To assess the therapeutic potential of targeting liver senescence in ALD, we treated ALD-affected mice with the senolytic compound ABT263 and the senomorphic NAD+ precursor, nicotinamide (NAM). The results show that ABT263 effectively clears senescent hepatocytes and stellate cells, and reduces liver triglyceride (TG), but increases plasma alanine aminotransferase and TG levels. Conversely, NAM efficiently suppresses senescence and the senescence-associated secretory phenotype (SASP), protecting the liver from alcohol-induced injury in ALD mice. RNA-sequencing analysis revealed that ABT263 treatment downregulated genes involved in adipogenesis while activating the complement pathway. In contrast, NAM upregulated metabolism-related genes, such as Sirt1, and downregulated DNA damage marker genes, including Rec8 and E2f1, in the liver. These findings suggest that cellular senescence plays a critical role in alcohol-induced liver injury. Compared with senescent cell clearance by ABT263, suppressing senescence and SASP by NAM may provide a safer and more effective therapeutic approach for ALD.
Collapse
Affiliation(s)
- Naheemat Modupeola Gold
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Qinchao Ding
- Department of Nutrition and Food Hygiene, School of Public HealthZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Yang Yang
- Department of MedicineMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Shaoyan Pu
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Biodiversity Data Center of Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Wenjing Cao
- Department of Nutrition and Food Hygiene, School of Public HealthZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Xinxuan Ge
- Department of Nutrition and Food Hygiene, School of Public HealthZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Pengyun Yang
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Michael Ngozi Okeke
- Guangdong Key Laboratory of NanomedicineInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Ayesha Nisar
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Yongzhang Pan
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Qiuni Luo
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Xiayan Wang
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Han Xu
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Rui Tian
- Department of UltrasonographyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Meiting Zi
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural ResourceMinistry of EducationYunnan Characteristic Plant Extraction LaboratoryYunnan Key Laboratory of Research and Development for Natural ProductsState Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanSchool of Pharmacy and School of Chemical Science and TechnologyYunnan UniversityKunmingYunnanChina
| | - Songtao Li
- Department of Nutrition and Food Hygiene, School of Public HealthZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Yonghan He
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| |
Collapse
|
27
|
Chang Y, Wu X, Deng L, Wang S, Mao G. [Mechanism and significance of cell senescence induced by viral infection]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2025; 54:70-80. [PMID: 39909458 PMCID: PMC11956860 DOI: 10.3724/zdxbyxb-2024-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/15/2024] [Indexed: 02/07/2025]
Abstract
Virus-induced senescence (VIS) is a significant biological phenomenon, which is associated with declining immune function, accelerating aging process and causing aging-related diseases. A variety of common viruses, including RNA viruses (such as SARS-CoV-2), DNA viruses (such as herpesviruses and hepatitis B virus), and prions can cause VIS in host cells. The primary mechanisms include abnormal activation of the cGAS-STING signaling pathway, DNA damage response, and potential correlations with the integrated stress response due to intracellular phase separation. Viral infection and cellular senescence influence each other: cellular senescence serves as a defense to restrict viral replication and transmission, while some viruses exploit cellular senescence to enhance their infectivity and replication. Understanding the mechanisms of VIS is conducive to the development of therapeutic strategies for viral infections and promotion of healthy aging. However, there is lack of research on therapeutic targets and drug development in this field so far. Although senolytics may be effective for anti-senescent cells therapy, their efficacy for VIS needs evidence from further clinical trials. This article reviews the research progress on the connection between viral infection and cellular senescence, to provide insights for the prevention and treatment of aging related diseases.
Collapse
Affiliation(s)
- Yunchuang Chang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, Hubei Province, China.
| | - Xinna Wu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lingli Deng
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, Hubei Province, China
| | - Sanying Wang
- Zhejiang Provincial Geriatrics Institute, Zhejiang Key Laboratory of Geriatrics, Zhejiang Hospital, Hangzhou 310030, China.
| | - Genxiang Mao
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, Hubei Province, China.
- Zhejiang Provincial Geriatrics Institute, Zhejiang Key Laboratory of Geriatrics, Zhejiang Hospital, Hangzhou 310030, China.
| |
Collapse
|
28
|
Xu Y, Chen L, Liu W, Chen L. [Advances in inflammaging in liver disease]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2025; 54:90-98. [PMID: 39828280 PMCID: PMC11956859 DOI: 10.3724/zdxbyxb-2024-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025]
Abstract
Inflammaging is a process of cellular dysfunction associated with chronic inflammation, which plays a significant role in the onset and progression of liver diseases. Research on its mechanisms has become a hotspot. In viral hepatitis, inflammaging primarily involve oxidative stress, cell apoptosis and necrosis, as well as gut microbiota dysbiosis. In non-alcoholic fatty liver disease, inflammaging is more complex, involving insulin resistance, fat deposition, lipid metabolism disorders, gut microbiota dysbiosis, and abnormalities in NAD+ metabolism. In liver tumors, inflammaging is characterized by weakening of tumor suppressive mechanisms, remodeling of the liver microenvironment, metabolic reprogramming, and enhanced immune evasion. Therapeutic strategies targeting inflammaging have been developing recently, and antioxidant therapy, metabolic disorder improvement, and immunotherapy are emerging as important interventions for liver diseases. This review focuses on the mechanisms of inflammaging in liver diseases, aiming to provide novel insights for the prevention and treatment of liver diseases.
Collapse
Affiliation(s)
- Yanping Xu
- Department of General Practice, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Luyi Chen
- Department of General Practice, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Weili Liu
- Department of General Practice, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Liying Chen
- Department of General Practice, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
29
|
Khasawneh AI, Al Shboul S, Himsawi N, Al Rousan A, Shahin NA, El-Sadoni M, Alhesa A, Abu Ghalioun A, Khawaldeh S, Shawish B, Mahfouz SA, Al-Shayeb M, Dawoud SA, Tlilan R, Nuseir M, Alotaibi MR, Abu Al Karsaneh O, Asali F, Mayordomo MY, Barham R, Khasawneh R, Saleh T. Resolution of oncogene-induced senescence markers in HPV-infected cervical cancer tissue. BMC Cancer 2025; 25:111. [PMID: 39838347 PMCID: PMC11752938 DOI: 10.1186/s12885-025-13499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Oncogene-Induced Senescence (OIS) is a form of senescence that occurs as a consequence of oncogenic overstimulation and possibly infection by oncogenic viruses. Whether senescence plays a role in the pathogenesis of cervical cancer (CC) is not well understood. Moreover, whether cervical epithelial cells that are part of the premalignant cervical intraepithelial neoplasia (CIN), exhibit markers of OIS in Human Papillomavirus (HPV)-infected tissue, has not been investigated. METHODS We utilized a set of patient-derived premalignant and malignant tissue samples to investigate the protein (Ki67 and Lamin B1) and gene (TP53, IL1A, CCL2, and MMP9) expression of several OIS-associated biomarkers using immunohistochemistry (IHC) and qRT-PCR, respectively. Furthermore, we characterized the HPV status of all tissue samples. RESULTS Most of the CC samples (34/37) were positive for HPV, mainly HPV-16 which was observed in 62.2% of the CC samples. Among CINs, HPV infection was found in 60.2% of the 32 samples with HPV-16 as the dominant genotype in 58.5% of the CINs. IHC analysis revealed a significant increase in the expression levels of both Ki67 and Lamin B1 proteins in CC tissue compared to CIN. On average, 93% of tumor cells were positive for Ki67 in comparison to only 25% of premalignant cells in CIN samples. Similarly, Lamin B1 expression was observed in 89% of tumor cells in malignant tissue on average, compared to 60% in CIN samples. Importantly, Lamin B1 expression was elevated in nonmalignant cervical tissue suggesting that its downregulation is more predominant in the premalignant state. Furthermore, RT-PCR revealed a significant decrease in the expression of TP53, IL1a, CCL2, and MMP9 markers in CC samples compared to CINs. Specifically, 84% of CC samples showed reduced TP53 expression, 90% showed reduced IL1a expression, 74% showed reduced CCL2 expression, and 76% showed reduced MMP9 expression when compared with their premalignant baseline. Infection of HPV was confirmed in 61% of the tumor tissues while only 25% of the CINs were positive for HPV. CONCLUSION This work shall provide an opportunity to further examine the role of OIS in the process of HPV-driven CC development.
Collapse
Affiliation(s)
- Ashraf I Khasawneh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Nisreen Himsawi
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Amani Al Rousan
- King Hussein Medical Center, Royal Medical Services, Amman, 11942, Jordan
| | - Nisreen Abu Shahin
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mohammed El-Sadoni
- King Hussein Medical Center, Royal Medical Services, Amman, 11942, Jordan
| | - Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Ala' Abu Ghalioun
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Suzan Khawaldeh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Bayan Shawish
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Salem Abu Mahfouz
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Mais Al-Shayeb
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Shatha Abo Dawoud
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Raghad Tlilan
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Mohammad Nuseir
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ola Abu Al Karsaneh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Fida Asali
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | | | - Raghda Barham
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Rame Khasawneh
- King Hussein Medical Center, Royal Medical Services, Amman, 11942, Jordan
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13115, Jordan.
| |
Collapse
|
30
|
Saha I, Banerjee O, Sarkar (Biswas) S, Mukherjee S. COVID-19 beyond the lungs: Unraveling its vascular impact and cardiovascular complications-mechanisms and therapeutic implications. Sci Prog 2025; 108:368504251322069. [PMID: 40091392 PMCID: PMC11912160 DOI: 10.1177/00368504251322069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
COVID-19, caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), is primarily a respiratory illness but significantly affects the cardiovascular system as well. After entering the body through the respiratory tract, the virus directly and indirectly disrupts the vascular system. Vascular endothelial cells (ECs), which express ACE2 and TMPRSS2, are targets for viral invasion. However, the predominant cause of widespread vascular damage is the "cytokine storm" induced by the immune response. This leads to EC activation, inflammation, neutrophil activation, and neutrophil-platelet aggregation, causing endothelial injury. Additionally, increased expression of plasminogen activator inhibitor-1 disrupts the balance between prothrombotic and fibrinolytic processes, while activation of the renin-angiotensin-aldosterone system adds oxidative stress to the vascular endothelium. In the heart, SARS-CoV-2 invades ECs, leading to apoptosis and pyroptosis, exacerbated by inflammation and elevated catecholamines. These factors contribute to arrhythmias, strokes, and myocardial infarction in severe cases of COVID-19. This narrative review aims to explore the mechanisms by which SARS-CoV-2 affects the cardiovascular system and to highlight the resulting complications. It also identifies research gaps and discusses potential therapeutic strategies to mitigate the cardiovascular impacts of COVID-19.
Collapse
Affiliation(s)
- Ishita Saha
- Department of Physiology, Medical College & Hospital, Kolkata, West Bengal, India
| | - Oly Banerjee
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Swami Vivekananda University, Bara Kanthalia, West Bengal, India
| | | | - Sandip Mukherjee
- Department of Physiology, Serampore College, Hooghly, West Bengal, India
| |
Collapse
|
31
|
McHugh D, Durán I, Gil J. Senescence as a therapeutic target in cancer and age-related diseases. Nat Rev Drug Discov 2025; 24:57-71. [PMID: 39548312 DOI: 10.1038/s41573-024-01074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Cellular senescence is a stress response that restrains the growth of aged, damaged or abnormal cells. Thus, senescence has a crucial role in development, tissue maintenance and cancer prevention. However, lingering senescent cells fuel chronic inflammation through the acquisition of a senescence-associated secretory phenotype (SASP), which contributes to cancer and age-related tissue dysfunction. Recent progress in understanding senescence has spurred interest in the development of approaches to target senescent cells, known as senotherapies. In this Review, we evaluate the status of various types of senotherapies, including senolytics that eliminate senescent cells, senomorphics that suppress the SASP, interventions that mitigate senescence and strategies that harness the immune system to clear senescent cells. We also summarize how these approaches can be combined with cancer therapies, and we discuss the challenges and opportunities in moving senotherapies into clinical practice. Such therapies have the potential to address root causes of age-related diseases and thus open new avenues for preventive therapies and treating multimorbidities.
Collapse
Affiliation(s)
- Domhnall McHugh
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Imanol Durán
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Jesús Gil
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
32
|
Logotheti S, Vasilopoulos SN, Tremi I, Gkikoudi A, Fragkos M, Pavlopoulou A, Havaki S, Georgakilas AG. The DNA Damage Response as an Auxiliary Indicator of Senescence in Cancer: A User-Friendly Toolkit of Markers and Detection Methods. Methods Mol Biol 2025; 2906:83-112. [PMID: 40082352 DOI: 10.1007/978-1-0716-4426-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Senescence is a cellular stress response causing a stable exit from the cell cycle. Limitation of cell proliferation is accompanied by a variety of characteristic changes, including cellular and nuclear morphological alterations, chromatin rearrangements, metabolic reprogramming, nuclear envelope rupture, and an immunomodulatory secretome, termed senescence-associated secreted phenotype (SASP). Senescence is a robust mechanism of tissue homeostasis, with crucial roles in eliminating dysfunctional and/or premalignant cells, and tissue repair. Activation of oncogenes triggers senescence, which in turn arrests DNA-damaged cells. This type of response, known as oncogene-induced senescence (OIS) is a powerful barrier to oncogenesis. However, in specific contexts, senescent cells support tumor progression, mainly via their secretome-mediated activities. The dynamic, context-dependent and ambivalent nature of senescence challenges the identification, characterization, and specific targeting of senescent cells for disease management. Importantly, senescence is highly intertwined with DNA damage response and repair (DDR/R) machinery that safeguards genome integrity. DNA damage events are frequently prevalent, while DDR/R signaling pathways are active during cellular senescence. In this regard, it can serve as an auxiliary indicator for senescent cells. In this chapter, we emphasize DDR/R as a shared hallmark of cancer and senescence. We provide a wieldy toolkit of experimental methods for monitoring DDR-related senescence markers, and we demonstrate the potential of using natural language processing to extract additional DDR/R biomarkers tailored to specific cancer types. Our methodologies can facilitate a comprehensive study of senescence in aging and cancer.
Collapse
Affiliation(s)
- Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, Athens, Greece
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Spyridon N Vasilopoulos
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, Athens, Greece
- Molecular Cell Biology Lab, Department of Science and Mathematics, School of Liberal Arts and Sciences, Deree-The American College of Greece, Athens, Greece
| | - Ioanna Tremi
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, Athens, Greece
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Angeliki Gkikoudi
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, Athens, Greece
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
| | - Michalis Fragkos
- Molecular Cell Biology Lab, Department of Science and Mathematics, School of Liberal Arts and Sciences, Deree-The American College of Greece, Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Genomics and Molecular Biotechnology Department, Dokuz Eylül University, Izmir, Türkiye
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, Athens, Greece.
| |
Collapse
|
33
|
Wu Z, Qu J, Liu GH. Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat Rev Mol Cell Biol 2024; 25:979-1000. [PMID: 39363000 DOI: 10.1038/s41580-024-00775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/05/2024]
Abstract
Ageing is a complex biological process in which a gradual decline in physiological fitness increases susceptibility to diseases such as neurodegenerative disorders and cancer. Cellular senescence, a state of irreversible cell-growth arrest accompanied by functional deterioration, has emerged as a pivotal driver of ageing. In this Review, we discuss how heterochromatin loss, telomere attrition and DNA damage contribute to cellular senescence, ageing and age-related diseases by eliciting genome instability, innate immunity and inflammation. We also discuss how emerging therapeutic strategies could restore heterochromatin stability, maintain telomere integrity and boost the DNA repair capacity, and thus counteract cellular senescence and ageing-associated pathologies. Finally, we outline current research challenges and future directions aimed at better comprehending and delaying ageing.
Collapse
Affiliation(s)
- Zeming Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
34
|
Tighanimine K. Lipid remodeling in context of cellular senescence. Biochimie 2024; 227:47-52. [PMID: 39299535 DOI: 10.1016/j.biochi.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Cellular senescence is a response that irreversibly arrests stressed cells thus providing a potent tumor suppressor mechanism. In parallel, senescent cells exhibit an immunogenic secretome called SASP (senescence-associated secretory phenotype) that impairs tissue homeostasis and is involved in numerous age-related diseases. Senescence establishment is achieved through the unfolding of a profound transcriptional reprogramming together with morphological changes. These alterations are accompanied by important metabolic adaptations characterized by biosynthetic pathways reshuffling and lipid remodeling. In this mini-review we highlight the intricate links between lipid metabolism and the senescence program and we discuss the potential interventions on lipid pathways that can alleviate the senescence burden.
Collapse
Affiliation(s)
- Khaled Tighanimine
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France.
| |
Collapse
|
35
|
Russell SJ, Parker K, Lehoczki A, Lieberman D, Partha IS, Scott SJ, Phillips LR, Fain MJ, Nikolich JŽ. Post-acute sequelae of SARS-CoV-2 infection (Long COVID) in older adults. GeroScience 2024; 46:6563-6581. [PMID: 38874693 PMCID: PMC11493926 DOI: 10.1007/s11357-024-01227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
Long COVID, also known as PASC (post-acute sequelae of SARS-CoV-2), is a complex infection-associated chronic condition affecting tens of millions of people worldwide. Many aspects of this condition are incompletely understood. Among them is how this condition may manifest itself in older adults and how it might impact the older population. Here, we briefly review the current understanding of PASC in the adult population and examine what is known on its features with aging. Finally, we outline the major gaps and areas for research most germane to older adults.
Collapse
Affiliation(s)
- Samantha J Russell
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Karen Parker
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, 1097, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - David Lieberman
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Indu S Partha
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Serena J Scott
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Linda R Phillips
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- College of Nursing, University of Arizona, Tucson, AZ, USA
| | - Mindy J Fain
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Banner University Medicine-Tucson, Tucson, AZ, USA.
- College of Nursing, University of Arizona, Tucson, AZ, USA.
| | - Janko Ž Nikolich
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- The Aegis Consortium for Pandemic-Free Future, University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
36
|
Li W, Qian R, Zhou Z, Wen L, Yin Q, Zhou X, Li X, Cheng J, Zhang X, Zeng X, Wang Z, Huang Y, Wang S, Liao Y, Li Y, Shan S, Zhou M, Wei W, Abdollahi A, August A, Magazine N, Veggiani G, Huang W, Guan D, Zhou C. T cell senescence may contribute to immunothrombosis via Th17 immune transition in COVID-19. Sci Bull (Beijing) 2024; 69:3501-3506. [PMID: 38755088 DOI: 10.1016/j.scib.2024.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/07/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Affiliation(s)
- Wenxing Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rui Qian
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhaoming Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Radiation Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Lei Wen
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Quan Yin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xiang Zhou
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan 430070, China
| | - Xiaowei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jie Cheng
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Xinlu Zhang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin Zeng
- Department of Radiation Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhuoya Wang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingying Huang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shengqiang Wang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yixing Liao
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Youjiang Li
- Department of Clinical Laboratory, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Shenbing Shan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Meijuan Zhou
- Department of Radiation Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Wu Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Amir Abdollahi
- Translational Radiation Oncology, German Cancer Research Center (DKFZ) and University Heidelberg School of Medicine, Heidelberg 69120, Germany
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853, USA
| | - Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA 70803, USA
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA 70803, USA
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA 70803, USA.
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Cheng Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Translational Radiation Oncology, German Cancer Research Center (DKFZ) and University Heidelberg School of Medicine, Heidelberg 69120, Germany.
| |
Collapse
|
37
|
Pedroso RB, Torres L, Ventura LA, Camatta GC, Mota C, Mendes AC, Ribeiro F, Guimarães HC, Barbuto RC, Caixeta F, Nascimento LS, Oliveira MA, Martins VD, Silveira-Nunes G, Tupinambás U, Teixeira-Carvalho A, Graça L, Faria AMC. Rapid progression of CD8 and CD4 T cells to cellular exhaustion and senescence during SARS-CoV2 infection. J Leukoc Biol 2024; 116:1385-1397. [PMID: 39298288 DOI: 10.1093/jleuko/qiae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/19/2024] [Indexed: 09/21/2024] Open
Abstract
Risk factors for the development of severe COVID-19 include several comorbidities, but age was the most striking one since elderly people were disproportionately affected by SARS-CoV-2 infection. Among the reasons for this markedly unfavorable response in the elderly, immunosenescence and inflammaging appear as major drivers of this outcome. A finding that was also notable was that hospitalized patients with severe COVID-19 have an accumulation of senescent T cells, suggesting that immunosenescence may be aggravated by SARS-CoV-2 infection. The present work was designed to examine whether these immunosenescence changes are characteristic of COVID-19 and whether it is dependent on disease severity using cross-sectional and longitudinal studies. Our cross-sectional data show that COVID-19, but not other respiratory infections, rapidly increased cellular senescence and exhaustion in CD4 and CD8 T cells during early infection. In addition, longitudinal analyses with patients from Brazil and Portugal provided evidence of increased frequencies of senescent and exhausted T cells over a 7-d period in patients with mild/moderate and severe COVID-19. Altogether, the study suggests that accelerated immunosenescence in CD4 and especially CD8 T-cell compartments may represent a common and unique outcome of SARS-CoV2 infection.
Collapse
Affiliation(s)
- Rodrigo Balsinha Pedroso
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649, 1649-028, Lisboa, Portugal
| | - Lícia Torres
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Lucas Araújo Ventura
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Giovanna Caliman Camatta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Catarina Mota
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649, 1649-028, Lisboa, Portugal
| | - Ana Catarina Mendes
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649, 1649-028, Lisboa, Portugal
| | - Filipa Ribeiro
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649, 1649-028, Lisboa, Portugal
| | | | - Rafael Calvão Barbuto
- Hospital Risoleta Tolentino Neves, R. das Gabirobas, 1, 31744-012, Belo Horizonte, MG, Brazil
| | - Felipe Caixeta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Leandro Souza Nascimento
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Mariana Almeida Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Vinícius Dantas Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Gabriela Silveira-Nunes
- Departamento de Medicina, Universidade Federal de Juiz de Fora (UFJF), Av. Doutor Raimundo Monteiro Resende, Governador Valadares, 35010-177, MG, Brazil
| | - Unaí Tupinambás
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Alfredo Balena, 190, Belo Horizonte, 30130-100, MG, Brazil
| | - Andrea Teixeira-Carvalho
- Laboratório de Biomarcadores, Instituto de Pesquisa René Rachou, Fundação Oswaldo Cruz, FIOCRUZ-MG, Av. Augusto de Lima, 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Luis Graça
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649, 1649-028, Lisboa, Portugal
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
38
|
Wang L, Zhang J, Liu F, Shi Q, Gao F, Li J, Liu Y, Kong F, Xu D. Maternal infection of SARS-CoV-2 during the first and second trimesters leads to newborn telomere shortening. J Transl Med 2024; 22:1049. [PMID: 39574146 PMCID: PMC11580642 DOI: 10.1186/s12967-024-05879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Initial telomere length (TL) in newborns is the major determinant for TL in later life while TL in newborn/early-life predicts long-term health and lifespan. It is important to identify key factors that affect telomere homeostasis throughout embryonic development for precision interventions to maintain optimal TL in fetus/prenatal infants. SARS-CoV-2 has caused a widespread global pandemic of COVID-19, but it remains unclear whether maternal SARS-CoV-2 infection impairs prenatal telomere homeostasis. METHODS We recruited 413 normally delivered newborns whose mothers were either non-infected or infected with SARS-CoV-2 during different trimesters of pregnancy (otherwise healthy). Telomere length (TL) in cord blood (CB) was assessed using qPCR. CB and maternal blood were analyzed for cytokine levels. Placental senescence was determined using senescence-associated β-galactosidase staining. RESULTS Control (non-infected maternal) newborn TL was significantly longer than that from maternal infection (1.568 ± 0.340 vs 1.390 ± 0.350, P = 0.005). Such shorter TL was observed only if maternal infection of SARS-CoV-2 occurred in the first and second trimesters of pregnancy (1.261 ± 0.340 and 1.346 ± 0.353, P < 0.0001 and 0.001, respectively). There were no differences in TL between controls and infection at the third trimester (1.568 ± 0.340 vs 1.565 ± 0.329, P > 0.05). Across the first trimester, there was a positive correlation between newborn TL and gestational weeks with maternal infection, suggesting that the earlier maternal infection occurs, the worse effect is taken on fetal telomere homeostasis. Placental senescence coupled with the downregulated expression of telomerase reverse transcriptase was significantly more frequent from the maternal infection at the first trimester. There were no differences in IL-6, C reactive protein and other cytokine levels in CB and maternal serum or placentas. CONCLUSIONS Maternal SARS-CoV-2 infection at the first and second trimesters leads to significantly shorter TL and earlier infection causes much more severe TL damage. The infection-mediated cell senescence and other histopathological abnormalities result in defective placental function through which fetal telomere homeostasis is impaired. Thus, vaccination against COVID-19 should be done in advance for women who plan pregnancy.
Collapse
Affiliation(s)
- Lina Wang
- Central Research Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junfeng Zhang
- Jinan Maternity and Child Health Care Hospital, Jinan, China
| | - Fangfei Liu
- Central Research Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qixiang Shi
- Jinan Seventh People's Hospital, Jinan, China
| | - Fengchun Gao
- Jinan Maternity and Child Health Care Hospital, Jinan, China
| | - Junmin Li
- Jinan Maternity and Child Health Care Hospital, Jinan, China
| | - Yanhua Liu
- Jinan Maternity and Child Health Care Hospital, Jinan, China
| | - Feng Kong
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Jinan, China.
| | - Dawei Xu
- Department of Medicine, Division of Hematology, Bioclinicum, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
39
|
Nong C, Wu Z, Yang C, Xu W, Luo L, Zhou J, Shen L, Chen Y, Yuan Y, Hu G. Cdc42 improve SARS-CoV-2 spike protein-induced cellular senescence through activating of Wnt/β-Catenin signaling pathway. Front Cell Infect Microbiol 2024; 14:1449423. [PMID: 39559701 PMCID: PMC11570593 DOI: 10.3389/fcimb.2024.1449423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction SARS-CoV-2 infection drove senescent cells and the senescence-associated phenotypes were reported playing roles in disease progression, which contributes to severe COVID-19 and related sequelae. Cdc42 is involved in the regulation of cellular senescence. This study, aimed to investigate the mechanism of the SARS-CoV-2 spike protein regulating cellular senescence through Cdc42. Methods K18-hACE2 mice were infected with SARS-CoV-2 Omicron BA.4 or stimulated with spike protein through the airway, the senescent cells and Cdc42 expression in lung tissue were detected. Overexpression of spike protein or exogenous incubation of spike protein was used to simulate the induction of cellular senescence by spike protein. Mechanistic insights into the role of Cdc42 were mainly explored using Western Blot and qRT-PCR. Results Spike protein, SARS-CoV-2 infection related, accelerates cell aging by upregulating Cdc42 expression, which furtherly activated the Wnt/β-catenin signaling pathway. Conversely, treatment with ML141 in animal models, a Cdc42 inhibitor, reduced cellular senescence and ameliorated lung injury and inflammation. These results suggest that the upregulation of Cdc42 by the SARS-CoV-2 spike protein induces cellular senescence and enhances β-catenin nuclear translocation. Discussion This study provides insights into the mechanisms underlying cellular senescence induced by the SARS-CoV-2 spike protein, offering potential strategies to mitigate the inflammatory response and complications associated with COVID-19 in both the acute and long-term phases.
Collapse
Affiliation(s)
- Chunmei Nong
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory and Critical Care Medicine, Dongguan, Guangdong, China
| | - Zhenzhen Wu
- Department of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Chan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Linyi Luo
- Intensive Care Unit, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Jianping Zhou
- Department of Thoracic Surgery, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Lihan Shen
- Intensive Care Unit, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Yinghua Chen
- Dongguan People’s Hospital Biobank, Clinical Research Center, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaoqin Yuan
- Intensive Care Unit, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Guodong Hu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory and Critical Care Medicine, Dongguan, Guangdong, China
| |
Collapse
|
40
|
Yu Y, Lin K, Wu H, Hu M, Yang X, Wang J, Grillari J, Chen J. Targeting senescent cells in aging and COVID-19: from cellular mechanisms to therapeutic opportunities. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:20. [PMID: 39358480 PMCID: PMC11447201 DOI: 10.1186/s13619-024-00201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
The COVID-19 pandemic has caused a global health crisis and significant social economic burden. While most individuals experience mild or non-specific symptoms, elderly individuals are at a higher risk of developing severe symptoms and life-threatening complications. Exploring the key factors associated with clinical severity highlights that key characteristics of aging, such as cellular senescence, immune dysregulation, metabolic alterations, and impaired regenerative potential, contribute to disruption of tissue homeostasis of the lung and worse clinical outcome. Senolytic and senomorphic drugs, which are anti-aging treatments designed to eliminate senescent cells or decrease the associated phenotypes, have shown promise in alleviating age-related dysfunctions and offer a novel approach to treating diseases that share certain aspects of underlying mechanisms with aging, including COVID-19. This review summarizes the current understanding of aging in COVID-19 progression, and highlights recent findings on anti-aging drugs that could be repurposed for COVID-19 treatment to complement existing therapies.
Collapse
Affiliation(s)
- Yuan Yu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaixuan Lin
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Haoyu Wu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mingli Hu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xuejie Yang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jie Wang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, 1200, Vienna, Austria
| | - Jiekai Chen
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
41
|
Soni S, Antonescu L, Ro K, Horowitz JC, Mebratu YA, Nho RS. Influenza, SARS-CoV-2, and Their Impact on Chronic Lung Diseases and Fibrosis: Exploring Therapeutic Options. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1807-1822. [PMID: 39032604 PMCID: PMC11423761 DOI: 10.1016/j.ajpath.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Respiratory tract infections represent a significant global public health concern, disproportionately affecting vulnerable populations such as children, the elderly, and immunocompromised individuals. RNA viruses, particularly influenza viruses and coronaviruses, significantly contribute to respiratory illnesses, especially in immunosuppressed and elderly individuals. Influenza A viruses (IAVs) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to pose global health threats due to their capacity to cause annual epidemics, with profound implications for public health. In addition, the increase in global life expectancy is influencing the dynamics and outcomes of respiratory viral infections. Understanding the molecular mechanisms by which IAVs and SARS-CoV-2 contribute to lung disease progression is therefore crucial. The aim of this review is to comprehensively explore the impact of IAVs and SARS-CoV-2 on chronic lung diseases, with a specific focus on pulmonary fibrosis in the elderly. It also outlines potential preventive and therapeutic strategies and suggests directions for future research.
Collapse
Affiliation(s)
- Sourabh Soni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Laura Antonescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Kaylin Ro
- Scripps Research Institute, San Diego, California
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Yohannes A Mebratu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.
| | - Richard S Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
42
|
Au MT, Ni J, Tang K, Wang W, Zhang L, Wang H, Zhao F, Li Z, Luo P, Lau LCM, Chan PK, Luo C, Zhou B, Zhu L, Zhang CY, Jiang T, Lauwers M, Chan JFW, Yuan S, Wen C. Blockade of endothelin receptors mitigates SARS-CoV-2-induced osteoarthritis. Nat Microbiol 2024; 9:2538-2552. [PMID: 39261580 DOI: 10.1038/s41564-024-01802-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
Joint pain and osteoarthritis can occur as coronavirus disease 2019 (COVID-19) sequelae after infection. However, little is known about the damage to articular cartilage. Here we illustrate knee joint damage after wild-type, Delta and Omicron variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in vivo. Rapid joint injury with cystic lesions at the osteochondral junction was observed in two patients with post-COVID osteoarthritis and recapitulated in a golden Syrian hamster model. SARS-CoV-2-activated endothelin-1 signalling increased vascular permeability and caused viral spike proteins leakage into the subchondral bone. Osteoclast activation, chondrocyte dropout and cyst formation were confirmed histologically. The US Food and Drug Administration-approved endothelin receptor antagonist, macitentan, mitigated cystic lesions and preserved chondrocyte number in the acute phase of viral infection in hamsters. Delayed macitentan treatment at post-acute infection phase alleviated chondrocyte senescence and restored subchondral bone loss. It is worth noting that it could also attenuate viral spike-induced joint pain. Our work suggests endothelin receptor blockade as a novel therapeutic strategy for post-COVID arthritis.
Collapse
Affiliation(s)
- Man Ting Au
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Junguo Ni
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wei Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Lanlan Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Hantang Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Fangyi Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Zhan Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Peng Luo
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lawrence Chun-Man Lau
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ping-Keung Chan
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Bo Zhou
- Department of Biology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Charlie Yuli Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Tianshu Jiang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Marianne Lauwers
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
43
|
Luo YW, Zhou JP, Ji H, Xu D, Zheng A, Wang X, Dai Z, Luo Z, Cao F, Wang XY, Bai Y, Chen D, Chen Y, Wang Q, Yang Y, Zhang X, Chiu S, Peng X, Huang AL, Tang KF. SARS-CoV-2 N protein-induced Dicer, XPO5, SRSF3, and hnRNPA3 downregulation causes pneumonia. Nat Commun 2024; 15:6964. [PMID: 39138195 PMCID: PMC11322655 DOI: 10.1038/s41467-024-51192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Though RNAi and RNA-splicing machineries are involved in regulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, their precise roles in coronavirus disease 2019 (COVID-19) pathogenesis remain unclear. Herein, we show that decreased RNAi component (Dicer and XPO5) and splicing factor (SRSF3 and hnRNPA3) expression correlate with increased COVID-19 severity. SARS-CoV-2 N protein induces the autophagic degradation of Dicer, XPO5, SRSF3, and hnRNPA3, inhibiting miRNA biogenesis and RNA splicing and triggering DNA damage, proteotoxic stress, and pneumonia. Dicer, XPO5, SRSF3, and hnRNPA3 knockdown increases, while their overexpression decreases, N protein-induced pneumonia's severity. Older mice show lower expression of Dicer, XPO5, SRSF3, and hnRNPA3 in their lung tissues and exhibit more severe N protein-induced pneumonia than younger mice. PJ34, a poly(ADP-ribose) polymerase inhibitor, or anastrozole, an aromatase inhibitor, ameliorates N protein- or SARS-CoV-2-induced pneumonia by restoring Dicer, XPO5, SRSF3, and hnRNPA3 expression. These findings will aid in developing improved treatments for SARS-CoV-2-associated pneumonia.
Collapse
Grants
- 81972648 National Natural Science Foundation of China (National Science Foundation of China)
- CSTB2023NSCQ-BHX0134 Chongqing Postdoctoral Science Foundation
- 82172915 National Natural Science Foundation of China (National Science Foundation of China)
- 81773011 National Natural Science Foundation of China (National Science Foundation of China)
- I01 HX000134 HSRD VA
- The National Key Research and Development Program is aimed at addressing major scientific and technological issues that are crucial to the national economy, people's livelihood, public welfare, industrial core competitiveness, overall capability for independent innovation, and national security. It aims to overcome technological bottlenecks in key areas of national economic and social development. This program integrates several initiatives previously managed by different departments, including the National Basic Research Program of Ministry of Science and Technology, the National High-Tech Research and Development Program, the National Science and Technology Support Program, special projects for international science and technology cooperation and exchange, industrial technology research and development funds co-managed by the National Development and Reform Commission and the Ministry of Industry and Information Technology, as well as public welfare industry scientific research special projects managed by 13 departments including the Ministry of Agriculture and the National Health and Family Planning Commission, into a unified national key R&D program.
Collapse
Affiliation(s)
- Yu-Wei Luo
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Jiang-Peng Zhou
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Hongyu Ji
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Doudou Xu
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, National Center of Technology Innovation for animal model, CAMS & PUMC, Beijing, PR China
| | - Anqi Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xin Wang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Zhizheng Dai
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Zhicheng Luo
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Fang Cao
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Xing-Yue Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yunfang Bai
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Di Chen
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Yueming Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Qi Wang
- Department of Basic Medicine, Chongqing Medical University, Chongqing, PR China
| | - Yaying Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, PR China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, PR China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui, PR China
| | - Xiaozhong Peng
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, National Center of Technology Innovation for animal model, CAMS & PUMC, Beijing, PR China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, PR China.
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China.
| | - Kai-Fu Tang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
44
|
Ogrodnik M, Carlos Acosta J, Adams PD, d'Adda di Fagagna F, Baker DJ, Bishop CL, Chandra T, Collado M, Gil J, Gorgoulis V, Gruber F, Hara E, Jansen-Dürr P, Jurk D, Khosla S, Kirkland JL, Krizhanovsky V, Minamino T, Niedernhofer LJ, Passos JF, Ring NAR, Redl H, Robbins PD, Rodier F, Scharffetter-Kochanek K, Sedivy JM, Sikora E, Witwer K, von Zglinicki T, Yun MH, Grillari J, Demaria M. Guidelines for minimal information on cellular senescence experimentation in vivo. Cell 2024; 187:4150-4175. [PMID: 39121846 PMCID: PMC11790242 DOI: 10.1016/j.cell.2024.05.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 08/12/2024]
Abstract
Cellular senescence is a cell fate triggered in response to stress and is characterized by stable cell-cycle arrest and a hypersecretory state. It has diverse biological roles, ranging from tissue repair to chronic disease. The development of new tools to study senescence in vivo has paved the way for uncovering its physiological and pathological roles and testing senescent cells as a therapeutic target. However, the lack of specific and broadly applicable markers makes it difficult to identify and characterize senescent cells in tissues and living organisms. To address this, we provide practical guidelines called "minimum information for cellular senescence experimentation in vivo" (MICSE). It presents an overview of senescence markers in rodent tissues, transgenic models, non-mammalian systems, human tissues, and tumors and their use in the identification and specification of senescent cells. These guidelines provide a uniform, state-of-the-art, and accessible toolset to improve our understanding of cellular senescence in vivo.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, 1200 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Juan Carlos Acosta
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), C/ Albert Einstein 22, 39011 Santander, Spain
| | - Peter D Adams
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Fabrizio d'Adda di Fagagna
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza," Pavia, Italy
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Steet SW, Rochester, MN 55905, USA
| | - Cleo L Bishop
- Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Tamir Chandra
- MRC Human Generics Unit, University of Edinburgh, Edinburgh, UK
| | - Manuel Collado
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Department of Immunology and Oncology (DIO), Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jesus Gil
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK; Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Vienna, Austria
| | - Eiji Hara
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita 565-0871, Japan; Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, and Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Diana Jurk
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - João F Passos
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Nadja A R Ring
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, 1200 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, 1200 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Francis Rodier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada; Université de Montréal, Département de radiologie, radio-oncologie et médicine nucléaire, Montreal, QC, Canada
| | - Karin Scharffetter-Kochanek
- Department f Dermatology and Allergic Diseases, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - John M Sedivy
- Department of Molecular, Cellular Biology and Biochemistry, Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Kenneth Witwer
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA; The Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Thomas von Zglinicki
- Newcastle University Biosciences Institute, Ageing Biology Laboratories, Newcastle upon Tyne, UK
| | - Maximina H Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany; Max Planck Institute of Molecular Cellular Biology and Genetics, Dresden, Germany; Physics of Life Excellence Cluster, Dresden, Germany
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, BOKU University, Vienna, Austria.
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands.
| |
Collapse
|
45
|
de Souza Goncalves B, Sangani D, Nayyar A, Puri R, Irtiza M, Nayyar A, Khalyfa A, Sodhi K, Pillai SS. COVID-19-Associated Sepsis: Potential Role of Phytochemicals as Functional Foods and Nutraceuticals. Int J Mol Sci 2024; 25:8481. [PMID: 39126050 PMCID: PMC11312872 DOI: 10.3390/ijms25158481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The acute manifestations of coronavirus disease 2019 (COVID-19) exhibit the hallmarks of sepsis-associated complications that reflect multiple organ failure. The inflammatory cytokine storm accompanied by an imbalance in the pro-inflammatory and anti-inflammatory host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to severe and critical septic shock. The sepsis signature in severely afflicted COVID-19 patients includes cellular reprogramming and organ dysfunction that leads to high mortality rates, emphasizing the importance of improved clinical care and advanced therapeutic interventions for sepsis associated with COVID-19. Phytochemicals of functional foods and nutraceutical importance have an incredible impact on the healthcare system, which includes the prevention and/or treatment of chronic diseases. Hence, in the present review, we aim to explore the pathogenesis of sepsis associated with COVID-19 that disrupts the physiological homeostasis of the body, resulting in severe organ damage. Furthermore, we have summarized the diverse pharmacological properties of some potent phytochemicals, which can be used as functional foods as well as nutraceuticals against sepsis-associated complications of SARS-CoV-2 infection. The phytochemicals explored in this article include quercetin, curcumin, luteolin, apigenin, resveratrol, and naringenin, which are the major phytoconstituents of our daily food intake. We have compiled the findings from various studies, including clinical trials in humans, to explore more into the therapeutic potential of each phytochemical against sepsis and COVID-19, which highlights their possible importance in sepsis-associated COVID-19 pathogenesis. We conclude that our review will open a new research avenue for exploring phytochemical-derived therapeutic agents for preventing or treating the life-threatening complications of sepsis associated with COVID-19.
Collapse
Affiliation(s)
- Bruno de Souza Goncalves
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Darshan Sangani
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Aleen Nayyar
- Department of Medicine, Sharif Medical and Dental College, Lahore 55150, Pakistan;
| | - Raghav Puri
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Mahir Irtiza
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Asma Nayyar
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Abdelnaby Khalyfa
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Komal Sodhi
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Sneha S. Pillai
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| |
Collapse
|
46
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
47
|
Zhang M, Hu T, Ma T, Huang W, Wang Y. Epigenetics and environmental health. Front Med 2024; 18:571-596. [PMID: 38806988 DOI: 10.1007/s11684-023-1038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/15/2023] [Indexed: 05/30/2024]
Abstract
Epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling, and RNA modifications complicate gene regulation and heredity and profoundly impact various physiological and pathological processes. In recent years, accumulating evidence indicates that epigenetics is vulnerable to environmental changes and regulates the growth, development, and diseases of individuals by affecting chromatin activity and regulating gene expression. Environmental exposure or induced epigenetic changes can regulate the state of development and lead to developmental disorders, aging, cardiovascular disease, Alzheimer's disease, cancers, and so on. However, epigenetic modifications are reversible. The use of specific epigenetic inhibitors targeting epigenetic changes in response to environmental exposure is useful in disease therapy. Here, we provide an overview of the role of epigenetics in various diseases. Furthermore, we summarize the mechanism of epigenetic alterations induced by different environmental exposures, the influence of different environmental exposures, and the crosstalk between environmental variation epigenetics, and genes that are implicated in the body's health. However, the interaction of multiple factors and epigenetics in regulating the initiation and progression of various diseases complicates clinical treatments. We discuss some commonly used epigenetic drugs targeting epigenetic modifications and methods to prevent or relieve various diseases regulated by environmental exposure and epigenetics through diet.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ting Hu
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyu Ma
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
48
|
Chi H, Wei C, Ma L, Yu Y, Zhang T, Shi W. The ocular immunological alterations in the process of high-risk corneal transplantation rejection. Exp Eye Res 2024; 245:109971. [PMID: 38871165 DOI: 10.1016/j.exer.2024.109971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE This study aims to reveal the immunopathogenesis of the high-risk corneal transplantation using a comparative proteomic approach. METHODS The immunological properties of ocular tissues (including corneal grafts, aqueous humour, and iris-ciliary body) were analysed using a high-risk rabbit corneal transplantation model employing a comparative proteomic approach. RESULTS The corneal grafts revealed a dramatic increase in the immune response both at the early (postoperative day 7) and rejection stages, along with the appearance of transplantation stress-induced cellular senescence in the early stage. The aqueous humour (AH) displayed persistent pathological alterations, indicated by the significant enrichment of complement and coagulation cascades pathway in the early stage and interleukin (IL)-17 signalling pathway in the rejection stage. More surprisingly, the pronounced elevation of immune response was also observed in the iris-ciliary body (I-CB) tissues at the early and rejection stages. The enriched immune-related pathways were associated with antigen processing and presentation, complement and coagulation cascades, and IL-17 signalling pathway. Furthermore, proteomic analysis revealed that the implantation of Cyclosporine A drug delivery system (CsA-DDS) into the anterior chamber obviously mitigated corneal transplantation rejection by inhibiting immunoreaction both in the corneal grafts and I-CB tissues. CONCLUSION The results highlighted the involvement of intraocular immunity both in the grafts and I-CB tissues during corneal transplantation rejection, further suggesting the anterior chamber as an optimal drug-delivery site for its treatment.
Collapse
Affiliation(s)
- Hao Chi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Yaoyao Yu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; Qingdao Eye Hospital of Shandong First Medical University, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Ting Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, Jinan, 250021, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250117, China.
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, Jinan, 250021, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250117, China.
| |
Collapse
|
49
|
Li H, Wan L, Liu M, Ma E, Huang L, Yang Y, Li Q, Fang Y, Li J, Han B, Zhang C, Sun L, Hou X, Li H, Sun M, Qian S, Duan X, Zhao R, Yang X, Chen Y, Wu S, Zhang X, Zhang Y, Cheng G, Chen G, Gao Q, Xu J, Hou L, Wei C, Zhong H. SARS-CoV-2 spike-induced syncytia are senescent and contribute to exacerbated heart failure. PLoS Pathog 2024; 20:e1012291. [PMID: 39102426 PMCID: PMC11326701 DOI: 10.1371/journal.ppat.1012291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/15/2024] [Accepted: 05/27/2024] [Indexed: 08/07/2024] Open
Abstract
SARS-CoV-2 spike protein (SARS-2-S) induced cell-cell fusion in uninfected cells may occur in long COVID-19 syndrome, as circulating SARS-2-S or extracellular vesicles containing SARS-2-S (S-EVs) were found to be prevalent in post-acute sequelae of COVID-19 (PASC) for up to 12 months after diagnosis. Although isolated recombinant SARS-2-S protein has been shown to increase the SASP in senescent ACE2-expressing cells, the direct linkage of SARS-2-S syncytia with senescence in the absence of virus infection and the degree to which SARS-2-S syncytia affect pathology in the setting of cardiac dysfunction are unknown. Here, we found that the senescent outcome of SARS-2-S induced syncytia exacerbated heart failure progression. We first demonstrated that syncytium formation in cells expressing SARS-2-S delivered by DNA plasmid or LNP-mRNA exhibits a senescence-like phenotype. Extracellular vesicles containing SARS-2-S (S-EVs) also confer a potent ability to form senescent syncytia without de novo synthesis of SARS-2-S. However, it is important to note that currently approved COVID-19 mRNA vaccines do not induce syncytium formation or cellular senescence. Mechanistically, SARS-2-S syncytia provoke the formation of functional MAVS aggregates, which regulate the senescence fate of SARS-2-S syncytia by TNFα. We further demonstrate that senescent SARS-2-S syncytia exhibit shrinked morphology, leading to the activation of WNK1 and impaired cardiac metabolism. In pre-existing heart failure mice, the WNK1 inhibitor WNK463, anti-syncytial drug niclosamide, and senolytic dasatinib protect the heart from exacerbated heart failure triggered by SARS-2-S. Our findings thus suggest a potential mechanism for COVID-19-mediated cardiac pathology and recommend the application of WNK1 inhibitor for therapy especially in individuals with post-acute sequelae of COVID-19.
Collapse
Affiliation(s)
- Huilong Li
- Beijing Institute of Biotechnology, Beijing, China
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luming Wan
- Beijing Institute of Biotechnology, Beijing, China
| | - Muyi Liu
- Beijing Institute of Biotechnology, Beijing, China
| | - Enhao Ma
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Linfei Huang
- Beijing Institute of Biotechnology, Beijing, China
| | - Yilong Yang
- Beijing Institute of Biotechnology, Beijing, China
| | - Qihong Li
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yi Fang
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jingfei Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Bingqing Han
- Beijing Institute of Biotechnology, Beijing, China
| | - Chang Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Lijuan Sun
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | - Xufeng Hou
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | - Haiyang Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mingyu Sun
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Sichong Qian
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xuejing Duan
- Department of Pathology, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Ruzhou Zhao
- Beijing Institute of Biotechnology, Beijing, China
| | - Xiaopan Yang
- Beijing Institute of Biotechnology, Beijing, China
| | - Yi Chen
- Beijing Institute of Biotechnology, Beijing, China
| | - Shipo Wu
- Beijing Institute of Biotechnology, Beijing, China
| | - Xuhui Zhang
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | | | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Gengye Chen
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qi Gao
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | - Junjie Xu
- Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, China
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Beijing, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
50
|
Liu Y, Lomeli I, Kron SJ. Therapy-Induced Cellular Senescence: Potentiating Tumor Elimination or Driving Cancer Resistance and Recurrence? Cells 2024; 13:1281. [PMID: 39120312 PMCID: PMC11312217 DOI: 10.3390/cells13151281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Cellular senescence has been increasingly recognized as a hallmark of cancer, reflecting its association with aging and inflammation, its role as a response to deregulated proliferation and oncogenic stress, and its induction by cancer therapies. While therapy-induced senescence (TIS) has been linked to resistance, recurrence, metastasis, and normal tissue toxicity, TIS also has the potential to enhance therapy response and stimulate anti-tumor immunity. In this review, we examine the Jekyll and Hyde nature of senescent cells (SnCs), focusing on how their persistence while expressing the senescence-associated secretory phenotype (SASP) modulates the tumor microenvironment through autocrine and paracrine mechanisms. Through the SASP, SnCs can mediate both resistance and response to cancer therapies. To fulfill the unmet potential of cancer immunotherapy, we consider how SnCs may influence tumor inflammation and serve as an antigen source to potentiate anti-tumor immune response. This new perspective suggests treatment approaches based on TIS to enhance immune checkpoint blockade. Finally, we describe strategies for mitigating the detrimental effects of senescence, such as modulating the SASP or targeting SnC persistence, which may enhance the overall benefits of cancer treatment.
Collapse
Affiliation(s)
| | | | - Stephen J. Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|