1
|
Villaronga-Luque A, Savill RG, López-Anguita N, Bolondi A, Garai S, Gassaloglu SI, Rouatbi R, Schmeisser K, Poddar A, Bauer L, Alves T, Traikov S, Rodenfels J, Chavakis T, Bulut-Karslioglu A, Veenvliet JV. Integrated molecular-phenotypic profiling reveals metabolic control of morphological variation in a stem-cell-based embryo model. Cell Stem Cell 2025; 32:759-777.e13. [PMID: 40245869 DOI: 10.1016/j.stem.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 11/27/2024] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
Considerable phenotypic variation under identical culture conditions limits the potential of stem-cell-based embryo models (SEMs) in basic and applied research. The biological processes causing this seemingly stochastic variation remain unclear. Here, we investigated the roots of phenotypic variation by parallel recording of transcriptomic states and morphological history in individual structures modeling embryonic trunk formation. Machine learning and integration of time-resolved single-cell RNA sequencing with imaging-based phenotypic profiling identified early features predictive of phenotypic end states. Leveraging this predictive power revealed that early imbalance of oxidative phosphorylation and glycolysis results in aberrant morphology and a neural lineage bias, which we confirmed by metabolic measurements. Accordingly, metabolic interventions improved phenotypic end states. Collectively, our work establishes divergent metabolic states as drivers of phenotypic variation and offers a broadly applicable framework to chart and predict phenotypic variation in organoids and SEMs. The strategy can be used to identify and control underlying biological processes, ultimately increasing reproducibility.
Collapse
Affiliation(s)
- Alba Villaronga-Luque
- Stembryogenesis Laboratory, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Faculty of Biology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ryan G Savill
- Stembryogenesis Laboratory, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Faculty of Biology, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Adriano Bolondi
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sumit Garai
- Stembryogenesis Laboratory, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| | - Seher Ipek Gassaloglu
- Stembryogenesis Laboratory, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Roua Rouatbi
- MOSAIC Group, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany; Faculty of Computer Science, Technische Universität Dresden, 01062 Dresden, Germany; Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig, 01062 Dresden, Germany
| | - Kathrin Schmeisser
- Energetics of Biological Systems Laboratory, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Aayush Poddar
- Stembryogenesis Laboratory, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Lisa Bauer
- Stembryogenesis Laboratory, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Tiago Alves
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sofia Traikov
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jonathan Rodenfels
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany; Energetics of Biological Systems Laboratory, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | | | - Jesse V Veenvliet
- Stembryogenesis Laboratory, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany.
| |
Collapse
|
2
|
Valdebenito GE, Chacko AR, Chung CY, Sheshadri P, Chi H, O'Callaghan B, Madej MJ, Houlden H, Rouse H, Morales V, Bianchi K, Tedesco FS, Pitceathly RDS, Duchen MR. Metabolic remodeling in hiPSC-derived myofibers carrying the m.3243A>G mutation. Stem Cell Reports 2025; 20:102448. [PMID: 40086445 PMCID: PMC12069895 DOI: 10.1016/j.stemcr.2025.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Mutations in mitochondrial DNA cause severe multisystem disease frequently associated with muscle weakness. The m.3243A>G mutation is the major cause of mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes (MELAS). Experimental models that recapitulate the disease phenotype in vitro for disease modeling or drug screening are very limited. We have therefore generated hiPSC-derived muscle fibers with variable heteroplasmic mtDNA mutation load without significantly affecting muscle differentiation potential. The cells exhibit physiological characteristics of muscle fibers and show a well-organized myofibrillar structure. In cells carrying the m.3243A>G mutation, the mitochondrial membrane potential and oxygen consumption were reduced in relation to the mutant load. We have shown through proteomic, phosphoproteomic, and metabolomic analyses that the m.3243A>G mutation variably affects the cell phenotype in relation to the mutant load. This variation is reflected by an increase in the NADH/NAD+ ratio, which in turn influences key nutrient-sensing pathways in the myofibers. This model enables a detailed study of the impact of the mutation on cellular bioenergetics and on muscle physiology with the potential to provide a platform for drug screening.
Collapse
Affiliation(s)
- Gabriel E Valdebenito
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK; Consortium for Mitochondrial Research, UCL, Gower Street, London WC1E 6BT, UK.
| | - Anitta R Chacko
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK; Consortium for Mitochondrial Research, UCL, Gower Street, London WC1E 6BT, UK
| | - Chih-Yao Chung
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK; Consortium for Mitochondrial Research, UCL, Gower Street, London WC1E 6BT, UK
| | - Preethi Sheshadri
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK; Consortium for Mitochondrial Research, UCL, Gower Street, London WC1E 6BT, UK
| | - Haoyu Chi
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK; Consortium for Mitochondrial Research, UCL, Gower Street, London WC1E 6BT, UK
| | - Benjamin O'Callaghan
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Monika J Madej
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Ryvu Therapeutics S.A., Krakow, Poland
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Hannah Rouse
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Valle Morales
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Katiuscia Bianchi
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK; Stem Cells and Neuromuscular Regeneration Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children, London, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK; Consortium for Mitochondrial Research, UCL, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Parkhitko AA, Cracan V. Xenotopic synthetic biology: Prospective tools for delaying aging and age-related diseases. SCIENCE ADVANCES 2025; 11:eadu1710. [PMID: 40153513 DOI: 10.1126/sciadv.adu1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
Metabolic dysregulation represents one of the major driving forces in aging. Although multiple genetic and pharmacological manipulations are known to extend longevity in model organisms, aging is a complex trait, and targeting one's own genes may be insufficient to prevent age-dependent deterioration. An alternative strategy could be to use enzymes from other species to reverse age-associated metabolic changes. In this review, we discuss a set of enzymes from lower organisms that have been shown to affect various metabolic parameters linked to age-related processes. These enzymes include modulators of steady-state levels of amino acids (METase, ASNase, and ADI), NADPH/NADP+ and/or reduced form of coenzyme Q (CoQH2)/CoQ redox potentials (NDI1, AOX, LbNOX, TPNOX, EcSTH, RquA, LOXCAT, Grubraw, and ScURA), GSH (StGshF), mitochondrial membrane potential (mtON and mito-dR), or reactive oxygen species (DAAO and KillerRed-SOD1). We propose that leveraging non-mammalian enzymes represents an untapped resource that can be used to delay aging and age-related diseases.
Collapse
Affiliation(s)
- Andrey A Parkhitko
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Valentin Cracan
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
4
|
Isomura A, Kageyama R. Progress in understanding the vertebrate segmentation clock. Nat Rev Genet 2025:10.1038/s41576-025-00813-6. [PMID: 40038453 DOI: 10.1038/s41576-025-00813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 03/06/2025]
Abstract
The segmentation clock is a molecular oscillator that regulates the periodic formation of somites from the presomitic mesoderm during vertebrate embryogenesis. Synchronous oscillatory expression of a Hairy homologue or Hairy-related basic helix-loop-helix (bHLH) transcriptional repressor in presomitic mesoderm cells regulates periodic expression of downstream factors that control somite segmentation with a periodicity that varies across species. Although many of the key components of the clock have been identified and characterized, less is known about how the clock is synchronized across cells and how species-specific periodicity is achieved. Advances in live imaging, stem cell and organoid technologies, and synthetic approaches have started to uncover the detailed mechanisms underlying these aspects of somitogenesis, providing insight into how morphogenesis is coordinated in space and time during embryonic development.
Collapse
Affiliation(s)
- Akihiro Isomura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto, Japan.
- Japan Science and Technology Agency, PRESTO, Saitama, Japan.
- RIKEN Center for Brain Science, Wako, Japan.
| | - Ryoichiro Kageyama
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto, Japan.
- RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
5
|
Puente-Cobacho B, Esteo C, Altea-Manzano P, Garcia-Perez JL, Quiles JL, Sanchez-Rovira P, Martín-Salvago MD, Molina-Jiménez L, Luque RJ, Fendt SM, Vera-Ramirez L. De novo lipogenesis protects dormant breast cancer cells from ferroptosis and promotes metastasis. Redox Biol 2025; 80:103480. [PMID: 39787900 PMCID: PMC11764609 DOI: 10.1016/j.redox.2024.103480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Dormant disseminated tumor cells (DTCs) remain viable for years to decades before establishing a clinically overt metastatic lesion. DTCs are known to be highly resilient and able to overcome the multiple biological hurdles imposed along the metastatic cascade. However, the specific metabolic adaptations of dormant DTCs remain to be elucidated. Here, we reveal that dormant DTCs upregulate de novo lipogenesis and favor the activation and incorporation of monounsaturated fatty acids (MUFAs) to their cellular membranes through the activation of acyl-coenzyme A synthetase long-chain family member 3 (ACSL3). Pharmacologic inhibition of de novo lipogenesis or genetic knockdown of ACSL3 results in lipid peroxidation and non-apoptotic cell death through ferroptosis. Clinically, ACSL3 was found to be overexpressed in quiescent DTCs in the lymph nodes of breast cancer patients and to significantly correlate with shorter disease-free and overall survival. Our work provides new insights into the molecular mechanisms enabling the survival of dormant DTCs and supports the use of de novo lipogenesis inhibitors to prevent breast cancer metastasis.
Collapse
Affiliation(s)
- Beatriz Puente-Cobacho
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain; Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Cintia Esteo
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain; Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jose Luis Garcia-Perez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | | | | | | | - Rafael J Luque
- Pathological Anatomy Unit, University Hospital of Jaén, Jaén, Spain
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Laura Vera-Ramirez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain; Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain.
| |
Collapse
|
6
|
Matsuda M, Lázaro J, Ebisuya M. Metabolic activities are selective modulators for individual segmentation clock processes. Nat Commun 2025; 16:845. [PMID: 39833174 PMCID: PMC11746943 DOI: 10.1038/s41467-025-56120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Numerous cellular and molecular processes during embryonic development prompt the fundamental question of how their tempos are coordinated and whether a common global modulator exists. While the segmentation clock tempo scales with the kinetics of gene expression and degradation processes of the core clock gene Hes7 across mammals, the coordination of these processes remains unclear. This study examines whether metabolic activities serve as a global modulator for the segmentation clock, finding them to be selective instead. Several metabolic inhibitions extend the clock period but affect key processes differently: glycolysis inhibition slows Hes7 protein degradation and production delay without altering intron delay, while electron transport chain inhibition extends intron delay without influencing the other processes. Combinations of distinct metabolic inhibitions exhibit synergistic effects. We propose that the scaled kinetics of segmentation clock processes across species may result from combined selective modulators shaped by evolutionary constraints, rather than a single global modulator.
Collapse
Affiliation(s)
- Mitsuhiro Matsuda
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| | - Jorge Lázaro
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Miki Ebisuya
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
7
|
Züfle P, Batista LL, Brandão SC, D’Uva G, Daniel C, Martelli C. Impact of developmental temperature on neural growth, connectivity, and function. SCIENCE ADVANCES 2025; 11:eadp9587. [PMID: 39813340 PMCID: PMC11734716 DOI: 10.1126/sciadv.adp9587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025]
Abstract
Environmental temperature dictates the developmental pace of poikilothermic animals. In Drosophila, slower development at lower temperatures results in higher brain connectivity, but the generality of such scaling across temperatures and brain regions and its impact on function are unclear. Here, we show that brain connectivity scales continuously across temperatures, in agreement with a first-principle model that postulates different metabolic constraints for the growth of the brain and the organism. The model predicts brain wiring under temperature cycles and the nonuniform temporal scaling of neural development across temperatures. Developmental temperature has notable effects on odor-driven behavior. Dissecting the circuit architecture and function of neurons in the olfactory pathway, we demonstrate that developmental temperature does not alter odor encoding in first- and second-order neurons, but it shifts the specificity of connections onto third-order neurons that mediate innate behaviors. We conclude that while some circuit computations are robust to the effects of developmental temperature on wiring, others exhibit phenotypic plasticity with possible adaptive advantages.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlotta Martelli
- Johannes Gutenberg University, Mainz, Germany
- Institute for Quantitative and Computational Biosciences, Mainz, Germany
| |
Collapse
|
8
|
Matsuoka R, Kitajima K, Nii T, Zou Z, Tanaka K, Joo K, Ohkawa Y, Ohga S, Meno C. Hyperglycaemia induces diet-dependent defects of the left-right axis by lowering intracellular pH. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167550. [PMID: 39442590 DOI: 10.1016/j.bbadis.2024.167550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Pregestational diabetes is a risk factor for congenital anomalies, including heterotaxy syndrome, a rare birth defect characterized by the abnormal arrangement of organs relative to the left-right (L-R) body axis. To provide insight into the underlying mechanism by which diabetes induces heterotaxy, we here analyzed the L-R axis of mouse embryos of diabetic dams. Various Pitx2 expression patterns indicative of disruption of L-R axis formation were apparent in such embryos. Expression of Nodal at the node, which triggers a Nodal-Pitx2 expression cascade in lateral plate mesoderm, showed marked regression associated with L-R axis malformation. This regression was similar to that apparent in Wnt3a-/- embryos, and canonical Wnt signalling was indeed found to be downregulated in embryos of diabetic dams. RNA sequencing revealed dysregulation of glycolysis in embryos of diabetic dams, and high glucose lowered intracellular pH in the primitive streak, leading to the suppression of Wnt signalling and the regression of Nodal expression. Of note, maternal vitamin A intake increased the incidence of L-R axis defects in embryos of diabetic dams, with dysregulation of retinoic acid metabolism being apparent in these embryos and in Wnt3a-/- embryos. Our results shed light on the mechanisms underlying embryopathies associated with maternal diabetes and suggest the importance of diet for prevention of heterotaxy.
Collapse
Affiliation(s)
- Ryohei Matsuoka
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keiko Kitajima
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takenobu Nii
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Zhaonan Zou
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kaori Tanaka
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunihiko Joo
- Department of Cardiovascular Surgery, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Chikara Meno
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
9
|
Rolletschek H, Borisjuk L, Gómez-Álvarez EM, Pucciariello C. Advances in seed hypoxia research. PLANT PHYSIOLOGY 2024; 197:kiae556. [PMID: 39471319 PMCID: PMC11852284 DOI: 10.1093/plphys/kiae556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/01/2024]
Abstract
Seeds represent essential stages of the plant life cycle: embryogenesis, the intermittent quiescence phase, and germination. Each stage has its own physiological requirements, genetic program, and environmental challenges. Consequently, the effects of developmental and environmental hypoxia can vary from detrimental to beneficial. Past and recent evidence shows how low-oxygen signaling and metabolic adaptations to hypoxia affect seed development and germination. Here, we review the recent literature on seed biology in relation to hypoxia research and present our perspective on key challenges and opportunities for future investigations.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Eva María Gómez-Álvarez
- PlantLab, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56010 Pisa, Italy
- nanoPlant Center @NEST, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Chiara Pucciariello
- PlantLab, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56010 Pisa, Italy
- nanoPlant Center @NEST, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| |
Collapse
|
10
|
Luo M, Ma X, Ye J. Reductive stress-a common metabolic feature of obesity and cancer. Acta Pharm Sin B 2024; 14:5181-5185. [PMID: 39807313 PMCID: PMC11725146 DOI: 10.1016/j.apsb.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 01/16/2025] Open
Abstract
Reductive stress, characterized by rising level of NADH (nicotinamide adenine dinucleotide) for a status of NADH/NAD+ ratio elevation, has been reported in obesity and cancer. However, the mechanism and significance of reductive stress remain to be established in obesity. This perspective is prepared to address the issue with new insights published recently. NADH is used in production of NADPH, glutathione, ATP and heat in the classical biochemistry. In obesity, elevation of NADH/NAD+ ratio, likely from overproduction due to substrate overloading, has been found in the liver for insulin resistance and gluconeogenesis. New evidence demonstrates that the elevation may induce lipogenesis, purine biosynthesis and gluconeogenesis through activation of transcription factors of ChREBP and NRF2. In cancer cells, NADH/NAD+ elevation under the Warburg effect is primarily derived from decreased NADH consumption in the mitochondrial respiration. Alternatively, NRF2 overactivation from gene mutation represents another mechanism of NADH/NAD+ elevation from NADH production in the cancer cells. The elevation is required for quick proliferation of cancer cells through induction of biosynthesis of the essential molecules. It appears that the causes of reductive stress are different between obesity and cancer, while its impact in anabolism is similar in the two conditions.
Collapse
Affiliation(s)
- Man Luo
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China
| | - Xiwen Ma
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China
- Institute of Trauma and Metabolism, Zhengzhou University, Zhengzhou 450052, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China
- Institute of Trauma and Metabolism, Zhengzhou University, Zhengzhou 450052, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Zhengzhou Key laboratory of Obesity Research, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
11
|
Korchivaia E, Ivanova A, Volodyaev I, Semenova M. Comparison of Preimplantation Mouse Embryos with Different Genetic Backgrounds as Models for Evaluating Human Embryo Culture Media Composition. Reprod Sci 2024; 31:3688-3696. [PMID: 39390272 DOI: 10.1007/s43032-024-01726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Can the best culture medium be determined by mouse embryo testing? Zygotes/embryos of four different mouse strains: inbred Balb/c (n = 79) and C57Bl/6 (n = 95), F1 hybrid DBA/2*C57Bl/6 (n = 133), and outbred ICR (n = 69) were incubated in vitro in four culture media: 1-Step Culture Medium (VitaVitro), CSC medium (Irvine Scientific), Sage 1-Step medium (Origio), G-TL medium (Vitrolife). The embryos were cultured under standard conditions at atmospheric oxygen: 37℃; 6% CO2, 100% humidity. Standard MEA-test parameters (number of expanded blastocysts on E4.5), as well as additional characteristics (embryo development on E2.5-E4.5, number of hatching and hatched blastocysts on E4.5, embryo arrest and degeneration) were assessed for each of the strain-medium combinations. The results were compared across strains as well as across media. Embryo development depended on both the media and the mouse strain. Embryos from inbred and outbred mice were more sensitive to suboptimal culture conditions compared to the hybrid strain; this was reflected in reduced blastocyst and hatching rates, as well as an increased percentage of arrested and degraded embryos. The choice of optimal media depended strongly on the strain: CSC was better for Balb/c, Sage 1-step for C57Bl/6, while both were preferred for hybrids, and G-TL for outbreds. VitaVitro was quite good for hybrids and performed worse for other strains. Overall, the embryos of each strain behaved differently in different media, and it was not possible to make a real preference for any of them over human embryos based on the results of any single mouse strain. Only a pooled sample of different mouse strains can be used for comprehensive media MEA testing. MEA testing with any strain of mice is doomed to error due to their specific culture requirements. Hybrid mice are too reproductively efficient and cannot be used to distinguish media based on their subtle differences. Outbred and inbred mice are too sensitive and may be delayed or degraded in culture media that is well suited to the requirements of human embryos. Combined analysis of multiple mouse strains should be used to test media more fully and may serve as a model for the heterogeneity of human embryos in IVF clinics.
Collapse
Affiliation(s)
- E Korchivaia
- Department of Embryology, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1, Bld 12, Moscow, 119991, Russia.
| | - A Ivanova
- Department of Embryology, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1, Bld 12, Moscow, 119991, Russia
| | - I Volodyaev
- Department of Embryology, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1, Bld 12, Moscow, 119991, Russia
- European Medical Center, Moscow, Russia
- ICARM (Interdisciplinary Clinical Association for Reproductive Medicine, www.medkarm.org), Moscow, Russia
| | - M Semenova
- Department of Embryology, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1, Bld 12, Moscow, 119991, Russia
| |
Collapse
|
12
|
Chapman S, Brunet T, Mourier A, Habermann BH. MitoMAMMAL: a genome scale model of mammalian mitochondria predicts cardiac and BAT metabolism. BIOINFORMATICS ADVANCES 2024; 5:vbae172. [PMID: 39758828 PMCID: PMC11696703 DOI: 10.1093/bioadv/vbae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/07/2025]
Abstract
Motivation Mitochondria are essential for cellular metabolism and are inherently flexible to allow correct function in a wide range of tissues. Consequently, dysregulated mitochondrial metabolism affects different tissues in different ways leading to challenges in understanding the pathology of mitochondrial diseases. System-level metabolic modelling is useful in studying tissue-specific mitochondrial metabolism, yet despite the mouse being a common model organism in research, no mouse specific mitochondrial metabolic model is currently available. Results Building upon the similarity between human and mouse mitochondrial metabolism, we present mitoMammal, a genome-scale metabolic model that contains human and mouse specific gene-product reaction rules. MitoMammal is able to model mouse and human mitochondrial metabolism. To demonstrate this, using an adapted E-Flux algorithm, we integrated proteomic data from mitochondria of isolated mouse cardiomyocytes and mouse brown adipocyte tissue, as well as transcriptomic data from in vitro differentiated human brown adipocytes and modelled the context specific metabolism using flux balance analysis. In all three simulations, mitoMammal made mostly accurate, and some novel predictions relating to energy metabolism in the context of cardiomyocytes and brown adipocytes. This demonstrates its usefulness in research in cardiac disease and diabetes in both mouse and human contexts. Availability and implementation The MitoMammal Jupyter Notebook is available at: https://gitlab.com/habermann_lab/mitomammal.
Collapse
Affiliation(s)
- Stephen Chapman
- Aix-Marseille University, CNRS, IBDM UMR7288, Turing Center for Living Systems (CENTURI), Marseille 13009, France
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Theo Brunet
- Aix-Marseille University, CNRS, IBDM UMR7288, Turing Center for Living Systems (CENTURI), Marseille 13009, France
| | - Arnaud Mourier
- Université de Bordeaux, IBGC UMR 5095, Bordeaux 33077, France
| | - Bianca H Habermann
- Aix-Marseille University, CNRS, IBDM UMR7288, Turing Center for Living Systems (CENTURI), Marseille 13009, France
| |
Collapse
|
13
|
Ghosh S, Tuz AA, Stenzel M, Singh V, Richter M, Soehnlein O, Lange E, Heyer R, Cibir Z, Beer A, Jung M, Nagel D, Hermann DM, Hasenberg A, Grüneboom A, Sickmann A, Gunzer M. Proteomic Characterization of 1000 Human and Murine Neutrophils Freshly Isolated From Blood and Sites of Sterile Inflammation. Mol Cell Proteomics 2024; 23:100858. [PMID: 39395581 PMCID: PMC11630641 DOI: 10.1016/j.mcpro.2024.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024] Open
Abstract
Neutrophils are indispensable for defense against pathogens. Injured tissue-infiltrated neutrophils can establish a niche of chronic inflammation and promote degeneration. Studies investigated transcriptome of single-infiltrated neutrophils which could misinterpret molecular states of these post mitotic cells. However, neutrophil proteome characterization has been challenging due to low harvests from affected tissues. Here, we present a workflow to obtain proteome of 1000 murine and human tissue-infiltrated neutrophils. We generated spectral libraries containing ∼6200 mouse and ∼5300 human proteins from circulating neutrophils. 4800 mouse and 3400 human proteins were recovered from 1000 cells with 102-108 copies/cell. Neutrophils from stroke-affected mouse brains adapted to the glucose-deprived environment with increased mitochondrial activity and ROS-production, while cells invading inflamed human oral cavities increased phagocytosis and granule release. We provide an extensive protein repository for resting human and mouse neutrophils, identify proteins lost in low input samples, thus enabling the proteomic characterization of limited tissue-infiltrated neutrophils.
Collapse
Affiliation(s)
- Susmita Ghosh
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Ali Ata Tuz
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Martin Stenzel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Mathis Richter
- Institute for Experimental Pathology, University of Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, University of Münster, Münster, Germany
| | - Emanuel Lange
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Robert Heyer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Multidimensional Omics Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, Bielefeld, Germany
| | - Zülal Cibir
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Alexander Beer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Marcel Jung
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dennis Nagel
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK.
| | - Matthias Gunzer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
14
|
Son G, Na Y, Kim Y, Son JH, Clemenson GD, Schafer ST, Yoo JY, Parylak SL, Paquola A, Do H, Kim D, Ahn I, Ju M, Kang CS, Ju Y, Jung E, McDonald AH, Park Y, Kim G, Paik SB, Hur J, Kim J, Han YM, Lee SH, Gage FH, Kim JS, Han J. miR-124 coordinates metabolic regulators acting at early stages of human neurogenesis. Commun Biol 2024; 7:1393. [PMID: 39455851 PMCID: PMC11511827 DOI: 10.1038/s42003-024-07089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic dysregulation of neurons is associated with diverse human brain disorders. Metabolic reprogramming occurs during neuronal differentiation, but it is not fully understood which molecules regulate metabolic changes at the early stages of neurogenesis. In this study, we report that miR-124 is a driver of metabolic change at the initiating stage of human neurogenesis. Proteome analysis has shown the oxidative phosphorylation pathway to be the most significantly altered among the differentially expressed proteins (DEPs) in the immature neurons after the knockdown of miR-124. In agreement with these proteomics results, miR-124-depleted neurons display mitochondrial dysfunctions, such as decreased mitochondrial membrane potential and cellular respiration. Moreover, morphological analyses of mitochondria in early differentiated neurons after miR-124 knockdown result in smaller and less mature shapes. Lastly, we show the potential of identified DEPs as novel metabolic regulators in early neuronal development by validating the effects of GSTK1 on cellular respiration. GSTK1, which is upregulated most significantly in miR-124 knockdown neurons, reduces the oxygen consumption rate of neural cells. Collectively, our data highlight the roles of miR-124 in coordinating metabolic maturation at the early stages of neurogenesis and provide insights into potential metabolic regulators associated with human brain disorders characterized by metabolic dysfunctions.
Collapse
Affiliation(s)
- Geurim Son
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yongwoo Na
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yongsung Kim
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ji-Hoon Son
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Gregory D Clemenson
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Simon T Schafer
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Yeon Yoo
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Sarah L Parylak
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Apua Paquola
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hyunsu Do
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Dayeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Insook Ahn
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Mingyu Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Chanhee S Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Younghee Ju
- Department of Biological Sciences, KAIST, Daejeon, Korea
- Sovargen.CO., LTD., Daejeon, Korea
| | - Eunji Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Aidan H McDonald
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Youngjin Park
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| | - Gilhyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, Korea
| | - Junho Hur
- College of Medicine, Hanyang University, Seoul, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yong-Mahn Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, KAIST, Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, Korea
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
- BioMedical Research Center, KAIST, Daejeon, Korea.
- KAIST Stem Cell Center, KAIST, Daejeon, Korea.
| |
Collapse
|
15
|
Keeney JG, Astling D, Andries V, Vandepoele K, Anderson N, Davis JM, Lopert P, Vandenbussche J, Gevaert K, Staes A, Paukovich N, Vögeli B, Jones KL, van Roy F, Patel M, Sikela JM. Olduvai domain expression downregulates mitochondrial pathways: implications for human brain evolution and neoteny. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619278. [PMID: 39484454 PMCID: PMC11526873 DOI: 10.1101/2024.10.21.619278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Encoded by the NBPF gene family, Olduvai (formerly DUF1220) protein domains have undergone the largest human lineage-specific copy number expansion of any coding region in the genome. Olduvai copy number shows a linear relationship with several brain size-related measures and cortical neuron number among primates and with normal and disease-associated (micro- and macrocephaly) variation in brain size in human populations. While Olduvai domains have been shown to promote proliferation of neural stem cells, the mechanism underlying such effects has remained unclear. Here, we investigate the function of Olduvai by transcriptome and proteome analyses of cells overexpressing NBPF1, a gene encoding 7 Olduvai domains. Our results from both RNAseq and mass spectrometry approaches suggest a potential downregulation of mitochondria. In our proteomics study, a Gene Ontology (GO) enrichment analysis for the downregulated proteins revealed a striking overrepresentation of the biological process related to the mitochondrial electron transport chain (p value: 1.81e-11) and identified deregulation of the NADH dehydrogenase activity (p value: 2.43e-11) as the primary molecular function. We verify the reduction of apparent mitochondria via live-cell imaging experiments. Given these and previous Olduvai findings, we suggest that the Olduvai-mediated, dosage-dependent reduction in available energy via mitochondrial downregulation may have resulted in a developmental slowdown such that the neurogenic window among primates, and most extremely in humans, was expanded over a greater time interval, allowing for production of greater numbers of neurons and a larger brain. We further suggest that such a slowdown may extend to other developmental processes that also exhibit neotenic features.
Collapse
Affiliation(s)
- Jonathon G. Keeney
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Astling
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vanessa Andries
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Karl Vandepoele
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nathan Anderson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan M. Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Pamela Lopert
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan Vandenbussche
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - An Staes
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- VIB Proteomics Core, 9052 Ghent, Belgium
| | - Natasia Paukovich
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth l. Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Frans van Roy
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Manisha Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James M. Sikela
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Human Medical Genetics and Neuroscience Programs, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
16
|
Transitions in development - an interview with Margarete Diaz Cuadros. Development 2024; 151:dev204337. [PMID: 39284721 DOI: 10.1242/dev.204337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Margarete is a Junior Fellow in the Department of Molecular Biology at Massachusetts General Hospital (MGH) in Boston, USA. Margarete's group (www.diazcuadroslab.org) seeks to reveal the molecular, metabolic and genetic regulation of developmental timing in animals using in vivo and in vitro approaches. We spoke to Margarete over Teams to learn more about her transition to becoming a group leader, her philosophy for creating a positive lab environment and the importance of removing barriers for under-represented communities in science.
Collapse
|
17
|
Biffo S, Ruggero D, Santoro MM. The crosstalk between metabolism and translation. Cell Metab 2024; 36:1945-1962. [PMID: 39232280 PMCID: PMC11586076 DOI: 10.1016/j.cmet.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Metabolism and mRNA translation represent critical steps involved in modulating gene expression and cellular physiology. Being the most energy-consuming process in the cell, mRNA translation is strictly linked to cellular metabolism and in synchrony with it. Indeed, several mRNAs for metabolic pathways are regulated at the translational level, resulting in translation being a coordinator of metabolism. On the other hand, there is a growing appreciation for how metabolism impacts several aspects of RNA biology. For example, metabolic pathways and metabolites directly control the selectivity and efficiency of the translational machinery, as well as post-transcriptional modifications of RNA to fine-tune protein synthesis. Consistently, alterations in the intricate interplay between translational control and cellular metabolism have emerged as a critical axis underlying human diseases. A better understanding of such events will foresee innovative therapeutic strategies in human disease states.
Collapse
Affiliation(s)
- Stefano Biffo
- National Institute of Molecular Genetics and Biosciences Department, University of Milan, Milan, Italy.
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Massimo Mattia Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
18
|
Seleit A, Brettell I, Fitzgerald T, Vibe C, Loosli F, Wittbrodt J, Naruse K, Birney E, Aulehla A. Modular control of vertebrate axis segmentation in time and space. EMBO J 2024; 43:4068-4091. [PMID: 39122924 PMCID: PMC11405765 DOI: 10.1038/s44318-024-00186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
How the timing of development is linked to organismal size is a longstanding question. Although numerous studies have reported a correlation of temporal and spatial traits, the developmental or selective constraints underlying this link remain largely unexplored. We address this question by studying the periodic process of embryonic axis segmentation in-vivo in Oryzias fish. Interspecies comparisons reveal that the timing of segmentation correlates to segment, tissue and organismal size. Segment size in turn scales according to tissue and organism size. To probe for underlying causes, we genetically hybridised two closely related species. Quantitative analysis in ~600 phenotypically diverse F2 embryos reveals a decoupling of timing from size control, while spatial scaling is preserved. Using developmental quantitative trait loci (devQTL) mapping we identify distinct genetic loci linked to either the control of segmentation timing or tissue size. This study demonstrates that a developmental constraint mechanism underlies spatial scaling of axis segmentation, while its spatial and temporal control are dissociable modules.
Collapse
Affiliation(s)
- Ali Seleit
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Ian Brettell
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tomas Fitzgerald
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Carina Vibe
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Ruprecht Karls Universität Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Kiyoshi Naruse
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Aichi, Japan
| | - Ewan Birney
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| |
Collapse
|
19
|
Lisowski P, Lickfett S, Rybak-Wolf A, Menacho C, Le S, Pentimalli TM, Notopoulou S, Dykstra W, Oehler D, López-Calcerrada S, Mlody B, Otto M, Wu H, Richter Y, Roth P, Anand R, Kulka LAM, Meierhofer D, Glazar P, Legnini I, Telugu NS, Hahn T, Neuendorf N, Miller DC, Böddrich A, Polzin A, Mayatepek E, Diecke S, Olzscha H, Kirstein J, Ugalde C, Petrakis S, Cambridge S, Rajewsky N, Kühn R, Wanker EE, Priller J, Metzger JJ, Prigione A. Mutant huntingtin impairs neurodevelopment in human brain organoids through CHCHD2-mediated neurometabolic failure. Nat Commun 2024; 15:7027. [PMID: 39174523 PMCID: PMC11341898 DOI: 10.1038/s41467-024-51216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
Expansion of the glutamine tract (poly-Q) in the protein huntingtin (HTT) causes the neurodegenerative disorder Huntington's disease (HD). Emerging evidence suggests that mutant HTT (mHTT) disrupts brain development. To gain mechanistic insights into the neurodevelopmental impact of human mHTT, we engineered male induced pluripotent stem cells to introduce a biallelic or monoallelic mutant 70Q expansion or to remove the poly-Q tract of HTT. The introduction of a 70Q mutation caused aberrant development of cerebral organoids with loss of neural progenitor organization. The early neurodevelopmental signature of mHTT highlighted the dysregulation of the protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2), a transcription factor involved in mitochondrial integrated stress response. CHCHD2 repression was associated with abnormal mitochondrial morpho-dynamics that was reverted upon overexpression of CHCHD2. Removing the poly-Q tract from HTT normalized CHCHD2 levels and corrected key mitochondrial defects. Hence, mHTT-mediated disruption of human neurodevelopment is paralleled by aberrant neurometabolic programming mediated by dysregulation of CHCHD2, which could then serve as an early interventional target for HD.
Collapse
Affiliation(s)
- Pawel Lisowski
- Quantitative Stem Cell Biology, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin, Berlin, Germany
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec n/Warsaw, Poland
| | - Selene Lickfett
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Institute of Anatomy II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Agnieszka Rybak-Wolf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Organoid Platform, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Carmen Menacho
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Stephanie Le
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Tancredi Massimo Pentimalli
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Charité - Universitätsmedizin, Berlin, Germany
| | - Sofia Notopoulou
- Institute of Applied Biosciences (INAB), Centre For Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - Werner Dykstra
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Daniel Oehler
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | | | - Barbara Mlody
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Centogene, Rostock, Germany
| | - Maximilian Otto
- Quantitative Stem Cell Biology, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Haijia Wu
- Institute of Molecular Medicine, Medical School, Hamburg, Germany
| | | | - Philipp Roth
- Quantitative Stem Cell Biology, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Linda A M Kulka
- Institute of Physiological Chemistry, Martin-Luther-University, Halle-Wittenberg, Germany
| | - David Meierhofer
- Quantitative RNA Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Petar Glazar
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Quantitative RNA Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ivano Legnini
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Human Technopole, Milan, Italy
| | - Narasimha Swamy Telugu
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Tobias Hahn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Nancy Neuendorf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Duncan C Miller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Annett Böddrich
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Amin Polzin
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Sebastian Diecke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Heidi Olzscha
- Institute of Molecular Medicine, Medical School, Hamburg, Germany
- Institute of Physiological Chemistry, Martin-Luther-University, Halle-Wittenberg, Germany
| | - Janine Kirstein
- Cell Biology, University of Bremen, Bremen, Germany
- Leibniz Institute on Aging - Fritz-Lipmann Institute, Jena, Germany
| | - Cristina Ugalde
- Instituto de Investigación Hospital 12 de Octubre (i + 12), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Spyros Petrakis
- Institute of Applied Biosciences (INAB), Centre For Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - Sidney Cambridge
- Institute of Anatomy II, Heinrich-Heine-University, Düsseldorf, Germany
- Dr. Senckenberg Anatomy, Anatomy II, Goethe-University, Frankfurt, Germany
| | - Nikolaus Rajewsky
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
- National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Erich E Wanker
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy; School of Medicine and Health, Technical University of Munich and German Center for Mental Health (DZPG), Munich, Germany
- University of Edinburgh and UK Dementia Research Institute, Edinburgh, UK
| | - Jakob J Metzger
- Quantitative Stem Cell Biology, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Alessandro Prigione
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
20
|
Liberali P, Schier AF. The evolution of developmental biology through conceptual and technological revolutions. Cell 2024; 187:3461-3495. [PMID: 38906136 DOI: 10.1016/j.cell.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Developmental biology-the study of the processes by which cells, tissues, and organisms develop and change over time-has entered a new golden age. After the molecular genetics revolution in the 80s and 90s and the diversification of the field in the early 21st century, we have entered a phase when powerful technologies provide new approaches and open unexplored avenues. Progress in the field has been accelerated by advances in genomics, imaging, engineering, and computational biology and by emerging model systems ranging from tardigrades to organoids. We summarize how revolutionary technologies have led to remarkable progress in understanding animal development. We describe how classic questions in gene regulation, pattern formation, morphogenesis, organogenesis, and stem cell biology are being revisited. We discuss the connections of development with evolution, self-organization, metabolism, time, and ecology. We speculate how developmental biology might evolve in an era of synthetic biology, artificial intelligence, and human engineering.
Collapse
Affiliation(s)
- Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | | |
Collapse
|
21
|
Iwata R, Vanderhaeghen P. Metabolic mechanisms of species-specific developmental tempo. Dev Cell 2024; 59:1628-1639. [PMID: 38906137 PMCID: PMC11266843 DOI: 10.1016/j.devcel.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/27/2024] [Accepted: 05/23/2024] [Indexed: 06/23/2024]
Abstract
Development consists of a highly ordered suite of steps and transitions, like choreography. Although these sequences are often evolutionarily conserved, they can display species variations in duration and speed, thereby modifying final organ size or function. Despite their evolutionary significance, the mechanisms underlying species-specific scaling of developmental tempo have remained unclear. Here, we will review recent findings that implicate global cellular mechanisms, particularly intermediary and protein metabolism, as species-specific modifiers of developmental tempo. In various systems, from somitic cell oscillations to neuronal development, metabolic pathways display species differences. These have been linked to mitochondrial metabolism, which can influence the species-specific speed of developmental transitions. Thus, intermediary metabolic pathways regulate developmental tempo together with other global processes, including proteostasis and chromatin remodeling. By linking metabolism and the evolution of developmental trajectories, these findings provide opportunities to decipher how species-specific cellular timing can influence organism fitness.
Collapse
Affiliation(s)
- Ryohei Iwata
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium.
| |
Collapse
|
22
|
Di Bella DJ, Domínguez-Iturza N, Brown JR, Arlotta P. Making Ramón y Cajal proud: Development of cell identity and diversity in the cerebral cortex. Neuron 2024; 112:2091-2111. [PMID: 38754415 PMCID: PMC11771131 DOI: 10.1016/j.neuron.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Since the beautiful images of Santiago Ramón y Cajal provided a first glimpse into the immense diversity and complexity of cell types found in the cerebral cortex, neuroscience has been challenged and inspired to understand how these diverse cells are generated and how they interact with each other to orchestrate the development of this remarkable tissue. Some fundamental questions drive the field's quest to understand cortical development: what are the mechanistic principles that govern the emergence of neuronal diversity? How do extrinsic and intrinsic signals integrate with physical forces and activity to shape cell identity? How do the diverse populations of neurons and glia influence each other during development to guarantee proper integration and function? The advent of powerful new technologies to profile and perturb cortical development at unprecedented resolution and across a variety of modalities has offered a new opportunity to integrate past knowledge with brand new data. Here, we review some of this progress using cortical excitatory projection neurons as a system to draw out general principles of cell diversification and the role of cell-cell interactions during cortical development.
Collapse
Affiliation(s)
- Daniela J Di Bella
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Nuria Domínguez-Iturza
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Juliana R Brown
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
23
|
Choi S, Lee JM, Kim KES, Park JH, Kim LH, Park J, Jeon Y, Jhun BW, Kim SY, Hong JJ, Shin SJ. Protein-energy restriction-induced lipid metabolism disruption causes stable-to-progressive disease shift in Mycobacterium avium-infected female mice. EBioMedicine 2024; 105:105198. [PMID: 38889480 PMCID: PMC11237864 DOI: 10.1016/j.ebiom.2024.105198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Disease susceptibility and progression of Mycobacterium avium complex pulmonary disease (MAC-PD) is associated with multiple factors, including low body mass index (BMI). However, the specific impact of low BMI on MAC-PD progression remains poorly understood. This study aims to examine the progression of MAC-PD in the context of low BMI, utilising a disease-resistant mouse model. METHODS We employed a MAC infection-resistant female A/J mouse model to compare the progression of MAC-PD under two dietary conditions: one group was fed a standard protein diet, representing protein-energy unrestricted conditions, and the other was fed a low protein diet (LPD), representing protein-energy restriction. FINDINGS Our results reveal that protein-energy restriction significantly exacerbates MAC-PD progression by disrupting lipid metabolism. Mice fed an LPD showed elevated fatty acid levels and related gene expressions in lung tissues, similar to findings of increased fatty acids in the serum of patients who exhibited the MAC-PD progression. These mice also exhibited increased CD36 expression and lipid accumulation in macrophages upon MAC infection. In vitro experiments emphasised the crucial role of CD36-mediated palmitic acid uptake in bacterial proliferation. Importantly, in vivo studies demonstrated that administering anti-CD36 antibody to LPD-fed A/J mice reduced macrophage lipid accumulation and impeded bacterial growth, resulting in remarkable slowing disease progression. INTERPRETATION Our findings indicate that the metabolic status of host immune cells critically influences MAC-PD progression. This study highlights the potential of adequate nutrient intake in preventing MAC-PD progression, suggesting that targeting CD36-mediated pathways might be a host-directed therapeutic strategy to managing MAC infection. FUNDING This research was funded by the National Research Foundation of Korea, the Korea Research Institute of Bioscience and Biotechnology, and the Korea National Institute of Health.
Collapse
Affiliation(s)
- Sangwon Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ju Mi Lee
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Keu Eun San Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ji-Hae Park
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Lee-Han Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jiyun Park
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yaerin Jeon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, South Korea; KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
24
|
Miao Y, Pourquié O. Cellular and molecular control of vertebrate somitogenesis. Nat Rev Mol Cell Biol 2024; 25:517-533. [PMID: 38418851 PMCID: PMC11694818 DOI: 10.1038/s41580-024-00709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Segmentation is a fundamental feature of the vertebrate body plan. This metameric organization is first implemented by somitogenesis in the early embryo, when paired epithelial blocks called somites are rhythmically formed to flank the neural tube. Recent advances in in vitro models have offered new opportunities to elucidate the mechanisms that underlie somitogenesis. Notably, models derived from human pluripotent stem cells introduced an efficient proxy for studying this process during human development. In this Review, we summarize the current understanding of somitogenesis gained from both in vivo studies and in vitro studies. We deconstruct the spatiotemporal dynamics of somitogenesis into four distinct modules: dynamic events in the presomitic mesoderm, segmental determination, somite anteroposterior polarity patterning, and epithelial morphogenesis. We first focus on the segmentation clock, as well as signalling and metabolic gradients along the tissue, before discussing the clock and wavefront and other models that account for segmental determination. We then detail the molecular and cellular mechanisms of anteroposterior polarity patterning and somite epithelialization.
Collapse
Affiliation(s)
- Yuchuan Miao
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
25
|
Nehme R, Pietiläinen O, Barrett LE. Genomic, molecular, and cellular divergence of the human brain. Trends Neurosci 2024; 47:491-505. [PMID: 38897852 PMCID: PMC11956863 DOI: 10.1016/j.tins.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
While many core biological processes are conserved across species, the human brain has evolved with unique capacities. Current understanding of the neurobiological mechanisms that endow human traits as well as associated vulnerabilities remains limited. However, emerging data have illuminated species divergence in DNA elements and genome organization, in molecular, morphological, and functional features of conserved neural cell types, as well as temporal differences in brain development. Here, we summarize recent data on unique features of the human brain and their complex implications for the study and treatment of brain diseases. We also consider key outstanding questions in the field and discuss the technologies and foundational knowledge that will be required to accelerate understanding of human neurobiology.
Collapse
Affiliation(s)
- Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Olli Pietiläinen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
26
|
Minovic A, Nozawa M. Evolution of sex-biased genes in Drosophila species with neo-sex chromosomes: Potential contribution to reducing the sexual conflict. Ecol Evol 2024; 14:e11701. [PMID: 39050657 PMCID: PMC11266434 DOI: 10.1002/ece3.11701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
An advantage of sex chromosomes may be the potential to reduce sexual conflict because they provide a basis for selection to operate separately on females and males. However, evaluating the relationship between sex chromosomes and sexual conflict is challenging owing to the difficulty in measuring sexual conflict and substantial divergence between species with and without sex chromosomes. We therefore examined sex-biased gene expression as a proxy for sexual conflict in three sets of Drosophila species with and without young sex chromosomes, the so-called neo-sex chromosomes. In all sets, we detected more sex-biased genes in the species with neo-sex chromosomes than in the species without neo-sex chromosomes in larvae, pupae, and adult somatic tissues but not in gonads. In particular, many unbiased genes became either female- or male-biased after linkage to the neo-sex chromosomes in larvae, despite the low sexual dimorphism. For example, genes involved in metabolism, a key determinant for the rate of development in many animals, were enriched in the genes that acquired sex-biased expression on the neo-sex chromosomes at the larval stage. These genes may be targets of sexually antagonistic selection (i.e., large size and rapid development are selected for in females but selected against in males). These results indicate that acquiring neo-sex chromosomes may have contributed to a reduction in sexual conflict, particularly at the larval stage, in Drosophila..
Collapse
Affiliation(s)
- Anika Minovic
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiJapan
| | - Masafumi Nozawa
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiJapan
- Research Center for Genomics and BioinformaticsTokyo Metropolitan UniversityHachiojiJapan
| |
Collapse
|
27
|
Chen PT, Levo M, Zoller B, Gregor T. Gene activity fully predicts transcriptional bursting dynamics. ARXIV 2024:arXiv:2304.08770v3. [PMID: 37131882 PMCID: PMC10153294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Transcription commonly occurs in bursts, with alternating productive (ON) and quiescent (OFF) periods, governing mRNA production rates. Yet, how transcription is regulated through bursting dynamics remains unresolved. Here, we conduct real-time measurements of endogenous transcriptional bursting with single-mRNA sensitivity. Leveraging the diverse transcriptional activities in early fly embryos, we uncover stringent relationships between bursting parameters. Specifically, we find that the durations of ON and OFF periods are linked. Regardless of the developmental stage or body-axis position, gene activity levels predict individual alleles' average ON and OFF periods. Lowly transcribing alleles predominantly modulate OFF periods (burst frequency), while highly transcribing alleles primarily tune ON periods (burst size). These relationships persist even under perturbations of cis-regulatory elements or trans-factors and account for bursting dynamics measured in other species. Our results suggest a novel mechanistic constraint governing bursting dynamics rather than a modular control of distinct parameters by distinct regulatory processes.
Collapse
Affiliation(s)
- Po-Ta Chen
- Joseph Henry Laboratories of Physics & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Michal Levo
- Joseph Henry Laboratories of Physics & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Benjamin Zoller
- Joseph Henry Laboratories of Physics & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Thomas Gregor
- Joseph Henry Laboratories of Physics & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
28
|
Taylor A, Prasad A, Mueller RL. Amphibian Segmentation Clock Models Suggest How Large Genome and Cell Sizes Slow Developmental Rate. Integr Org Biol 2024; 6:obae021. [PMID: 39006893 PMCID: PMC11245677 DOI: 10.1093/iob/obae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Evolutionary increases in genome size, cell volume, and nuclear volume have been observed across the tree of life, with positive correlations documented between all three traits. Developmental tempo slows as genomes, nuclei, and cells increase in size, yet the driving mechanisms are poorly understood. To bridge this gap, we use a mathematical model of the somitogenesis clock to link slowed developmental tempo with changes in intra-cellular gene expression kinetics induced by increasing genome size and nuclear volume. We adapt a well-known somitogenesis clock model to two model amphibian species that vary 10-fold in genome size: Xenopus laevis (3.1 Gb) and Ambystoma mexicanum (32 Gb). Based on simulations and backed by analytical derivations, we identify parameter changes originating from increased genome and nuclear size that slow gene expression kinetics. We simulate biological scenarios for which these parameter changes mathematically recapitulate slowed gene expression in A. mexicanum relative to X. laevis, and we consider scenarios for which additional alterations in gene product stability and chromatin packing are necessary. Results suggest that slowed degradation rates as well as changes induced by increasing nuclear volume and intron length, which remain relatively unexplored, are significant drivers of slowed developmental tempo.
Collapse
Affiliation(s)
- A Taylor
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - A Prasad
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - R Lockridge Mueller
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
29
|
Garfinkel AM, Ilker E, Miyazawa H, Schmeisser K, Tennessen JM. Historic obstacles and emerging opportunities in the field of developmental metabolism - lessons from Heidelberg. Development 2024; 151:dev202937. [PMID: 38912552 PMCID: PMC11299503 DOI: 10.1242/dev.202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The field of developmental metabolism is experiencing a technological revolution that is opening entirely new fields of inquiry. Advances in metabolomics, small-molecule sensors, single-cell RNA sequencing and computational modeling present new opportunities for exploring cell-specific and tissue-specific metabolic networks, interorgan metabolic communication, and gene-by-metabolite interactions in time and space. Together, these advances not only present a means by which developmental biologists can tackle questions that have challenged the field for centuries, but also present young scientists with opportunities to define new areas of inquiry. These emerging frontiers of developmental metabolism were at the center of a highly interactive 2023 EMBO workshop 'Developmental metabolism: flows of energy, matter, and information'. Here, we summarize key discussions from this forum, emphasizing modern developmental biology's challenges and opportunities.
Collapse
Affiliation(s)
- Alexandra M. Garfinkel
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Efe Ilker
- Max Planck Institute for the Physics of Complex Systems, Dresden 01187, Germany
| | - Hidenobu Miyazawa
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | | |
Collapse
|
30
|
Manser CL, Perez-Carrasco R. A mathematical framework for measuring and tuning tempo in developmental gene regulatory networks. Development 2024; 151:dev202950. [PMID: 38780527 PMCID: PMC11234385 DOI: 10.1242/dev.202950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Embryo development is a dynamic process governed by the regulation of timing and sequences of gene expression, which control the proper growth of the organism. Although many genetic programmes coordinating these sequences are common across species, the timescales of gene expression can vary significantly among different organisms. Currently, substantial experimental efforts are focused on identifying molecular mechanisms that control these temporal aspects. In contrast, the capacity of established mathematical models to incorporate tempo control while maintaining the same dynamical landscape remains less understood. Here, we address this gap by developing a mathematical framework that links the functionality of developmental programmes to the corresponding gene expression orbits (or landscapes). This unlocks the ability to find tempo differences as perturbations in the dynamical system that preserve its orbits. We demonstrate that this framework allows for the prediction of molecular mechanisms governing tempo, through both numerical and analytical methods. Our exploration includes two case studies: a generic network featuring coupled production and degradation, with a particular application to neural progenitor differentiation; and the repressilator. In the latter, we illustrate how altering the dimerisation rates of transcription factors can decouple the tempo from the shape of the resulting orbits. We conclude by highlighting how the identification of orthogonal molecular mechanisms for tempo control can inform the design of circuits with specific orbits and tempos.
Collapse
Affiliation(s)
- Charlotte L. Manser
- Department of Life Sciences, Imperial College London, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - Ruben Perez-Carrasco
- Department of Life Sciences, Imperial College London, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
31
|
Spisak N, de Manuel M, Milligan W, Sella G, Przeworski M. The clock-like accumulation of germline and somatic mutations can arise from the interplay of DNA damage and repair. PLoS Biol 2024; 22:e3002678. [PMID: 38885262 PMCID: PMC11213356 DOI: 10.1371/journal.pbio.3002678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/28/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
The rates at which mutations accumulate across human cell types vary. To identify causes of this variation, mutations are often decomposed into a combination of the single-base substitution (SBS) "signatures" observed in germline, soma, and tumors, with the idea that each signature corresponds to one or a small number of underlying mutagenic processes. Two such signatures turn out to be ubiquitous across cell types: SBS signature 1, which consists primarily of transitions at methylated CpG sites thought to be caused by spontaneous deamination, and the more diffuse SBS signature 5, which is of unknown etiology. In cancers, the number of mutations attributed to these 2 signatures accumulates linearly with age of diagnosis, and thus the signatures have been termed "clock-like." To better understand this clock-like behavior, we develop a mathematical model that includes DNA replication errors, unrepaired damage, and damage repaired incorrectly. We show that mutational signatures can exhibit clock-like behavior because cell divisions occur at a constant rate and/or because damage rates remain constant over time, and that these distinct sources can be teased apart by comparing cell lineages that divide at different rates. With this goal in mind, we analyze the rate of accumulation of mutations in multiple cell types, including soma as well as male and female germline. We find no detectable increase in SBS signature 1 mutations in neurons and only a very weak increase in mutations assigned to the female germline, but a significant increase with time in rapidly dividing cells, suggesting that SBS signature 1 is driven by rounds of DNA replication occurring at a relatively fixed rate. In contrast, SBS signature 5 increases with time in all cell types, including postmitotic ones, indicating that it accumulates independently of cell divisions; this observation points to errors in DNA repair as the key underlying mechanism. Thus, the two "clock-like" signatures observed across cell types likely have distinct origins, one set by rates of cell division, the other by damage rates.
Collapse
Affiliation(s)
- Natanael Spisak
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Marc de Manuel
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - William Milligan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Guy Sella
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Program for Mathematical Genomics, Columbia University, New York, New York, United States of America
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| |
Collapse
|
32
|
Diaz-Cuadros M. Mitochondrial metabolism and the continuing search for ultimate regulators of developmental rate. Curr Opin Genet Dev 2024; 86:102178. [PMID: 38461774 DOI: 10.1016/j.gde.2024.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
The rate of embryonic development is a species-specific trait that depends on the properties of the intracellular environment, namely, the rate at which gene products flow through the central dogma of molecular biology. Although any given step in the production and degradation of gene products could theoretically be co-opted by evolution to modulate developmental speed, species are observed to accelerate or slow down all steps simultaneously. This suggests the rate of these molecular processes is jointly regulated by an upstream, ultimate factor. Mitochondrial metabolism was recently proposed to act as an ultimate regulator by controlling the pace of protein synthesis upstream of developmental tempo. Alternative candidates for ultimate regulators include species-specific gene expression levels of factors involved in the central dogma, as well as species-specific cell size. Overall, much work remains to be done before we can confidently identify the ultimate causes of species-specific developmental rates.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Casimir P, Iwata R, Vanderhaeghen P. Linking mitochondria metabolism, developmental timing, and human brain evolution. Curr Opin Genet Dev 2024; 86:102182. [PMID: 38555796 PMCID: PMC11190843 DOI: 10.1016/j.gde.2024.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
Changes in developmental timing are an important factor of evolution in organ shape and function. This is particularly striking for human brain development, which, compared with other mammals, is considerably prolonged at the level of the cerebral cortex, resulting in brain neoteny. Here, we review recent findings that indicate that mitochondria and metabolism contribute to species differences in the tempo of cortical neuron development. Mitochondria display species-specific developmental timeline and metabolic activity patterns that are highly correlated with the speed of neuron maturation. Enhancing mitochondrial activity in human cortical neurons results in their accelerated maturation, while its reduction leads to decreased maturation rates in mouse neurons. Together with other global and gene-specific mechanisms, mitochondria thus act as a cellular hourglass of neuronal developmental tempo and may thereby contribute to species-specific features of human brain ontogeny.
Collapse
Affiliation(s)
- Pierre Casimir
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; Department of Neurology, Centre Hospitalier Universitaire Brugmann, ULB, 1020 Brussels, Belgium
| | - Ryohei Iwata
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium. https://twitter.com/@Ryo2Iwata
| | - Pierre Vanderhaeghen
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
34
|
Azzi C, Rayon T. Timing mechanisms: insights from comparative neural differentiation systems. Curr Opin Genet Dev 2024; 86:102197. [PMID: 38648722 DOI: 10.1016/j.gde.2024.102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Temporal control is central to deploy and coordinate genetic programs during development. At present, there is limited understanding of the molecular mechanisms that govern the duration and speed of developmental processes. Timing mechanisms may run in parallel and/or interact with each other to integrate temporal signals throughout the organism. In this piece, we consider findings on the extrinsic control of developmental tempo and discuss the intrinsic roles of cell cycle, metabolic rates, protein turnover, and post-transcriptional mechanisms in the regulation of tempo during neural development.
Collapse
Affiliation(s)
- Chiara Azzi
- Epigenetics & Signalling Programmes, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK. https://twitter.com/@azziChiA
| | - Teresa Rayon
- Epigenetics & Signalling Programmes, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
35
|
Granath-Panelo M, Kajimura S. Mitochondrial heterogeneity and adaptations to cellular needs. Nat Cell Biol 2024; 26:674-686. [PMID: 38755301 DOI: 10.1038/s41556-024-01410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Although it is well described that mitochondria are at the epicentre of the energy demands of a cell, it is becoming important to consider how each cell tailors its mitochondrial composition and functions to suit its particular needs beyond ATP production. Here we provide insight into mitochondrial heterogeneity throughout development as well as in tissues with specific energy demands and discuss how mitochondrial malleability contributes to cell fate determination and tissue remodelling.
Collapse
Affiliation(s)
- Melia Granath-Panelo
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA.
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Shingo Kajimura
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
36
|
Bourn JJ, Dorrity MW. Degrees of freedom: temperature's influence on developmental rate. Curr Opin Genet Dev 2024; 85:102155. [PMID: 38335718 DOI: 10.1016/j.gde.2024.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024]
Abstract
Temperature exerts a fundamental influence across scales of biology, from the biophysical nature of molecules, to the sensitivity of cells, and the coordinated progression of development in embryos. Species-specific developmental rates and temperature-induced acceleration of development indicate that these sensing mechanisms are harnessed to influence developmental dynamics. Tracing how temperature sensitivity propagates through biological scales to influence the pace of development can therefore reveal how embryogenesis remains robust to environmental influences. Cellular protein homeostasis (proteostasis), and cellular metabolic rate are linked to both temperature-induced and species-specific developmental tempos in specific cell types, hinting toward generalized mechanisms of timing control. New methods to extract timing information from single-cell profiling experiments are driving further progress in understanding how mechanisms of temperature sensitivity can direct cell-autonomous responses, coordination across cell types, and evolutionary modifications of developmental timing.
Collapse
Affiliation(s)
- Jess J Bourn
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany. https://twitter.com/@bournsupremacy
| | - Michael W Dorrity
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
37
|
Ciceri G, Studer L. Epigenetic control and manipulation of neuronal maturation timing. Curr Opin Genet Dev 2024; 85:102164. [PMID: 38412562 PMCID: PMC11175593 DOI: 10.1016/j.gde.2024.102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
During brain development, the sequence of developmental steps and the underlying transcriptional regulatory logic are largely conserved across species. However, the temporal unfolding of developmental programs varies dramatically across species and within a given species varies across brain regions and cell identities. The maturation of neurons in the human cerebral cortex is particularly slow and lasts for many years compared with only a few weeks for the corresponding mouse neurons. The mechanisms setting the 'schedule' of neuronal maturation remain unclear but appear to be linked to a cell-intrinsic 'clock'. Here, we discuss recent findings that highlight a role for epigenetic factors in the timing of neuronal maturation. Manipulations of those factors in stem cell-based models can override the intrinsic pace of neuronal maturation, including its protracted nature in human cortical neurons. We then contextualize the epigenetic regulation of maturation programs with findings from other model systems and propose potential interactions between epigenetic pathways and other drivers of developmental rates.
Collapse
Affiliation(s)
- Gabriele Ciceri
- The Center for Stem Cell Biology and Developmental Biology program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
38
|
Pettersen AK, Metcalfe NB, Seebacher F. Intergenerational plasticity aligns with temperature-dependent selection on offspring metabolic rates. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220496. [PMID: 38186279 PMCID: PMC10772613 DOI: 10.1098/rstb.2022.0496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/19/2023] [Indexed: 01/09/2024] Open
Abstract
Metabolic rates are linked to key life-history traits that are thought to set the pace of life and affect fitness, yet the role that parents may have in shaping the metabolism of their offspring to enhance survival remains unclear. Here, we investigated the effect of temperature (24°C or 30°C) and feeding frequency experienced by parent zebrafish (Danio rerio) on offspring phenotypes and early survival at different developmental temperatures (24°C or 30°C). We found that embryo size was larger, but survival lower, in offspring from the parental low food treatment. Parents exposed to the warmer temperature and lower food treatment also produced offspring with lower standard metabolic rates-aligning with selection on embryo metabolic rates. Lower metabolic rates were correlated with reduced developmental and growth rates, suggesting selection for a slow pace of life. Our results show that intergenerational phenotypic plasticity on offspring size and metabolic rate can be adaptive when parent and offspring temperatures are matched: the direction of selection on embryo size and metabolism aligned with intergenerational plasticity towards lower metabolism at higher temperatures, particularly in offspring from low-condition parents. These findings provide evidence for adaptive parental effects, but only when parental and offspring environments match. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Amanda K. Pettersen
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Biodiversity, One Health & Veterinary Medicine,, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Neil B. Metcalfe
- School of Biodiversity, One Health & Veterinary Medicine,, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
39
|
Libby A, Rayon T. In preprints: puzzling together roles for glucose metabolism during gastrulation. Development 2024; 151:dev202774. [PMID: 38381701 DOI: 10.1242/dev.202774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Affiliation(s)
- Ashley Libby
- Developmental Dynamics Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Teresa Rayon
- Epigenetics & Signalling Programmes, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
40
|
Ciceri G, Baggiolini A, Cho HS, Kshirsagar M, Benito-Kwiecinski S, Walsh RM, Aromolaran KA, Gonzalez-Hernandez AJ, Munguba H, Koo SY, Xu N, Sevilla KJ, Goldstein PA, Levitz J, Leslie CS, Koche RP, Studer L. An epigenetic barrier sets the timing of human neuronal maturation. Nature 2024; 626:881-890. [PMID: 38297124 PMCID: PMC10881400 DOI: 10.1038/s41586-023-06984-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/15/2023] [Indexed: 02/02/2024]
Abstract
The pace of human brain development is highly protracted compared with most other species1-7. The maturation of cortical neurons is particularly slow, taking months to years to develop adult functions3-5. Remarkably, such protracted timing is retained in cortical neurons derived from human pluripotent stem cells (hPSCs) during in vitro differentiation or upon transplantation into the mouse brain4,8,9. Those findings suggest the presence of a cell-intrinsic clock setting the pace of neuronal maturation, although the molecular nature of this clock remains unknown. Here we identify an epigenetic developmental programme that sets the timing of human neuronal maturation. First, we developed a hPSC-based approach to synchronize the birth of cortical neurons in vitro which enabled us to define an atlas of morphological, functional and molecular maturation. We observed a slow unfolding of maturation programmes, limited by the retention of specific epigenetic factors. Loss of function of several of those factors in cortical neurons enables precocious maturation. Transient inhibition of EZH2, EHMT1 and EHMT2 or DOT1L, at progenitor stage primes newly born neurons to rapidly acquire mature properties upon differentiation. Thus our findings reveal that the rate at which human neurons mature is set well before neurogenesis through the establishment of an epigenetic barrier in progenitor cells. Mechanistically, this barrier holds transcriptional maturation programmes in a poised state that is gradually released to ensure the prolonged timeline of human cortical neuron maturation.
Collapse
Affiliation(s)
- Gabriele Ciceri
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Arianna Baggiolini
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Hyein S Cho
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meghana Kshirsagar
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Microsoft AI for Good Research, Redmond, WA, USA
| | - Silvia Benito-Kwiecinski
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan M Walsh
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - So Yeon Koo
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Neuroscience PhD Program, New York, NY, USA
| | - Nan Xu
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaylin J Sevilla
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
41
|
Lázaro J, Sochacki J, Ebisuya M. The stem cell zoo for comparative studies of developmental tempo. Curr Opin Genet Dev 2024; 84:102149. [PMID: 38199063 PMCID: PMC10882223 DOI: 10.1016/j.gde.2023.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024]
Abstract
The rate of development is highly variable across animal species. However, the mechanisms regulating developmental tempo have remained elusive due to difficulties in performing direct interspecies comparisons. Here, we discuss how pluripotent stem cell-based models of development can be used to investigate cell- and tissue-autonomous temporal processes. These systems enable quantitative comparisons of different animal species under similar experimental conditions. Moreover, the constantly growing stem cell zoo collection allows the extension of developmental studies to a great number of unconventional species. We argue that the stem cell zoo constitutes a powerful platform to perform comparative studies of developmental tempo, as well as to study other forms of biological time control such as species-specific lifespan, heart rate, and circadian clocks.
Collapse
Affiliation(s)
- Jorge Lázaro
- European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain; Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany. https://twitter.com/@JorgeLazaroF
| | - Jaroslaw Sochacki
- European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Miki Ebisuya
- European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307 Dresden, Germany.
| |
Collapse
|
42
|
Ramesh PS, Chu LF. Species-specific roles of the Notch ligands, receptors, and targets orchestrating the signaling landscape of the segmentation clock. Front Cell Dev Biol 2024; 11:1327227. [PMID: 38348091 PMCID: PMC10859470 DOI: 10.3389/fcell.2023.1327227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 02/15/2024] Open
Abstract
Somitogenesis is a hallmark feature of all vertebrates and some invertebrate species that involves the periodic formation of block-like structures called somites. Somites are transient embryonic segments that eventually establish the entire vertebral column. A highly conserved molecular oscillator called the segmentation clock underlies this periodic event and the pace of this clock regulates the pace of somite formation. Although conserved signaling pathways govern the clock in most vertebrates, the mechanisms underlying the species-specific divergence in various clock characteristics remain elusive. For example, the segmentation clock in classical model species such as zebrafish, chick, and mouse embryos tick with a periodicity of ∼30, ∼90, and ∼120 min respectively. This enables them to form the species-specific number of vertebrae during their overall timespan of somitogenesis. Here, we perform a systematic review of the species-specific features of the segmentation clock with a keen focus on mouse embryos. We perform this review using three different perspectives: Notch-responsive clock genes, ligand-receptor dynamics, and synchronization between neighboring oscillators. We further review reports that use non-classical model organisms and in vitro model systems that complement our current understanding of the segmentation clock. Our review highlights the importance of comparative developmental biology to further our understanding of this essential developmental process.
Collapse
Affiliation(s)
- Pranav S. Ramesh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
| | - Li-Fang Chu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
43
|
McDaniel C, Simsek MF, Chandel AS, Özbudak EM. Spatiotemporal control of pattern formation during somitogenesis. SCIENCE ADVANCES 2024; 10:eadk8937. [PMID: 38277458 PMCID: PMC10816718 DOI: 10.1126/sciadv.adk8937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Spatiotemporal patterns widely occur in biological, chemical, and physical systems. Particularly, embryonic development displays a diverse gamut of repetitive patterns established in many tissues and organs. Branching treelike structures in lungs, kidneys, livers, pancreases, and mammary glands as well as digits and bones in appendages, teeth, and palates are just a few examples. A fascinating instance of repetitive patterning is the sequential segmentation of the primary body axis, which is conserved in all vertebrates and many arthropods and annelids. In these species, the body axis elongates at the posterior end of the embryo containing an unsegmented tissue. Meanwhile, segments sequentially bud off from the anterior end of the unsegmented tissue, laying down an exquisite repetitive pattern and creating a segmented body plan. In vertebrates, the paraxial mesoderm is sequentially divided into somites. In this review, we will discuss the most prominent models, the most puzzling experimental data, and outstanding questions in vertebrate somite segmentation.
Collapse
Affiliation(s)
- Cassandra McDaniel
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - M. Fethullah Simsek
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Angad Singh Chandel
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ertuğrul M. Özbudak
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
44
|
Du N, Yang R, Jiang S, Niu Z, Zhou W, Liu C, Gao L, Sun Q. Anti-Aging Drugs and the Related Signal Pathways. Biomedicines 2024; 12:127. [PMID: 38255232 PMCID: PMC10813474 DOI: 10.3390/biomedicines12010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Aging is a multifactorial biological process involving chronic diseases that manifest from the molecular level to the systemic level. From its inception to 31 May 2022, this study searched the PubMed, Web of Science, EBSCO, and Cochrane library databases to identify relevant research from 15,983 articles. Multiple approaches have been employed to combat aging, such as dietary restriction (DR), exercise, exchanging circulating factors, gene therapy, and anti-aging drugs. Among them, anti-aging drugs are advantageous in their ease of adherence and wide prevalence. Despite a shared functional output of aging alleviation, the current anti-aging drugs target different signal pathways that frequently cross-talk with each other. At present, six important signal pathways were identified as being critical in the aging process, including pathways for the mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), nutrient signal pathway, silent information regulator factor 2-related enzyme 1 (SIRT1), regulation of telomere length and glycogen synthase kinase-3 (GSK-3), and energy metabolism. These signal pathways could be targeted by many anti-aging drugs, with the corresponding representatives of rapamycin, metformin, acarbose, nicotinamide adenine dinucleotide (NAD+), lithium, and nonsteroidal anti-inflammatory drugs (NSAIDs), respectively. This review summarized these important aging-related signal pathways and their representative targeting drugs in attempts to obtain insights into and promote the development of mechanism-based anti-aging strategies.
Collapse
Affiliation(s)
- Nannan Du
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Ruigang Yang
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Shengrong Jiang
- The Meta-Center, 29 Xierqi Middle Rd, Beijing 100193, China;
| | - Zubiao Niu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Wenzhao Zhou
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Chenyu Liu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lihua Gao
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
| | - Qiang Sun
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| |
Collapse
|
45
|
Wallace JL, Pollen AA. Human neuronal maturation comes of age: cellular mechanisms and species differences. Nat Rev Neurosci 2024; 25:7-29. [PMID: 37996703 DOI: 10.1038/s41583-023-00760-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
The delayed and prolonged postmitotic maturation of human neurons, compared with neurons from other species, may contribute to human-specific cognitive abilities and neurological disorders. Here we review the mechanisms of neuronal maturation, applying lessons from model systems to understand the specific features of protracted human cortical maturation and species differences. We cover cell-intrinsic features of neuronal maturation, including transcriptional, epigenetic and metabolic mechanisms, as well as cell-extrinsic features, including the roles of activity and synapses, the actions of glial cells and the contribution of the extracellular matrix. We discuss evidence for species differences in biochemical reaction rates, the proposed existence of an epigenetic maturation clock and the contributions of both general and modular mechanisms to species-specific maturation timing. Finally, we suggest approaches to measure, improve and accelerate the maturation of human neurons in culture, examine crosstalk and interactions among these different aspects of maturation and propose conceptual models to guide future studies.
Collapse
Affiliation(s)
- Jenelle L Wallace
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
46
|
Vecheck AM, McNamee CM, Reijo Pera R, Usselman RJ. Magnetic Field Intervention Enhances Cellular Migration Rates in Biological Scaffolds. Bioengineering (Basel) 2023; 11:9. [PMID: 38247887 PMCID: PMC10813414 DOI: 10.3390/bioengineering11010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
The impact of magnetic fields on cellular function is diverse but can be described at least in part by the radical pair mechanism (RPM), where magnetic field intervention alters reactive oxygen species (ROS) populations and downstream cellular signaling. Here, cellular migration within three-dimensional scaffolds was monitored in an applied oscillating 1.4 MHz radiofrequency (RF) magnetic field with an amplitude of 10 µT and a static 50 µT magnetic field. Given that cellular bioenergetics can be altered based on applied RF magnetic fields, this study focused on a magnetic field configuration that increased cellular respiration. Results suggest that RF accelerated cell clustering and elongation after 1 day, with increased levels of clustering and cellular linkage after 7 days. Cell distribution analysis within the scaffolds revealed that the clustering rate during the first day was increased nearly five times in the RF environment. Electron microscopy provided additional topological information and verified the development of fibrous networks, with a cell-derived matrix (CDM) visualized after 7 days in samples maintained in RF. This work demonstrates time-dependent cellular migration that may be influenced by quantum biology (QB) processes and downstream oxidative signaling, enhancing cellular migration behavior.
Collapse
Affiliation(s)
- Amy M. Vecheck
- Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Cameron M. McNamee
- Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| | | | - Robert J. Usselman
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
- Computational Research At Florida Tech (CRAFT), Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
47
|
Simpson L, Alberio R. Interspecies control of development during mammalian gastrulation. Emerg Top Life Sci 2023; 7:397-408. [PMID: 37933589 PMCID: PMC10754326 DOI: 10.1042/etls20230083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
Gastrulation represents a pivotal phase of development and aberrations during this period can have major consequences, from minor anatomical deviations to severe congenital defects. Animal models are used to study gastrulation, however, there is considerable morphological and molecular diversity of gastrula across mammalian species. Here, we provide an overview of the latest research on interspecies developmental control across mammals. This includes single-cell atlases of several mammalian gastrula which have enabled comparisons of the temporal and molecular dynamics of differentiation. These studies highlight conserved cell differentiation regulators and both absolute and relative differences in differentiation dynamics between species. Recent advances in in vitro culture techniques have facilitated the derivation, maintenance and differentiation of cell lines from a range of species and the creation of multi-species models of gastrulation. Gastruloids are three-dimensional aggregates capable of self-organising and recapitulating aspects of gastrulation. Such models enable species comparisons outside the confines of the embryo. We highlight recent in vitro evidence that differentiation processes such as somitogenesis and neuronal maturation scale with known in vivo differences in developmental tempo across species. This scaling is likely due to intrinsic differences in cell biochemistry. We also highlight several studies which provide examples of cell differentiation dynamics being influenced by extrinsic factors, including culture conditions, chimeric co-culture, and xenotransplantation. These collective studies underscore the complexity of gastrulation across species, highlighting the necessity of additional datasets and studies to decipher the intricate balance between intrinsic cellular programs and extrinsic signals in shaping embryogenesis.
Collapse
Affiliation(s)
- Luke Simpson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, U.K
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, U.K
| |
Collapse
|
48
|
Conrad JV, Meyer S, Ramesh PS, Neira JA, Rusteika M, Mamott D, Duffin B, Bautista M, Zhang J, Hiles E, Higgins EM, Steill J, Freeman J, Ni Z, Liu S, Ungrin M, Rancourt D, Clegg DO, Stewart R, Thomson JA, Chu LF. Efficient derivation of transgene-free porcine induced pluripotent stem cells enables in vitro modeling of species-specific developmental timing. Stem Cell Reports 2023; 18:2328-2343. [PMID: 37949072 PMCID: PMC10724057 DOI: 10.1016/j.stemcr.2023.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Sus scrofa domesticus (pig) has served as a superb large mammalian model for biomedical studies because of its comparable physiology and organ size to humans. The derivation of transgene-free porcine induced pluripotent stem cells (PiPSCs) will, therefore, benefit the development of porcine-specific models for regenerative biology and its medical applications. In the past, this effort has been hampered by a lack of understanding of the signaling milieu that stabilizes the porcine pluripotent state in vitro. Here, we report that transgene-free PiPSCs can be efficiently derived from porcine fibroblasts by episomal vectors along with microRNA-302/367 using optimized protocols tailored for this species. PiPSCs can be differentiated into derivatives representing the primary germ layers in vitro and can form teratomas in immunocompromised mice. Furthermore, the transgene-free PiPSCs preserve intrinsic species-specific developmental timing in culture, known as developmental allochrony. This is demonstrated by establishing a porcine in vitro segmentation clock model that, for the first time, displays a specific periodicity at ∼3.7 h, a timescale recapitulating in vivo porcine somitogenesis. We conclude that the transgene-free PiPSCs can serve as a powerful tool for modeling development and disease and developing transplantation strategies. We also anticipate that they will provide insights into conserved and unique features on the regulations of mammalian pluripotency and developmental timing mechanisms.
Collapse
Affiliation(s)
- J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Susanne Meyer
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Pranav S Ramesh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jaime A Neira
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Daniel Mamott
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Bret Duffin
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Monica Bautista
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Emily Hiles
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Eve M Higgins
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - John Steill
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jack Freeman
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Zijian Ni
- Department of Statistics, University of Wisconsin, Madison, WI 53706, USA
| | - Shiying Liu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mark Ungrin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Derrick Rancourt
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Dennis O Clegg
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Li-Fang Chu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
49
|
Toulany N, Morales-Navarrete H, Čapek D, Grathwohl J, Ünalan M, Müller P. Uncovering developmental time and tempo using deep learning. Nat Methods 2023; 20:2000-2010. [PMID: 37996754 PMCID: PMC10703695 DOI: 10.1038/s41592-023-02083-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/15/2023] [Indexed: 11/25/2023]
Abstract
During animal development, embryos undergo complex morphological changes over time. Differences in developmental tempo between species are emerging as principal drivers of evolutionary novelty, but accurate description of these processes is very challenging. To address this challenge, we present here an automated and unbiased deep learning approach to analyze the similarity between embryos of different timepoints. Calculation of similarities across stages resulted in complex phenotypic fingerprints, which carry characteristic information about developmental time and tempo. Using this approach, we were able to accurately stage embryos, quantitatively determine temperature-dependent developmental tempo, detect naturally occurring and induced changes in the developmental progression of individual embryos, and derive staging atlases for several species de novo in an unsupervised manner. Our approach allows us to quantify developmental time and tempo objectively and provides a standardized way to analyze early embryogenesis.
Collapse
Affiliation(s)
- Nikan Toulany
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- University Hospital and Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Hernán Morales-Navarrete
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany
| | - Daniel Čapek
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
| | - Jannis Grathwohl
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
| | - Murat Ünalan
- Systems Biology of Development, University of Konstanz, Konstanz, Germany.
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
| | - Patrick Müller
- Systems Biology of Development, University of Konstanz, Konstanz, Germany.
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
- University Hospital and Faculty of Medicine, University of Tübingen, Tübingen, Germany.
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany.
| |
Collapse
|
50
|
Abstract
Organismal development requires the reproducible unfolding of an ordered sequence of discrete steps (cell fate determination, migration, tissue folding, etc.) in both time and space. Here, we review the mechanisms that grant temporal specificity to developmental steps, including molecular clocks and timers. Individual timing mechanisms must be coordinated with each other to maintain the overall developmental sequence. However, phenotypic novelties can also arise through the modification of temporal patterns over the course of evolution. Two main types of variation in temporal patterning characterize interspecies differences in developmental time: allochrony, where the overall developmental sequence is either accelerated or slowed down while maintaining the relative duration of individual steps, and heterochrony, where the duration of specific developmental steps is altered relative to the rest. New advances in in vitro modeling of mammalian development using stem cells have recently enabled the revival of mechanistic studies of allochrony and heterochrony. In both cases, differences in the rate of basic cellular functions such as splicing, translation, protein degradation, and metabolism seem to underlie differences in developmental time. In the coming years, these studies should identify the genetic differences that drive divergence in developmental time between species.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA;
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA;
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|