1
|
You Q, Cheng Y, Fu QL, Cao G, Liu J, Fujii M, Blaney L, Fu P, Wang Y. Simultaneous Elucidation of the Chemodiversity of Dissolved Organic Matter and Quantitation of Trace Organic Contaminant Sucralose by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal Chem 2025. [PMID: 40329444 DOI: 10.1021/acs.analchem.5c01311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has become a cutting-edge technique for molecular characterization of dissolved organic matter (DOM) and trace organic contaminants. Nevertheless, FT-ICR MS is rarely applied to simultaneously elucidate DOM chemodiversity and quantify the concentrations of trace organic contaminants. Compared to conventional solid-phase extraction (SPE), pH-dependent fractionation of DOM molecules using a sequential SPE strategy significantly enhanced the recovery of dissolved organic carbon and yielded more chemical formulas for DOM from environmental samples (p < 0.05). The sequential SPE at circumneutral pH provided exclusive isolation of some hydrogen-rich and oxygen-poor molecules, caused a 5-fold reduction in matrix effects, and improved the detection limits for organic contaminants. The chemical structure of a typical wastewater indicator, sucralose, was successfully validated using FT-ICR MS analysis with tandem mass spectrometry and hydrogen/deuterium exchange measurements. With the standard addition method, the limits of detection and quantitation of FT-ICR MS for sucralose in DOM extracts isolated at circumneutral pH were estimated to be 0.26 and 0.87 μg/L, respectively. The concentrations of sucralose in a representative urban lake measured by FT-ICR MS (e.g., 0.9-4.1 μg/L) were comparable to those determined by liquid chromatography coupled to an Orbitrap mass analyzer. The findings of this study expand application of FT-ICR MS in environmental research by highlighting its potential for identifying trace organic contaminants, quantifying their concentrations, and elucidating the chemodiversity of DOM to inform contaminant sources in aquatic systems.
Collapse
Affiliation(s)
- Qian You
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yanhui Cheng
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qing-Long Fu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Guodong Cao
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jibao Liu
- Department of Civil and Environmental Engineering, Institute of Science Tokyo, 2-12-1, Ookayama, Meguro-Ku, Tokyo 152-8550, Japan
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Institute of Science Tokyo, 2-12-1, Ookayama, Meguro-Ku, Tokyo 152-8550, Japan
| | - Lee Blaney
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yanxin Wang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
2
|
Liao P, Zhou Y, Qiu Y, Hu R, Li H, Sun H, Li Y. Metal-modulated T cell antitumor immunity and emerging metalloimmunotherapy. Cancer Metastasis Rev 2025; 44:49. [PMID: 40301229 DOI: 10.1007/s10555-025-10266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
In recent years, increasing evidence has shown that metals play important roles in both innate and adaptive immunity. An emerging concept of metalloimmunotherapy has been proposed, which may accelerate the development of immunotherapy for cancers. Here, we discuss how metals affect T cell function through different signaling pathways. Metals impact the fate of T cells, including their activation, proliferation, cytotoxicity, and differentiation. Most importantly, metals also participate in mitochondrial operation by regulating energy production and reactive oxygen species homeostasis in T cells. We also identified the metal-based mutual effects between tumor cells and T cells in the tumor microenvironment. Overall, the antitumor effect of T cells can be improved by targeting metal metabolism and metalloimmunotherapy, which will be a step forward in the treatment of cancers.
Collapse
Affiliation(s)
- Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Zhou
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyan Li
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
- Guangdong Engineering Research Center of Precision Immune Cell Therapy Technology, Zhujiang Hospital, No. 253, Gongye Road, Guangzhou, China.
| |
Collapse
|
3
|
Wu CS, Liu FC, Lin SC, Chyuan IT. Regulation of T cell receptor (TCR) signaling by tyrosine phosphatases: Recent advances and implication for therapeutic approach in autoimmune diseases. J Formos Med Assoc 2025:S0929-6646(25)00192-5. [PMID: 40287371 DOI: 10.1016/j.jfma.2025.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
The effector function of T cells is critical for regulation of the initiation and progression of autoimmune diseases; whereas the T cell activation and homeostasis are tightly controlled by signals from T cell receptor (TCR). The early TCR signaling pathways are dependent on rapid phosphorylation and dephosphorylation of multiple signaling proteins in the TCR complex. These processes are tightly regulated by the interplay between protein kinases and phosphatases, leading to T cell activation. Genetic polymorphisms of these kinases or phosphatases have been linked to an increased susceptibility to autoimmune disorders in humans. Mice with deficiencies in these corresponding genes often exhibit T cell hyper-reactivity and autoimmune phenotypes in animal models. Tyrosine phosphatases have been demonstrated to alter T cell fate by negatively regulating early TCR signaling. Therefore, the tyrosine phosphatases that regulate TCR signaling are emerging as potential therapeutic targets to modulate T cell responses for the treatment of autoimmune diseases. In this review, we provide an overview of the current progress and perspectives of tyrosine phosphatases that regulate TCR signaling in T cell activation, and their potential as therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Chien-Sheng Wu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, 22000, Taiwan
| | - Feng-Cheng Liu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Shih-Chang Lin
- Department of Internal Medicine, Cathay General Hospital, Taipei, 10630, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, 242062, Taiwan
| | - I-Tsu Chyuan
- Department of Internal Medicine, Cathay General Hospital, Taipei, 10630, Taiwan; School of Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Medical Research, Cathay General Hospital, Taipei, 10630, Taiwan.
| |
Collapse
|
4
|
Hu J, Feng J, Bai Y, Yao ZS, Wu XY, Hong XY, Lu GD, Xue K. Sucralose Promotes Benzo(a)Pyrene-Induced Renal Toxicity in Mice by Regulating P-glycoprotein. Antioxidants (Basel) 2025; 14:474. [PMID: 40298799 PMCID: PMC12024012 DOI: 10.3390/antiox14040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/12/2025] [Accepted: 04/13/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Sucralose and benzo(a)pyrene (B[a]P) are widespread foodborne substances known to harm human health. However, the effects of their combined exposure on kidney function remain unclear. This study aimed to investigate the mechanisms by which sucralose and B[a]P induce kidney injury through P-glycoprotein (PGP/ABCB1), a crucial protein involved in cellular detoxification. METHODS C57BL/6N mice were co-treated with sucralose and B[a]P for 90 days to evaluate their impact on kidney histopathology and function. In vitro experiments assessed cell viability, reactive oxygen species (ROS) levels, and B[a]P accumulation by flow cytometry. Molecular docking and cellular thermal shift assay (CETSA) were used to determine the binding affinity of sucralose to PGP. Furthermore, PCR, Western blotting, and immunohistochemistry were performed to analyze the expression of PGP and its upstream transcription factors. RESULTS Ninety days of co-exposure to sucralose and B[a]P significantly exacerbated renal dysfunction in mice, as evidenced by the elevated level of serum creatinine and urea nitrogen, which could be reverted by ROS scavenger N-acetyl cysteine (NAC). In vitro, sucralose promoted cellular accumulation of B[a]P, consequently enhancing B[a]P-induced cell growth inhibition and ROS production. Consistently, B[a]P accumulation was enhanced by PGP knockdown in both HK2 and HEK-293 cells. Mechanistically, sucralose can directly bind to PGP, competitively inhibiting its efflux capacity and increasing intracellular B[a]P retention. Prolonged co-exposure further downregulated PGP expression, possibly through the reductions of its transcriptional regulators (PXR, NRF2, and NF-κB). CONCLUSIONS Co-exposure to sucralose and B[a]P exacerbates renal injury by impairing PGP function. Mechanistically, sucralose inhibits PGP activity, resulting in the accumulation of B[a]P within renal cells. This accumulation triggers oxidative stress and inhibits cell growth, which demonstrates that sucralose potentiates B[a]P-induced nephrotoxicity by directly inhibiting PGP-mediated detoxification pathways, thus underscoring the critical need to evaluate toxicity risks associated with combined exposure to these compounds.
Collapse
Affiliation(s)
- Jun Hu
- School of Public Health, Fudan University, Shanghai 200032, China; (J.H.); (J.F.); (Y.B.); (Z.-S.Y.); (X.-Y.W.)
| | - Ji Feng
- School of Public Health, Fudan University, Shanghai 200032, China; (J.H.); (J.F.); (Y.B.); (Z.-S.Y.); (X.-Y.W.)
| | - Yan Bai
- School of Public Health, Fudan University, Shanghai 200032, China; (J.H.); (J.F.); (Y.B.); (Z.-S.Y.); (X.-Y.W.)
| | - Zhi-Sheng Yao
- School of Public Health, Fudan University, Shanghai 200032, China; (J.H.); (J.F.); (Y.B.); (Z.-S.Y.); (X.-Y.W.)
| | - Xiao-Yu Wu
- School of Public Health, Fudan University, Shanghai 200032, China; (J.H.); (J.F.); (Y.B.); (Z.-S.Y.); (X.-Y.W.)
| | - Xin-Yu Hong
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Guo-Dong Lu
- School of Public Health, Fudan University, Shanghai 200032, China; (J.H.); (J.F.); (Y.B.); (Z.-S.Y.); (X.-Y.W.)
| | - Kun Xue
- School of Public Health, Fudan University, Shanghai 200032, China; (J.H.); (J.F.); (Y.B.); (Z.-S.Y.); (X.-Y.W.)
| |
Collapse
|
5
|
Tkach VV, Morozova TV, de Mascarenhas Gaivão IO, Ivanushko YG, da Paiva Martins JIF, Barros AN. Advancements and Challenges in Sucralose Determination: A Comparative Review of Chromatographic, Electrochemical, and Spectrophotometric Methods. Foods 2025; 14:1267. [PMID: 40238521 PMCID: PMC11988418 DOI: 10.3390/foods14071267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
This review presents an in-depth analysis of the latest methods used for the determination of sucralose (E955), focusing on research conducted over the past 10 years. As a widely used sugar substitute in the food and pharmaceutical industries, sucralose has raised concerns about its environmental persistence, potential genotoxicity, and health impacts. This study examines several spectrophotometric, chromatographic, and electrochemical techniques, evaluating their sensitivity, selectivity, and limitations in differentiating sucralose from natural carbohydrates and other sweeteners. The review highlights the pressing need for novel detection methods that not only improve accuracy in trace detection but also address growing concerns about its bioaccumulation and conversion into harmful metabolites. Advancing these analytical techniques is essential for enhancing food safety, public health surveillance, and environmental risk assessment. Chromatographic methods are dominant in sucralose determination in foods and environmental objects, as they allow the determination of sucralose at micro- and nanomolar levels. However, spectrophotometric and electrochemical methods are frequently used as complementary to chromatographic methodologies, sensitizing them. On the other hand, purely spectrophotometric methods are less popular, and electrochemical methods remain underdeveloped. Therefore, the advancement of sucralose determination must be due to cheaper chromatographic and classical electrochemical methods.
Collapse
Affiliation(s)
- Volodymyr V. Tkach
- General and Material Chemistry Department, Chernivtsi National University, Kotrsyubynsky Str. 2, 58000 Chernivtsi, Ukraine
- Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-065 Porto, Portugal;
| | - Tetiana V. Morozova
- Ecology and Environmental Protection Department, National Transport University, Omelianovych-Pavlenko Str. 1, 01001 Kyiv, Ukraine;
| | | | - Yana G. Ivanushko
- Disaster and Military Medicine Department, Bukovinian State Medical University, Teatralna Sq. 9, 58001 Chernivtsi, Ukraine;
| | | | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
6
|
Zhang Y, Mei X, Li W, Pan Y, Cheng H, Chen S, Ye X, Chen J. Mechanisms of starchy foods glycemic index reduction under different means and their impacts on food sensory qualities: A review. Food Chem 2025; 467:142351. [PMID: 39647389 DOI: 10.1016/j.foodchem.2024.142351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Diabetes has become a significant global health issue, driving the adoption of low glycemic index (GI) diets and positioning low-GI foods as a key research focus. Although methods for lowering the GI of foods have been reviewed, a comprehensive analysis of the underlying mechanisms is lacking. Moreover, GI-lowering techniques, whether through exogenous additives or specific processing methods, can influence food sensory qualities and impact storage stability. However, systematic reviews on these effects are limited. This review summarizes mechanisms for reducing the GI of starchy foods, focusing on four key strategies: inhibiting digestive enzymes, altering substrate structure, blocking enzyme-substrate interactions, and stimulating insulin secretion. It also addresses the sensory impacts of these GI-reduction methods. Additionally, the review evaluates how certain nutrient additions affect food stability during storage, aiming to offer scientific guidance for the development of low-GI starchy foods.
Collapse
Affiliation(s)
- Yujie Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China
| | - Xingyu Mei
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China.
| | - Wenqing Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China
| | - Yuxing Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China.
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China.
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; School of Biological and Chemical Engineering, NingboTech University, Ningbo, China.
| |
Collapse
|
7
|
Cote AL, Munger CJ, Ringel AE. Emerging insights into the impact of systemic metabolic changes on tumor-immune interactions. Cell Rep 2025; 44:115234. [PMID: 39862435 DOI: 10.1016/j.celrep.2025.115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/24/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Tumors are inherently embedded in systemic physiology, which contributes metabolites, signaling molecules, and immune cells to the tumor microenvironment. As a result, any systemic change to host metabolism can impact tumor progression and response to therapy. In this review, we explore how factors that affect metabolic health, such as diet, obesity, and exercise, influence the interplay between cancer and immune cells that reside within tumors. We also examine how metabolic diseases influence cancer progression, metastasis, and treatment. Finally, we consider how metabolic interventions can be deployed to improve immunotherapy. The overall goal is to highlight how metabolic heterogeneity in the human population shapes the immune response to cancer.
Collapse
Affiliation(s)
- Andrea L Cote
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Chad J Munger
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Alison E Ringel
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Yu X, Yu Z, Chen X, Liu M, Yang F, Cheung KCP. Research Progress on the Relationship Between Artificial Sweeteners and Breast Cancer. Biomedicines 2024; 12:2871. [PMID: 39767777 PMCID: PMC11673533 DOI: 10.3390/biomedicines12122871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Artificial sweeteners, as low-calorie sugar substitutes, have attracted much attention in recent years, especially in terms of their potential health effects. Although they add almost no calories, studies have shown that artificial sweeteners may affect metabolism by stimulating insulin secretion and changing the intestinal microbiota, increasing the risk of metabolic syndrome and type 2 diabetes. Breast cancer, as the most common cancer in the world, is related to multiple factors such as genetics and hormone levels. The results of studies on artificial sweeteners and breast cancer risk are conflicting, with some showing a positive correlation between the two and others failing to confirm it. Differences in study design, participant characteristics, and the types of sweeteners have led to this ambiguity. Although some studies have focused on mechanisms such as hormone disorders, insulin response, and changes in the intestinal microbiota, further exploration is needed to establish a causal relationship. Our review aims to comprehensively analyze the potential association between artificial sweeteners and breast cancer and its mechanisms, as well as encourage future studies to reveal its long-term health effects.
Collapse
Affiliation(s)
- Xianqiang Yu
- Qingdao Municipal Hospital, Qingdao 266005, China;
| | - Zeng Yu
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (Z.Y.); (X.C.); (M.L.)
| | - Xiaoli Chen
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (Z.Y.); (X.C.); (M.L.)
| | - Meijun Liu
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (Z.Y.); (X.C.); (M.L.)
| | - Feng Yang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Kenneth C. P. Cheung
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (Z.Y.); (X.C.); (M.L.)
| |
Collapse
|
9
|
Uddin MN, Thomas DW. SERCA Modulators Reveal Distinct Signaling and Functional Roles of T Lymphocyte Ca 2+ Stores. Int J Mol Sci 2024; 25:12095. [PMID: 39596161 PMCID: PMC11593871 DOI: 10.3390/ijms252212095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
The allosteric SERCA (Sarcoplasmic/Endoplasmic Reticulum Ca2+-ATPase) activator CDN1163 has been recently added to the group of pharmacological tools for probing SERCA function. We chose to investigate the effects of the compound on T lymphocyte Ca2+ stores, using the well-described Jurkat T lymphocyte as a reliable cell system for Ca2+ signaling pathways. Our study identified the lowest concentrations of the SERCA inhibitors thapsigargin (TG) and 2,5-di-(tert butyl)-1,4-benzohydroquinone (tBHQ) capable of releasing Ca2+, permitting the differentiation of the TG-sensitive SERCA 2b Ca2+ store from the tBHQ-sensitive SERCA 3 Ca2+ store. We proceeded to test the effects of CDN1163 on Ca2+ stores, examining specific actions on the SERCA 2b and SERCA 3 Ca2+ pools using our low-dose SERCA blocker regimen. In contrast to previous work, we find CDN1163 exerts complex time-sensitive and SERCA isoform-specific actions on Ca2+ stores. Surprisingly, short-term exposure (0-30 min) to CDN1163 perturbs T cell Ca2+ stores by suppressing Ca2+ uptake with diminished Ca2+ release from the SERCA 2b-controlled store. Concomitantly, we find evidence for a SERCA-activating effect of CDN1163 on the SERCA-3 regulated store, given the observation of increased Ca2+ release inducible by low-dose tBHQ. Intriguingly, longer-term (>12 h) CDN1163 exposure reversed this pattern, with increased Ca2+ release from SERCA 2b-regulated pools yet decreased Ca2+ release responses from the tBHQ-sensitive SERCA 3 pool. Indeed, this remodeling of SERCA 2b Ca2+ stores with longer-term CDN1163 exposure also translated into the compound's ability to protect Jurkat T lymphocytes from TG but not tBHQ-induced growth suppression.
Collapse
Affiliation(s)
| | - David W. Thomas
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
10
|
Li P, Qu R, Li M, Sheng P, Jin L, Huang X, Xu ZZ. Impacts of food additives on gut microbiota and host health. Food Res Int 2024; 196:114998. [PMID: 39614468 DOI: 10.1016/j.foodres.2024.114998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 12/01/2024]
Abstract
The rapidly expanding food industry necessitates the use of food additives to achieve specific purposes. However, this raises new concerns in food safety due to the reported negative impacts of food additives on gut microbiota and host health, particularly in the context of continuous worldwide urbanization. This review summarizes the existing studies on the effects of different types of commonly used food additives on gut microbiota alteration, intestinal barrier disruption, metabolism disorder, and neurobehavior changes. These food additives, including emulsifiers, low-calorie sweeteners, inorganic nanoparticles, and preservatives, have been found to exert multifaceted impacts, primarily adverse effects, highlighting the potential risks associated with food additive exposure in various chronic diseases. Further research is warranted to elucidate the specific mechanisms, determine the relevance of these findings to humans, and clarify the suitability of certain food additives for vulnerable populations. It is crucial to note that natural food additives are not inherently superior to synthetic ones in terms of safety. Rigorous evaluation is still warranted before their widespread application in the food industry. Additionally, the potential synergistic effects of commonly used food additives combination in specific food categories on gut microbiota and host metabolism should be investigated to understand their relevance in real-world scenarios.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, China
| | - Ru Qu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ming Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ping Sheng
- Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, China
| | - Liang Jin
- Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, China
| | - Xiaochang Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
11
|
Ho HT, Shih YL, Huang TY, Fang WH, Liu CH, Lin JC, Hsiang CW, Chu KM, Hsiong CH, Chen GJ, Wu YE, Hao JY, Liang CW, Hu OYP. Mixed active metabolites of the SNP-6 series of novel compounds mitigate metabolic dysfunction-associated steatohepatitis and fibrosis: promising results from pre-clinical and clinical trials. J Transl Med 2024; 22:936. [PMID: 39402603 PMCID: PMC11476197 DOI: 10.1186/s12967-024-05686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH) is a growing global health concern with no effective pharmacological treatments. SNP-630, a newly developed synthetic molecule with multiple mechanisms of action, and a mixture of two of its active metabolites (SNP-630-MS) inhibit CYP2E1 expression to prevent reactive oxygen species generation, thereby reducing the accumulation of hepatic triglycerides and lowering chemokine levels. This study investigated the SNP-630's potential to alleviate the liver injury in MASH and its efficacy in both a mouse model and patients with MASH to identify a drug candidate that targets multiple pathways implicated in MASH. METHODS SNP-630 and SNP-630-MS were separately administered to the MASH mouse model. The tolerability, safety, and efficacy of SNP-630-MS were also evaluated in 35 patients with MASH. The primary endpoint of the study was assessment of the changes in serum alanine aminotransferase (ALT) levels from baseline to week 12, while the secondary endpoints included the evaluation of liver inflammation, steatosis, and fibrosis parameters and markers. RESULTS SNP-630 treatment in mice improved inflammation, liver steatosis, and fibrosis compared with that in the MASH control group. Both SNP-630 and SNP-630-MS treatments markedly reduced ALT levels, hepatic triglyceride content, and the expression of inflammatory cytokines monocyte chemoattractant protein 1 and fibrotic collagen (i.e., Col1a1, Col3a1, and Timp1) in mice. In the clinical trial, patients treated with SNP-630-MS exhibited significant improvement in ALT levels at week 12 compared with baseline levels, with no reports of severe adverse events. This improvement in ALT levels surpassed that achieved with most other MASH candidates. SNP-630-MS demonstrated potential antifibrotic effects, as evidenced by a significant decrease in the levels of fibrogenesis-related biomarkers such as CCL4, CCL5, and caspase 3. Subgroup analysis using FibroScan measurements further indicated the efficacy of SNP-630-MS in ameliorating liver fibrosis. CONCLUSIONS SNP-630 and SNP-630-MS demonstrated favorable results in mice. SNP-630-MS showed excellent tolerability in mice and patients with MASH. Efficacy analyses indicated that SNP-630-MS improved liver steatosis and injury in patients with MASH, suggesting that SNP-630 and 630-MS are promising therapeutic options for MASH. Larger scale clinical trials remain warranted to assess the efficacy and safety of SNP-630 in MASH. TRIAL REGISTRATION ClinicalTrials.gov NCT03868566. Registered 06 March 2019-Retrospectively registered, https://clinicaltrials.gov/study/NCT03868566.
Collapse
Affiliation(s)
- Hsin-Tien Ho
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Yu-Lueng Shih
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11420, Taiwan
| | - Tien-Yu Huang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11420, Taiwan
| | - Wen-Hui Fang
- Division of Family and Community Health, Tri-Service General Hospital, National Defense Medical Center, Neihu Dist, Taipei, 11420, Taiwan
| | - Chang-Hsien Liu
- Division of Radiological Diagnosis, Tri-Service General Hospital, National Defense Medical Center, Neihu Dist, Taipei, 11420, Taiwan
- Department of Medical Imaging, China Medical University Hsinchu Hospital and China Medical University, Hsinchu, 302, Taiwan
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Jung-Chun Lin
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11420, Taiwan
| | - Chih-Weim Hsiang
- Division of Radiological Diagnosis, Tri-Service General Hospital, National Defense Medical Center, Neihu Dist, Taipei, 11420, Taiwan
| | - Kai-Min Chu
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Cheng-Huei Hsiong
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Guan-Ju Chen
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Yung-En Wu
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Jia-Yu Hao
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Chih-Wen Liang
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Oliver Yoa-Pu Hu
- School of Pharmacy, National Defense Medical Center, Neihu Dist, Taipei, 11420, Taiwan.
- Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
12
|
Liu Z, Chen J, Ren Y, Liu S, Ba Y, Zuo A, Luo P, Cheng Q, Xu H, Han X. Multi-stage mechanisms of tumor metastasis and therapeutic strategies. Signal Transduct Target Ther 2024; 9:270. [PMID: 39389953 PMCID: PMC11467208 DOI: 10.1038/s41392-024-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024] Open
Abstract
The cascade of metastasis in tumor cells, exhibiting organ-specific tendencies, may occur at numerous phases of the disease and progress under intense evolutionary pressures. Organ-specific metastasis relies on the formation of pre-metastatic niche (PMN), with diverse cell types and complex cell interactions contributing to this concept, adding a new dimension to the traditional metastasis cascade. Prior to metastatic dissemination, as orchestrators of PMN formation, primary tumor-derived extracellular vesicles prepare a fertile microenvironment for the settlement and colonization of circulating tumor cells at distant secondary sites, significantly impacting cancer progression and outcomes. Obviously, solely intervening in cancer metastatic sites passively after macrometastasis is often insufficient. Early prediction of metastasis and holistic, macro-level control represent the future directions in cancer therapy. This review emphasizes the dynamic and intricate systematic alterations that occur as cancer progresses, illustrates the immunological landscape of organ-specific PMN creation, and deepens understanding of treatment modalities pertinent to metastasis, thereby identifying some prognostic and predictive biomarkers favorable to early predict the occurrence of metastasis and design appropriate treatment combinations.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingqi Chen
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China.
| |
Collapse
|
13
|
Matsumoto E, Postrado M, Takahashi H. Induction of the Interdigitated Gel Phase of Hydrated Dipalmitoylphosphatidylcholine Bilayers by the Artificial Sweetener Sucralose. J Phys Chem B 2024; 128:9745-9755. [PMID: 39321204 DOI: 10.1021/acs.jpcb.4c03422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Recent research indicates that high doses of sucralose content can weaken the immune response in mice. To better understand the interaction between cell membranes and sucralose, we studied model biomembranes composed of dipalmitoylphosphatidylcholine bilayers in a sucralose solution. Calorimetry measurements showed that the effect of sucralose on the phase behavior is biphasic. Pretransitions and main transitions are decreased at low sucralose concentrations, while the main transition is increased at high concentrations. Pretransitions cannot be detected above the concentration at which the direction of change in the main transition temperature reverses. X-ray diffraction measurements revealed that sucralose at concentrations higher than 0.2 M induces the interdigitated gel (LβI) phase below the main transition temperature. Fluorescence Prodan measurements suggested that the sucralose solution is slightly more hydrophobic than the sucrose solution. This could be one reason why sucralose induces the LβI phase.
Collapse
Affiliation(s)
- Emika Matsumoto
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Michael Postrado
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Hiroshi Takahashi
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| |
Collapse
|
14
|
Rathaus M, Azem L, Livne R, Ron S, Ron I, Hadar R, Efroni G, Amir A, Braun T, Haberman Y, Tirosh A. Long-term metabolic effects of non-nutritive sweeteners. Mol Metab 2024; 88:101985. [PMID: 38977130 PMCID: PMC11347859 DOI: 10.1016/j.molmet.2024.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVE Excessive consumption of added sugars has been linked to the rise in obesity and associated metabolic abnormalities. Non-nutritive sweeteners (NNSs) offer a potential solution to reduce sugar intake, yet their metabolic safety remains debated. This study aimed to systematically assess the long-term metabolic effects of commonly used NNSs under both normal and obesogenic conditions. METHODS To ensure consistent sweetness level and controlling for the acceptable daily intake (ADI), eight weeks old C57BL/6 male mice were administered with acesulfame K (ace K, 535.25 mg/L), aspartame (411.75 mg/L), sucralose (179.5 mg/L), saccharin (80 mg/L), or steviol glycoside (Reb M, 536.25 mg/L) in the drinking water, on the background of either regular or high-fat diets (in high fat diet 60% of calories from fat). Water or fructose-sweetened water (82.3.gr/L), were used as controls. Anthropometric and metabolic parameters, as well as microbiome composition, were analyzed following 20-weeks of exposure. RESULTS Under a regular chow diet, chronic NNS consumption did not significantly affect body weight, fat mass, or glucose metabolism as compared to water consumption, with aspartame demonstrating decreased glucose tolerance. In diet-induced obesity, NNS exposure did not increase body weight or alter food intake. Exposure to sucralose and Reb M led to improved insulin sensitivity and decreased weight gain. Reb M specifically was associated with increased prevalence of colonic Lachnospiracea bacteria. CONCLUSIONS Long-term consumption of commonly used NNSs does not induce adverse metabolic effects, with Reb M demonstrating a mild improvement in metabolic abnormalities. These findings provide valuable insights into the metabolic impact of different NNSs, aiding in the development of strategies to combat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Moran Rathaus
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Loziana Azem
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rinat Livne
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Sophie Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Idit Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Rotem Hadar
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Gilat Efroni
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Amnon Amir
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Tzipi Braun
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Yael Haberman
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel; Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amir Tirosh
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
15
|
Zhao Y, Wang Q, Chen W, Li J, Yi J, Song X, Ni Y, Zhu S, Zhang Z, Nie S, Liu L. Associations of ultraprocessed food consumption with mortality among participants with a history of cancer: a prospective cohort analysis. Am J Clin Nutr 2024; 120:471-480. [PMID: 38942116 DOI: 10.1016/j.ajcnut.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Although high ultraprocessed food (UPF) consumption has been linked with increased mortality risk in the general population, whether UPFs harm participants with a history of cancer remains unclear. OBJECTIVES This study aimed to evaluate the association of UPF consumption with mortality among participants with a history of cancer. METHODS Prospective cohort analysis was conducted on 13,640 participants with a history of cancer from the UK Biobank. UPFs were defined by the Nova classification. UPF consumption was calculated as the weight proportion of UPFs in the total food consumption. Cox proportional hazard models were used to assess the association between UPF consumption and mortality among participants with a history of cancer. RESULTS The median UPF consumption was 29.25% (interquartile range [IQR]: 19.46%-40.62%) for males and 25.81% (IQR: 16.61%-36.35%) for females in the total diet among participants with a history of cancer. During a median follow-up of 10.77 years, 1611 deaths were documented. Multivariable-adjusted hazard ratios (95% confidence intervals) among participants in the highest quartile of UPF consumption relative to the lowest were 1.17 (1.02, 1.35) for all-cause mortality and 1.22 (1.03, 1.44) for cancer-related mortality. CONCLUSIONS Higher UPF consumption after the diagnosis among participants with a history of cancer is associated with higher risk of mortality.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Qian Wang
- Colorectal and Anal Surgery, The Eighth Hospital of Wuhan, Hubei University of Chinese Medicine, Wuhan, Hubei, P.R. China
| | - Weiyi Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jia Li
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jing Yi
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Xuemei Song
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yuxin Ni
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Sijia Zhu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Zhihao Zhang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Shaofa Nie
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Li Liu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China; Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, Hubei, P.R. China; Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, Hubei, P.R. China.
| |
Collapse
|
16
|
Xu B, Liu LH, Lai S, Chen J, Wu S, Lei W, Lin H, Zhang Y, Hu Y, He J, Chen X, He Q, Yang M, Wang H, Zhao X, Wang M, Luo H, Ge Q, Gao H, Xia J, Cao Z, Zhang B, Jiang A, Wu YR. Directed Evolution of Escherichia coli Nissle 1917 to Utilize Allulose as Sole Carbon Source. SMALL METHODS 2024; 8:e2301385. [PMID: 38415955 DOI: 10.1002/smtd.202301385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Sugar substitutes are popular due to their akin taste and low calories. However, excessive use of aspartame and erythritol can have varying effects. While D-allulose is presently deemed a secure alternative to sugar, its excessive consumption is not devoid of cellular stress implications. In this study, the evolution of Escherichia coli Nissle 1917 (EcN) is directed to utilize allulose as sole carbon source through a combination of adaptive laboratory evolution (ALE) and fluorescence-activated droplet sorting (FADS) techniques. Employing whole genome sequencing (WGS) and clustered regularly interspaced short palindromic repeats interference (CRISPRi) in conjunction with compensatory expression displayed those genetic mutations in sugar and amino acid metabolic pathways, including glnP, glpF, gmpA, nagE, pgmB, ybaN, etc., increased allulose assimilation. Enzyme-substrate dynamics simulations and deep learning predict enhanced substrate specificity and catalytic efficiency in nagE A247E and pgmB G12R mutants. The findings evince that these mutations hold considerable promise in enhancing allulose uptake and facilitating its conversion into glycolysis, thus signifying the emergence of a novel metabolic pathway for allulose utilization. These revelations bear immense potential for the sustainable utilization of D-allulose in promoting health and well-being.
Collapse
Affiliation(s)
- Bo Xu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Li-Hua Liu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
- Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou, 515063, P. R. China
| | - Shijing Lai
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Jingjing Chen
- Yeasen Biotechnology (Shanghai) Co., Ltd, Shanghai, 200000, P. R. China
| | - Song Wu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Wei Lei
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Houliang Lin
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Yu Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Yucheng Hu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Jingtao He
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Xipeng Chen
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Qian He
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Min Yang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Haimei Wang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Xuemei Zhao
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Man Wang
- Yeasen Biotechnology (Shanghai) Co., Ltd, Shanghai, 200000, P. R. China
| | - Haodong Luo
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
- Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou, 515063, P. R. China
| | - Qijun Ge
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Huamei Gao
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Jiaqi Xia
- School of Basic Medicine, Jiamusi University, Jiamusi, 154000, P. R. China
| | - Zhen Cao
- Yeasen Biotechnology (Shanghai) Co., Ltd, Shanghai, 200000, P. R. China
| | - Baoxun Zhang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Ao Jiang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| | - Yi-Rui Wu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong, 510000, P. R. China
| |
Collapse
|
17
|
Zebley CC, Zehn D, Gottschalk S, Chi H. T cell dysfunction and therapeutic intervention in cancer. Nat Immunol 2024; 25:1344-1354. [PMID: 39025962 PMCID: PMC11616736 DOI: 10.1038/s41590-024-01896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024]
Abstract
Recent advances in immunotherapy have affirmed the curative potential of T cell-based approaches for treating relapsed and refractory cancers. However, the therapeutic efficacy is limited in part owing to the ability of cancers to evade immunosurveillance and adapt to immunological pressure. In this Review, we provide a brief overview of cancer-mediated immunosuppressive mechanisms with a specific focus on the repression of the surveillance and effector function of T cells. We discuss CD8+ T cell exhaustion and functional heterogeneity and describe strategies for targeting the molecular checkpoints that restrict T cell differentiation and effector function to bolster immunotherapeutic effects. We also delineate the emerging contributions of the tumor microenvironment to T cell metabolism and conclude by highlighting discovery-based approaches for developing future cellular therapies. Continued exploration of T cell biology and engineering hold great promise for advancing therapeutic interventions for cancer.
Collapse
Affiliation(s)
- Caitlin C Zebley
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan and Center for Infection Prevention (ZIP), Technical University of Munich, Freising, Germany
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
18
|
Faeh D. Risks and benefits of nonsugar sweeteners: conflicting evidence between observational studies and randomized controlled trials. Curr Opin Clin Nutr Metab Care 2024; 27:344-349. [PMID: 38836812 DOI: 10.1097/mco.0000000000001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW Recommendations on the use of nonsugar sweeteners are contradictory, even if they come from official sources. The aim is to review and discuss recent findings on the potential impact of nonsugar sweeteners on human health. RECENT FINDINGS While randomized controlled trials (RCTs) with short duration and risk factors endpoints mostly show favourable effects on body weight and cardiometabolic parameters when nonsugar sweeteners are used to replaced sugar-sweetened products, observational studies mostly show a positive association between the consumption of nonsugar sweeteners and cardiometabolic diseases. The conflicting results may be explained by the heterogenous nature of nonsugar sweeteners but also likely is a consequence of serious weaknesses of available studies. SUMMARY For more evidence-based recommendations for practice and policy, scientifically sound studies with long follow-up are required.
Collapse
Affiliation(s)
- David Faeh
- Health Department, Bern University of Applied Sciences, Bern
- Division of Chronic Disease Epidemiology, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Ge Y, Zhang D, Xu Y, Wu J, Lao F. The effect of mango aroma in low-sugar beverage: A sensory study on odor induced sweetness enhancement. Food Res Int 2024; 188:114451. [PMID: 38823860 DOI: 10.1016/j.foodres.2024.114451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
Excessive intake of sugar has become a public concern. However, it is challenging for food industries to decrease sugar level without sacrificing safety and sensory profile. Odor-induced sweetness enhancement (OISE) is believed to be a novel and promising strategy for sugar reduction. In order to investigate the OISE effect of mango aroma and evaluate its degree of sugar reduction in low-sugar beverages, a mathematical model was constructed through sensory evaluation in this study. The results showed that the maximum liking of low-sugar model beverages was 4.28 % sucrose and 0.57 % mango flavor. The most synergistic of OISE was at the concentration level of 2.24 % sucrose + 0.25 % mango flavor, which was equivalent to 2.96 % pure sucrose solution. With 32.14 % sugar reduction, the mango aroma was suggested to generate the OISE effect. However, the same level of garlic aroma was not able to enhance sweetness perception, suggesting that the congruency of aroma and taste is a prerequisite for the OISE effect to occur. This study demonstrated that the cross-modal interaction of mango aroma on sweetness enhancement in low-sugar model beverages could provide practical guidance for developing sugar-reduced beverages without applying sweeteners.
Collapse
Affiliation(s)
- Yiqing Ge
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Donghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Yingying Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
20
|
Woelfel S, Silva MS, Stecher B. Intestinal colonization resistance in the context of environmental, host, and microbial determinants. Cell Host Microbe 2024; 32:820-836. [PMID: 38870899 DOI: 10.1016/j.chom.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Microbial communities that colonize the human gastrointestinal (GI) tract defend against pathogens through a mechanism known as colonization resistance (CR). Advances in technologies such as next-generation sequencing, gnotobiotic mouse models, and bacterial cultivation have enhanced our understanding of the underlying mechanisms and the intricate microbial interactions involved in CR. Rather than being attributed to specific microbial clades, CR is now understood to arise from a dynamic interplay between microbes and the host and is shaped by metabolic, immune, and environmental factors. This evolving perspective underscores the significance of contextual factors, encompassing microbiome composition and host conditions, in determining CR. This review highlights recent research that has shifted its focus toward elucidating how these factors interact to either promote or impede enteric infections. It further discusses future research directions to unravel the complex relationship between host, microbiota, and environmental determinants in safeguarding against GI infections to promote human health.
Collapse
Affiliation(s)
- Simon Woelfel
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany.
| |
Collapse
|
21
|
Kim DH, Kwon EJ, Park KG, Jin J, Byun JK. Acesulfame potassium upregulates PD-L1 in HCC cells by attenuating autophagic degradation. Biochem Biophys Res Commun 2024; 711:149921. [PMID: 38603831 DOI: 10.1016/j.bbrc.2024.149921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Artificial sweeteners, which contain no or few calories, have been widely used in various foods and beverages, and are regarded as safe alternatives to sugar by the Food and Drug Administration. While several studies suggest that artificial sweeteners are not related to cancer development, some research has reported their potential association with the risk of cancers, including hepatocellular carcinoma (HCC). Here, we investigated whether acesulfame potassium (Ace K), a commonly used artificial sweetener, induces immune evasion of HCC cells by upregulating programmed death ligand-1 (PD-L1). Ace K elevated the protein levels of PD-L1 in HCC cells without increasing its mRNA levels. The upregulation of PD-L1 protein levels in HCC cells by Ace K was induced by attenuated autophagic degradation of PD-L1, which was mediated by the Ace K-stimulated ERK1/2-mTORC1 signaling pathway. Ace K-induced upregulation of PD-L1 attenuated T cell-mediated death of HCC cells, thereby promoting immune evasion of HCC cells. In summary, the present study suggests that Ace K promotes HCC progression by upregulating the PD-L1 protein level.
Collapse
Affiliation(s)
- Dong-Ho Kim
- Department of Biomedical Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Eun-Jun Kwon
- Department of Biomedical Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Keun-Gyu Park
- Department of Biomedical Science, Kyungpook National University, Daegu, 41566, South Korea; Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea; Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, 41566, South Korea
| | - Jonghwa Jin
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea.
| | - Jun-Kyu Byun
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
22
|
Honce R, Vazquez-Pagan A, Livingston B, Mandarano AH, Wilander BA, Cherry S, Hargest V, Sharp B, Brigleb PH, Kirkpatrick Roubidoux E, Van de Velde LA, Skinner RC, McGargill MA, Thomas PG, Schultz-Cherry S. Diet switch pre-vaccination improves immune response and metabolic status in formerly obese mice. Nat Microbiol 2024; 9:1593-1606. [PMID: 38637722 DOI: 10.1038/s41564-024-01677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Metabolic disease is epidemiologically linked to severe complications upon influenza virus infection, thus vaccination is a priority in this high-risk population. Yet, vaccine responses are less effective in these same hosts. Here we examined how the timing of diet switching from a high-fat diet to a control diet affected influenza vaccine efficacy in diet-induced obese mice. Our results demonstrate that the systemic meta-inflammation generated by high-fat diet exposure limited T cell maturation to the memory compartment at the time of vaccination, impacting the recall of effector memory T cells upon viral challenge. This was not improved with a diet switch post-vaccination. However, the metabolic dysfunction of T cells was reversed if weight loss occurred 4 weeks before vaccination, restoring a functional recall response. This corresponded with changes in the systemic obesity-related biomarkers leptin and adiponectin, highlighting the systemic and specific effects of diet on influenza vaccine immunogenicity.
Collapse
Affiliation(s)
- Rebekah Honce
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
- Vermont Lung Center, Division of Pulmonology and Critical Care, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Ana Vazquez-Pagan
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Weill Cornell Medicine, New York City, NY, USA
- Noguchi Medical Research Institute (NMRI), Accra, Ghana
| | - Brandi Livingston
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Benjamin A Wilander
- Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Sean Cherry
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Virginia Hargest
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Bridgett Sharp
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Pamela H Brigleb
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Lee-Ann Van de Velde
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - R Chris Skinner
- Division of Natural Sciences and Mathematics, University of the Ozarks, Clarksville, AR, USA
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT, USA
| | - Maureen A McGargill
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
23
|
Whelan K, Bancil AS, Lindsay JO, Chassaing B. Ultra-processed foods and food additives in gut health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:406-427. [PMID: 38388570 DOI: 10.1038/s41575-024-00893-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Ultra-processed foods (UPFs) and food additives have become ubiquitous components of the modern human diet. There is increasing evidence of an association between diets rich in UPFs and gut disease, including inflammatory bowel disease, colorectal cancer and irritable bowel syndrome. Food additives are added to many UPFs and have themselves been shown to affect gut health. For example, evidence shows that some emulsifiers, sweeteners, colours, and microparticles and nanoparticles have effects on a range of outcomes, including the gut microbiome, intestinal permeability and intestinal inflammation. Broadly speaking, evidence for the effect of UPFs on gut disease comes from observational epidemiological studies, whereas, by contrast, evidence for the effect of food additives comes largely from preclinical studies conducted in vitro or in animal models. Fewer studies have investigated the effect of UPFs or food additives on gut health and disease in human intervention studies. Hence, the aim of this article is to critically review the evidence for the effects of UPF and food additives on gut health and disease and to discuss the clinical application of these findings.
Collapse
Affiliation(s)
- Kevin Whelan
- Department of Nutritional Sciences, King's College London, London, UK.
| | - Aaron S Bancil
- Department of Nutritional Sciences, King's College London, London, UK
| | - James O Lindsay
- Blizard Institute, Queen Mary University of London, Barts and the London School of Medicine, London, UK
| | | |
Collapse
|
24
|
Chapman NM, Chi H. Metabolic rewiring and communication in cancer immunity. Cell Chem Biol 2024; 31:862-883. [PMID: 38428418 PMCID: PMC11177544 DOI: 10.1016/j.chembiol.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
The immune system shapes tumor development and progression. Although immunotherapy has transformed cancer treatment, its overall efficacy remains limited, underscoring the need to uncover mechanisms to improve therapeutic effects. Metabolism-associated processes, including intracellular metabolic reprogramming and intercellular metabolic crosstalk, are emerging as instructive signals for anti-tumor immunity. Here, we first summarize the roles of intracellular metabolic pathways in controlling immune cell function in the tumor microenvironment. How intercellular metabolic communication regulates anti-tumor immunity, and the impact of metabolites or nutrients on signaling events, are also discussed. We then describe how targeting metabolic pathways in tumor cells or intratumoral immune cells or via nutrient-based interventions may boost cancer immunotherapies. Finally, we conclude with discussions on profiling and functional perturbation methods of metabolic activity in intratumoral immune cells, and perspectives on future directions. Uncovering the mechanisms for metabolic rewiring and communication in the tumor microenvironment may enable development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
25
|
Liu Y, Xu J, Ma M, You T, Ye S, Liu S. Computational design towards a boiling-resistant single-chain sweet protein monellin. Food Chem 2024; 440:138279. [PMID: 38159314 DOI: 10.1016/j.foodchem.2023.138279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Sweet proteins offer a promising solution as sugar substitutes by providing a sugar-like sweetness without the negative health impacts linked to sugar or artificial sweeteners. However, the low thermal stability of sweet proteins has hindered their applications. In this study, we took a computational approach utilizing ΔΔG calculations in PyRosetta to enhance the thermostability of single-chain monellin (MNEI). By generating and characterizing 21 variants with single mutation, we identified 11 variants with higher melting temperature (Tm) than that of MNEI. To further enhance the thermal stability, we conducted structural analysis and designed an additional set of 14 variants with multiple mutations. Among these variants, four exhibited a significant improvement in thermal stability, with an increase of at least 20 °C (Tm > 96 °C) compared to MNEI, while maintaining their sweetness. Remarkably, these variants remained soluble even after being heated in boiling water for one hour. Moreover, they displayed exceptional stability across alkaline, acidic and neutral environments. These findings highlight the tremendous potential of these variants for applications in the food and beverage industry. Additionally, this study provides valuable strategies for protein engineering to enhance the thermal stability of sweet proteins.
Collapse
Affiliation(s)
- Yanmei Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Jiayu Xu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Mingxue Ma
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Tianjie You
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China.
| | - Si Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China.
| |
Collapse
|
26
|
Alhamawi RM, Almutawif YA, Aloufi BH, Alotaibi JF, Alharbi MF, Alsrani NM, Alinizy RM, Almutairi WS, Alaswad WA, Eid HMA, Mumena WA. Free sugar intake is associated with reduced proportion of circulating invariant natural killer T cells among women experiencing overweight and obesity. Front Immunol 2024; 15:1358341. [PMID: 38807605 PMCID: PMC11131101 DOI: 10.3389/fimmu.2024.1358341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Background Higher prevalence of obesity has been observed among women compared to men, which can be explained partly by the higher consumption of sweets and physical inactivity. Obesity can alter immune cell infiltration, and therefore increase the susceptibility to develop chronic inflammation and metabolic disorders. In this study, we aimed to explore the association between free sugar intake and other unhealthy lifestyle habits in relation to the proportion of circulating iNKT cells among women with healthy weight and women experiencing overweight and obesity. Methods A cross-sectional study was conducted on 51 Saudi women > 18 years, wherein their daily free sugar intake was assessed using the validated Food Frequency Questionnaire. Data on smoking status, physical activity, and supplement use were also collected. Anthropometric data including height, weight, waist circumference were objectively measured from each participants. The proportion of circulating iNKT cells was determined using flow cytometry. Results Smoking, physical activity, supplement use, and weight status were not associated with proportion of circulating iNKT cells. Significant association was found between proportion of circulating iNKT cells and total free sugar intake and free sugar intake coming from solid food sources only among women experiencing overweight and obesity (Beta: -0.10: Standard Error: 0.04 [95% Confidence Interval: -0.18 to -0.01], p= 0.034) and (Beta: -0.15: Standard Error: 0.05 [95% Confidence Interval: -0.25 to -0.05], p= 0.005), respectively. Conclusion Excessive free sugar consumption may alter iNKT cells and consequently increase the risk for chronic inflammation and metabolic disorders.
Collapse
Affiliation(s)
- Renad M. Alhamawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Yahya A. Almutawif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Bushra H. Aloufi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Jory F. Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Manar F. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Nura M. Alsrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Razan M. Alinizy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Waad S. Almutairi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Wed A. Alaswad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Hamza M. A. Eid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Walaa A. Mumena
- Clinical Nutrition Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
27
|
Egan JM. Physiological Integration of Taste and Metabolism. N Engl J Med 2024; 390:1699-1710. [PMID: 38718360 DOI: 10.1056/nejmra2304578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Affiliation(s)
- Josephine M Egan
- From the Diabetes Section, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore
| |
Collapse
|
28
|
Fang Z, Rossato SL, Hang D, Khandpur N, Wang K, Lo CH, Willett WC, Giovannucci EL, Song M. Association of ultra-processed food consumption with all cause and cause specific mortality: population based cohort study. BMJ 2024; 385:e078476. [PMID: 38719536 PMCID: PMC11077436 DOI: 10.1136/bmj-2023-078476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVE To examine the association of ultra-processed food consumption with all cause mortality and cause specific mortality. DESIGN Population based cohort study. SETTING Female registered nurses from 11 US states in the Nurses' Health Study (1984-2018) and male health professionals from all 50 US states in the Health Professionals Follow-up Study (1986-2018). PARTICIPANTS 74 563 women and 39 501 men with no history of cancer, cardiovascular diseases, or diabetes at baseline. MAIN OUTCOME MEASURES Multivariable Cox proportional hazard models were used to estimate hazard ratios and 95% confidence intervals for the association of ultra-processed food intake measured by semiquantitative food frequency questionnaire every four years with all cause mortality and cause specific mortality due to cancer, cardiovascular, and other causes (including respiratory and neurodegenerative causes). RESULTS 30 188 deaths of women and 18 005 deaths of men were documented during a median of 34 and 31 years of follow-up, respectively. Compared with those in the lowest quarter of ultra-processed food consumption, participants in the highest quarter had a 4% higher all cause mortality (hazard ratio 1.04, 95% confidence interval 1.01 to 1.07) and 9% higher mortality from causes other than cancer or cardiovascular diseases (1.09, 1.05 to 1.13). The all cause mortality rate among participants in the lowest and highest quarter was 1472 and 1536 per 100 000 person years, respectively. No associations were found for cancer or cardiovascular mortality. Meat/poultry/seafood based ready-to-eat products (for example, processed meat) consistently showed strong associations with mortality outcomes (hazard ratios ranged from 1.06 to 1.43). Sugar sweetened and artificially sweetened beverages (1.09, 1.07 to 1.12), dairy based desserts (1.07, 1.04 to 1.10), and ultra-processed breakfast food (1.04, 1.02 to 1.07) were also associated with higher all cause mortality. No consistent associations between ultra-processed foods and mortality were observed within each quarter of dietary quality assessed by the Alternative Healthy Eating Index-2010 score, whereas better dietary quality showed an inverse association with mortality within each quarter of ultra-processed foods. CONCLUSIONS This study found that a higher intake of ultra-processed foods was associated with slightly higher all cause mortality, driven by causes other than cancer and cardiovascular diseases. The associations varied across subgroups of ultra-processed foods, with meat/poultry/seafood based ready-to-eat products showing particularly strong associations with mortality.
Collapse
Affiliation(s)
- Zhe Fang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sinara Laurini Rossato
- Laboratory of Research and Extension in Epidemiology (Lapex-Epi), Institute of Geography, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dong Hang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Gusu School, Nanjing Medical University, Nanjing, China
| | - Neha Khandpur
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Human Nutrition and Health, Wageningen University, Wageningen, Netherlands
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Kai Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chun-Han Lo
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, NV, USA
| | - Walter C Willett
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Raynor JL, Chi H. Nutrients: Signal 4 in T cell immunity. J Exp Med 2024; 221:e20221839. [PMID: 38411744 PMCID: PMC10899091 DOI: 10.1084/jem.20221839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
T cells are integral in mediating adaptive immunity to infection, autoimmunity, and cancer. Upon immune challenge, T cells exit from a quiescent state, followed by clonal expansion and effector differentiation. These processes are shaped by three established immune signals, namely antigen stimulation (Signal 1), costimulation (Signal 2), and cytokines (Signal 3). Emerging findings reveal that nutrients, including glucose, amino acids, and lipids, are crucial regulators of T cell responses and interplay with Signals 1-3, highlighting nutrients as Signal 4 to license T cell immunity. Here, we first summarize the functional importance of Signal 4 and the underlying mechanisms of nutrient transport, sensing, and signaling in orchestrating T cell activation and quiescence exit. We also discuss the roles of nutrients in programming T cell differentiation and functional fitness and how nutrients can be targeted to improve disease therapy. Understanding how T cells respond to Signal 4 nutrients in microenvironments will provide insights into context-dependent functions of adaptive immunity and therapeutic interventions.
Collapse
Affiliation(s)
- Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
30
|
Aguayo-Guerrero JA, Méndez-García LA, Solleiro-Villavicencio H, Viurcos-Sanabria R, Escobedo G. Sucralose: From Sweet Success to Metabolic Controversies-Unraveling the Global Health Implications of a Pervasive Non-Caloric Artificial Sweetener. Life (Basel) 2024; 14:323. [PMID: 38541649 PMCID: PMC10971371 DOI: 10.3390/life14030323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 01/04/2025] Open
Abstract
Sucralose is a food additive initially used to mitigate glycemic peaks and calorie intake in patients with diabetes and obesity. Although sucralose has been considered safe for human consumption, the World Health Organization (WHO) issued a global alert in 2023 concerning the potential health implications of this artificial sweetener. This review aims to comprehensively explore the effects of sucralose intake on human health by understanding sucralose absorption, metabolism, and excretion. We also outline the role of the sweet taste 1 receptor 3 (T1R3) in mediating sucralose-dependent signaling pathways that regulate satiety, incretin release, and insulin response. Finally, we discuss the impact of sucralose on microbiome dysbiosis, inflammatory response origin, liver damage, and toxicity. Gaining a deeper understanding of the manifold effects of sucralose on human physiology will help promote further studies to ensure its consumption is deemed safe for a broader population, including children, adolescents, and pregnant women.
Collapse
Affiliation(s)
- José Alfredo Aguayo-Guerrero
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (J.A.A.-G.)
| | - Lucía Angélica Méndez-García
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (J.A.A.-G.)
| | | | - Rebeca Viurcos-Sanabria
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (J.A.A.-G.)
| |
Collapse
|
31
|
Liu L, Jia Y, Zheng L, Luo R, Essawy H, Huang H, Wang Y, Deng S, Zhang J. Development and Characterization of Bio-Based Formaldehyde Free Sucrose-Based Adhesive for Fabrication of Plywood. Polymers (Basel) 2024; 16:640. [PMID: 38475323 DOI: 10.3390/polym16050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
In order to solve the problem of excessive consumption of petrochemical resources and the harm of free formaldehyde release to human health, biomass raw materials, such as sucrose (S) and ammonium dihydrogen phosphate (ADP) can be chemically condensed in a simple route under acidic conditions to produce a formaldehyde free wood adhesive (S-ADP), characterized by good storage stability and water resistance, and higher wet shear strength with respect to petroleum based phenolic resin adhesive. The dry and boiling shear strength of the plywood based on S-ADP adhesive are as high as 1.05 MPa and 1.19 MPa, respectively. Moreover, is Modulus of Elasticity (MOE) is as high as 4910 MPa. Interestingly, the plywood based on the developed S-ADP adhesive exhibited good flame retardancy. After burning for 90 s, its shape remains unchanged. Meanwhile, it can be concluded from thermomechanical analysis (TMA) and thermogravimetric analysis (TGA) that the S-ADP acquired excellent modulus of elasticity (MOE) and good thermal stability. It is thus thought promisingly that the use of S-ADP adhesive as a substitute for PF resin adhesive seems feasible in the near future.
Collapse
Affiliation(s)
- Longjiang Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650093, China
- School of Chemical Engineering, Yunnan Vocational College of National-Defense Technology, Yunnan Open University, Kunming 650223, China
| | - Yongbo Jia
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Lulu Zheng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Rui Luo
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Hisham Essawy
- Department of Polymers and Pigments, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Heming Huang
- Kunming Xinfeilin Wood-Based Panel Group Co., Ltd., Kunming 650106, China
| | - Yaming Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Shuduan Deng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Jun Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
32
|
Posta E, Fekete I, Gyarmati E, Stündl L, Zold E, Barta Z. The Effects of Artificial Sweeteners on Intestinal Nutrient-Sensing Receptors: Dr. Jekyll or Mr. Hyde? Life (Basel) 2023; 14:10. [PMID: 38276259 PMCID: PMC10817473 DOI: 10.3390/life14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
The consumption of artificial and low-calorie sweeteners (ASs, LCSs) is an important component of the Western diet. ASs play a role in the pathogenesis of metabolic syndrome, dysbiosis, inflammatory bowel diseases (IBDs), and various inflammatory conditions. Intestinal nutrient-sensing receptors act as a crosstalk between dietary components, the gut microbiota, and the regulation of immune, endocrinological, and neurological responses. This narrative review aimed to summarize the possible effects of ASs and LCSs on intestinal nutrient-sensing receptors and their related functions. Based on the findings of various studies, long-term AS consumption has effects on the gut microbiota and intestinal nutrient-sensing receptors in modulating incretin hormones, antimicrobial peptides, and cytokine secretion. These effects contribute to the regulation of glucose metabolism, ion transport, gut permeability, and inflammation and modulate the gut-brain, and gut-kidney axes. Based on the conflicting findings of several in vitro, in vivo, and randomized and controlled studies, artificial sweeteners may have a role in the pathogenesis of IBDs, functional bowel diseases, metabolic syndrome, and cancers via the modulation of nutrient-sensing receptors. Further studies are needed to explore the exact mechanisms underlying their effects to decide the risk/benefit ratio of sugar intake reduction via AS and LCS consumption.
Collapse
Affiliation(s)
- Edit Posta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (E.G.); (Z.B.)
| | - Istvan Fekete
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (I.F.); (L.S.)
| | - Eva Gyarmati
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (E.G.); (Z.B.)
- Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei Blvd. 98, 4032 Debrecen, Hungary
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (I.F.); (L.S.)
| | - Eva Zold
- Department of Clinical Immunology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Móricz Zsigmond Str. 22, 4032 Debrecen, Hungary;
| | - Zsolt Barta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (E.G.); (Z.B.)
| |
Collapse
|
33
|
Zhou X, Wang Z, Yuan K. The effect of diet and nutrition on T cell function in cancer. Int J Cancer 2023; 153:1954-1966. [PMID: 37504380 DOI: 10.1002/ijc.34668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Cancer can be considered one of the most threatening diseases to human health, and immunotherapy, especially T-cell immunotherapy, is the most promising treatment for cancers. Diet therapy is widely concerned in cancer because of its safety and fewer side effects. Many studies have shown that both the function of T cells and the progression of cancer can be affected by nutrients in the diet. In fact, it is challenging for T cells to infiltrate and eliminate cancer cells in tumor microenvironment, because of the harsh metabolic condition. The intake of different nutrients has a great influence on the proliferation, activation, differentiation and exhaustion of T cells. In this review, we summarize the effects of typical amino acids, lipids, carbohydrates and other nutritional factors on T cell functions and provide future perspectives for dietary treatment of cancer based on modifications of T cell functions.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Wang
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kefei Yuan
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Kränkel N, Rauch-Kroehnert U. Artificial sweetener sucralose: a possible modulator of autoimmune diseases. Signal Transduct Target Ther 2023; 8:377. [PMID: 37779177 PMCID: PMC10543406 DOI: 10.1038/s41392-023-01607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Affiliation(s)
- Nicolle Kränkel
- Deutsches Herzzentrum der Charité, Klinik für Kardiologie, Angiologie und Intensivmedizin, Campus Benjamin-Franklin (CBF), 12203, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
- Friede Springer-Centre of Cardiovascular Prevention @ Charité, Charité-University Medicine Berlin, Berlin, Germany
| | - Ursula Rauch-Kroehnert
- Deutsches Herzzentrum der Charité, Klinik für Kardiologie, Angiologie und Intensivmedizin, Campus Benjamin-Franklin (CBF), 12203, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany.
- Friede Springer-Centre of Cardiovascular Prevention @ Charité, Charité-University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
35
|
Staltner R, Sánchez V, Bergheim I, Baumann A. Acute Intake of Sucrose but Not of the Intense Sweetener Sucralose Is Associated with Post-Prandial Endotoxemia in Healthy Young Adults-A Randomized Controlled Trial. Nutrients 2023; 15:4038. [PMID: 37764821 PMCID: PMC10537596 DOI: 10.3390/nu15184038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Sugar-rich diets, but also the use of intense sweeteners, may alter intestinal barrier function. Here, we assessed the effect of sucrose and sucralose on post-prandial endotoxemia in a randomized placebo-controlled single-blinded crossover-designed study. Following a 2-day standardization of their diet, healthy men and women received a beverage containing either sucrose, sucralose (iso-sweet) or an isocaloric combination of sucralose + maltodextrin. Plasma endotoxin levels were measured after consumption of the respective beverages. Moreover, the effect of sucrose and sucralose on intestinal permeability was assessed in Caco-2 cells and ex vivo in an everted gut sac model. The nutritional standardization recommended by nutrition societies was associated with a significant decrease in plasma endotoxin levels. The intake of the sucrose-sweetened beverage resulted in a significant increase in plasma endotoxin levels while being unchanged after the intake of sucralose-sweetened beverages. In Caco-2 cells, the challenge with sucrose but not with sucralose significantly increased the permeation of the bacterial endotoxin across the cell monolayer. Xylose permeation in small intestinal everted tissue sacs was significantly higher upon the challenge with sucrose while remaining unchanged in sucralose-challenged sacs. Our data suggest that an acute intake of physiologically relevant amounts of sucrose but not of sucralose can result in post-prandial endotoxemia.
Collapse
Affiliation(s)
- Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
36
|
Tseng TS, Lin WT, Ting PS, Huang CK, Chen PH, Gonzalez GV, Lin HY. Sugar-Sweetened Beverages and Artificially Sweetened Beverages Consumption and the Risk of Nonalcoholic Fatty Liver (NAFLD) and Nonalcoholic Steatohepatitis (NASH). Nutrients 2023; 15:3997. [PMID: 37764782 PMCID: PMC10534429 DOI: 10.3390/nu15183997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are fast becoming the most common chronic liver disease and are often preventable with healthy dietary habits and weight management. Sugar-sweetened beverage (SSB) consumption is associated with obesity and NAFLD. However, the impact of different types of SSBs, including artificially sweetened beverages (ASBs), is not clear after controlling for total sugar intake and total caloric intake. The aim of this study was to examine the association between the consumption of different SSBs and the risk of NAFLD and NASH in US adults. The representativeness of 3739 US adults aged ≥20 years old who had completed 24 h dietary recall interviews and measurements, including dietary, SSBs, smoking, physical activity, and liver stiffness measurements, were selected from the National Health and Nutrition Examination Survey 2017-2020 surveys. Chi-square tests, t-tests, and weighted logistic regression models were utilized for analyses. The prevalence of NASH was 20.5%, and that of NAFLD (defined without NASH) was 32.7% of US. adults. We observed a higher prevalence of NASH/NAFLD in men, Mexican-Americans, individuals with sugar intake from SSBs, light-moderate alcohol use, lower physical activity levels, higher energy intake, obesity, and medical comorbidities. Heavy sugar consumption through SSBs was significantly associated with NAFLD (aOR = 1.60, 95% CI = 1.05-2.45). In addition, the intake of ASBs only (compared to the non-SSB category) was significantly associated with NAFLD (aOR = 1.78, 95% CI = 1.04-3.05), after adjusting for demographic, risk behaviors, and body mass index. A higher sugar intake from SSBs and exclusive ASB intake are both associated with the risk of NAFLD.
Collapse
Affiliation(s)
- Tung-Sung Tseng
- Behavior and Community Health Sciences Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Wei-Ting Lin
- Social, Behavioral, and Population Sciences, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA;
| | - Peng-Sheng Ting
- Division of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Chiung-Kuei Huang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Po-Hung Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 1830 East Monument Street, 4th Floor, Baltimore, MD 21287, USA;
| | - Gabrielle V. Gonzalez
- Behavior and Community Health Sciences Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| |
Collapse
|
37
|
Affiliation(s)
- Herbert Tilg
- From the Department of Internal Medicine I (Gastroenterology, Hepatology, Endocrinology, and Metabolism), Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- From the Department of Internal Medicine I (Gastroenterology, Hepatology, Endocrinology, and Metabolism), Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
38
|
Tsai MJ, Li CH, Wu HT, Kuo HY, Wang CT, Pai HL, Chang CJ, Ou HY. Long-Term Consumption of Sucralose Induces Hepatic Insulin Resistance through an Extracellular Signal-Regulated Kinase 1/2-Dependent Pathway. Nutrients 2023; 15:2814. [PMID: 37375718 DOI: 10.3390/nu15122814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Sugar substitutes have been recommended to be used for weight and glycemic control. However, numerous studies indicate that consumption of artificial sweeteners exerts adverse effects on glycemic homeostasis. Although sucralose is among the most extensively utilized sweeteners in food products, the effects and detailed mechanisms of sucralose on insulin sensitivity remain ambiguous. In this study, we found that bolus administration of sucralose by oral gavage enhanced insulin secretion to decrease plasma glucose levels in mice. In addition, mice were randomly allocated into three groups, chow diet, high-fat diet (HFD), and HFD supplemented with sucralose (HFSUC), to investigate the effects of long-term consumption of sucralose on glucose homeostasis. In contrast to the effects of sucralose with bolus administration, the supplement of sucralose augmented HFD-induced insulin resistance and glucose intolerance, determined by glucose and insulin tolerance tests. In addition, we found that administration of extracellular signal-regulated kinase (ERK)-1/2 inhibitor reversed the effects of sucralose on glucose intolerance and insulin resistance in mice. Moreover, blockade of taste receptor type 1 member 3 (T1R3) by lactisole or pretreatment of endoplasmic reticulum stress inhibitors diminished sucralose-induced insulin resistance in HepG2 cells. Taken together, sucralose augmented HFD-induced insulin resistance in mice, and interrupted insulin signals through a T1R3-ERK1/2-dependent pathway in the liver.
Collapse
Affiliation(s)
- Meng-Jie Tsai
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Chung-Hao Li
- Department of Family Medicine, An Nan Hospital, China Medical University, Tainan 70965, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsin-Yu Kuo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Chung-Teng Wang
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsiu-Ling Pai
- Graduated Institute of Metabolism and Obesity Science, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Horng-Yih Ou
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
39
|
Concha F, Sambra V, Cáceres P, López-Arana S, Carvajal B, Gotteland M. Maternal consumption and perinatal exposure to non-nutritive sweeteners: should we be concerned? Front Pediatr 2023; 11:1200990. [PMID: 37377756 PMCID: PMC10291189 DOI: 10.3389/fped.2023.1200990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The context for this review is the rapid increase in the use of non-nutritive sweeteners (NNSs) instead of sugar in foods and beverages, a situation so prevalent in some countries that consumers are finding it increasingly challenging to access foods without NNSs. The benefits of consuming NNSs on obesity and diabetes are now being questioned, and studies have shown that they may exert physiological activities, sometimes independently of sweet taste receptor stimulation. Few studies, limited mainly to North American and European countries, have described the consumption of NNSs by pregnant or lactating women and infants. Most focus on beverages rather than foods, but all agree that consumption levels have increased dramatically. Although some studies report a negative impact of NNSs on the risk of preterm birth, increased birth weight and decreased gestational age, the level of evidence is low. Several studies have also reported increased weight gain in infancy, associated with maternal NNS intake. Interestingly, several NNSs have been detected in amniotic fluid and breast milk, usually (but not always) at concentrations below their established detection limit in humans. Unfortunately, the impact of chronic exposure of the fetus/infant to low levels of multiple NNSs is unknown. In conclusion, there is a stark contrast between the galloping increase in the consumption of NNSs and the small number of studies evaluating their impact in at-risk groups such as pregnant and lactating women and infants. Clearly, more studies are needed, especially in Latin America and Asia, to fill these gaps and update recommendations.
Collapse
Affiliation(s)
- Francisca Concha
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Verónica Sambra
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Cáceres
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sandra López-Arana
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Bielka Carvajal
- Department of Women and Newborn’s Health Promotion, University of Chile, Santiago, Chile
| | - Martín Gotteland
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|
40
|
Nobs SP, Elinav E. Nonnutritive sweeteners and glucose intolerance: Where do we go from here? J Clin Invest 2023; 133:171057. [PMID: 37183822 PMCID: PMC10178830 DOI: 10.1172/jci171057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Affiliation(s)
- Samuel Philip Nobs
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Division of Microbiome and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
41
|
Bird L. Sucralose: not sweet enough for T cells. Nat Rev Immunol 2023; 23:270. [PMID: 37012434 DOI: 10.1038/s41577-023-00873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|