1
|
Gupta S, Bajwa GK, El-Sammak H, Mattonet K, Günther S, Looso M, Stainier DYR, Marín-Juez R. The transmembrane glycoprotein Gpnmb is required for the immune and fibrotic responses during zebrafish heart regeneration. Dev Biol 2025; 521:153-162. [PMID: 39983908 DOI: 10.1016/j.ydbio.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/21/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Myocardial infarction occurs when the coronary supply of oxygen and nutrients to part of the heart is interrupted. In contrast to adult mammals, adult zebrafish have a remarkable ability to regenerate their heart after cardiac injury. Several processes are involved in this regenerative response including inflammation, coronary endothelial cell proliferation and revascularization, endocardial expansion, cardiomyocyte repopulation, and transient scar formation. To identify additional regulators of zebrafish cardiac regeneration, we profiled the transcriptome of regenerating coronary endothelial cells at 7 days post cryoinjury (dpci) and observed the significant upregulation of dozens of genes including gpnmb. Gpnmb (glycoprotein non-metastatic melanoma protein B) is a transmembrane glycoprotein implicated in inflammation resolution and tissue regeneration. Transcriptomic profiling data of cryoinjured zebrafish hearts reveal that gpnmb is mostly expressed by macrophages. To investigate gpnmb function during zebrafish cardiac regeneration, we generated a full locus deletion allele. We find that after cardiac cryoinjury, animals lacking gpnmb exhibit neutrophil retention and decreased macrophage recruitment as well as reduced myofibroblast numbers. Moreover, loss of gpnmb impairs coronary endothelial cell regeneration and cardiomyocyte dedifferentiation. Transcriptomic analyses of cryoinjured gpnmb-/- hearts identified enhanced collagen gene expression and the activation of extracellular matrix (ECM) related pathways. Furthermore, gpnmb-/- hearts exhibit larger fibrotic scars revealing additional defects in cardiac regeneration. Altogether, these data indicate that gpnmb, which is mostly expressed by macrophages, modulates inflammation and ECM deposition after cardiac cryoinjury in zebrafish and further highlight the importance of these immune cells during regeneration.
Collapse
Affiliation(s)
- Savita Gupta
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany; DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany; Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Gursimran Kaur Bajwa
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, QC, Canada; Centre Hospitalier Universitaire Sainte-Justine Research Center, 3175 Chemin de la Côte-Sainte-Catherine, H3T 1C5, Montréal, QC, Canada
| | - Hadil El-Sammak
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany; DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany; Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany; Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Kenny Mattonet
- Imaging Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany; Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany; Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany; Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany; Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany; DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany; Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| | - Rubén Marín-Juez
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, QC, Canada; Centre Hospitalier Universitaire Sainte-Justine Research Center, 3175 Chemin de la Côte-Sainte-Catherine, H3T 1C5, Montréal, QC, Canada.
| |
Collapse
|
2
|
Zheng M, Wen H, Meng Z, Guo W, Wang K, Yu M, Li K, Zhang Y, Liu K, Cai L, Zhu B, Sheng W. Biological evaluation of a new highly sensitive and selective fluorescent probe for hypochlorous acid and its imaging application in cell and zebrafish. Bioorg Chem 2025; 158:108358. [PMID: 40073596 DOI: 10.1016/j.bioorg.2025.108358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Hypochlorous acid is one of the most widely distributed reactive oxygen species in vivo. It is usually used as a signal molecule to participate in various life activities such as immunity and metabolism, and plays a notable role in maintaining homeostasis. When hypochlorous acid level is abnormal in the body, it will lead to a variety of diseases, such as Parkinson's disease, Alzheimer's disease, atherosclerosis and cancer. Therefore, it is necessary to develop a bio-friendly fluorescent probe with fast sensitivity and specific accuracy. In this study, the innovative probe PRS owns good optical properties, sensitivity and selectivity, and the response mechanism that the generation of new bond enhanced the fluorescence intensity is studied. Biocompatibility of probe is systematically and innovatively evaluated by using cells and zebrafish models. Note that the biocompatibility valuation of probe results from cytotoxicity test, zebrafish behavioral test, hepatotoxicity test, cardiotoxicity test, nephrotoxicity test, blood vessel toxicity test, immunotoxicity test and neurotoxicity test, and experimental indicators like swimming duration, swimming distance, swimming speed, pericardial rub, fractional shortening, stroke volume, heart rate, SV-BA, shortening rate of the ventricular short axis, liver area, liver fluorescence intensity, total length of intersegmental vessels, number of vessels, and average vessel length show that the probe has good biocompatibility. Moreover, the detection performance of the probe shows that the probe can target hypochlorous acid in cell and zebrafish models. The probe is proved to be much essential for the monitoring of hypochlorous acid in vivo. Therefore, it has been proven that the meaningful detection of probe PRS for HOCl is promising in the living organism. Moreover, our innovative biocompatibility testing can be used to evaluate the biosafety of fluorescent probe as well.
Collapse
Affiliation(s)
- Min Zheng
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Huayan Wen
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Zhengxiang Meng
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenli Guo
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Miaohui Yu
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Ke Li
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Kechun Liu
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Lei Cai
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Wenlong Sheng
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| |
Collapse
|
3
|
Constanty F, Wu B, Wei KH, Lin IT, Dallmann J, Guenther S, Lautenschlaeger T, Priya R, Lai SL, Stainier DYR, Beisaw A. Border-zone cardiomyocytes and macrophages regulate extracellular matrix remodeling to promote cardiomyocyte protrusion during cardiac regeneration. Nat Commun 2025; 16:3823. [PMID: 40268967 PMCID: PMC12019606 DOI: 10.1038/s41467-025-59169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Despite numerous advances in our understanding of zebrafish cardiac regeneration, an aspect that remains less studied is how regenerating cardiomyocytes invade and replace the collagen-containing injured tissue. Here, we provide an in-depth analysis of the process of cardiomyocyte invasion. We observe close interactions between protruding border-zone cardiomyocytes and macrophages, and show that macrophages are essential for extracellular matrix remodeling at the wound border zone and cardiomyocyte protrusion into the injured area. Single-cell RNA-sequencing reveals the expression of mmp14b, encoding a membrane-anchored matrix metalloproteinase, in several cell types at the border zone. Genetic mmp14b mutation leads to decreased macrophage recruitment, collagen degradation, and subsequent cardiomyocyte protrusion into injured tissue. Furthermore, cardiomyocyte-specific overexpression of mmp14b is sufficient to enhance cardiomyocyte invasion into the injured tissue and along the apical surface of the wound. Altogether, our data provide important insights into the mechanisms underlying cardiomyocyte invasion of the collagen-containing injured tissue during cardiac regeneration.
Collapse
Affiliation(s)
- Florian Constanty
- Mechanisms of Cardiac Regeneration and Repair Lab, Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Bailin Wu
- Mechanisms of Cardiac Regeneration and Repair Lab, Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ke-Hsuan Wei
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - I-Ting Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Julia Dallmann
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Guenther
- Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Rhein/Main, Rhein/Main, Germany
| | - Till Lautenschlaeger
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rashmi Priya
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Bad Nauheim, Germany
- The Francis Crick Institute, London, UK
| | - Shih-Lei Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Rhein/Main, Rhein/Main, Germany
- Cardio-Pulmonary Institute, Bad Nauheim, Germany
| | - Arica Beisaw
- Mechanisms of Cardiac Regeneration and Repair Lab, Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.
- Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
4
|
Li L, Lu M, Guo L, Zhang X, Liu Q, Zhang M, Gao J, Xu M, Lu Y, Zhang F, Li Y, Zhang R, Liu X, Pan S, Zhang X, Li Z, Chen Y, Su X, Zhang N, Guo W, Yang T, Chen J, Qin Y, Zhang Z, Cui W, Yu L, Gu Y, Yang H, Xu X, Wang J, Burns CE, Burns CG, Han K, Zhao L, Fan G, Su Y. An organ-wide spatiotemporal transcriptomic and cellular atlas of the regenerating zebrafish heart. Nat Commun 2025; 16:3716. [PMID: 40253397 PMCID: PMC12009352 DOI: 10.1038/s41467-025-59070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 04/10/2025] [Indexed: 04/21/2025] Open
Abstract
Adult zebrafish robustly regenerate injured hearts through a complex orchestration of molecular and cellular activities. However, this remarkable process, which is largely non-existent in humans, remains incompletely understood. Here, we utilize integrated spatial transcriptomics (Stereo-seq) and single-cell RNA-sequencing (scRNA-seq) to generate a spatially-resolved molecular and cellular atlas of regenerating zebrafish heart across eight stages. We characterize the cascade of cardiomyocyte cell states responsible for producing regenerated myocardium and explore a potential role for tpm4a in cardiomyocyte re-differentiation. Moreover, we uncover the activation of ifrd1 and atp6ap2 genes as a unique feature of regenerative hearts. Lastly, we reconstruct a 4D "virtual regenerating heart" comprising 569,896 cells/spots derived from 36 scRNA-seq libraries and 224 Stereo-seq slices. Our comprehensive atlas serves as a valuable resource to the cardiovascular and regeneration scientific communities and their ongoing efforts to understand the molecular and cellular mechanisms underlying vertebrate heart regeneration.
Collapse
Affiliation(s)
- Lei Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Meina Lu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Lidong Guo
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejiao Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Qun Liu
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Meiling Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Junying Gao
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Mengyang Xu
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Yijian Lu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Fang Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yao Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Ruihua Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Xiawei Liu
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Shanshan Pan
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Xianghui Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Zhen Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Yadong Chen
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Xiaoshan Su
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Nannan Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Wenjie Guo
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Jing Chen
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Yating Qin
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | | | - Wei Cui
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Lindong Yu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ying Gu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | - Huanming Yang
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | - Xun Xu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Caroline E Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - C Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Kai Han
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China.
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark.
| | - Long Zhao
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- College of Fisheries, Ocean University of China, Qingdao, 266003, China.
| | - Guangyi Fan
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China.
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China.
- BGI Research, Sanya, 572025, China.
- BGI Research, Hangzhou, 310030, China.
| | - Ying Su
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
5
|
Luz RBDS, Paula AGP, Czaikovski AP, Nunes BSF, De Lima JD, Paredes LC, Bastos TSB, Richardson R, Braga TT. Macrophages and cardiac lesion in zebrafish: what can single-cell RNA sequencing reveal? Front Cardiovasc Med 2025; 12:1570582. [PMID: 40290186 PMCID: PMC12022510 DOI: 10.3389/fcvm.2025.1570582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Unlike mammals, zebrafish can regenerate their heart after cardiac insult. There are several ways to perform cardiac injury in zebrafish, but cryoinjury most closely resembles human myocardial infarction (MI). Studies demonstrated that macrophages are essential cells from the beginning to later stages of cardiac injury throughout the regenerative process in zebrafish. These cells have phenotypic plasticity; hence, overly sensitive techniques, such as single-cell RNA sequencing (scRNAseq), are essential for uncovering the phenotype needed for zebrafish cardiac injury regeneration, from inflammatory profile initiation to scar resolution. This technique enables the RNA sequencing of individual cells, thus generating clusters of cells with similar gene expression and allowing the study of a particular cell population. Therefore, in this review, we focused on discussing data obtained by scRNAseq of macrophages in the context of cardiac injury. We found that from 1 to 7 days post-injury (dpi), macrophages are present with inflammatory and reparative functions in either cryoinjury or ventricular resection. At 14 dpi, there were differences between the injury models, especially in the expression profile of inflammatory cytokines, and studies with later time points are needed to understand the gene expression that enrolls the collagen scar resorption dynamic.
Collapse
Affiliation(s)
| | | | | | - Bruno Sime Ferreira Nunes
- Basic Pathology Department, Biological Sciences Sector, Federal University of Paraná, Curitiba, Brazil
| | - Jordana Dinora De Lima
- Basic Pathology Department, Biological Sciences Sector, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Rebecca Richardson
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Tarcio Teodoro Braga
- Basic Pathology Department, Biological Sciences Sector, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
6
|
Punde A, Rayrikar A, Maity S, Patra C. Extracellular matrix in cardiac morphogenesis, fibrosis, and regeneration. Cells Dev 2025:204023. [PMID: 40154789 DOI: 10.1016/j.cdev.2025.204023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
The extracellular matrix (ECM) plays a crucial role in providing structural integrity and regulating cell communication essential for organ development, homeostasis, and regeneration, including hearts. Evidence indicates that disruptions in the spatiotemporal expression or alterations in ECM components lead to cardiac malformations, including a wide range of congenital heart diseases (CHDs). Furthermore, research on injured hearts across various vertebrate species, some of which show effective regeneration while others experience irreversible fibrosis, underscores the significance of ECM molecules in cardiac regeneration. This review presents an overview of heart development and the dynamics of ECM during cardiac morphogenesis, beginning with the formation of the contractile heart tube and advancing to the development of distinct chambers separated by valves to facilitate unidirectional blood flow. Furthermore, we discuss research emphasizing the multifaceted roles of secreted molecules in mediating fibrosis and regeneration following myocardial injury.
Collapse
Affiliation(s)
- Ashwini Punde
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Shreya Maity
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India.
| |
Collapse
|
7
|
Kwon HR, Olson LE. Imatinib on target in stroke recovery. J Clin Invest 2025; 135:e190024. [PMID: 40026253 PMCID: PMC11870721 DOI: 10.1172/jci190024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Ischemic stroke causes scars in the CNS that impede functional recovery, and there is a need for therapeutics to improve recovery after the acute phase. Scar-resident myofibroblasts and the PDGF pathway have been implicated in stroke pathology. In this issue of the JCI, Protzmann et al. report that inhibition of PDGF-CC or its receptor, PDGFRα, reduces the myofibroblast population and improves functional recovery after ischemic stroke in mice. Importantly, PDGFRα inhibition was effective in improving functional recovery even when initiated 24 hours after stroke, which suggests opportunities for later treatment by targeting the PDGF pathway. This study demonstrates the therapeutic potential of enhancing stroke recovery even after acute damage and blood-brain barrier dysfunction has already occurred.
Collapse
|
8
|
Askary A, Chen W, Choi J, Du LY, Elowitz MB, Gagnon JA, Schier AF, Seidel S, Shendure J, Stadler T, Tran M. The lives of cells, recorded. Nat Rev Genet 2025; 26:203-222. [PMID: 39587306 DOI: 10.1038/s41576-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/27/2024]
Abstract
A paradigm for biology is emerging in which cells can be genetically programmed to write their histories into their own genomes. These records can subsequently be read, and the cellular histories reconstructed, which for each cell could include a record of its lineage relationships, extrinsic influences, internal states and physical locations, over time. DNA recording has the potential to transform the way that we study developmental and disease processes. Recent advances in genome engineering are driving the development of systems for DNA recording, and meanwhile single-cell and spatial omics technologies increasingly enable the recovery of the recorded information. Combined with advances in computational and phylogenetic inference algorithms, the DNA recording paradigm is beginning to bear fruit. In this Perspective, we explore the rationale and technical basis of DNA recording, what aspects of cellular biology might be recorded and how, and the types of discovery that we anticipate this paradigm will enable.
Collapse
Affiliation(s)
- Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Wei Chen
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Junhong Choi
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucia Y Du
- Biozentrum, University of Basel, Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Michael B Elowitz
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
| | - James A Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Alexander F Schier
- Biozentrum, University of Basel, Basel, Switzerland.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| | - Sophie Seidel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Martin Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
9
|
Nguyen T, Hao K, Nakada Y, Guragain B, Yao P, Zhang J. RNA-Binding Protein Signature in Proliferative Cardiomyocytes: A Cross-Species Meta-Analysis from Mouse, Pig, and Human Transcriptomic Profiling Data. Biomolecules 2025; 15:310. [PMID: 40001614 PMCID: PMC11853426 DOI: 10.3390/biom15020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/25/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
In mammals, because cardiomyocytes withdraw from cell-cycle activities shortly after birth, the heart cannot repair the damage caused by a myocardial injury; thus, understanding how cardiomyocytes proliferate is among the most important topics in cardiovascular sciences. In newborn neonatal mammals, when a left ventricular injury is applied in hearts earlier than postnatal day 7, the cardiomyocytes actively proliferate and regenerate lost myocardium in the following weeks. The regulators promoting cardiomyocyte proliferation were discovered by analyzing transcriptomic data generated from models. Most of these regulators support the mRNA production of cell-cycle machinery, yet the mRNA requires translation into functional proteins under the regulation of RNA-binding proteins (RBPs). In this work, we performed a meta-analysis to study the relationship between RBP expression and cardiomyocyte proliferation. To identify RBPs associated with mouse and pig cardiomyocyte proliferation, the single-nuclei RNA sequencing (snRNA-seq) data from regenerating mouse and pig hearts were reanalyzed via an Autoencoder focusing on RBP expression. We also generated and analyzed new bulk RNA-seq from two human-induced pluripotent stem cell-derived (hiPSC) cardiomyocyte (hiPSC-CM) cell lines; the first cell line was harvested sixteen days after differentiation, when the cells still actively proliferated, and the second cell line was harvested one hundred and forty days after differentiation, when the cells ceased cell cycle activity. Then, the RBP associated with mouse, pig, and hiPSC-CM were compared across species. Twenty-one RBPs were found to be consistently upregulated, and six RBPs were downregulated in proliferating mouse, pig, and hiPSC-derived cardiomyocytes. Among upregulated RBPs across species, an immunofluorescence-based imaging analysis validated the significant increase in the proteins of DHX9, PTBP3, HNRNPUL1, and DDX6 in pig hearts with proliferating CMs. This meta-analysis in all species demonstrated a strong relationship between RBP expression and cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.N.); (K.H.); (Y.N.); (B.G.)
| | - Kaili Hao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.N.); (K.H.); (Y.N.); (B.G.)
| | - Yuji Nakada
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.N.); (K.H.); (Y.N.); (B.G.)
| | - Bijay Guragain
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.N.); (K.H.); (Y.N.); (B.G.)
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- The Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.N.); (K.H.); (Y.N.); (B.G.)
- Department of Medicine, Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
10
|
Rao A, Russell A, Segura-Bermudez J, Franz C, Dockery R, Blatnik A, Panten J, Zevallos M, McNulty C, Pietrzak M, Goldman JA. A cardiac transcriptional enhancer is repurposed during regeneration to activate an anti-proliferative program. Development 2025; 152:DEV204458. [PMID: 39803985 PMCID: PMC11883283 DOI: 10.1242/dev.204458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/17/2024] [Indexed: 02/18/2025]
Abstract
Zebrafish have a high capacity to regenerate their hearts. Several studies have surveyed transcriptional enhancers to understand how gene expression is controlled during heart regeneration. We have identified REN (the runx1 enhancer) that, during regeneration, regulates the expression of the nearby runx1 gene. We show that runx1 mRNA is reduced with deletion of REN (ΔREN), and cardiomyocyte proliferation is enhanced in ΔREN mutants only during regeneration. Interestingly, in uninjured hearts, ΔREN mutants have reduced expression of adamts1, a nearby gene that encodes a Collagen protease. This results in excess Collagen within cardiac valves of uninjured hearts. The ΔREN Collagen phenotype is rescued by an allele with Δrunx1 mutations, suggesting that in uninjured hearts REN regulates adamts1 independently of runx1. Taken together, this suggests that REN is rewired from adamts1 in uninjured hearts to stimulate runx1 transcription during regeneration. Our data point to a previously unappreciated mechanism for gene regulation during zebrafish heart regeneration. We report that an enhancer is rewired from expression in a distal cardiac domain to activate a different gene in regenerating tissue.
Collapse
Affiliation(s)
- Anupama Rao
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Andrew Russell
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Jose Segura-Bermudez
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Charles Franz
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Rejenae Dockery
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Anton Blatnik
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Jacob Panten
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Mateo Zevallos
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Carson McNulty
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph Aaron Goldman
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Liang YL, Hu YX, Li FF, You HM, Chen J, Liang C, Guo ZF, Jing Q. Adaptor protein Src-homology 2 domain containing E (SH2E) deficiency induces heart defect in zebrafish. Acta Pharmacol Sin 2025; 46:404-415. [PMID: 39313516 PMCID: PMC11747093 DOI: 10.1038/s41401-024-01392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
Adaptor proteins play crucial roles in signal transduction across diverse signaling pathways. Src-homology 2 domain-containing E (SH2E) is the adaptor protein highly expressed in vascular endothelial cells and myocardium during zebrafish embryogenesis. In this study we investigated the function and mechanisms of SH2E in cardiogenesis. We first analyzed the spatiotemporal expression of SH2E and then constructed zebrafish lines with SH2E deficiency using the CRISPR-Cas9 system. We showed that homozygous mutants developed progressive pericardial edema (PCE), dilated atrium, abnormal atrioventricular looping and thickened atrioventricular wall from 3 days post fertilization (dpf) until death; inducible overexpression of SH2E was able to partially rescue the PCE phenotype. Using transcriptome sequencing analysis, we demonstrated that the MAPK/ERK and NF-κB signaling pathways might be involved in SH2E-deficiency-caused PCE. This study underscores the pivotal role of SH2E in cardiogenesis, and might help to identify innovative diagnostic techniques and therapeutic strategies for congenital heart disease.
Collapse
Affiliation(s)
- Yu-Lai Liang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yang-Xi Hu
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Fang-Fang Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Hong-Min You
- Department of Cardiovascular Medicine, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jian Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chun Liang
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Zhi-Fu Guo
- Department of Cardiovascular Medicine, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
12
|
Chen Y, Hou Y, Zeng Q, Wang I, Shang M, Shin K, Hemauer C, Xing X, Kang J, Zhao G, Wang T. Common and specific gene regulatory programs in zebrafish caudal fin regeneration at single-cell resolution. Genome Res 2025; 35:202-218. [PMID: 39809530 PMCID: PMC11789645 DOI: 10.1101/gr.279372.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/04/2024] [Indexed: 01/16/2025]
Abstract
Following amputation, zebrafish regenerate their injured caudal fin through lineage-restricted reprogramming. Although previous studies have charted various genetic and epigenetic dimensions of this process, the intricate gene regulatory programs shared by, or unique to, different regenerating cell types remain underinvestigated. Here, we mapped the regulatory landscape of fin regeneration by applying paired snRNA-seq and snATAC-seq on uninjured and regenerating fins. This map delineates the regulatory dynamics of predominant cell populations at multiple stages of regeneration. We observe a marked increase in the accessibility of chromatin regions associated with regenerative and developmental processes at 1 dpa, followed by a gradual closure across major cell types at later stages. This pattern is distinct from that of transcriptomic dynamics, which is characterized by several waves of gene upregulation and downregulation. We identified and in vivo validated cell-type-specific and position-specific regeneration-responsive enhancers and constructed regulatory networks by cell type and stage. Our single-cell resolution transcriptomic and chromatin accessibility map across regenerative stages provides new insights into regeneration regulatory mechanisms and serves as a valuable resource for the community.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiran Hou
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qinglin Zeng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Irene Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Meiru Shang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin 53705, USA
| | - Christopher Hemauer
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin 53705, USA
| | - Guoyan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Chiba A, Yamamoto T, Fukui H, Fukumoto M, Shirai M, Nakajima H, Mochizuki N. Zonated Wnt/β-catenin signal-activated cardiomyocytes at the atrioventricular canal promote coronary vessel formation in zebrafish. Dev Cell 2025; 60:21-29.e8. [PMID: 39395410 DOI: 10.1016/j.devcel.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2024] [Accepted: 09/11/2024] [Indexed: 10/14/2024]
Abstract
Cells functioning at a specific zone by clustering according to gene expression are recognized as zonated cells. Here, we demonstrate anatomical and functional zones in the zebrafish heart. The cardiomyocytes (CMs) at the atrioventricular canal between the atrium and ventricle could be grouped into three zones according to the localization of signal-activated CMs: Wnt/β-catenin signal+, Bmp signal+, and Tbx2b+ zones. Endocardial endothelial cells (ECs) changed their characteristics, penetrated the Wnt/β-catenin signal+ CM zone, and became coronary ECs covering the heart. Coronary vessel length was reduced when the Wnt/β-catenin signal+ CMs were depleted. Collectively, we demonstrate the importance of anatomical and functional zonation of CMs in the zebrafish heart.
Collapse
Affiliation(s)
- Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan; Department of Pharmacology, Yamagata University School of Medicine, Yamagata 990-9585, Japan.
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan; Division of Biomechanics and Signaling, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Moe Fukumoto
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Manabu Shirai
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan.
| |
Collapse
|
14
|
Lin XL, Lin JH, Cao Y, Zhang H, He SY, Wu HY, Ye ZB, Zheng L, Qi XF. Cardiomyocyte proliferation and heart regeneration in adult Xenopus tropicalis evidenced by a transgenic reporter line. NPJ Regen Med 2024; 9:40. [PMID: 39702515 DOI: 10.1038/s41536-024-00384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
Cardiomyocyte proliferation in adult Xenopus tropicalis during heart regeneration has remained largely contentious due to the absence of genetic evidence. Here, we generated a transgenic reporter line Tg(mlc2:H2C) expressing mCherry specifically in cardiomyocyte nuclei driven by the promoter of myosin light chain 2 (mlc2). Using the reporter line, we found that traditional whole-cell staining is not a rigorous way to identify cardiomyocytes in adult Xenopus tropicalis when using a cryosection with common thickness (5 μm) which leading to a high error, but this deviation could be reduced by increasing section thickness. In addition, the reporter line confirmed that apex resection injury greatly increased the proliferation of mlc2+ cardiomyocytes at 3-30 days post-resection (dpr), thereby regenerating the lost cardiac muscle by 30 dpr in adult Xenopus tropicalis. Our findings from the reporter line have rigorously defined cardiomyocyte proliferation in adult heart upon injury, thereby contributing heart regeneration in adult Xenopus tropicalis.
Collapse
Affiliation(s)
- Xiao-Lin Lin
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510632, China
| | - Jin-Hua Lin
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510632, China
| | - Yan Cao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510632, China
| | - Han Zhang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510632, China
| | - Si-Yi He
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510632, China
| | - Hai-Yan Wu
- Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ze-Bing Ye
- Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China.
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China.
| | - Xu-Feng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
15
|
Berrio A, Miranda E, Massri AJ, Afanassiev A, Schiebinger G, Wray GA, McClay DR. Reprogramming of cells during embryonic transfating: overcoming a reprogramming block. Development 2024; 151:dev203152. [PMID: 39628450 DOI: 10.1242/dev.203152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/12/2024] [Indexed: 12/22/2024]
Abstract
Regulative development, demonstrated by many animal embryos, is the ability to replace missing cells or parts. The underlying molecular mechanism(s) of that ability is not well understood. If sea urchin micromeres (skeletogenic cell progenitors) are removed at the 16-cell stage, early endoderm initiates a sequential switch in cell fates, called transfating. Without micromeres, other mesoderm cells are absent as well, because their specification depends on signaling from micromeres. Most mesoderm cells later return by transfating, but pigment cells do not. Single-cell RNA sequencing, tracked over time, reveals the reprogramming sequence of those replacements. Beginning with an early endoderm specification state, cells progress through endomesoderm, then mesoderm, and finally distinct skeletogenic and blastocoelar cell specification states emerge, but pigment cells do not. Rescue of pigment cells was found to be a consequence of signal timing: if Delta is expressed prior to Nodal, pigment cells return. Thus, transfating operates through a series of gene regulatory state transitions, and reprogramming fails if endogenous negative signals occur prior to positive signals in the reprogramming sequence.
Collapse
Affiliation(s)
| | - Esther Miranda
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Abdull J Massri
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
16
|
Forman-Rubinsky R, Feng W, Schlegel BT, Paul A, Zuppo D, Kedziora K, Stoltz D, Watkins S, Rajasundaram D, Li G, Tsang M. Cited4a limits cardiomyocyte dedifferentiation and proliferation during zebrafish heart regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.626917. [PMID: 39713454 PMCID: PMC11661073 DOI: 10.1101/2024.12.05.626917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cardiac regeneration involves the interplay of complex interactions between many different cell types, including cardiomyocytes. The exact mechanism that enables cardiomyocytes to undergo dedifferentiation and proliferation to replace lost cells has been intensely studied. Here we report a single nuclear RNA sequencing profile of the injured zebrafish heart and identify distinct cardiomyocyte populations in the injured heart. These cardiomyocyte populations have diverse functions, including stress response, myofibril assembly, proliferation and contraction. The contracting cardiomyocyte population also involves the activation of maturation pathways as an early response to injury. This intriguing finding suggests that constant maintenance of a distinctive terminally differentiated cardiomyocyte population is important for cardiac function during regeneration. To test this hypothesis, we determined that cited4a, a p300/CBP transcriptional coactivator, is induced after injury in the mature cardiomyocyte population. Moreover, loss-of-cited4a mutants presented increased dedifferentiation, proliferation and accelerated heart regeneration. Thus, suppressing cardiomyocyte maturation pathway activity in injured hearts could be an approach to promote heart regeneration.
Collapse
Affiliation(s)
- Rachel Forman-Rubinsky
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Center for Integrative Organ Systems, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Wei Feng
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Center for Integrative Organ Systems, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Brent T Schlegel
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Angela Paul
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Center for Integrative Organ Systems, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Daniel Zuppo
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Current address: Department of Medicine, University of Rochester Medical Center Rochester, NY
| | - Katarzyna Kedziora
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Donna Stoltz
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Simon Watkins
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Guang Li
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Center for Integrative Organ Systems, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Michael Tsang
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Center for Integrative Organ Systems, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| |
Collapse
|
17
|
Cortada E, Yao J, Xia Y, Dündar F, Zumbo P, Yang B, Rubio-Navarro A, Perder B, Qiu M, Pettinato AM, Homan EA, Stoll L, Betel D, Cao J, Lo JC. Cross-species single-cell RNA-seq analysis reveals disparate and conserved cardiac and extracardiac inflammatory responses upon heart injury. Commun Biol 2024; 7:1611. [PMID: 39627536 PMCID: PMC11615278 DOI: 10.1038/s42003-024-07315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The immune system coordinates the response to cardiac injury and controls regenerative and fibrotic scar outcomes in the heart and subsequent chronic low-grade inflammation associated with heart failure. Adult mice and humans lack the ability to fully recover while adult zebrafish spontaneously regenerate after heart injury. Here we profile the inflammatory response to heart cryoinjury in zebrafish and coronary artery ligation in mouse using single cell transcriptomics. We interrogate the extracardiac reaction to cardiomyocyte necrosis to assess the specific peripheral tissue and immune cell reaction to chronic stress. Cardiac macrophages play a critical role in determining tissue homeostasis by healing versus scarring. We identify distinct transcriptional clusters of monocytes/macrophages (mono/Mϕ) in each species and find analogous pairs in zebrafish and mice. However, the reaction to myocardial injury is largely disparate between mice and zebrafish. The dichotomous response to heart damage between the murine and zebrafish mono/Mϕ and/or the presence of distinct zebrafish mono/Mϕ subtypes may underlie the impaired regenerative process in adult mammals and humans. Our study furnishes a direct cross-species comparison of immune responses between regenerative and profibrotic myocardial injury models, providing a useful resource to the fields of regenerative biology and cardiovascular research.
Collapse
Affiliation(s)
- Eric Cortada
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jun Yao
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Yu Xia
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Friederike Dündar
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Boris Yang
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Alfonso Rubio-Navarro
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Björn Perder
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Miaoyan Qiu
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Anthony M Pettinato
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Edwin A Homan
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Lisa Stoll
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA.
- Institute for Computational Biomedicine, Division of Hematology and Medical, Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| | - James C Lo
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA.
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Duca S, Xia Y, Abd Elmagid L, Bakis I, Qiu M, Cao Y, Guo Y, Eichenbaum JV, McCain ML, Kang J, Harrison MRM, Cao J. Differential vegfc expression dictates lymphatic response during zebrafish heart development and regeneration. Development 2024; 151:dev202947. [PMID: 39514676 PMCID: PMC11607685 DOI: 10.1242/dev.202947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Vascular endothelial growth factor C (Vegfc) is crucial for lymphatic and blood vessel development, yet its cellular sources and specific functions in heart development remain unclear. To address this, we created a vegfc reporter and an inducible overexpression line in zebrafish. We found vegfc expression in large coronary arteries, circulating thrombocytes, cardiac adipocytes, and outflow tract smooth muscle cells. Notably, although coronary lymphangiogenesis aligns with Vegfc-expressing arteries in juveniles, it occurs only after coronary artery formation. Vegfc overexpression induced ectopic lymphatics on the ventricular surface prior to arterial formation, indicating that Vegfc abundance, rather than arterial presence, drives lymphatic development. However, this overexpression did not affect coronary artery coverage, suggesting a specific role for Vegfc in lymphatic, rather than arterial, development. Thrombocytes emerged as the initial Vegfc source during inflammation following heart injuries, transitioning to endocardial and myocardial expression during regeneration. Lower Vegfc levels in an amputation model corresponded with a lack of lymphatic expansion. Importantly, Vegfc overexpression enhanced lymphatic expansion and promoted scar resolution without affecting cardiomyocyte proliferation, highlighting its role in regulating lymphangiogenesis and promoting heart regeneration.
Collapse
Affiliation(s)
- Sierra Duca
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Yu Xia
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Laila Abd Elmagid
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Isaac Bakis
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Miaoyan Qiu
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Yingxi Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Ylan Guo
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - James V. Eichenbaum
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90033, USA
| | - Megan L. McCain
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI 53705, USA
| | - Michael R. M. Harrison
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| |
Collapse
|
19
|
Shin K, Rodriguez-Parks A, Kim C, Silaban IM, Xia Y, Sun J, Dong C, Keles S, Wang J, Cao J, Kang J. Harnessing the regenerative potential of interleukin11 to enhance heart repair. Nat Commun 2024; 15:9666. [PMID: 39516197 PMCID: PMC11549343 DOI: 10.1038/s41467-024-54060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Balancing between regenerative processes and fibrosis is crucial for heart repair, yet strategies regulating this balance remain a barrier to developing therapies. The role of Interleukin 11 (IL11) in heart regeneration remains controversial, as both regenerative and fibrotic functions have been reported. We uncovered that il11a, an Il11 homolog in zebrafish, can trigger robust regenerative programs in zebrafish hearts, including cardiomyocytes proliferation and coronary expansion, even in the absence of injury. Notably, il11a induction in uninjured hearts also activates the quiescent epicardium to produce epicardial progenitor cells, which later differentiate into cardiac fibroblasts. Consequently, prolonged il11a induction indirectly leads to persistent fibroblast emergence, resulting in cardiac fibrosis. While deciphering the regenerative and fibrotic effects of il11a, we found that il11-dependent fibrosis, but not regeneration, is mediated through ERK activity, suggesting to potentially uncouple il11a dual effects on regeneration and fibrosis. To harness the il11a's regenerative ability, we devised a combinatorial treatment through il11a induction with ERK inhibition. This approach enhances cardiomyocyte proliferation with mitigated fibrosis, achieving a balance between regenerative processes and fibrosis. Thus, we unveil the mechanistic insights into regenerative il11 roles, offering therapeutic avenues to foster cardiac repair without exacerbating fibrosis.
Collapse
Grants
- R01HL166518 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL142762 NHLBI NIH HHS
- P30 CA014520 NCI NIH HHS
- R01 HL155607 NHLBI NIH HHS
- R01HL151522 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL142762 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P30CA014520 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- R01HL155607 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35GM137878 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R35 GM137878 NIGMS NIH HHS
- R01 HL151522 NHLBI NIH HHS
- R01 HL166518 NHLBI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- University of Wisconsin Institute for Clinical and Translational Research (UW ICTR) pilot grant
- Stem Cell and Regenerative Medicine Center Research Training Award
Collapse
Affiliation(s)
- Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Anjelica Rodriguez-Parks
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Chanul Kim
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Isabella M Silaban
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Yu Xia
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Jisheng Sun
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, USA
| | - Chenyang Dong
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, USA
| | - Sunduz Keles
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, USA
| | - Jinhu Wang
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA.
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
20
|
Ceci M, Bonvissuto D, Papetti F, Silvestri F, Sette C, Catalani E, Cervia D, Gornati R, Romano N. RACK1 contributes to the upregulation of embryonic genes in a model of cardiac hypertrophy. Sci Rep 2024; 14:25698. [PMID: 39465301 PMCID: PMC11514175 DOI: 10.1038/s41598-024-76138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Receptors for activated C kinases (RACKs) have been shown to coordinate PKC-mediated hypertrophic signalling in mice. However, little information is available on its participation in embryonic gene expression. This study investigated the involvement of RACK1 in the expression of embryonic genes in a zebrafish (ZF) ex vivo heart culture model by using phenylephrine (PE) or a growth factors cocktail (GFs) as a prohypertrophic/regeneration stimulus. Blebbistatin (BL) inhibition has also been studied for its ability to block the signal transduction actions of some PEs. qRT‒PCR and immunoblot analyses confirmed the upregulation of RACK1 in the PE- and GFs-treated groups. BL administration counteracted PE-induced hypertrophy and downregulated RACK1 expression. Immunohistochemical analyses of the heart revealed the colocalization of RACK1 and embryonic genes, namely, Gata4, Wt1, and Nfat2, under stimulation, whereas these genes were expressed at lower levels in the BL treatment group. Culturing ZF heart cells activated via GFs treatment increased the expression of RACK1. The overexpression of RACK1 induced by the transfection of recombinant RACK1 cDNA in ZF heart cells increased the expression of embryonic genes, especially after one week of GFs treatment. In summary, these results support the involvement of RACK1 in the induction of embryonic genes during cardiac hypertrophy/GFs stimulation in a fish heart model, which can be used as an alternative study model for mammals.
Collapse
Affiliation(s)
| | | | | | | | - Claudio Sette
- DNHA, Catholic University of Sacred Heart, Rome, Italy
- IRCCS, Policlinico A. Gemelli Foundation, Rome, Italy
| | | | | | | | | |
Collapse
|
21
|
Mocho JP. Anaesthesia, analgesia and euthanasia of zebrafish. Zebrafish 2024:427-459. [DOI: 10.1079/9781800629431.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
22
|
Lange M, Piran Z, Klein M, Spanjaard B, Klein D, Junker JP, Theis FJ, Nitzan M. Mapping lineage-traced cells across time points with moslin. Genome Biol 2024; 25:277. [PMID: 39434128 PMCID: PMC11492637 DOI: 10.1186/s13059-024-03422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Simultaneous profiling of single-cell gene expression and lineage history holds enormous potential for studying cellular decision-making. Recent computational approaches combine both modalities into cellular trajectories; however, they cannot make use of all available lineage information in destructive time-series experiments. Here, we present moslin, a Gromov-Wasserstein-based model to couple cellular profiles across time points based on lineage and gene expression information. We validate our approach in simulations and demonstrate on Caenorhabditis elegans embryonic development how moslin predicts fate probabilities and putative decision driver genes. Finally, we use moslin to delineate lineage relationships among transiently activated fibroblast states during zebrafish heart regeneration.
Collapse
Affiliation(s)
- Marius Lange
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Department of Mathematics, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Zoe Piran
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Bastiaan Spanjaard
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Paediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Klein
- Department of Mathematics, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Fabian J Theis
- Department of Mathematics, Technical University of Munich, Munich, Germany.
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
23
|
Mi J, Ren L, Andersson O. Leveraging zebrafish to investigate pancreatic development, regeneration, and diabetes. Trends Mol Med 2024; 30:932-949. [PMID: 38825440 DOI: 10.1016/j.molmed.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
The zebrafish has become an outstanding model for studying organ development and tissue regeneration, which is prominently leveraged for studies of pancreatic development, insulin-producing β-cells, and diabetes. Although studied for more than two decades, many aspects remain elusive and it has only recently been possible to investigate these due to technical advances in transcriptomics, chemical-genetics, genome editing, drug screening, and in vivo imaging. Here, we review recent findings on zebrafish pancreas development, β-cell regeneration, and how zebrafish can be used to provide novel insights into gene functions, disease mechanisms, and therapeutic targets in diabetes, inspiring further use of zebrafish for the development of novel therapies for diabetes.
Collapse
Affiliation(s)
- Jiarui Mi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China.
| | - Lipeng Ren
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
| |
Collapse
|
24
|
Ding H, Xu Z, Lu Y, Yuan Q, Li J, Sun Q. Kidney fibrosis molecular mechanisms Spp1 influences fibroblast activity through transforming growth factor beta smad signaling. iScience 2024; 27:109839. [PMID: 39323737 PMCID: PMC11422156 DOI: 10.1016/j.isci.2024.109839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/01/2024] [Accepted: 04/25/2024] [Indexed: 09/27/2024] Open
Abstract
Kidney fibrosis marks a critical phase in chronic kidney disease with its molecular intricacies yet to be fully understood. This study's deep dive into single-cell sequencing data of renal tissue during fibrosis pinpoints the pivotal role of fibroblasts and myofibroblasts in the fibrotic transformation. Through identifying distinct cell populations and conducting transcriptomic analysis, Spp1 emerged as a key gene associated with renal fibrosis. The study's experimental findings further confirm Spp1's vital function in promoting fibroblast to myofibroblast differentiation via the TGF-β/Smad signaling pathway, underscoring its contribution to fibrosis progression. The suppression of Spp1 expression notably hindered this differentiation process, spotlighting Spp1 as a promising therapeutic target for halting renal fibrosis. This condensed summary encapsulates the essence and findings of the original research within the specified word limit.
Collapse
Affiliation(s)
- Hao Ding
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, P.R. China
| | - Zidu Xu
- Emergency Medicine Center, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, P.R. China
| | - Ying Lu
- Department of Group Healthcare, First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, P.R. China
| | - Qi Yuan
- Department of Nephrology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing 215000, P.R. China
| | - Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou 215006, P.R. China
| | - Qi Sun
- Nanjing Medical University, Nanjing 211166, P.R. China
| |
Collapse
|
25
|
Ortega Granillo A, Zamora D, Schnittker RR, Scott AR, Spluga A, Russell J, Brewster CE, Ross EJ, Acheampong DA, Zhang N, Ferro K, Morrison JA, Rubinstein BY, Perera AG, Wang W, Sánchez Alvarado A. Positional information modulates transient regeneration-activated cell states during vertebrate appendage regeneration. iScience 2024; 27:110737. [PMID: 39286507 PMCID: PMC11404194 DOI: 10.1016/j.isci.2024.110737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Injury is common in the life of organisms. Because the extent of damage cannot be predicted, injured organisms must determine how much tissue needs to be restored. Although it is known that amputation position affects the regeneration speed of appendages, mechanisms conveying positional information remain unclear. We investigated tissue dynamics in regenerating caudal fins of the African killifish (Nothobranchius furzeri) and found position-specific, differential spatial distribution modulation, persistence, and magnitude of proliferation. Single-cell RNA sequencing revealed a transient regeneration-activated cell state (TRACS) in the basal epidermis that is amplified to match a given amputation position and expresses components and modifiers of the extracellular matrix (ECM). Notably, CRISPR-Cas9-mediated deletion of the ECM modifier sequestosome 1 (sqstm1) increased the regenerative capacity of distal injuries, suggesting that regeneration growth rate can be uncoupled from amputation position. We propose that basal epidermis TRACS transduce positional information to the regenerating blastema by remodeling the ECM.
Collapse
Affiliation(s)
| | - Daniel Zamora
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Robert R Schnittker
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Allison R Scott
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Alessia Spluga
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Jonathon Russell
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Carolyn E Brewster
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Eric J Ross
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Daniel A Acheampong
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Ning Zhang
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Kevin Ferro
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Jason A Morrison
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Boris Y Rubinstein
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Anoja G Perera
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Wei Wang
- National Institute of Biological Sciences, 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | | |
Collapse
|
26
|
Ellman DG, Bjerre FA, Bak ST, Mathiesen SB, Harvald EB, Jensen CH, Andersen DC. Protocol to achieve high-resolution single-cell transcriptomics of cardiomyocytes in multiple species. STAR Protoc 2024; 5:103194. [PMID: 39096494 PMCID: PMC11345562 DOI: 10.1016/j.xpro.2024.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 08/05/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) remains state-of-the-art for transcriptomic cell-mapping. Here, we provide a protocol to generate high-resolution scRNA-seq of rare cardiomyocyte populations (e.g., regenerating/dividing, etc.) from mouse and zebrafish hearts as well as induced pluripotent stem cells, collected in time to achieve detailed transcriptomic insight. We describe the serial steps of viability staining, methanol fixation, storage, and cell sorting to preserve RNA integrity suited for scRNA-seq as well as the quality assessment of the data as shown by examples. For complete details on the use and execution of this protocol, please refer to Bak et al.1.
Collapse
Affiliation(s)
- Ditte Gry Ellman
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark.
| | - Frederik Adam Bjerre
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark; Amplexa Genetics, 5000 Odense C, Denmark
| | - Sara Thornby Bak
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Sabrina Bech Mathiesen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Eva Bang Harvald
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Charlotte Harken Jensen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ditte Caroline Andersen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
27
|
Nguyen LP, Song W, Yang Y, Tran AP, Weston TA, Jung H, Tu Y, Kim PH, Kim JR, Xie K, Yu RG, Scheithauer J, Presnell AM, Ploug M, Birrane G, Arnold H, Koltowska K, Mäe MA, Betsholtz C, He L, Goodwin JL, Beigneux AP, Fong LG, Young SG. Distinct strategies for intravascular triglyceride metabolism in hearts of mammals and lower vertebrate species. JCI Insight 2024; 9:e184940. [PMID: 39435661 PMCID: PMC11529983 DOI: 10.1172/jci.insight.184940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
Lipoprotein lipase (LPL) and multiple regulators of LPL activity (e.g., APOC2 and ANGPTL4) are present in all vertebrates, but GPIHBP1-the endothelial cell (EC) protein that captures LPL within the subendothelial spaces and transports it to its site of action in the capillary lumen-is present in mammals but in not chickens or other lower vertebrates. In mammals, GPIHBP1 deficiency causes severe hypertriglyceridemia, but chickens maintain low triglyceride levels despite the absence of GPIHBP1. To understand intravascular lipolysis in lower vertebrates, we examined LPL expression in mouse and chicken hearts. In both species, LPL was abundant on capillaries, but the distribution of Lpl transcripts was strikingly different. In mouse hearts, Lpl transcripts were extremely abundant in cardiomyocytes but were barely detectable in capillary ECs. In chicken hearts, Lpl transcripts were absent in cardiomyocytes but abundant in capillary ECs. In zebrafish hearts, lpl transcripts were also in capillary ECs but not cardiomyocytes. In both mouse and chicken hearts, LPL was present, as judged by immunogold electron microscopy, in the glycocalyx of capillary ECs. Thus, mammals produce LPL in cardiomyocytes and rely on GPIHBP1 to transport the LPL into capillaries, whereas lower vertebrates produce LPL directly in capillary ECs, rendering an LPL transporter unnecessary.
Collapse
Affiliation(s)
| | | | - Ye Yang
- Department of Medicine and
- Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | - Michael Ploug
- Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Hannah Arnold
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Katarzyna Koltowska
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Beijer Gene and Neuro Laboratory, Uppsala University, Uppsala, Sweden
| | - Maarja A. Mäe
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine-Huddinge, Karolinska Institute Campus Flemingsberg, Huddinge, Sweden
| | - Liqun He
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jeffrey L. Goodwin
- Division of Laboratory Animal Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | | | - Stephen G. Young
- Department of Medicine and
- Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
28
|
Kikuchi K. Success in heart regeneration depends on endocardial innate immune signaling. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1031-1032. [PMID: 39271817 DOI: 10.1038/s44161-024-00539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Affiliation(s)
- Kazu Kikuchi
- Department of Cardiac Regeneration Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.
| |
Collapse
|
29
|
Goumenaki P, Günther S, Kikhi K, Looso M, Marín-Juez R, Stainier DYR. The innate immune regulator MyD88 dampens fibrosis during zebrafish heart regeneration. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1158-1176. [PMID: 39271818 PMCID: PMC11399109 DOI: 10.1038/s44161-024-00538-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
The innate immune response is triggered rapidly after injury and its spatiotemporal dynamics are critical for regeneration; however, many questions remain about its exact role. Here we show that MyD88, a key component of the innate immune response, controls not only the inflammatory but also the fibrotic response during zebrafish cardiac regeneration. We find in cryoinjured myd88-/- ventricles a significant reduction in neutrophil and macrophage numbers and the expansion of a collagen-rich endocardial population. Further analyses reveal compromised PI3K/AKT pathway activation in the myd88-/- endocardium and increased myofibroblasts and scarring. Notably, endothelial-specific overexpression of myd88 reverses these neutrophil, fibrotic and scarring phenotypes. Mechanistically, we identify the endocardial-derived chemokine gene cxcl18b as a target of the MyD88 signaling pathway, and using loss-of-function and gain-of-function tools, we show that it controls neutrophil recruitment. Altogether, these findings shed light on the pivotal role of MyD88 in modulating inflammation and fibrosis during tissue regeneration.
Collapse
Affiliation(s)
- Pinelopi Goumenaki
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
30
|
Maynard A, Soretić M, Treutlein B. Single-cell genomic profiling to study regeneration. Curr Opin Genet Dev 2024; 87:102231. [PMID: 39053027 DOI: 10.1016/j.gde.2024.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Regenerative capacities and strategies vary dramatically across animals, as well as between cell types, organs, and with age. In recent years, high-throughput single-cell transcriptomics and other single-cell profiling technologies have been applied to many animal models to gain an understanding of the cellular and molecular mechanisms underlying regeneration. Here, we review recent single-cell studies of regeneration in diverse contexts and summarize key concepts that have emerged. The immense regenerative capacity of some invertebrates, exemplified by planarians, is driven mainly by the differentiation of abundant adult pluripotent stem cells, whereas in many other cases, regeneration involves the reactivation of embryonic or developmental gene-regulatory networks in differentiated cell types. However, regeneration also differs from development in many ways, including the use of regeneration-specific cell types and gene regulatory networks.
Collapse
Affiliation(s)
- Ashley Maynard
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Mateja Soretić
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Barbara Treutlein
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland.
| |
Collapse
|
31
|
Aztekin C. Mechanisms of regeneration: to what extent do they recapitulate development? Development 2024; 151:dev202541. [PMID: 39045847 DOI: 10.1242/dev.202541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
One of the enduring debates in regeneration biology is the degree to which regeneration mirrors development. Recent technical advances, such as single-cell transcriptomics and the broad applicability of CRISPR systems, coupled with new model organisms in research, have led to the exploration of this longstanding concept from a broader perspective. In this Review, I outline the historical parallels between development and regeneration before focusing on recent research that highlights how dissecting the divergence between these processes can uncover previously unreported biological mechanisms. Finally, I discuss how these advances position regeneration as a more dynamic and variable process with expanded possibilities for morphogenesis compared with development. Collectively, these insights into mechanisms that orchestrate morphogenesis may reshape our understanding of the evolution of regeneration, reveal hidden biology activated by injury, and offer non-developmental strategies for restoring lost or damaged organs and tissues.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Wong D, Martinez J, Quijada P. Exploring the Function of Epicardial Cells Beyond the Surface. Circ Res 2024; 135:353-371. [PMID: 38963865 PMCID: PMC11225799 DOI: 10.1161/circresaha.124.321567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The epicardium, previously viewed as a passive outer layer around the heart, is now recognized as an essential component in development, regeneration, and repair. In this review, we explore the cellular and molecular makeup of the epicardium, highlighting its roles in heart regeneration and repair in zebrafish and salamanders, as well as its activation in young and adult postnatal mammals. We also examine the latest technologies used to study the function of epicardial cells for therapeutic interventions. Analysis of highly regenerative animal models shows that the epicardium is essential in regulating cardiomyocyte proliferation, transient fibrosis, and neovascularization. However, despite the epicardium's unique cellular programs to resolve cardiac damage, it remains unclear how to replicate these processes in nonregenerative mammalian organisms. During myocardial infarction, epicardial cells secrete signaling factors that modulate fibrotic, vascular, and inflammatory remodeling, which differentially enhance or inhibit cardiac repair. Recent transcriptomic studies have validated the cellular and molecular heterogeneity of the epicardium across various species and developmental stages, shedding further light on its function under pathological conditions. These studies have also provided insights into the function of regulatory epicardial-derived signaling molecules in various diseases, which could lead to new therapies and advances in reparative cardiovascular medicine. Moreover, insights gained from investigating epicardial cell function have initiated the development of novel techniques, including using human pluripotent stem cells and cardiac organoids to model reparative processes within the cardiovascular system. This growing understanding of epicardial function holds the potential for developing innovative therapeutic strategies aimed at addressing developmental heart disorders, enhancing regenerative therapies, and mitigating cardiovascular disease progression.
Collapse
Affiliation(s)
- David Wong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, CA 90029
| | - Julie Martinez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, CA 90029
| | - Pearl Quijada
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Eli and Edythe Broad Stem Research Center, University of California, Los Angeles, CA 90029
- Molecular Biology Institute, University of California, Los Angeles, CA 90029
| |
Collapse
|
33
|
Abu Nahia K, Sulej A, Migdał M, Ochocka N, Ho R, Kamińska B, Zagorski M, Winata CL. scRNA-seq reveals the diversity of the developing cardiac cell lineage and molecular players in heart rhythm regulation. iScience 2024; 27:110083. [PMID: 38872974 PMCID: PMC11170199 DOI: 10.1016/j.isci.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/26/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
We utilized scRNA-seq to delineate the diversity of cell types in the zebrafish heart. Transcriptome profiling of over 50,000 cells at 48 and 72 hpf defined at least 18 discrete cell lineages of the developing heart. Utilizing well-established gene signatures, we identified a population of cells likely to be the primary pacemaker and characterized the transcriptome profile defining this critical cell type. Two previously uncharacterized genes, atp1b3b and colec10, were found to be enriched in the sinoatrial cardiomyocytes. CRISPR/Cas9-mediated knockout of these two genes significantly reduced heart rate, implicating their role in cardiac development and conduction. Additionally, we describe other cardiac cell lineages, including the endothelial and neural cells, providing their expression profiles as a resource. Our results established a detailed atlas of the developing heart, providing valuable insights into cellular and molecular mechanisms, and pinpointed potential new players in heart rhythm regulation.
Collapse
Affiliation(s)
- Karim Abu Nahia
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Migdał
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Natalia Ochocka
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Richard Ho
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Cracow, Poland
- The Njord Centre, Department of Physics, University of Oslo, Oslo, Norway
| | - Bożena Kamińska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marcin Zagorski
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Cracow, Poland
| | | |
Collapse
|
34
|
Shin K, Rodriguez-Parks A, Kim C, Silaban IM, Xia Y, Sun J, Dong C, Keles S, Wang J, Cao J, Kang J. Harnessing the regenerative potential of interleukin11 to enhance heart repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577788. [PMID: 38352555 PMCID: PMC10862709 DOI: 10.1101/2024.01.29.577788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Balancing between regenerative processes and fibrosis is crucial for heart repair, yet strategies regulating this balance remain a barrier to developing therapies. While Interleukin11 (IL11) is known as a fibrotic factor, its contribution to heart regeneration is poorly understood. We uncovered that il11a, an Il11 homolog in zebrafish, can trigger robust regenerative programs in zebrafish hearts, including cardiomyocytes proliferation and coronary expansion, even in the absence of injury. However, prolonged il11a induction in uninjured hearts causes persistent fibroblast emergence, resulting in fibrosis. While deciphering the regenerative and fibrotic effects of il11a, we found that il11-dependent fibrosis, but not regeneration, is mediated through ERK activity, suggesting to potentially uncouple il11a dual effects on regeneration and fibrosis. To harness the il11a's regenerative ability, we devised a combinatorial treatment through il11a induction with ERK inhibition. This approach enhances cardiomyocyte proliferation with mitigated fibrosis, achieving a balance between regenerative processes and fibrosis. Thus, we unveil the mechanistic insights into regenerative il11 roles, offering therapeutic avenues to foster cardiac repair without exacerbating fibrosis.
Collapse
Affiliation(s)
- Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Anjelica Rodriguez-Parks
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Chanul Kim
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Isabella M Silaban
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Yu Xia
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jisheng Sun
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Chenyang Dong
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Sunduz Keles
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Jinhu Wang
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| |
Collapse
|
35
|
Lalonde RL, Wells HH, Kemmler CL, Nieuwenhuize S, Lerma R, Burger A, Mosimann C. pIGLET: Safe harbor landing sites for reproducible and efficient transgenesis in zebrafish. SCIENCE ADVANCES 2024; 10:eadn6603. [PMID: 38838146 PMCID: PMC11152119 DOI: 10.1126/sciadv.adn6603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Standard zebrafish transgenesis involves random transgene integration with resource-intensive screening. While phiC31 integrase-based attP/attB recombination has streamlined transgenesis in mice and Drosophila, validated attP-based landing sites for universal applications are lacking in zebrafish. Here, we developed phiC31 Integrase Genomic Loci Engineered for Transgenesis (pIGLET) as transgenesis approach, with two attP landing sites pIGLET14a and pIGLET24b from well-validated Tol2 transgenes. Both sites facilitate diverse transgenesis applications including reporters and Cre/loxP transgenes. The pIGLET14a and pIGLET24b landing sites consistently yield 25 to 50% germline transmission, substantially reducing the resources needed for transgenic line generation. Transgenesis into these sites enables reproducible expression patterns in F0 zebrafish embryos for enhancer discovery and testing of gene regulatory variants. Together, our new landing sites streamline targeted, reproducible zebrafish transgenesis as a robust platform for various applications while minimizing the workload for generating transgenic lines.
Collapse
Affiliation(s)
| | | | - Cassie L. Kemmler
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Susan Nieuwenhuize
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Raymundo Lerma
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | | | | |
Collapse
|
36
|
Cardeira-da-Silva J, Wang Q, Sagvekar P, Mintcheva J, Latting S, Günther S, Ramadass R, Yekelchyk M, Preussner J, Looso M, Junker JP, Stainier DYR. Antigen presentation plays positive roles in the regenerative response to cardiac injury in zebrafish. Nat Commun 2024; 15:3637. [PMID: 38684665 PMCID: PMC11058276 DOI: 10.1038/s41467-024-47430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
In contrast to adult mammals, adult zebrafish can fully regenerate injured cardiac tissue, and this regeneration process requires an adequate and tightly controlled immune response. However, which components of the immune response are required during regeneration is unclear. Here, we report positive roles for the antigen presentation-adaptive immunity axis during zebrafish cardiac regeneration. We find that following the initial innate immune response, activated endocardial cells (EdCs), as well as immune cells, start expressing antigen presentation genes. We also observe that T helper cells, a.k.a. Cd4+ T cells, lie in close physical proximity to these antigen-presenting EdCs. We targeted Major Histocompatibility Complex (MHC) class II antigen presentation by generating cd74a; cd74b mutants, which display a defective immune response. In these mutants, Cd4+ T cells and activated EdCs fail to efficiently populate the injured tissue and EdC proliferation is significantly decreased. cd74a; cd74b mutants exhibit additional defects in cardiac regeneration including reduced cardiomyocyte dedifferentiation and proliferation. Notably, Cd74 also becomes activated in neonatal mouse EdCs following cardiac injury. Altogether, these findings point to positive roles for antigen presentation during cardiac regeneration, potentially involving interactions between activated EdCs, classical antigen-presenting cells, and Cd4+ T cells.
Collapse
Affiliation(s)
- João Cardeira-da-Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| | - Qianchen Wang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Pooja Sagvekar
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Janita Mintcheva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- Humboldt University of Berlin, Berlin, Germany
| | - Stephan Latting
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michail Yekelchyk
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jens Preussner
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jan Philipp Junker
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
37
|
Carey CM, Hollins HL, Schmid AV, Gagnon JA. Distinct features of the regenerating heart uncovered through comparative single-cell profiling. Biol Open 2024; 13:bio060156. [PMID: 38526188 PMCID: PMC11007736 DOI: 10.1242/bio.060156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Adult humans respond to heart injury by forming a permanent scar, yet other vertebrates are capable of robust and complete cardiac regeneration. Despite progress towards characterizing the mechanisms of cardiac regeneration in fish and amphibians, the large evolutionary gulf between mammals and regenerating vertebrates complicates deciphering which cellular and molecular features truly enable regeneration. To better define these features, we compared cardiac injury responses in zebrafish and medaka, two fish species that share similar heart anatomy and common teleost ancestry but differ in regenerative capability. We used single-cell transcriptional profiling to create a time-resolved comparative cell atlas of injury responses in all major cardiac cell types across both species. With this approach, we identified several key features that distinguish cardiac injury response in the non-regenerating medaka heart. By comparing immune responses to injury, we found altered cell recruitment and a distinct pro-inflammatory gene program in medaka leukocytes, and an absence of the injury-induced interferon response seen in zebrafish. In addition, we found a lack of pro-regenerative signals, including nrg1 and retinoic acid, from medaka endothelial and epicardial cells. Finally, we identified alterations in the myocardial structure in medaka, where they lack primordial layer cardiomyocytes and fail to employ a cardioprotective gene program shared by regenerating vertebrates. Our findings reveal notable variation in injury response across nearly all major cardiac cell types in zebrafish and medaka, demonstrating how evolutionary divergence influences the hidden cellular features underpinning regenerative potential in these seemingly similar vertebrates.
Collapse
Affiliation(s)
- Clayton M. Carey
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Hailey L. Hollins
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Alexis V. Schmid
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - James A. Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
38
|
Usui Y, Hanashima A, Hashimoto K, Kimoto M, Ohira M, Mohri S. Comparative analysis of ventricular stiffness across species. Physiol Rep 2024; 12:e16013. [PMID: 38644486 PMCID: PMC11033294 DOI: 10.14814/phy2.16013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Investigating ventricular diastolic properties is crucial for understanding the physiological cardiac functions in organisms and unraveling the pathological mechanisms of cardiovascular disorders. Ventricular stiffness, a fundamental parameter that defines ventricular diastolic functions in chordates, is typically analyzed using the end-diastolic pressure-volume relationship (EDPVR). However, comparing ventricular stiffness accurately across chambers of varying maximum volume capacities has been a long-standing challenge. As one of the solutions to this problem, we propose calculating a relative ventricular stiffness index by applying an exponential approximation formula to the EDPVR plot data of the relationship between ventricular pressure and values of normalized ventricular volume by the ventricular weight. This article reviews the potential, utility, and limitations of using normalized EDPVR analysis in recent studies. Herein, we measured and ranked ventricular stiffness in differently sized and shaped chambers using ex vivo ventricular pressure-volume analysis data from four animals: Wistar rats, red-eared slider turtles, masu salmon, and cherry salmon. Furthermore, we have discussed the mechanical effects of intracellular and extracellular viscoelastic components, Titin (Connectin) filaments, collagens, physiological sarcomere length, and other factors that govern ventricular stiffness. Our review provides insights into the comparison of ventricular stiffness in different-sized ventricles between heterologous and homologous species, including non-model organisms.
Collapse
Grants
- JP22K15155 Japan Society for the Promotion of Science, Grant/Award Number
- JP20K21453 Japan Society for the Promotion of Science, Grant/Award Number
- JP20H04508 Japan Society for the Promotion of Science, Grant/Award Number
- JP21K19933 Japan Society for the Promotion of Science, Grant/Award Number
- JP20H04521 Japan Society for the Promotion of Science, Grant/Award Number
- JP17H02092 Japan Society for the Promotion of Science, Grant/Award Number
- JP23H00556 Japan Society for the Promotion of Science, Grant/Award Number
- JP17H06272 Japan Society for the Promotion of Science, Grant/Award Number
- JP17H00859 Japan Society for the Promotion of Science, Grant/Award Number
- JP25560214 Japan Society for the Promotion of Science, Grant/Award Number
- JP16K01385 Japan Society for the Promotion of Science, Grant/Award Number
- JP26282127 Japan Society for the Promotion of Science, Grant/Award Number
- The Futaba research grant program
- Research Grant from the Kawasaki Foundation in 2016 from Medical Science and Medical Welfare
- Medical Research Grant in 2010 from Takeda Science Foundation
- R03S005 Research Project Grant from Kawasaki Medical School
- R03B050 Research Project Grant from Kawasaki Medical School
- R01B054 Research Project Grant from Kawasaki Medical School
- H30B041 Research Project Grant from Kawasaki Medical School
- H30B016 Research Project Grant from Kawasaki Medical School
- H27B10 Research Project Grant from Kawasaki Medical School
- R02B039 Research Project Grant from Kawasaki Medical School
- H28B80 Research Project Grant from Kawasaki Medical School
- R05B016 Research Project Grant from Kawasaki Medical School
- Japan Society for the Promotion of Science, Grant/Award Number
Collapse
Affiliation(s)
- Yuu Usui
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Akira Hanashima
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Ken Hashimoto
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Misaki Kimoto
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Momoko Ohira
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Satoshi Mohri
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| |
Collapse
|
39
|
van Doorn ECH, Amesz JH, Sadeghi AH, de Groot NMS, Manintveld OC, Taverne YJHJ. Preclinical Models of Cardiac Disease: A Comprehensive Overview for Clinical Scientists. Cardiovasc Eng Technol 2024; 15:232-249. [PMID: 38228811 PMCID: PMC11116217 DOI: 10.1007/s13239-023-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
For recent decades, cardiac diseases have been the leading cause of death and morbidity worldwide. Despite significant achievements in their management, profound understanding of disease progression is limited. The lack of biologically relevant and robust preclinical disease models that truly grasp the molecular underpinnings of cardiac disease and its pathophysiology attributes to this stagnation, as well as the insufficiency of platforms that effectively explore novel therapeutic avenues. The area of fundamental and translational cardiac research has therefore gained wide interest of scientists in the clinical field, while the landscape has rapidly evolved towards an elaborate array of research modalities, characterized by diverse and distinctive traits. As a consequence, current literature lacks an intelligible and complete overview aimed at clinical scientists that focuses on selecting the optimal platform for translational research questions. In this review, we present an elaborate overview of current in vitro, ex vivo, in vivo and in silico platforms that model cardiac health and disease, delineating their main benefits and drawbacks, innovative prospects, and foremost fields of application in the scope of clinical research incentives.
Collapse
Affiliation(s)
- Elisa C H van Doorn
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jorik H Amesz
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Amir H Sadeghi
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Natasja M S de Groot
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Yannick J H J Taverne
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
40
|
Feng J, Li Y, Li Y, Yin Q, Li H, Li J, Zhou B, Meng J, Lian H, Wu M, Li Y, Dou K, Song W, Lu B, Liu L, Hu S, Nie Y. Versican Promotes Cardiomyocyte Proliferation and Cardiac Repair. Circulation 2024; 149:1004-1015. [PMID: 37886839 DOI: 10.1161/circulationaha.123.066298] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND The adult mammalian heart is incapable of regeneration, whereas a transient regenerative capacity is maintained in the neonatal heart, primarily through the proliferation of preexisting cardiomyocytes. Neonatal heart regeneration after myocardial injury is accompanied by an expansion of cardiac fibroblasts and compositional changes in the extracellular matrix. Whether and how these changes influence cardiomyocyte proliferation and heart regeneration remains to be investigated. METHODS We used apical resection and myocardial infarction surgical models in neonatal and adult mice to investigate extracellular matrix components involved in heart regeneration after injury. Single-cell RNA sequencing and liquid chromatography-mass spectrometry analyses were used for versican identification. Cardiac fibroblast-specific Vcan deletion was achieved using the mouse strains Col1a2-2A-CreER and Vcanfl/fl. Molecular signaling pathways related to the effects of versican were assessed through Western blot, immunostaining, and quantitative reverse transcription polymerase chain reaction. Cardiac fibrosis and heart function were evaluated by Masson trichrome staining and echocardiography, respectively. RESULTS Versican, a cardiac fibroblast-derived extracellular matrix component, was upregulated after neonatal myocardial injury and promoted cardiomyocyte proliferation. Conditional knockout of Vcan in cardiac fibroblasts decreased cardiomyocyte proliferation and impaired neonatal heart regeneration. In adult mice, intramyocardial injection of versican after myocardial infarction enhanced cardiomyocyte proliferation, reduced fibrosis, and improved cardiac function. Furthermore, versican augmented the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, versican activated integrin β1 and downstream signaling molecules, including ERK1/2 and Akt, thereby promoting cardiomyocyte proliferation and cardiac repair. CONCLUSIONS Our study identifies versican as a cardiac fibroblast-derived pro-proliferative proteoglycan and clarifies the role of versican in promoting adult cardiac repair. These findings highlight its potential as a therapeutic factor for ischemic heart diseases.
Collapse
Affiliation(s)
- Jie Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Yandong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Yan Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China (Y.L.)
| | - Qianqian Yin
- Institute of Medical Innovation and Research, Peking University Third Hospital, Peking University, Beijing, China (Q.Q.Y.)
| | - Haotong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Jun Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai (B.Z.)
| | - Jian Meng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Mengge Wu
- Experimental Animal Center, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou (M.G.W.)
| | - Yahuan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Kefei Dou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Weihua Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Bin Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Lihui Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences (Y.N.)
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou (Y.N.)
| |
Collapse
|
41
|
Constanty F, Wu B, Wei KH, Lin IT, Dallmann J, Guenther S, Lautenschlaeger T, Priya R, Lai SL, Stainier DYR, Beisaw A. Border-zone cardiomyocytes and macrophages contribute to remodeling of the extracellular matrix to promote cardiomyocyte invasion during zebrafish cardiac regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584570. [PMID: 38559277 PMCID: PMC10980021 DOI: 10.1101/2024.03.12.584570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Despite numerous advances in our understanding of zebrafish cardiac regeneration, an aspect that remains less studied is how regenerating cardiomyocytes invade, and eventually replace, the collagen-containing fibrotic tissue following injury. Here, we provide an in-depth analysis of the process of cardiomyocyte invasion using live-imaging and histological approaches. We observed close interactions between protruding cardiomyocytes and macrophages at the wound border zone, and macrophage-deficient irf8 mutant zebrafish exhibited defects in extracellular matrix (ECM) remodeling and cardiomyocyte protrusion into the injured area. Using a resident macrophage ablation model, we show that defects in ECM remodeling at the border zone and subsequent cardiomyocyte protrusion can be partly attributed to a population of resident macrophages. Single-cell RNA-sequencing analysis of cells at the wound border revealed a population of cardiomyocytes and macrophages with fibroblast-like gene expression signatures, including the expression of genes encoding ECM structural proteins and ECM-remodeling proteins. The expression of mmp14b , which encodes a membrane-anchored matrix metalloproteinase, was restricted to cells in the border zone, including cardiomyocytes, macrophages, fibroblasts, and endocardial/endothelial cells. Genetic deletion of mmp14b led to a decrease in 1) macrophage recruitment to the border zone, 2) collagen degradation at the border zone, and 3) subsequent cardiomyocyte invasion. Furthermore, cardiomyocyte-specific overexpression of mmp14b was sufficient to enhance cardiomyocyte invasion into the injured tissue and along the apical surface of the wound. Altogether, our data shed important insights into the process of cardiomyocyte invasion of the collagen-containing injured tissue during cardiac regeneration. They further suggest that cardiomyocytes and resident macrophages contribute to ECM remodeling at the border zone to promote cardiomyocyte replenishment of the fibrotic injured tissue.
Collapse
|
42
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
43
|
Nguyen T, Rosa-Garrido M, Sadek H, Garry DJ, Zhang JJ. Promoting cardiomyocyte proliferation for myocardial regeneration in large mammals. J Mol Cell Cardiol 2024; 188:52-60. [PMID: 38340541 PMCID: PMC11018144 DOI: 10.1016/j.yjmcc.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
From molecular and cellular perspectives, heart failure is caused by the loss of cardiomyocytes-the fundamental contractile units of the heart. Because mammalian cardiomyocytes exit the cell cycle shortly after birth, the cardiomyocyte damage induced by myocardial infarction (MI) typically leads to dilatation of the left ventricle (LV) and often progresses to heart failure. However, recent findings indicate that the hearts of neonatal pigs completely regenerated the cardiomyocytes that were lost to MI when the injury occurred on postnatal day 1 (P1). This recovery was accompanied by increases in the expression of markers for cell-cycle activity in cardiomyocytes. These results suggest that the repair process was driven by cardiomyocyte proliferation. This review summarizes findings from recent studies that found evidence of cardiomyocyte proliferation in 1) the uninjured hearts of newborn pigs on P1, 2) neonatal pig hearts after myocardial injury on P1, and 3) the hearts of pigs that underwent apical resection surgery (AR) on P1 followed by MI on postnatal day 28 (P28). Analyses of cardiomyocyte single-nucleus RNA sequencing data collected from the hearts of animals in these three experimental groups, their corresponding control groups, and fetal pigs suggested that although the check-point regulators and other molecules that direct cardiomyocyte cell-cycle progression and proliferation in fetal, newborn, and postnatal pigs were identical, the mechanisms that activated cardiomyocyte proliferation in response to injury may differ from those that regulate cardiomyocyte proliferation during development.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Hesham Sadek
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel J Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jianyi Jay Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Department of Medicine, Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
44
|
Dong Y, Yang Y, Wang H, Feng D, Nist E, Yapundich N, Spurlock B, Craft M, Qian L, Liu J. Single-cell chromatin profiling reveals genetic programs activating proregenerative states in nonmyocyte cells. SCIENCE ADVANCES 2024; 10:eadk4694. [PMID: 38381829 PMCID: PMC10881044 DOI: 10.1126/sciadv.adk4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Cardiac regeneration requires coordinated participation of multiple cell types whereby their communications result in transient activation of proregenerative cell states. Although the molecular characteristics and lineage origins of these activated cell states and their contribution to cardiac regeneration have been studied, the extracellular signaling and the intrinsic genetic program underlying the activation of the transient functional cell states remain largely unexplored. In this study, we delineated the chromatin landscapes of the noncardiomyocytes (nonCMs) of the regenerating heart at the single-cell level and inferred the cis-regulatory architectures and trans-acting factors that control cell type-specific gene expression programs. Moreover, further motif analysis and cell-specific genetic manipulations suggest that the macrophage-derived inflammatory signal tumor necrosis factor-α, acting via its downstream transcription factor complex activator protein-1, functions cooperatively with discrete transcription regulators to activate respective nonCM cell types critical for cardiac regeneration. Thus, our study defines the regulatory architectures and intercellular communication principles in zebrafish heart regeneration.
Collapse
Affiliation(s)
- Yanhan Dong
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuchen Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Haofei Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dong Feng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elizabeth Nist
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nicholas Yapundich
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brian Spurlock
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Madison Craft
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
45
|
Abstract
Permanent fibrosis and chronic deterioration of heart function in patients after myocardial infarction present a major health-care burden worldwide. In contrast to the restricted potential for cellular and functional regeneration of the adult mammalian heart, a robust capacity for cardiac regeneration is seen during the neonatal period in mammals as well as in the adults of many fish and amphibian species. However, we lack a complete understanding as to why cardiac regeneration takes place more efficiently in some species than in others. The capacity of the heart to regenerate after injury is controlled by a complex network of cellular and molecular mechanisms that form a regulatory landscape, either permitting or restricting regeneration. In this Review, we provide an overview of the diverse array of vertebrates that have been studied for their cardiac regenerative potential and discuss differential heart regeneration outcomes in closely related species. Additionally, we summarize current knowledge about the core mechanisms that regulate cardiac regeneration across vertebrate species.
Collapse
Affiliation(s)
- Michael Weinberger
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul R Riley
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Zheng S, Liu T, Chen M, Sun F, Fei Y, Chen Y, Tian X, Wu Z, Zhu Z, Zheng W, Wang Y, Wang W. Morroniside induces cardiomyocyte cell cycle activity and promotes cardiac repair after myocardial infarction in adult rats. Front Pharmacol 2024; 14:1260674. [PMID: 38273822 PMCID: PMC10808748 DOI: 10.3389/fphar.2023.1260674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Acute myocardial infarction (AMI) is characterized by the loss of cardiomyocytes, which impairs cardiac function and eventually leads to heart failure. The induction of cardiomyocyte cell cycle activity provides a new treatment strategy for the repair of heart damage. Our previous study demonstrated that morroniside exerts cardioprotective effects. This study investigated the effects and underlying mechanisms of action of morroniside on cardiomyocyte cell cycle activity and cardiac repair following AMI. Methods: Neonatal rat cardiomyocytes (NRCMs) were isolated and exposed to oxygen-glucose deprivation (OGD) in vitro. A rat model of AMI was established by ligation of the left anterior descending coronary artery (LAD) in vivo. Immunofluorescence staining was performed to detect newly generated cardiomyocytes. Western blotting was performed to assess the expression of cell cycle-related proteins. Electrocardiography (ECG) was used to examine pathological Q waves. Masson's trichrome and wheat germ agglutinin (WGA) staining assessed myocardial fibrosis and hypertrophy. Results: The results showed that morroniside induced cardiomyocyte cell cycle activity and increased the levels of cell cycle proteins, including cyclin D1, CDK4, cyclin A2, and cyclin B1, both in vitro and in vivo. Moreover, morroniside reduced myocardial fibrosis and remodeling. Discussion: In conclusion, our study demonstrated that morroniside stimulates cardiomyocyte cell cycle activity and cardiac repair in adult rats, and that these effects may be related to the upregulation of cell cycle proteins.
Collapse
Affiliation(s)
- Songyang Zheng
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tingting Liu
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Mengqi Chen
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Fangling Sun
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yihuan Fei
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yanxi Chen
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Xin Tian
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zheng Wu
- Department of Functional Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zixin Zhu
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wenrong Zheng
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yufeng Wang
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
47
|
Cook SA. Understanding interleukin 11 as a disease gene and therapeutic target. Biochem J 2023; 480:1987-2008. [PMID: 38054591 PMCID: PMC10754292 DOI: 10.1042/bcj20220160] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Interleukin 11 (IL11) is an elusive member of the IL6 family of cytokines. While initially thought to be a haematopoietic and cytoprotective factor, more recent data show instead that IL11 is redundant for haematopoiesis and toxic. In this review, the reasons that led to the original misunderstandings of IL11 biology, which are now understandable, are explained with particular attention on the use of recombinant human IL11 in mice and humans. Following tissue injury, as part of an evolutionary ancient homeostatic response, IL11 is secreted from damaged mammalian cells to signal via JAK/STAT3, ERK/P90RSK, LKB1/mTOR and GSK3β/SNAI1 in autocrine and paracrine. This activates a program of mesenchymal transition of epithelial, stromal, and endothelial cells to cause inflammation, fibrosis, and stalled endogenous tissue repair, leading to organ failure. The role of IL11 signalling in cell- and organ-specific pathobiology is described, the large unknowns about IL11 biology are discussed and the promise of targeting IL11 signalling as a therapeutic approach is reviewed.
Collapse
Affiliation(s)
- Stuart A. Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
48
|
Lalonde RL, Wells HH, Kemmler CL, Nieuwenhuize S, Lerma R, Burger A, Mosimann C. pIGLET: Safe harbor landing sites for reproducible and efficient transgenesis in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570868. [PMID: 38106217 PMCID: PMC10723424 DOI: 10.1101/2023.12.08.570868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Standard methods for transgenesis in zebrafish depend on random transgene integration into the genome followed by resource-intensive screening and validation. Targeted vector integration into validated genomic loci using phiC31 integrase-based attP/attB recombination has transformed mouse and Drosophila transgenesis. However, while the phiC31 system functions in zebrafish, validated loci carrying attP-based landing or safe harbor sites suitable for universal transgenesis applications in zebrafish have not been established. Here, using CRISPR-Cas9, we converted two well-validated single insertion Tol2-based zebrafish transgenes with long-standing genetic stability into two attP landing sites, called phiC31 Integrase Genomic Loci Engineered for Transgenesis (pIGLET). Generating fluorescent reporters, loxP-based Switch lines, CreERT2 drivers, and gene-regulatory variant reporters in the pIGLET14a and pIGLET24b landing site alleles, we document their suitability for transgenesis applications across cell types and developmental stages. For both landing sites, we routinely achieve 25-50% germline transmission of targeted transgene integrations, drastically reducing the number of required animals and necessary resources to generate individual transgenic lines. We document that phiC31 integrase-based transgenesis into pIGLET14a and pIGLET24b reproducibly results in representative reporter expression patterns in injected F0 zebrafish embryos suitable for enhancer discovery and qualitative and quantitative comparison of gene-regulatory element variants. Taken together, our new phiC31 integrase-based transgene landing sites establish reproducible, targeted zebrafish transgenesis for numerous applications while greatly reducing the workload of generating new transgenic zebrafish lines.
Collapse
Affiliation(s)
- Robert L. Lalonde
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Harrison H. Wells
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Cassie L. Kemmler
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Susan Nieuwenhuize
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Raymundo Lerma
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
49
|
Apaydin O, Altaikyzy A, Filosa A, Sawamiphak S. Alpha-1 adrenergic signaling drives cardiac regeneration via extracellular matrix remodeling transcriptional program in zebrafish macrophages. Dev Cell 2023; 58:2460-2476.e7. [PMID: 37875117 DOI: 10.1016/j.devcel.2023.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 06/24/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
The autonomic nervous system plays a pivotal role in cardiac repair. Here, we describe the mechanistic underpinning of adrenergic signaling in fibrotic and regenerative response of the heart to be dependent on immunomodulation. A pharmacological approach identified adrenergic receptor alpha-1 as a key regulator of macrophage phenotypic diversification following myocardial damage in zebrafish. Genetic manipulation and single-cell transcriptomics showed that the receptor signals activation of an "extracellular matrix remodeling" transcriptional program in a macrophage subset, which serves as a key regulator of matrix composition and turnover. Mechanistically, adrenergic receptor alpha-1-activated macrophages determine activation of collagen-12-expressing fibroblasts, a cellular determinant of cardiac regenerative niche, through midkine-mediated paracrine crosstalk, allowing lymphatic and blood vessel growth and cardiomyocyte proliferation at the lesion site. These findings identify the mechanism of adrenergic signaling in macrophage phenotypic and functional determination and highlight the potential of neural modulation for regulation of fibrosis and coordination of myocardial regenerative response.
Collapse
Affiliation(s)
- Onur Apaydin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Akerke Altaikyzy
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alessandro Filosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suphansa Sawamiphak
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
50
|
Rao A, Lyu B, Jahan I, Lubertozzi A, Zhou G, Tedeschi F, Jankowsky E, Kang J, Carstens B, Poss KD, Baskin K, Goldman JA. The translation initiation factor homolog eif4e1c regulates cardiomyocyte metabolism and proliferation during heart regeneration. Development 2023; 150:dev201376. [PMID: 37306388 PMCID: PMC10281269 DOI: 10.1242/dev.201376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
The eIF4E family of translation initiation factors bind 5' methylated caps and act as the limiting step for mRNA translation. The canonical eIF4E1A is required for cell viability, yet other related eIF4E families exist and are utilized in specific contexts or tissues. Here, we describe a family called Eif4e1c, for which we find roles during heart development and regeneration in zebrafish. The Eif4e1c family is present in all aquatic vertebrates but is lost in all terrestrial species. A core group of amino acids shared over 500 million years of evolution forms an interface along the protein surface, suggesting that Eif4e1c functions in a novel pathway. Deletion of eif4e1c in zebrafish caused growth deficits and impaired survival in juveniles. Mutants surviving to adulthood had fewer cardiomyocytes and reduced proliferative responses to cardiac injury. Ribosome profiling of mutant hearts demonstrated changes in translation efficiency of mRNA for genes known to regulate cardiomyocyte proliferation. Although eif4e1c is broadly expressed, its disruption had most notable impact on the heart and at juvenile stages. Our findings reveal context-dependent requirements for translation initiation regulators during heart regeneration.
Collapse
Affiliation(s)
- Anupama Rao
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Baken Lyu
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Ishrat Jahan
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Anna Lubertozzi
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Gao Zhou
- Center for RNA Molecular Biology, Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106USA
| | - Frank Tedeschi
- Center for RNA Molecular Biology, Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106USA
| | - Eckhard Jankowsky
- Center for RNA Molecular Biology, Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bryan Carstens
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kenneth D. Poss
- Department of Cell Biology, Duke Regeneration Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kedryn Baskin
- Department of Cell Biology and Physiology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Joseph Aaron Goldman
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| |
Collapse
|