1
|
Stanley N, Dhawka L, Jaikumar S, Huang YC, Zannas AS. Microglia Single-Cell RNA-Seq Enables Robust and Applicable Markers of Biological Aging. Aging Cell 2025:e70095. [PMID: 40371813 DOI: 10.1111/acel.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/27/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025] Open
Abstract
"Biological aging clocks"-composite molecular markers thought to capture an individual's biological age-have been traditionally developed through bulk-level analyses of mixed cells and tissues. However, recent evidence highlights the importance of gaining single-cell-level insights into the aging process. Microglia are key immune cells in the brain shown to adapt functionally in aging and disease. Recent studies have generated single-cell RNA-sequencing (scRNA-seq) datasets that transcriptionally profile microglia during aging and development. Leveraging such datasets in humans and mice, we develop and compare computational approaches for generating transcriptome-wide summaries from microglia to establish robust and applicable aging clocks. Our results reveal that unsupervised, frequency-based summarization approaches, which encode distributions of cells across molecular subtypes, strike a balance in accuracy, interpretability, and computational efficiency. Notably, our computationally derived microglia markers achieve strong accuracy in predicting chronological age across three diverse single-cell datasets, suggesting that microglia exhibit characteristic changes in gene expression during aging and development that can be computationally summarized to create robust markers of biological aging. We further extrapolate and demonstrate the applicability of single-cell-based microglia clocks to readily available bulk RNA-seq data with an environmental input (early life stress), indicating the potential for broad utility of our models across genomic modalities and for testing hypotheses about how environmental inputs affect brain age. Such single-cell-derived markers can yield insights into the determinants of brain aging, ultimately promoting interventions that beneficially modulate health and disease trajectories.
Collapse
Affiliation(s)
- Natalie Stanley
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Luvna Dhawka
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sneha Jaikumar
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yu-Chen Huang
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anthony S Zannas
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Nie W, Yue Y, Hu J. The role of monocytes and macrophages in the progression of Alzheimer's disease. Front Immunol 2025; 16:1590909. [PMID: 40364847 PMCID: PMC12069055 DOI: 10.3389/fimmu.2025.1590909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by β-amyloid (Aβ) plaques, neurofibrillary tangles (NFTs), and neuroinflammation. Monocytes and macrophages, particularly microglia, play a dual role in AD pathogenesis. In the early stages, they delay disease progression by phagocytosing Aβ, but chronic activation leads to Aβ accumulation and exacerbated neuroinflammation. Monocyte chemoattractant protein 1 (MCP-1) is a key regulator in neuroinflammation, Aβ deposition, and tau pathology, making it a potential therapeutic target. Moreover, recent breakthroughs in fluid and imaging biomarkers and targeted immunomodulatory agents underscore the growing importance of early diagnostic and therapeutic interventions. This review explores the complex interplay between monocytes, macrophages, and AD pathology, highlighting their roles in neuroinflammation, Aβ metabolism, and tau phosphorylation. Understanding these mechanisms offers new insights into developing effective diagnostic biomarkers and therapeutic strategies for AD.
Collapse
Affiliation(s)
- Wenyi Nie
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yingbin Yue
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Jingqing Hu
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Van Hove H, De Feo D, Greter M, Becher B. Central Nervous System Macrophages in Health and Disease. Annu Rev Immunol 2025; 43:589-613. [PMID: 40036702 DOI: 10.1146/annurev-immunol-082423-041334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The central nervous system (CNS) has a unique set of macrophages that seed the tissue early during embryonic development. Microglia reside in the parenchyma, and border-associated macrophages are present in border regions, including the meninges, perivascular spaces, and choroid plexus. CNS-resident macrophages support brain homeostasis during development and steady state. In the diseased brain, however, the immune landscape is altered, with phenotypic and transcriptional changes in resident macrophages and the invasion of blood-borne monocytes, which differentiate into monocyte-derived macrophages upon entering the CNS. In this review, we focus on the fate and function of the macrophage compartment in health, neurodegenerative conditions such as amyloidosis, and neuroinflammation as observed in multiple sclerosis and infection. We discuss our current understanding that monocyte-derived macrophages contribute to neuropathology whereas native macrophages play a neuroprotective role in disease.
Collapse
Affiliation(s)
- Hannah Van Hove
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| |
Collapse
|
4
|
Shi Q, Gutierrez RA, Bhat MA. Microglia, Trem2, and Neurodegeneration. Neuroscientist 2025; 31:159-176. [PMID: 38769824 PMCID: PMC11576490 DOI: 10.1177/10738584241254118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Microglia are a specialized type of neuroimmune cells that undergo morphological and molecular changes through multiple signaling pathways in response to pathological protein aggregates, neuronal death, tissue injury, or infections. Microglia express Trem2, which serves as a receptor for a multitude of ligands enhancing their phagocytic activity. Trem2 has emerged as a critical modulator of microglial activity, especially in many neurodegenerative disorders. Human TREM2 mutations are associated with an increased risk of developing Alzheimer disease (AD) and other neurodegenerative diseases. Trem2 plays dual roles in neuroinflammation and more specifically in disease-associated microglia. Most recent developments on the molecular mechanisms of Trem2, emphasizing its role in uptake and clearance of amyloid β (Aβ) aggregates and other tissue debris to help protect and preserve the brain, are encouraging. Although Trem2 normally stimulates defense mechanisms, its dysregulation can intensify inflammation, which poses major therapeutic challenges. Recent therapeutic approaches targeting Trem2 via agonistic antibodies and gene therapy methodologies present possible avenues for reducing the burden of neurodegenerative diseases. This review highlights the promise of Trem2 as a therapeutic target, especially for Aβ-associated AD, and calls for more mechanistic investigations to understand the context-specific role of microglial Trem2 in developing effective therapies against neurodegenerative diseases.
Collapse
Affiliation(s)
- Qian Shi
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Raul A. Gutierrez
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Manzoor A. Bhat
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| |
Collapse
|
5
|
Xie ZF, Wang SY, Gao Y, Zhang YD, Han YN, Huang J, Gao MN, Wang CG. Vagus nerve stimulation (VNS) preventing postoperative cognitive dysfunction (POCD): two potential mechanisms in cognitive function. Mol Cell Biochem 2025; 480:1343-1357. [PMID: 39138750 DOI: 10.1007/s11010-024-05091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Postoperative cognitive dysfunction (POCD) impacts a significant number of patients annually, frequently impairing their cognitive abilities and resulting in unfavorable clinical outcomes. Aimed at addressing cognitive impairment, vagus nerve stimulation (VNS) is a therapeutic approach, which was used in many mental disordered diseases, through the modulation of vagus nerve activity. In POCD model, the enhancement of cognition function provided by VNS was shown, demonstrating VNS effect on cognition in POCD. In the present study, we primarily concentrates on elucidating the role of the VNS improving the cognitive function in POCD, via two potential mechanisms: the inflammatory microenvironment and epigenetics. This study provided a theoretical support for the feasibility that VNS can be a potential method to enhance cognition function in POCD.
Collapse
Affiliation(s)
- Zi-Feng Xie
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Sheng-Yu Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yuan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Yi-Dan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Ya-Nan Han
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jin Huang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Mei-Na Gao
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
| | - Chun-Guang Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China.
| |
Collapse
|
6
|
Abellanas MA, Purnapatre M, Burgaletto C, Schwartz M. Monocyte-derived macrophages act as reinforcements when microglia fall short in Alzheimer's disease. Nat Neurosci 2025; 28:436-445. [PMID: 39762659 DOI: 10.1038/s41593-024-01847-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/06/2024] [Indexed: 03/12/2025]
Abstract
The central nervous system (CNS) is endowed with its own resident innate immune cells, the microglia. They constitute approximately 10% of the total cells within the CNS parenchyma and act as 'sentinels', sensing and mitigating any deviation from homeostasis. Nevertheless, under severe acute or chronic neurological injury or disease, microglia are unable to contain the damage, and the reparative activity of monocyte-derived macrophages (MDMs) is required. The failure of the microglia under such conditions could be an outcome of their prolonged exposure to hostile stimuli, leading to their exhaustion or senescence. Here, we describe the conditions under which the microglia fall short, focusing mainly on the context of Alzheimer's disease, and shed light on the functions performed by MDMs. We discuss whether and how MDMs engage in cross-talk with the microglia, why their recruitment is often inadequate, and potential ways to augment their homing to the brain in a well-controlled manner.
Collapse
Affiliation(s)
- Miguel A Abellanas
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Chiara Burgaletto
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Wang J, Gao S, Fu S, Li Y, Su L, Li X, Wu G, Jiang J, Zhao Z, Yang C, Wang X, Cui K, Sun X, Qi X, Wang C, Sun H, Shao S, Tian Y, Gong T, Luo J, Zheng J, Cui S, Liao F, Liu F, Wang D, Wong CCL, Yi M, Wan Y. Irisin reprograms microglia through activation of STAT6 and prevents cognitive dysfunction after surgery in mice. Brain Behav Immun 2025; 125:68-91. [PMID: 39701329 DOI: 10.1016/j.bbi.2024.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is common in the aged population and associated with poor clinical outcomes. Irisin, an endogenous molecule that mediates the beneficial effects of exercise, has shown neuroprotective potential in several models of neurological diseases. Here we show that preoperative serum level of irisin is reduced in dementia patients over the age of 70. Comprehensive proteomics analysis reveals that deletion of irisin affects the nervous and immune systems, and reduces the expression of complement proteins. Systemically administered irisin penetrates the blood-brain barrier in mice, targets the microglial integrin αVβ5 receptor, activates signal transducer and activator of transcription 6 (STAT6), induces microglia reprogramming to the M2 phenotype, and improves immune microenvironment in LPS-induced neuroinflammatory mice. Finally, prophylactic administration of irisin prevents POCD-like behavior, particularly early cognitive dysfunction. Our findings provide new insights into the direct regulation of the immune microenvironment by irisin, and reveal that recombinant irisin holds great promise as a novel therapy for preventing POCD and other neuroinflammatory disorders. SUMMARY: Our findings reveal molecular and cellular mechanisms of irisin on neuroinflammation, and show that prophylactic administration of irisin prevents POCD-like behavior, particularly early cognitive dysfunction.
Collapse
Affiliation(s)
- Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shuaixin Gao
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China; Human Nutrition Program, Department of Human Sciences & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Su Fu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Yawei Li
- Department of Anesthesiology, Peking University First Hospital, Beijing 10034, China
| | - Li Su
- Peking University Medical and Health Analysis Center, Peking University, Beijing 10034, China
| | - Xiaoman Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guanghao Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiankuo Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Zifang Zhao
- Department of Pain Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Chaojuan Yang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Xiaoyi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Kun Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China; Beijing Life Science Academy, Beijing 102209, China
| | - Xiaoyan Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Xuetao Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Cheng Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China; Changping Laboratory, Beijing 102206, China
| | - Haojie Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China; UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Shan Shao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Yue Tian
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Tingting Gong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Feifei Liao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China.
| | - Dongxin Wang
- Department of Anesthesiology, Peking University First Hospital, Beijing 10034, China.
| | - Catherine C L Wong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China.
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China; Medical Innovation Center (Taizhou) of Peking University, Taizhou 225316, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China; Medical Innovation Center (Taizhou) of Peking University, Taizhou 225316, China.
| |
Collapse
|
8
|
Puech C, Badran M, Barrow MB, Gozal D. Cognitive Function, Sleep, and Neuroinflammatory Markers in Mice Exposed to Very Long-Term Intermittent Hypoxia. Int J Mol Sci 2025; 26:1815. [PMID: 40076441 PMCID: PMC11899729 DOI: 10.3390/ijms26051815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 03/14/2025] Open
Abstract
Chronic intermittent hypoxia (IH) is one of the hallmark features of obstructive sleep apnea (OSA) and adversely affects neurocognitive and behavioral functioning. However, how the duration of IH correlates with its deleterious effects remains unexplored. We aimed to assess the effects of IH over a prolonged period of time mimicking untreated OSA. Male C57Bl/6J mice were exposed to IH for 96 weeks. Sleep activity was acquired using a piezoelectric system. Novel object recognition (NOR) and the elevated plus maze test (EPMT) were conducted as measures of cognitive function and anxiety, respectively. Brain inflammation was evaluated by a panel of inflammation marker assays. All tests were performed after 16 and 96 weeks of IH exposure. After 96 weeks, sleep percentages during the dark phase decreased in both IH and room air (RA) compared to 16-week exposure (RA: p = 0.0214; IH: p = 0.0188). In addition to age-dependent declines in NOR performance, the mice after 96 weeks of IH exposure had lower NOR preference scores than RA controls (p = 0.0070). The time spent in open arms of the EPMT was reduced in mice exposed to IH compared to RA. Inflammatory marker expression increased in IH-exposed mice. Thus, aging and IH induce similar alterations in sleep, cognition, and neuroinflammation. However, the effects of aging are exacerbated by concurrent IH, suggesting that OSA is a disease associated with an acceleration in biological aging.
Collapse
Affiliation(s)
- Clementine Puech
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA; (C.P.); (M.B.); (M.B.B.)
| | - Mohammad Badran
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA; (C.P.); (M.B.); (M.B.B.)
| | - Max B. Barrow
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA; (C.P.); (M.B.); (M.B.B.)
| | - David Gozal
- Department of Pediatrics and Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
9
|
Wei Y, Xia X, Wang X, Yang W, He S, Wang L, Chen Y, Zhou Y, Chen F, Li H, Peng F, Li G, Xu Z, Fu J, Gao H. Enhanced BBB penetration and microglia-targeting nanomodulator for the two-pronged modulation of chronically activated microglia-mediated neuroinflammation in Alzheimer's disease. Acta Pharm Sin B 2025; 15:1098-1111. [PMID: 40177541 PMCID: PMC11959930 DOI: 10.1016/j.apsb.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/05/2024] [Accepted: 12/25/2024] [Indexed: 04/05/2025] Open
Abstract
Intervention in chronically activated microglia-mediated neuroinflammation is a novel approach to treat Alzheimer's disease (AD). The low permeability of the blood‒brain barrier (BBB) and non-selective distribution in the brain severely restrict AD drugs' disease-modifying efficacy. Here, an immunosuppressant TREM2-lowing antisense oligonucleotides (ASOs) and resveratrol co-loaded cationic liposome is developed as an immune reprogramming nanomodulator modified by acid-cleavable BBB-targeting peptide and microglia-targeting peptide (Res@TcMNP/ASO) for AD management. Res@TcMNP/ASO can enter brain endothelial cells via D-T7 peptides. Then D-T7 undergoes an acid-responsive cleavage, facilitating the escape of Res@MNP/ASO from endo/lysosomes to cross the BBB. The detached Res@MNP/ASO specifically targets M1-phenotype microglia via exposed MG1 peptides to prompt the simultaneous delivery of two drugs into activated microglia. This nanomodulator can not only restore the immune function of microglia through TREM2-lowing ASO but also mitigate the immune stimulation to microglia caused by reactive oxygen species (ROS) through resveratrol, thereby synergistically inhibiting the chronic activation of microglia to alleviate neuroinflammation in AD. Our results indicate that this combination treatment can achieve significant behavioral and cognitive improvements in late APP/PS1 mice.
Collapse
Affiliation(s)
- Ya Wei
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Siqin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lulu Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Yongke Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yang Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guobo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zheng Xu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jintao Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Huile Gao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Yu W, Che C, Yang Y, Zhao Y, Liu J, Chen A, Shi J. Bioactive Self-Assembled Nanoregulator Enhances Hematoma Resolution and Inhibits Neuroinflammation in the Treatment of Intracerebral Hemorrhage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408647. [PMID: 39520083 PMCID: PMC11714160 DOI: 10.1002/advs.202408647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Hematoma and secondary neuroinflammation continue to pose a significant challenge in the clinical treatment of intracerebral hemorrhage (ICH). This study describes a nanoregulator formed through the self-assembly of Mg2+ and signal regulatory protein α (SIRPα) DNAzyme (SDz), aimed at enhancing hematoma resolution and inhibiting neuroinflammation in the treatment of ICH. The structure of SDz collapses in response to the acidic endo/lysosomal microenvironment of microglia, releasing Mg2+ and the SIRPα DNAzyme. The Mg2+ then acts as a cofactor to activate the SIRPα DNAzyme. By blocking the CD47-SIRPα signaling pathway, microglia can rapidly and effectively phagocytose red blood cells (RBCs), thereby promoting the clearance of the hematoma. Simultaneously, Mg2+ reset the microglia to the M2 phenotype by inhibiting the MYD88/MAPK/NF-κB signaling pathway, thereby modulating the inflammatory microenvironment of ICH. This co-delivery and synergistic strategy resulted in a significant reduction in hematoma size, decreasing from 11.90 to 5.84 mm3, and promoted recovery from ICH with minimal systemic side effects. This simple yet highly effective nanoplatform, which involves complex synergistic mechanisms, proves to be effective for ICH therapy and holds great promise for introducing novel perspectives into clinical and translational approaches for ICH.
Collapse
Affiliation(s)
- Wenyan Yu
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
| | - Chengyuan Che
- College of Chemical and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
| | - Yi Yang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
| | - Yuzhen Zhao
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
| | - Junjie Liu
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
| | - Aibing Chen
- College of Chemical and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
| | - Jinjin Shi
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
11
|
Cui C, Wu X, Dong S, Chen B, Zhang T. Remifentanil-induced inflammation in microglial cells: Activation of the PAK4-mediated NF-κB/NLRP3 pathway and onset of hyperalgesia. Brain Behav Immun 2025; 123:334-352. [PMID: 39322089 DOI: 10.1016/j.bbi.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND The perioperative use of remifentanil is associated with postoperative hyperalgesia, which can impair recovery and extend hospitalization. Recent studies have revealed that microglia-mediated activation of the NLRP3 inflammasome plays a critical role in opioid-induced hyperalgesia, with NF-κB acting as a pivotal activation point for NLRP3. Despite these findings, the specific molecular mechanisms underlying remifentanil-induced postoperative hyperalgesia remain unclear. This study aims to develop a model of remifentanil-induced hyperalgesia and investigate the molecular mechanisms, focusing on the NF-κB/NLRP3 pathway, using both in vitro and in vivo approaches. METHOD We established a remifentanil-induced hyperalgesia model and performed proteomic analysis to identify differential protein expression in the spinal cord tissue of rats. NLRP3 or PAK4 antagonists were administered intrathecally in vivo, and mechanical pain thresholds in the hind paws were measured using Von Frey testing. In vitro, we applied NLRP3 or PAK4 inhibitors or used lentivirus infection to silence PAK4, NF-κB, and NLRP3 genes. Protein expression was assessed through immunohistochemistry, immunofluorescence, and Western blotting. Additionally, ELISA was performed to measure IL-1β and IL-18 levels, and RT-qPCR was conducted to evaluate the transcription of target genes. RESULTS Proteomic analysis revealed that remifentanil upregulates PAK4 protein in spinal cord tissue two hours after the surgery. In addition, remifentanil induces morphological changes in the spinal cord dorsal horn, characterized by increased expression of PAK4, p-p65, NLRP3 and Iba-1 proteins, which in turn leads to elevated IL-1β and IL-18 levels and an inflammatory response. Intrathecal injection of NLRP3 or PAK4 inhibitors mitigates remifentanil-induced hyperalgesia and associated changes. In vitro, downregulation of PAK4 inhibits the increase in PAK4, p-p65, NLRP3 and Caspase-1 induced by LPS. Conversely, the downregulation of NLRP3 does not impact the levels of PAK4 and p-p65 proteins, aligning with the in vivo results and suggesting that PAK4 acts as an upstream signaling molecule of NLRP3. CONCLUSION Remifentanil can increase PAK4 expression in spinal cord dorsal horn cells by activating the NF-κB/NLRP3 pathway and mediating microglial activation, thereby contributing to postoperative hyperalgesia.
Collapse
Affiliation(s)
- Chang Cui
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, China; Department of Anesthesiology, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610500, Sichuan Province, China
| | - Xiaochu Wu
- West China Hospital of Sichuan University, Chengdu 610500, Sichuan Province, China
| | - Shuhua Dong
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, China; Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Benzhen Chen
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, China; Department of Anesthesiology, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610500, Sichuan Province, China
| | - Tianyao Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, China; Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China.
| |
Collapse
|
12
|
Le LHD, O'Banion MK, Majewska AK. Partial microglial depletion and repopulation exert subtle but differential effects on amyloid pathology at different disease stages. Sci Rep 2024; 14:30912. [PMID: 39730671 PMCID: PMC11680822 DOI: 10.1038/s41598-024-81910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Colony-stimulating factor-1-receptor (CSF1R) inhibitors have been widely used to rapidly deplete microglia from the brain, allowing the remaining microglia population to self-renew and repopulate. These new-born microglia are thought to be "rejuvenated" and have been shown to be beneficial in several disease contexts and in normal aging. Their role in Alzheimer's disease (AD) is thus of great interest as they represent a potential disease-modifying therapy. Here, we explored the differential effects of microglial depletion and repopulation during amyloid pathology progression using 5xFAD mice. We utilized the CSF1R inhibitor PLX3397 to induce microglial self-renewal and tracked microglia-plaque dynamics with in vivo imaging. We observed transient improvement in plaque burden on different timescales depending on the animal's age. While the improvement in plaque burden did not persist in any age group, renewing microglia during mid- to late-pathology might still be beneficial as we observed a potential improvement in microglial sensitivity to noradrenergic signaling. Altogether, our findings provide further insights into the therapeutic potential of microglial renewal in AD.
Collapse
Affiliation(s)
- L H D Le
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| | - M K O'Banion
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| | - A K Majewska
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA.
- Center for Visual Science, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
13
|
Chiu Y, Xia S, Qiao H, Zhao Z. Genetically Engineered Mouse Models for Alzheimer Disease and Frontotemporal Dementia: New Insights from Single-Cell and Spatial Transcriptomics. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00447-4. [PMID: 39743215 DOI: 10.1016/j.ajpath.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
Neurodegenerative diseases, including Alzheimer disease, frontotemporal dementia, Parkinson disease, Huntington disease, and amyotrophic lateral sclerosis, are often casually linked to protein aggregation and inclusion. As the origins of those proteinopathies have been biochemically traced and genetically mapped, genetically engineered animal models carrying the specific mutations or variants are widely used for investigating the etiology of these diseases, as well as for testing potential therapeutics. This article focuses on the mouse models of Alzheimer disease and closely related frontotemporal dementia, particularly the ones that have provided most valuable knowledge, or are in a trajectory of doing so. More importantly, some of the major findings from these models are summarized, based on the recent single-cell transcriptomics, multiomics, and spatial transcriptomics studies. While no model is perfect, it is hoped that the new insights from these models and the practical use of these models will continue to help to establish a path forward.
Collapse
Affiliation(s)
- Yuanpu Chiu
- Department of Physiology and Biophysics, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California; Neuromedicine PhD Program, Programs in Biomedical and Biological Sciences (PIBBS), Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shangzhou Xia
- Department of Physiology and Biophysics, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California; Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| | - Haowen Qiao
- Department of Physiology and Biophysics, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Zhen Zhao
- Department of Physiology and Biophysics, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California; Neuromedicine PhD Program, Programs in Biomedical and Biological Sciences (PIBBS), Keck School of Medicine, University of Southern California, Los Angeles, California; Neuroscience Graduate Program, University of Southern California, Los Angeles, California.
| |
Collapse
|
14
|
Orlowski A, Karippaparambil J, Paumier JM, Ghanta S, Pallares E, Chandran R, Edmison D, Tandukar J, Gao R, Gowrishankar S. Axonal organelle buildup from loss of AP-4 complex function causes exacerbation of amyloid plaque pathology and gliosis in Alzheimer's disease mouse model. eNeuro 2024; 11:ENEURO.0445-24.2024. [PMID: 39632089 PMCID: PMC11775439 DOI: 10.1523/eneuro.0445-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Lysosomes and related precursor organelles robustly build up in swollen axons that surround amyloid plaques and disrupted axonal lysosome transport has been implicated in worsening Alzheimer's pathology. Our prior studies have revealed that loss of Adaptor protein-4 (AP-4) complex function, linked primarily to Spastic Paraplegia (HSP), leads to a similar build of lysosomes in structures we term "AP-4 dystrophies". Surprisingly, these AP-4 dystrophies were also characterized by enrichment of components of APP processing machinery, β-site cleaving enzyme 1 (BACE1) and Presenilin 2. Our studies examining whether the abnormal axonal lysosome build up resulting from AP-4 loss could lead to amyloidogenesis revealed that the loss of AP-4 complex function in an Alzheimer's disease model resulted in a strong increase in size and abundance of amyloid plaques in the hippocampus and corpus callosum as well as increased microglial association with the plaques. Interestingly, we found a further increase in enrichment of the secretase, BACE1, in the axonal swellings of the plaques of Alzheimer model mice lacking AP-4 complex compared to those having normal AP-4 complex function, suggestive of increased amyloidogenic processing under this condition. Additionally, the exacerbation of plaque pathology was region-specific as it did not increase in the cortex. The burden of the AP-4 linked axonal dystrophies/AP-4 dystrophies was higher in the corpus callosum and hippocampus compared to the cortex, establishing the critical role of AP-4 -dependent axonal lysosome transport and maturation in regulating amyloidogenic amyloid precursor protein processing.Significance Statement A major pathological feature of Alzheimer's disease is the accumulation of axonal lysosomes near sites of amyloid plaques. Lysosome accumulation is thought to contribute to amyloid production. In fact, a genetic perturbation that arrests lysosomes in axons exacerbates amyloid plaque pathology. The mechanisms that control axonal lysosome abundance as well the molecular composition of axonal endolysosomes that produce Abeta, however, are not fully understood. Axonal lysosome build-up is emerging as a common pathology in other neurodegenerative disorders such as Hereditary Spastic Paraplegia (HSP), but its relevance to amyloid production is unknown. We find that a model of HSP caused by loss of AP-4 adaptor complex lead to axonal lysosome buildup that differs in some of its content, but still contributes to amyloidogenesis. This demonstrates that different perturbations leading to changes in heterogeneous pool of axonal lysosomes can converge on a common pathology.
Collapse
Affiliation(s)
- Alex Orlowski
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, Illinois 60612
| | - Joseph Karippaparambil
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, Illinois 60612
| | - Jean-Michel Paumier
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, Illinois 60612
| | - Shraddha Ghanta
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, Illinois 60612
| | - Eduardo Pallares
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, Illinois 60612
| | - Rumamol Chandran
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, Illinois 60612
| | - Daisy Edmison
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, Illinois 60612
| | - Jamuna Tandukar
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| | - Ruixuan Gao
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois 60607
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| | - Swetha Gowrishankar
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, Illinois 60612
| |
Collapse
|
15
|
Tanaka M, Vécsei L. Revolutionizing our understanding of Parkinson's disease: Dr. Heinz Reichmann's pioneering research and future research direction. J Neural Transm (Vienna) 2024; 131:1367-1387. [PMID: 39110245 PMCID: PMC11608389 DOI: 10.1007/s00702-024-02812-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 11/17/2024]
Abstract
Millions of individuals around the world are afflicted with Parkinson's disease (PD), a prevalent and incapacitating neurodegenerative disorder. Dr. Reichmann, a distinguished professor and neurologist, has made substantial advancements in the domain of PD research, encompassing both fundamental scientific investigations and practical applications. His research has illuminated the etiology and treatment of PD, as well as the function of energy metabolism and premotor symptoms. As a precursor to a number of neurotransmitters and neuromodulators that are implicated in the pathophysiology of PD, he has also investigated the application of tryptophan (Trp) derivatives in the disease. His principal findings and insights are summarized and synthesized in this narrative review article, which also emphasizes the challenges and implications for future PD research. This narrative review aims to identify and analyze the key contributions of Reichmann to the field of PD research, with the ultimate goal of informing future research directions in the domain. By examining Reichmann's work, the study seeks to provide a comprehensive understanding of his major contributions and how they can be applied to advance the diagnosis and treatment of PD. This paper also explores the potential intersection of Reichmann's findings with emerging avenues, such as the investigation of Trp and its metabolites, particularly kynurenines, which could lead to new insights and potential therapeutic strategies for managing neurodegenerative disorders like PD.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary.
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| |
Collapse
|
16
|
Seddon AR, MacArthur CP, Hampton MB, Stevens AJ. Inflammation and DNA methylation in Alzheimer's disease: mechanisms of epigenetic remodelling by immune cell oxidants in the ageing brain. Redox Rep 2024; 29:2428152. [PMID: 39579010 PMCID: PMC11587723 DOI: 10.1080/13510002.2024.2428152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease involving memory impairment, confusion, and behavioural changes. The disease is characterised by the accumulation of amyloid beta plaques and neurofibrillary tangles in the brain, which disrupt normal neuronal function. There is no known cure for Alzheimer's disease and due to increasing life expectancy, occurrence is projected to rise over the coming decades. The causes of Alzheimer's disease are multifactorial with inflammation, oxidative stress, genetic and epigenetic variation, and cerebrovascular abnormalities among the strongest contributors. We review the current literature surrounding inflammation and epigenetics in Alzheimer's disease, with a focus on how oxidants from infiltrating immune cells have the potential to alter DNA methylation profiles in the ageing brain.
Collapse
Affiliation(s)
- A. R. Seddon
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - C. P. MacArthur
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - M. B. Hampton
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - A. J. Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
17
|
Orlowski A, Karippaparambil J, Paumier JM, Ghanta S, Pallares E, Chandran R, Edmison D, Tandukar J, Gao R, Gowrishankar S. Axonal organelle buildup from loss of AP-4 complex function causes exacerbation of amyloid plaque pathology and gliosis in Alzheimer's disease mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587499. [PMID: 38617351 PMCID: PMC11014495 DOI: 10.1101/2024.03.31.587499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Lysosomes and related precursor organelles robustly build up in swollen axons that surround amyloid plaques and disrupted axonal lysosome transport has been implicated in worsening Alzheimer's pathology. Our prior studies have revealed that loss of Adaptor protein-4 (AP-4) complex function, linked primarily to Spastic Paraplegia (HSP), leads to a similar build of lysosomes in structures we term "AP-4 dystrophies". Surprisingly, these AP-4 dystrophies were also characterized by enrichment of components of APP processing machinery, β-site cleaving enzyme 1 (BACE1) and Presenilin 2. Our studies examining whether the abnormal axonal lysosome build up resulting from AP-4 loss could lead to amyloidogenesis revealed that the loss of AP-4 complex function in an Alzheimer's disease model resulted in a strong increase in size and abundance of amyloid plaques in the hippocampus and corpus callosum as well as increased microglial association with the plaques. Interestingly, we found a further increase in enrichment of the secretase, BACE1, in the axonal swellings of the plaques of Alzheimer model mice lacking AP-4 complex compared to those having normal AP-4 complex function, suggestive of increased amyloidogenic processing under this condition. Additionally, the exacerbation of plaque pathology was region-specific as it did not increase in the cortex. The burden of the AP-4 linked axonal dystrophies/AP-4 dystrophies was higher in the corpus callosum and hippocampus compared to the cortex, establishing the critical role of AP-4 -dependent axonal lysosome transport and maturation in regulating amyloidogenic amyloid precursor protein processing.
Collapse
Affiliation(s)
- Alex Orlowski
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612 USA
| | - Joseph Karippaparambil
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612 USA
| | - Jean-Michel Paumier
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612 USA
| | - Shraddha Ghanta
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612 USA
| | - Eduardo Pallares
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612 USA
| | - Rumamol Chandran
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612 USA
| | - Daisy Edmison
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612 USA
| | - Jamuna Tandukar
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607 USA
| | - Ruixuan Gao
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607 USA
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607 USA
| | - Swetha Gowrishankar
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612 USA
| |
Collapse
|
18
|
Stanley N, Dhawka L, Jaikumar S, Huang YC, Zannas AS. Leveraging Single-Cell RNA-Seq to Generate Robust Microglia Aging Clocks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.05.616811. [PMID: 39554035 PMCID: PMC11566008 DOI: 10.1101/2024.10.05.616811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
'Biological aging clocks' - composite molecular markers thought to capture an individual's biological age - have been traditionally developed through bulk-level analyses of mixed cells and tissues. However, recent evidence highlights the importance of gaining single-cell-level insights into the aging process. Microglia are key immune cells in the brain shown to adapt functionally in aging and disease. Recent studies have generated single-cell RNA sequencing (scRNA-seq) datasets that transcriptionally profile microglia during aging and development. Leveraging such datasets, we develop and compare computational approaches for generating transcriptome-wide summaries to establish robust microglia aging clocks. Our results reveal that unsupervised, frequency-based featurization approaches strike a balance in accuracy, interpretability, and computational efficiency. We further extrapolate and demonstrate applicability of such microglia clocks to readily available bulk RNA-seq data with environmental inputs. Single-cell-derived clocks can yield insights into the determinants of brain aging, ultimately promoting interventions that beneficially modulate health and disease trajectories.
Collapse
Affiliation(s)
- Natalie Stanley
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill
- Department of Genetics, The University of North Carolina at Chapel Hill
| | - Luvna Dhawka
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill
| | - Sneha Jaikumar
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill
| | - Yu-Chen Huang
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill
| | - Anthony S Zannas
- Department of Psychiatry, The University of North Carolina at Chapel Hill
- Department of Genetics, The University of North Carolina at Chapel Hill
| |
Collapse
|
19
|
Samant RR, Standaert DG, Harms AS. The emerging role of disease-associated microglia in Parkinson's disease. Front Cell Neurosci 2024; 18:1476461. [PMID: 39564189 PMCID: PMC11573507 DOI: 10.3389/fncel.2024.1476461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Disease-associated microglia (DAM) are a subset of microglia that appear at various stages of central nervous system neurodegenerative diseases. DAM were identified using single-cell RNA sequencing within Alzheimer's Disease (AD) where they were characterized by their unique localization near amyloid-β plaques and their phagocytic and lipid-metabolizing features. Unfortunately, activation and etiology of DAM are only understood within the context of AD where Triggering Receptor Expressed On Myeloid Cells 2 (TREM2), a receptor for amyloid-β, appears to be the key regulator in microglial transition to a DAM state. Despite this reliance on TREM2 in AD, DAM appear across other neurodegenerative diseases in which TREM2 may not be a critical player. This begs the question of if DAM are truly the same across all neurodegenerative diseases or if there exists a heterogeneity to DAM across neurodegenerative pathologies. Investigation into this critical gap in the field regarding DAM etiology and activation, as well as DAM function, could be delineated utilizing models of Parkinson's disease (PD) to complement studies in models of AD. Though highly underexplored regarding DAM, PD with its pattern of protein aggregation-associated pathology like AD could serve as the spatiotemporal comparison against AD findings to ascertain the nature of DAM. The experimental vehicle that could guide the future of such investigation is the multi-omics model. With a compound approach focusing on exploring triggers for DAM at the chromatin or mRNA level and related protein output, it becomes possible to strongly characterize and firmly answer the question of what is a DAM.
Collapse
Affiliation(s)
- Ritika R Samant
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David G Standaert
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ashley S Harms
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
20
|
Gessi S, Mirandola P, Merighi S. Keep neuroinflammation in mind when addressing Alzheimer's disease: A microglia perspective. J Alzheimers Dis 2024; 102:314-316. [PMID: 39497292 DOI: 10.1177/13872877241290693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
This commentary offers a detailed examination of a newly published paper on the effects of small molecule decoys of amyloid-β (Aβ) aggregation on microglial activation. It was discovered that the NSC16224 decoy peptide inhibited proinflammatory cytokines TNFα and IL6 release from microglia in response to Aβ40 and Aβ42 treatment. The research addresses the potential of blocking a sequence of events that lead to the progression of Alzheimer's disease (AD). Here, we discuss the significance of these results in neuroinflammation, highlighting the greater implications for how decoy peptides would be interesting for the research and development of new drugs for AD therapy.
Collapse
Affiliation(s)
- Stefania Gessi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Prisco Mirandola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
Wang S, Wu L, Xie Y, Ge S, Wu Y, Chen L, Yi L, Yang J, Duan F, Huang L. Erjingpill bionic cerebrospinal fluid alleviates LPS-induced inflammatory response in BV2 cells by inhibiting glycolysis via mTOR. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118412. [PMID: 38824976 DOI: 10.1016/j.jep.2024.118412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erjingpill, a well-known prescription documented in the classic Chinese medical text "Shengji Zonglu," has been proven to have effective alleviating effects on neuroinflammation in Alzheimer's disease (AD). Although the alterations in microglial cell glycolysis are known to play a crucial role in the development of neuroinflammation, it remains unclear whether the anti-neuroinflammatory effects of Erjingpill are associated with its impact on microglial cell glycolysis. AIM OF THE STUDY This study aims to determine whether Erjingpill exerts anti-neuroinflammatory effects by influencing microglial cell glycolysis. MATERIALS AND METHODS Firstly, Erjingpill decoction was prepared into an Erjingpill bionic cerebrospinal fluid (EBCF) through a process of in vitro intestinal absorption, hepatocyte incubation, and blood-brain barrier (BBB) transcytosis. Subsequently, UPLC/Q-TOF-MS/MS technology was used to analyze the compounds in Erjingpill and EBCF. Next, an in vitro neuroinflammation model was established by LPS-induced BV2 cells. The impact of EBCF on BV2 cell proliferation activity was evaluated using the CCK-8 assay, while the NO release was assessed using the Griess assay. Additionally, mRNA levels of pro-inflammatory factors (IL-1β, IL-6, TNF-α, and COX-2), anti-inflammatory factors (IL-10, IL-4, Arg-1, and TGF-β), M1 microglial markers (iNOS, CD86), M2 microglial markers (CD36, CD206), and glycolytic enzymes (HK2, GLUT1, PKM, and LDHA) were measured using qPCR. Furthermore, protein expression of microglial activation marker Iba-1, M1 marker iNOS, and M2 marker CD206 were identified through immunofluorescence, while concentrations of pro-inflammatory cytokines IL-1β and TNF-α were measured using ELISA. Enzymatic activity of glycolytic enzymes (HK, PK, and LDH) was assessed using assay kits, and the protein levels of pro-inflammatory factors (IL-1β, iNOS, and COX-2), anti-inflammatory factors (IL-10 and Arg-1), and key glycolytic proteins GLUT1 and PI3K/AKT/mTOR were detected by Western blot. RESULTS Through the analysis of Erjingpill and EBCF, 144 compounds were identified in Erjingpill and 40 compounds were identified in EBCF. The results demonstrated that EBCF effectively inhibited the elevation of inflammatory factors and glycolysis levels in LPS-induced BV2 cells, promoted polarization of M1 microglial cells towards the M2 phenotype, and suppressed the PI3K/AKT/mTOR inflammatory pathway. Moreover, EBCF alleviated LPS-induced BV2 cell inflammatory response by modulating mTOR to inhibit glycolysis. CONCLUSIONS EBCF exhibits significant anti-neuroinflammatory effects, likely attributed to its modulation of mTOR to inhibit microglial cell glycolysis. This study furnishes experimental evidence supporting the clinical utilization of Erjingpill for preventing and treating AD.
Collapse
Affiliation(s)
- Shuaikang Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Li Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Yongyan Xie
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Shuchao Ge
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Yi Wu
- Jiangxi Provincial Institute of Food and Drug Inspection and Testing, Nanchang, Jiangxi, 330004, China.
| | - Liping Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Longgen Yi
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Jie Yang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Feipeng Duan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Liping Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China; Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| |
Collapse
|
22
|
Wu W, He Y, Chen Y, Fu Y, He S, Liu K, Qu JY. In vivo imaging in mouse spinal cord reveals that microglia prevent degeneration of injured axons. Nat Commun 2024; 15:8837. [PMID: 39397028 PMCID: PMC11471772 DOI: 10.1038/s41467-024-53218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Microglia, the primary immune cells in the central nervous system, play a critical role in regulating neuronal function and fate through their interaction with neurons. Despite extensive research, the specific functions and mechanisms of microglia-neuron interactions remain incompletely understood. In this study, we demonstrate that microglia establish direct contact with myelinated axons at Nodes of Ranvier in the spinal cord of mice. The contact associated with neuronal activity occurs in a random scanning pattern. In response to axonal injury, microglia rapidly transform their contact into a robust wrapping form, preventing acute axonal degeneration from extending beyond the nodes. This wrapping behavior is dependent on the function of microglial P2Y12 receptors, which may be activated by ATP released through axonal volume-activated anion channels at the nodes. Additionally, voltage-gated sodium channels (NaV) and two-pore-domain potassium (K2P) channels contribute to the interaction between nodes and glial cells following injury, and inhibition of NaV delays axonal degeneration. Through in vivo imaging, our findings reveal a neuroprotective role of microglia during the acute phase of single spinal cord axon injury, achieved through neuron-glia interaction.
Collapse
Grants
- ITCPD/17-9 Innovation and Technology Commission (ITF)
- ITCPD/17-9 Innovation and Technology Commission (ITF)
- 32101211, 32192400 National Natural Science Foundation of China (National Science Foundation of China)
- 82171384 National Natural Science Foundation of China (National Science Foundation of China)
- the Hong Kong Research Grants Council through grants (16102122, 16102123, 16102421, 16102518, 16102920, T13-607/12R, T13-605/18W, T13-602/21N, C6002-17GF, C6001-19E);the Area of Excellence Scheme of the University Grants Committee (AoE/M-604/16, AOE/M-09/12) and the Hong Kong University of Science & Technology (HKUST) through grant 30 for 30 Research Initiative Scheme.
- Guangdong Basic and Applied Basic Research Foundation 2024A1515012414 Shenzhen Medical Research Fund (B2301004)
- Guangzhou Key Projects of Brain Science and Brain-Like Intelligence Technology (20200730009), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (2019SHIBS0001);the Area of Excellence Scheme of the University Grants Committee (AoE/M-604/16); Hong Kong Research Grants Council through grants (T13-602/21N, C6034-21G)
Collapse
Affiliation(s)
- Wanjie Wu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Yingzhu He
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Yujun Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Yiming Fu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Sicong He
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Kai Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, Hong Kong, P. R. China.
- StateKey Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen, Guangdong, China.
- HKUST Shenzhen Research Institute, Guangdong, China.
- Shenzhen-Hong Kong Institute of Brain Science, Guangdong, China.
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, Hong Kong, P. R. China.
- Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
| |
Collapse
|
23
|
Schild H, Bopp T. [Immunological foundations of neurological diseases]. DER NERVENARZT 2024; 95:894-908. [PMID: 38953921 DOI: 10.1007/s00115-024-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Neurodegenerative diseases represent an increasing challenge in ageing societies, as only limited treatment options are currently available. OBJECTIVE New research methods and interdisciplinary interaction of different disciplines have changed the way neurological disorders are viewed and paved the way for the comparatively new field of neuroimmunology, which was established in the early 1980s. Starting from neurological autoimmune diseases, such as multiple sclerosis, knowledge about the involvement of immunological processes in other contexts, such as stroke or traumatic brain injury, has been significantly expanded in recent years. MATERIAL AND METHODS This review article provides an overview of the role of the immune system and the resulting potential for novel treatment approaches. RESULTS The immune system plays a central role in fighting infections but is also able to react to the body's own signals under sterile conditions and cause inflammation and subsequent adaptive immune responses through the release of immune mediators and the recruitment and differentiation of certain immune cell types. This can be beneficial in initiating healing processes; however, chronic inflammatory conditions usually have destructive consequences for the tissue and the organism and must be interrupted. CONCLUSION It is now known that different cells of the immune system play an important role in neurological diseases. Regulatory mechanisms, which are mediated by regulatory T cells or Th2 cells, are usually associated with a good prognosis, whereas inflammatory processes and polarization towards Th1 or Th17 have a destructive character. Novel immunomodulators, which are also increasingly being used in cancer treatment, can now be used in a tissue-specific manner and therefore offer great potential for use in neurological diseases.
Collapse
Affiliation(s)
- Hansjörg Schild
- Institut für Immunologie, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| | - Tobias Bopp
- Institut für Immunologie, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland.
| |
Collapse
|
24
|
Gao T, Huang Z. Novel insights into sevoflurane-induced developmental neurotoxicity mechanisms. Epigenomics 2024; 16:1231-1252. [PMID: 39316776 PMCID: PMC11485883 DOI: 10.1080/17501911.2024.2395250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Aim: This study explores Sevoflurane (Sevo)-induced neurotoxicity mechanisms in neonates through transcriptome sequencing and models.Methods: Seven-day-old mice were exposed to 3% Sevo, and hippocampal tissue was collected for analysis of differentially expressed lncRNAs and mRNAs compared with normal mice. MiR-152-3p was selected, and the interaction between H19, USP30, and miR-152-3p was explored in BV2 microglial cells and mouse hippocampal neurons.Results: Sevo disrupts mitochondrial autophagy via USP30 upregulation, exacerbating neurotoxicity and activating NLRP1 inflammasome-mediated inflammation.Conclusion: Sevo neurotoxicity is mediated through the H19/miR-152-3p/USP30 axis, implicating microglial regulation of neuronal pyroptosis.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, P.R. China
| | - Zeqing Huang
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, P.R. China
| |
Collapse
|
25
|
Yin Y, Ju T, Zeng D, Duan F, Zhu Y, Liu J, Li Y, Lu W. "Inflamed" depression: A review of the interactions between depression and inflammation and current anti-inflammatory strategies for depression. Pharmacol Res 2024; 207:107322. [PMID: 39038630 DOI: 10.1016/j.phrs.2024.107322] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Depression is a common mental disorder, the effective treatment of which remains a challenging issue worldwide. The clinical pathogenesis of depression has been deeply explored, leading to the formulation of various pathogenic hypotheses. Among these, the monoamine neurotransmitter hypothesis holds a prominent position, yet it has significant limitations as more than one-third of patients do not respond to conventional treatments targeting monoamine transmission disturbances. Over the past few decades, a growing body of research has highlighted the link between inflammation and depression as a potential key factor in the pathophysiology of depression. In this review, we first summarize the relationship between inflammation and depression, with a focus on the pathophysiological changes mediated by inflammation in depression. The mechanisms linking inflammation to depression as well as multiple anti-inflammatory strategies are also discussed, and their efficacy and safety are assessed. This review broadens the perspective on specific aspects of using anti-inflammatory strategies for treating depression, laying the groundwork for advancing precision medicine for individuals suffering from "inflamed" depression.
Collapse
Affiliation(s)
- Yishu Yin
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Ting Ju
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Deyong Zeng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Fangyuan Duan
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Yuanbing Zhu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Junlian Liu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing 100094, China.
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| |
Collapse
|
26
|
Yang M, Wei X, Yi X, Jiang DS. Mitophagy-related regulated cell death: molecular mechanisms and disease implications. Cell Death Dis 2024; 15:505. [PMID: 39013891 PMCID: PMC11252137 DOI: 10.1038/s41419-024-06804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/18/2024]
Abstract
During oxidative phosphorylation, mitochondria continuously produce reactive oxygen species (ROS), and untimely ROS clearance can subject mitochondria to oxidative stress, ultimately resulting in mitochondrial damage. Mitophagy is essential for maintaining cellular mitochondrial quality control and homeostasis, with activation involving both ubiquitin-dependent and ubiquitin-independent pathways. Over the past decade, numerous studies have indicated that different forms of regulated cell death (RCD) are connected with mitophagy. These diverse forms of RCD have been shown to be regulated by mitophagy and are implicated in the pathogenesis of a variety of diseases, such as tumors, degenerative diseases, and ischemia‒reperfusion injury (IRI). Importantly, targeting mitophagy to regulate RCD has shown excellent therapeutic potential in preclinical trials, and is expected to be an effective strategy for the treatment of related diseases. Here, we present a summary of the role of mitophagy in different forms of RCD, with a focus on potential molecular mechanisms by which mitophagy regulates RCD. We also discuss the implications of mitophagy-related RCD in the context of various diseases.
Collapse
Affiliation(s)
- Molin Yang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
27
|
Sun Z, Zhang X, So KF, Jiang W, Chiu K. Targeting Microglia in Alzheimer's Disease: Pathogenesis and Potential Therapeutic Strategies. Biomolecules 2024; 14:833. [PMID: 39062547 PMCID: PMC11274940 DOI: 10.3390/biom14070833] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Microglia, as resident macrophages in the central nervous system, play a multifunctional role in the pathogenesis of Alzheimer's disease (AD). Their clustering around amyloid-β (Aβ) deposits is a core pathological feature of AD. Recent advances in single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) have revealed dynamic changes in microglial phenotypes over time and across different brain regions during aging and AD progression. As AD advances, microglia primarily exhibit impaired phagocytosis of Aβ and tau, along with the release of pro-inflammatory cytokines that damage synapses and neurons. Targeting microglia has emerged as a potential therapeutic approach for AD. Treatment strategies involving microglia can be broadly categorized into two aspects: (1) enhancing microglial function: This involves augmenting their phagocytic ability against Aβ and cellular debris and (2) mitigating neuroinflammation: Strategies include inhibiting TNF-α signaling to reduce the neuroinflammatory response triggered by microglia. Clinical trials exploring microglia-related approaches for AD treatment have garnered attention. Additionally, natural products show promise in enhancing beneficial effects and suppressing inflammatory responses. Clarifying microglial dynamics, understanding their roles, and exploring novel therapeutic approaches will advance our fight against AD.
Collapse
Affiliation(s)
- Zhongqing Sun
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xin Zhang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Kwok-Fai So
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou 510632, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Kin Chiu
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
28
|
Diemler CA, MacLean M, Heuer SE, Hewes AA, Marola OJ, Libby RT, Howell GR. Microglia depletion leads to increased susceptibility to ocular hypertension-dependent glaucoma. Front Aging Neurosci 2024; 16:1396443. [PMID: 39015474 PMCID: PMC11250491 DOI: 10.3389/fnagi.2024.1396443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/07/2024] [Indexed: 07/18/2024] Open
Abstract
In recent years, microglia have been highlighted for playing integral roles in neurodegenerative diseases, like glaucoma. To better understand the role of microglia during chronic ocular hypertension, we depleted microglia from aged (9-12 months old) DBA/2 J (D2) mice, which exhibit age-related increases in intraocular pressure, using a dietary CSF1R antagonist, PLX5622. Retinal ganglion cell (RGC) somas were counted, and optic nerve cross-sections stained and assessed for glaucomatous damage. Sustained administration of dietary PLX5622 significantly reduced the numbers of retinal microglia. Dietary PLX5622 did not lead to changes in intraocular pressure in D2 or normotensive DBA/2 J-Gpnmb+ (D2-Gpnmb+ ) control mice. While PLX5622-treated D2-Gpnmb+ did not develop optic nerve damage, PLX5622-treated D2 mice showed a significant increase in moderate-to-severe optic nerve damage compared to D2 mice fed a control diet. In conclusion, global reduction of microglia exacerbated glaucomatous neurodegeneration in D2 mice suggesting microglia play an overall beneficial role in protecting from ocular hypertension associated RGC loss.
Collapse
Affiliation(s)
- Cory A. Diemler
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biological Sciences and Engineering, University of Maine, Orono, ME, United States
| | | | - Sarah E. Heuer
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | | | | | - Richard T. Libby
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biological Sciences and Engineering, University of Maine, Orono, ME, United States
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
29
|
Turner TJ, Brun P, Gruber RC, Ofengeim D. Comparative CNS Pharmacology of the Bruton's Tyrosine Kinase (BTK) Inhibitor Tolebrutinib Versus Other BTK Inhibitor Candidates for Treating Multiple Sclerosis. Drugs R D 2024; 24:263-274. [PMID: 38965189 PMCID: PMC11315827 DOI: 10.1007/s40268-024-00468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Tolebrutinib is a covalent BTK inhibitor designed and selected for potency and CNS exposure to optimize impact on BTK-dependent signaling in CNS-resident cells. We applied a translational approach to evaluate three BTK inhibitors in Phase 3 clinical development in MS with respect to their relative potency to block BTK-dependent signaling and exposure in the CNS METHODS: We used in vitro kinase and cellular activation assays, alongside pharmacokinetic sampling of cerebrospinal fluid (CSF) in the non-human primate cynomolgus to estimate the ability of these candidates (evobrutinib, fenebrutinib, and tolebrutinib) to block BTK-dependent signaling inside the CNS. RESULTS In vitro kinase assays demonstrated that tolebrutinib reacted with BTK 65-times faster than evobrutinib, while fenebrutinib, a classical reversible antagonist with a Ki value of 4.7 nM and slow off-rate (1.54 x 10-5 s-1), also had an association rate 1760-fold slower (0.00245 μM-1 * s-1). Estimates of cellular potency were largely consistent with the in vitro kinase assays, with an estimated IC50 of 0.7 nM for tolebrutinib against 33.5 nM for evobrutinib and 2.9 nM for fenebrutinib. We then observed that evobrutinib, fenebrutinib, and tolebrutinib achieved similar levels of exposure in non-human primate CSF after oral doses of 10 mg/kg. However, tolebrutinib CSF exposure (4.8 ng/mL) (kp,uu CSF=0.40) exceeded the IC90 (the estimated concentration inhibiting 90% of kinase activity) value, while evobrutinib (3.2 ng/mL) (kp,uu CSF=0.13) and fenebrutinib (12.9 ng/mL) (kp,uu CSF=0.15) failed to reach the estimated IC90 values. CONCLUSIONS Tolebrutinib was the only candidate of the three that attained relevant CSF exposure in non-human primates.
Collapse
|
30
|
Demos-Davies K, Lawrence J, Coffey J, Morgan A, Ferreira C, Hoeppner LH, Seelig D. Longitudinal Neuropathological Consequences of Extracranial Radiation Therapy in Mice. Int J Mol Sci 2024; 25:5731. [PMID: 38891920 PMCID: PMC11171684 DOI: 10.3390/ijms25115731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer-related cognitive impairment (CRCI) is a consequence of chemotherapy and extracranial radiation therapy (ECRT). Our prior work demonstrated gliosis in the brain following ECRT in SKH1 mice. The signals that induce gliosis were unclear. Right hindlimb skin from SKH1 mice was treated with 20 Gy or 30 Gy to induce subclinical or clinical dermatitis, respectively. Mice were euthanized at 6 h, 24 h, 5 days, 12 days, and 25 days post irradiation, and the brain, thoracic spinal cord, and skin were collected. The brains were harvested for spatial proteomics, immunohistochemistry, Nanostring nCounter® glial profiling, and neuroinflammation gene panels. The thoracic spinal cords were evaluated by immunohistochemistry. Radiation injury to the skin was evaluated by histology. The genes associated with neurotransmission, glial cell activation, innate immune signaling, cell signal transduction, and cancer were differentially expressed in the brains from mice treated with ECRT compared to the controls. Dose-dependent increases in neuroinflammatory-associated and neurodegenerative-disease-associated proteins were measured in the brains from ECRT-treated mice. Histologic changes in the ECRT-treated mice included acute dermatitis within the irradiated skin of the hindlimb and astrocyte activation within the thoracic spinal cord. Collectively, these findings highlight indirect neuronal transmission and glial cell activation in the pathogenesis of ECRT-related CRCI, providing possible signaling pathways for mitigation strategies.
Collapse
Affiliation(s)
- Kimberly Demos-Davies
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Jessica Coffey
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
| | - Amy Morgan
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Luke H. Hoeppner
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912, USA
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
31
|
Boreland AJ, Stillitano AC, Lin HC, Abbo Y, Hart RP, Jiang P, Pang ZP, Rabson AB. Sustained type I interferon signaling after human immunodeficiency virus type 1 infection of human iPSC derived microglia and cerebral organoids. iScience 2024; 27:109628. [PMID: 38628961 PMCID: PMC11019286 DOI: 10.1016/j.isci.2024.109628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1)-associated neurocognitive disorder (HAND) affects up to half of people living with HIV-1 and causes long term neurological consequences. The pathophysiology of HIV-1-induced glial and neuronal functional deficits in humans remains enigmatic. To bridge this gap, we established a model simulating HIV-1 infection in the central nervous system using human induced pluripotent stem cell (iPSC)-derived microglia combined with sliced neocortical organoids. Incubation of microglia with two replication-competent macrophage-tropic HIV-1 strains (JRFL and YU2) elicited productive infection and inflammatory activation. RNA sequencing revealed significant and sustained activation of type I interferon signaling pathways. Incorporating microglia into sliced neocortical organoids extended the effects of aberrant type I interferon signaling in a human neural context. Collectively, our results illuminate a role for persistent type I interferon signaling in HIV-1-infected microglia in a human neural model, suggesting its potential significance in the pathogenesis of HAND.
Collapse
Affiliation(s)
- Andrew J. Boreland
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Alessandro C. Stillitano
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Hsin-Ching Lin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Yara Abbo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Zhiping P. Pang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Arnold B. Rabson
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Departments of Pharmacology, Pathology & Laboratory Medicine, and Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
32
|
Mancuso R, Fattorelli N, Martinez-Muriana A, Davis E, Wolfs L, Van Den Daele J, Geric I, Premereur J, Polanco P, Bijnens B, Preman P, Serneels L, Poovathingal S, Balusu S, Verfaillie C, Fiers M, De Strooper B. Xenografted human microglia display diverse transcriptomic states in response to Alzheimer's disease-related amyloid-β pathology. Nat Neurosci 2024; 27:886-900. [PMID: 38539015 PMCID: PMC11089003 DOI: 10.1038/s41593-024-01600-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/14/2024] [Indexed: 05/14/2024]
Abstract
Microglia are central players in Alzheimer's disease pathology but analyzing microglial states in human brain samples is challenging due to genetic diversity, postmortem delay and admixture of pathologies. To circumvent these issues, here we generated 138,577 single-cell expression profiles of human stem cell-derived microglia xenotransplanted in the brain of the AppNL-G-F model of amyloid pathology and wild-type controls. Xenografted human microglia adopt a disease-associated profile similar to that seen in mouse microglia, but display a more pronounced human leukocyte antigen or HLA state, likely related to antigen presentation in response to amyloid plaques. The human microglial response also involves a pro-inflammatory cytokine/chemokine cytokine response microglia or CRM response to oligomeric Aβ oligomers. Genetic deletion of TREM2 or APOE as well as APOE polymorphisms and TREM2R47H expression in the transplanted microglia modulate these responses differentially. The expression of other Alzheimer's disease risk genes is differentially regulated across the distinct cell states elicited in response to amyloid pathology. Thus, we have identified multiple transcriptomic cell states adopted by human microglia in a multipronged response to Alzheimer's disease-related pathology, which should be taken into account in translational studies.
Collapse
Affiliation(s)
- Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.
| | - Nicola Fattorelli
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Anna Martinez-Muriana
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Emma Davis
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Leen Wolfs
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Johanna Van Den Daele
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Ivana Geric
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jessie Premereur
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Paula Polanco
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Baukje Bijnens
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Pranav Preman
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lutgarde Serneels
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Suresh Poovathingal
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
| | - Sriram Balusu
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Mark Fiers
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Bart De Strooper
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- UK Dementia Research Institute at UCL, University College London, London, UK.
| |
Collapse
|
33
|
González-Flores D, Márquez A, Casimiro I. Oxidative Effects in Early Stages of Embryo Development Due to Alcohol Consumption. Int J Mol Sci 2024; 25:4100. [PMID: 38612908 PMCID: PMC11012856 DOI: 10.3390/ijms25074100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Alcohol, a widely consumed drug, exerts significant toxic effects on the human organism. This review focuses on its impact during fetal development, when it leads to a spectrum of disorders collectively termed Fetal Alcohol Spectrum Disorders (FASD). Children afflicted by FASD exhibit distinct clinical manifestations, including facial dysmorphism, delayed growth, and neurological and behavioral disorders. These behavioral issues encompass diminished intellectual capacity, memory impairment, and heightened impulsiveness. While the precise mechanisms underlying alcohol-induced fetal damage remain incompletely understood, research indicates a pivotal role for reactive oxygen species (ROS) that are released during alcohol metabolism, inciting inflammation at the cerebral level. Ethanol metabolism amplifies the generation of oxidant molecules, inducing through alterations in enzymatic and non-enzymatic systems responsible for cellular homeostasis. Alcohol consumption disrupts endogenous enzyme activity and fosters lipid peroxidation in consumers, potentially affecting the developing fetus. Addressing this concern, administration of metformin during the prenatal period, corresponding to the third trimester of human pregnancy, emerges as a potential therapeutic intervention for mitigating FASD. This proposed approach holds promise for ameliorating the adverse effects of alcohol exposure on fetal development and warrants further investigation.
Collapse
Affiliation(s)
- David González-Flores
- Department of Anatomy, Cell Biology and Zoology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Antonia Márquez
- Department of Anatomy, Cell Biology and Zoology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Ilda Casimiro
- Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain;
| |
Collapse
|
34
|
Diemler CA, MacLean M, Heuer SE, Hewes AA, Marola OJ, Libby RT, Howell GR. Microglia Depletion leads to Increased Susceptibility to Ocular Hypertension-Dependent Glaucoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583529. [PMID: 38496398 PMCID: PMC10942367 DOI: 10.1101/2024.03.05.583529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In recent years, microglia have been highlighted for playing integral roles in neurodegenerative diseases, like glaucoma. To better understand the role of microglia during chronic ocular hypertension, we depleted microglia from aged (9-12 months old) DBA/2J (D2) mice, which exhibit age-related increases in intraocular pressure, using a dietary CSF1R antagonist, PLX5622. Retinal ganglion cell (RGC) somas were counted, and optic nerve cross-sections stained and assessed for glaucomatous damage. Sustained administration of dietary PLX5622 significantly reduced the numbers of retinal microglia. Dietary PLX5622 did not lead to changes in intraocular pressure in D2 or normotensive DBA/2J-Gpnmb+ (D2-Gpnmb+) control mice. While PLX5622-treated D2-Gpnmb+ did not develop optic nerve damage, PLX5622-treated D2 mice showed a significant increase in moderate-to-severe optic nerve damage compared to D2 mice fed a control diet. In conclusion, global reduction of microglia exacerbated glaucomatous neurodegeneration in D2 mice suggesting microglia play an overall beneficial role in protecting from ocular hypertension associated RGC loss.
Collapse
Affiliation(s)
- Cory A. Diemler
- The Jackson Laboratory, Bar Harbor, ME
- Graduate School of Biological Sciences and Engineering, University of Maine, Orono, ME
| | | | - Sarah E. Heuer
- The Jackson Laboratory, Bar Harbor, ME
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | | | | | - Richard T. Libby
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, ME
- Graduate School of Biological Sciences and Engineering, University of Maine, Orono, ME
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
35
|
Romenskaja D, Jonavičė U, Tunaitis V, Pivoriūnas A. Extracellular vesicles from oral mucosa stem cells promote lipid raft formation in human microglia through TLR4, P2X4R, and αVβ3/αVβ5 signaling pathways. Cell Biol Int 2024; 48:358-368. [PMID: 38100213 DOI: 10.1002/cbin.12111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/24/2023] [Accepted: 12/01/2023] [Indexed: 02/15/2024]
Abstract
Targeting of disease-associated microglia represents a promising therapeutic approach that can be used for the prevention or slowing down neurodegeneration. In this regard, the use of extracellular vesicles (EVs) represents a promising therapeutic approach. However, the molecular mechanisms by which EVs regulate microglial responses remain poorly understood. In the present study, we used EVs derived from human oral mucosa stem cells (OMSCs) to investigate the effects on the lipid raft formation and the phagocytic response of human microglial cells. Lipid raft labeling with fluorescent cholera toxin subunit B conjugates revealed that both EVs and lipopolysaccharide (LPS) by more than two times increased lipid raft formation in human microglia. By contrast, combined treatment with LPS and EVs significantly decreased lipid raft formation indicating possible interference of EVs with the process of LPS-induced lipid raft formation. Specific inhibition of Toll-like receptor 4 (TLR4) with anti-TLR4 antibody as well as inhibition of purinergic P2X4 receptor (P2X4R) with selective antagonist 5-BDBD inhibited EVs- and LPS-induced lipid raft formation. Selective blockage of αvβ3/αvβ5 integrins with cilengitide suppressed EV- and LPS-induced lipid raft formation in microglia. Furthermore, inhibition of TLR4 and P2X4R prevented EV-induced phagocytic activity of human microglial cells. We demonstrate that EVs induce lipid raft formation in human microglia through interaction with TLR4, P2X4R, and αVβ3/αVβ5 signaling pathways. Our results provide new insights about the molecular mechanisms regulating EV/microglia interactions and could be used for the development of new therapeutic strategies against neurological disorders.
Collapse
Affiliation(s)
- Diana Romenskaja
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ugnė Jonavičė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Virginijus Tunaitis
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
36
|
Bobotis BC, Halvorson T, Carrier M, Tremblay MÈ. Established and emerging techniques for the study of microglia: visualization, depletion, and fate mapping. Front Cell Neurosci 2024; 18:1317125. [PMID: 38425429 PMCID: PMC10902073 DOI: 10.3389/fncel.2024.1317125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
The central nervous system (CNS) is an essential hub for neuronal communication. As a major component of the CNS, glial cells are vital in the maintenance and regulation of neuronal network dynamics. Research on microglia, the resident innate immune cells of the CNS, has advanced considerably in recent years, and our understanding of their diverse functions continues to grow. Microglia play critical roles in the formation and regulation of neuronal synapses, myelination, responses to injury, neurogenesis, inflammation, and many other physiological processes. In parallel with advances in microglial biology, cutting-edge techniques for the characterization of microglial properties have emerged with increasing depth and precision. Labeling tools and reporter models are important for the study of microglial morphology, ultrastructure, and dynamics, but also for microglial isolation, which is required to glean key phenotypic information through single-cell transcriptomics and other emerging approaches. Strategies for selective microglial depletion and modulation can provide novel insights into microglia-targeted treatment strategies in models of neuropsychiatric and neurodegenerative conditions, cancer, and autoimmunity. Finally, fate mapping has emerged as an important tool to answer fundamental questions about microglial biology, including their origin, migration, and proliferation throughout the lifetime of an organism. This review aims to provide a comprehensive discussion of these established and emerging techniques, with applications to the study of microglia in development, homeostasis, and CNS pathologies.
Collapse
Affiliation(s)
- Bianca Caroline Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
| | - Torin Halvorson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec City, QC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
37
|
Li H, Eyo UB. The diversity, destiny, and memory of DAMs. Immunity 2024; 57:200-202. [PMID: 38354699 DOI: 10.1016/j.immuni.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Disease-associated microglia (DAMs) are a unique microglial state in development and various CNS pathologies. In this issue of Immunity, Lan and colleagues provide novel insights into the diversity of DAMs in CNS diseases, revealing their terminal fate following juvenile stroke verses their reversible fate following neonatal stroke and their ability to maintain immune memory upon return to homeostatic states.
Collapse
Affiliation(s)
- Hongbin Li
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Ukpong B Eyo
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
38
|
Cadiz MP, Gibson KA, Todd KT, Nascari DG, Massa N, Lilley MT, Olney KC, Al-Amin MM, Jiang H, Holtzman DM, Fryer JD. Aducanumab anti-amyloid immunotherapy induces sustained microglial and immune alterations. J Exp Med 2024; 221:e20231363. [PMID: 38226975 PMCID: PMC10791560 DOI: 10.1084/jem.20231363] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/01/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Aducanumab, an anti-amyloid immunotherapy for Alzheimer's disease, efficiently reduces Aβ, though its plaque clearance mechanisms, long-term effects, and effects of discontinuation are not fully understood. We assessed the effect of aducanumab treatment and withdrawal on Aβ, neuritic dystrophy, astrocytes, and microglia in the APP/PS1 amyloid mouse model. We found that reductions in amyloid and neuritic dystrophy during acute treatment were accompanied by microglial and astrocytic activation, and microglial recruitment to plaques and adoption of an aducanumab-specific pro-phagocytic and pro-degradation transcriptomic signature, indicating a role for microglia in aducanumab-mediated Aβ clearance. Reductions in Aβ and dystrophy were sustained 15 but not 30 wk after discontinuation, and reaccumulation of plaques coincided with loss of the microglial aducanumab signature and failure of microglia to reactivate. This suggests that despite the initial benefit from treatment, microglia are unable to respond later to restrain plaque reaccumulation, making further studies on the effect of amyloid-directed immunotherapy withdrawal crucial for assessing long-term safety and efficacy.
Collapse
Affiliation(s)
- Mika P. Cadiz
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Kennedi T. Todd
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, USA
| | - David G. Nascari
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, USA
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Scottsdale, AZ, USA
- MD/PhD Training Program, Mayo Clinic, Scottsdale, AZ, USA
| | - Nashali Massa
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Scottsdale, AZ, USA
| | - Meredith T. Lilley
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Md Mamun Al-Amin
- Department of Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hong Jiang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Scottsdale, AZ, USA
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Scottsdale, AZ, USA
- MD/PhD Training Program, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
39
|
Lai J, Demirbas D, Kim J, Jeffries AM, Tolles A, Park J, Chittenden TW, Buckley PG, Yu TW, Lodato MA, Lee EA. ATM-deficiency-induced microglial activation promotes neurodegeneration in ataxia-telangiectasia. Cell Rep 2024; 43:113622. [PMID: 38159274 PMCID: PMC10908398 DOI: 10.1016/j.celrep.2023.113622] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
While ATM loss of function has long been identified as the genetic cause of ataxia-telangiectasia (A-T), how it leads to selective and progressive degeneration of cerebellar Purkinje and granule neurons remains unclear. ATM expression is enriched in microglia throughout cerebellar development and adulthood. Here, we find evidence of microglial inflammation in the cerebellum of patients with A-T using single-nucleus RNA sequencing. Pseudotime analysis revealed that activation of A-T microglia preceded upregulation of apoptosis-related genes in granule and Purkinje neurons and that microglia exhibited increased neurotoxic cytokine signaling to granule and Purkinje neurons in A-T. To confirm these findings experimentally, we performed transcriptomic profiling of A-T induced pluripotent stem cell (iPSC)-derived microglia, which revealed cell-intrinsic microglial activation of cytokine production and innate immune response pathways compared to controls. Furthermore, A-T microglia co-culture with either control or A-T iPSC-derived neurons was sufficient to induce cytotoxicity. Taken together, these studies reveal that cell-intrinsic microglial activation may promote neurodegeneration in A-T.
Collapse
Affiliation(s)
- Jenny Lai
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Neuroscience, Harvard University, Boston, MA 02115, USA
| | - Didem Demirbas
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Junho Kim
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ailsa M Jeffries
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Allie Tolles
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Junseok Park
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas W Chittenden
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Computational Statistics and Bioinformatics Group, Genuity AI Research Institute, Genuity Science, Boston, MA 02114, USA
| | | | - Timothy W Yu
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael A Lodato
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
40
|
Tewari M, Michalski S, Egan TM. Modulation of Microglial Function by ATP-Gated P2X7 Receptors: Studies in Rat, Mice and Human. Cells 2024; 13:161. [PMID: 38247852 PMCID: PMC10814008 DOI: 10.3390/cells13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
P2X receptors are a family of seven ATP-gated ion channels that trigger physiological and pathophysiological responses in a variety of cells. Five of the family members are sensitive to low concentrations of extracellular ATP, while the P2X6 receptor has an unknown affinity. The last subtype, the P2X7 receptor, is unique in requiring millimolar concentrations to fully activate in humans. This low sensitivity imparts the agonist with the ability to act as a damage-associated molecular pattern that triggers the innate immune response in response to the elevated levels of extracellular ATP that accompany inflammation and tissue damage. In this review, we focus on microglia because they are the primary immune cells of the central nervous system, and they activate in response to ATP or its synthetic analog, BzATP. We start by introducing purinergic receptors and then briefly consider the roles that microglia play in neurodevelopment and disease by referencing both original works and relevant reviews. Next, we move to the role of extracellular ATP and P2X receptors in initiating and/or modulating innate immunity in the central nervous system. While most of the data that we review involve work on mice and rats, we highlight human studies of P2X7R whenever possible.
Collapse
|
41
|
Frumer GR, Shin SH, Jung S, Kim JS. Not just Glia-Dissecting brain macrophages in the mouse. Glia 2024; 72:5-18. [PMID: 37501579 DOI: 10.1002/glia.24445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Macrophages have emerged as critical cellular components of the central nervous system (CNS), promoting development, maintenance, and immune defense of the CNS. Here we will review recent advances in our understanding of brain macrophage heterogeneity, including microglia and border-associated macrophages, focusing on the mouse. Emphasis will be given to the discussion of strengths and limitations of the experimental approaches that have led to the recent insights and hold promise to further deepen our mechanistic understanding of brain macrophages that might eventually allow to harness their activities for the management of CNS pathologies.
Collapse
Affiliation(s)
- Gal Ronit Frumer
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sun-Hye Shin
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jung-Seok Kim
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
42
|
Kokkosis AG, Madeira MM, Hage Z, Valais K, Koliatsis D, Resutov E, Tsirka SE. Chronic psychosocial stress triggers microglial-/macrophage-induced inflammatory responses leading to neuronal dysfunction and depressive-related behavior. Glia 2024; 72:111-132. [PMID: 37675659 PMCID: PMC10842267 DOI: 10.1002/glia.24464] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Chronic environmental stress and traumatic social experiences induce maladaptive behavioral changes and is a risk factor for major depressive disorder (MDD) and various anxiety-related psychiatric disorders. Clinical studies and animal models of chronic stress have reported that symptom severity is correlated with innate immune responses and upregulation of neuroinflammatory cytokine signaling in brain areas implicated in mood regulation (mPFC; medial Prefrontal Cortex). Despite increasing evidence implicating impairments of neuroplasticity and synaptic signaling deficits into the pathophysiology of stress-related mental disorders, how microglia may modulate neuronal homeostasis in response to chronic stress has not been defined. Here, using the repeated social defeat stress (RSDS) mouse model we demonstrate that microglial-induced inflammatory responses are regulating neuronal plasticity associated with psychosocial stress. Specifically, we show that chronic stress induces a rapid activation and proliferation of microglia as well as macrophage infiltration in the mPFC, and these processes are spatially related to neuronal activation. Moreover, we report a significant association of microglial inflammatory responses with susceptibility or resilience to chronic stress. In addition, we find that exposure to chronic stress exacerbates phagocytosis of synaptic elements and deficits in neuronal plasticity. Importantly, by utilizing two different CSF1R inhibitors (the brain penetrant PLX5622 and the non-penetrant PLX73086) we highlight a crucial role for microglia (and secondarily macrophages) in catalyzing the pathological manifestations linked to psychosocial stress in the mPFC and the resulting behavioral deficits usually associated with depression.
Collapse
Affiliation(s)
- Alexandros G. Kokkosis
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Miguel M. Madeira
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Zachary Hage
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Kimonas Valais
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Dimitris Koliatsis
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Emran Resutov
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Stella E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| |
Collapse
|
43
|
Kodosaki E, Daniels-Morgan A, Hassan N, Webb R, Morris K, Kelly CM. Development and characterisation of mgTHP-1, a novel in vitro model for neural macrophages with microglial characteristics. Neurol Res 2024; 46:1-13. [PMID: 37935114 DOI: 10.1080/01616412.2023.2257422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/23/2023] [Indexed: 11/09/2023]
Abstract
Neuroinflammation is primarily characterised by activation of the brain's resident macrophages - the microglia. However, other central nervous system (CNS) cells also contribute to this response, including the astrocytes and endothelial cells. In addition, there is infiltration into the CNS of peripherally derived immune cells. Together these cells mediate inflammation by the production of cytokines, chemokines, reactive oxygen species, and secondary messengers, and enacting of the appropriate response to those signals. However, deciphering the specific contributions of each cell type has been challenging. Studying CNS cell biology is often challenging, as the isolation of primary cells is not always feasible, and differentiation towards microglia-like cells is complex. Here, we demonstrate a novel method whereby THP-1 monocytic cells are differentiated into neural macrophage cells with microglia-like cell characteristics. The cells, designated mgTHP-1, show typical morphological and gene expression patterns of resident CNS macrophages and functionally respond to inflammatory stimuli by producing inflammatory cytokines. Furthermore, with the addition of Vicenin-2 (an anti-inflammatory flavonoid) such responses can be reversed. This novel cell model will allow further investigations, and hence insights, into the neuroinflammatory mechanisms associated with CNS diseases.
Collapse
Affiliation(s)
- E Kodosaki
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - A Daniels-Morgan
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - N Hassan
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - R Webb
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - K Morris
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - C M Kelly
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
44
|
Malvaso A, Gatti A, Negro G, Calatozzolo C, Medici V, Poloni TE. Microglial Senescence and Activation in Healthy Aging and Alzheimer's Disease: Systematic Review and Neuropathological Scoring. Cells 2023; 12:2824. [PMID: 38132144 PMCID: PMC10742050 DOI: 10.3390/cells12242824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The greatest risk factor for neurodegeneration is the aging of the multiple cell types of human CNS, among which microglia are important because they are the "sentinels" of internal and external perturbations and have long lifespans. We aim to emphasize microglial signatures in physiologic brain aging and Alzheimer's disease (AD). A systematic literature search of all published articles about microglial senescence in human healthy aging and AD was performed, searching for PubMed and Scopus online databases. Among 1947 articles screened, a total of 289 articles were assessed for full-text eligibility. Microglial transcriptomic, phenotypic, and neuropathological profiles were analyzed comprising healthy aging and AD. Our review highlights that studies on animal models only partially clarify what happens in humans. Human and mice microglia are hugely heterogeneous. Like a two-sided coin, microglia can be protective or harmful, depending on the context. Brain health depends upon a balance between the actions and reactions of microglia maintaining brain homeostasis in cooperation with other cell types (especially astrocytes and oligodendrocytes). During aging, accumulating oxidative stress and mitochondrial dysfunction weaken microglia leading to dystrophic/senescent, otherwise over-reactive, phenotype-enhancing neurodegenerative phenomena. Microglia are crucial for managing Aβ, pTAU, and damaged synapses, being pivotal in AD pathogenesis.
Collapse
Affiliation(s)
- Antonio Malvaso
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Alberto Gatti
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Giulia Negro
- Department of Neurology, University of Milano Bicocca, 20126 Milan, Italy;
| | - Chiara Calatozzolo
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| | - Valentina Medici
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| |
Collapse
|
45
|
Li C, Wang H, Tang Y, Wu J. Characterization of the circRNA Landscape in Interleukin-4 Induced Anti-Inflammatory Microglia. Biomedicines 2023; 11:3239. [PMID: 38137460 PMCID: PMC10740700 DOI: 10.3390/biomedicines11123239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Microglia are resident innate immune cells that play an essential role in the development and surveillance of the central nervous system as well as the shared pathogenesis of neurodegenerative diseases. Microglia rapidly respond to multiple inflammatory stimuli and activate towards different phenotypes, such as pro-inflammatory and anti-inflammatory phenotypes. Cytokines, epigenetic and long non-coding RNA modulations have been shown to regulate microglial activation; however, the role of circRNAs in microglia-mediated neuroinflammation remains elusive. Here, we performed circRNA sequencing in IL-4-treated anti-inflammatory microglia and discovered 120 differentially expressed circRNAs. We systemically verified the identities of circRNAs by assays of PCR, RNase R treatment and fluorescent in situ hybridization (FISH), among others. We found that circAdgre1 promoted IL-4-induced anti-inflammatory responses and further conferred neuroprotective effects upon lipopolysaccharide (LPS) stimuli. Taken together, our results show that circRNAs might be possible therapeutic targets for microglia-mediated neuroinflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chaoyi Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (C.L.); (H.W.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huakun Wang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (C.L.); (H.W.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yu Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (C.L.); (H.W.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
46
|
Wu JJ, Wei Z. Advances in the study of the effects of gut microflora on microglia in Alzheimer's disease. Front Mol Neurosci 2023; 16:1295916. [PMID: 38098943 PMCID: PMC10720669 DOI: 10.3389/fnmol.2023.1295916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023] Open
Abstract
Alzheimer's disease (AD) is a central nervous system (CNS) degenerative disorder, is caused by various factors including β-amyloid toxicity, hyperphosphorylation of tau protein, oxidative stress, and others. The dysfunction of microglia has been associated with the onset and advancement of different neurodevelopmental and neurodegenerative disorders, such as AD. The gut of mammals harbors a vast and complex population of microorganisms, commonly referred to as the microbiota. There's a growing recognition that these gut microbes are intrinsically intertwined with mammalian physiology. Through the circulation of metabolites, they establish metabolic symbiosis, enhance immune function, and establish communication with different remote cells, including those in the brain. The gut microbiome plays a crucial part in influencing the development and performance of microglia, as indicated by recent preclinical studies. Dysbiosis of the intestinal flora leads to alterations in the microglia transcriptome that regulate the interconversion of microglia subtypes. This conversation explores recent research that clarifies how gut bacteria, their byproducts, and harmful elements affect the activation and characteristics of microglia. This understanding opens doors to innovative microbial-based therapeutic strategies for early identification and treatment goals in AD.
Collapse
Affiliation(s)
- Jin-Jing Wu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhe Wei
- School of Medicine, Lishui University, Lishui, Zhejiang, China
- Institute of Breast Oncology, Lishui University Medical College, Lishui, Zhejiang, China
| |
Collapse
|
47
|
Barbalace MC, Freschi M, Rinaldi I, Mazzara E, Maraldi T, Malaguti M, Prata C, Maggi F, Petrelli R, Hrelia S, Angeloni C. Identification of Anti-Neuroinflammatory Bioactive Compounds in Essential Oils and Aqueous Distillation Residues Obtained from Commercial Varieties of Cannabis sativa L. Int J Mol Sci 2023; 24:16601. [PMID: 38068924 PMCID: PMC10706820 DOI: 10.3390/ijms242316601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Neuroinflammation, which is mainly triggered by microglia, is a key contributor to multiple neurodegenerative diseases. Natural products, and in particular Cannabis sativa L., due to its richness in phytochemical components, represent ideal candidates to counteract neuroinflammation. We previously characterized different C. sativa commercial varieties which showed significantly different chemical profiles. On these bases, the aim of this study was to evaluate essential oils and aqueous distillation residues from the inflorescences of three different hemp varieties for their anti-neuroinflammatory activity in BV-2 microglial cells. Cells were pretreated with aqueous residues or essential oils and then activated with LPS. Unlike essential oils, aqueous residues showed negligible effects in terms of anti-inflammatory activity. Among the essential oils, the one obtained from 'Gorilla Glue' was the most effective in inhibiting pro-inflammatory mediators and in upregulating anti-inflammatory ones through the modulation of the p38 MAPK/NF-κB pathway. Moreover, the sesquiterpenes (E)-caryophyllene, α-humulene, and caryophyllene oxide were identified as the main contributors to the essential oils' anti-inflammatory activity. To our knowledge, the anti-neuroinflammatory activity of α-humulene has not been previously described. In conclusion, our work shows that C. sativa essential oils characterized by high levels of sesquiterpenes can be promising candidates in the prevention/counteraction of neuroinflammation.
Collapse
Affiliation(s)
- Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Irene Rinaldi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Eugenia Mazzara
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (E.M.); (F.M.); (R.P.)
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41125 Modena, Italy;
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy;
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (E.M.); (F.M.); (R.P.)
| | - Riccardo Petrelli
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (E.M.); (F.M.); (R.P.)
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| |
Collapse
|
48
|
Zou P, Wu C, Liu TCY, Duan R, Yang L. Oligodendrocyte progenitor cells in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2023; 12:52. [PMID: 37964328 PMCID: PMC10644503 DOI: 10.1186/s40035-023-00385-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) play pivotal roles in myelin formation and phagocytosis, communicating with neighboring cells and contributing to the integrity of the blood-brain barrier (BBB). However, under the pathological circumstances of Alzheimer's disease (AD), the brain's microenvironment undergoes detrimental changes that significantly impact OPCs and their functions. Starting with OPC functions, we delve into the transformation of OPCs to myelin-producing oligodendrocytes, the intricate signaling interactions with other cells in the central nervous system (CNS), and the fascinating process of phagocytosis, which influences the function of OPCs and affects CNS homeostasis. Moreover, we discuss the essential role of OPCs in BBB formation and highlight the critical contribution of OPCs in forming CNS-protective barriers. In the context of AD, the deterioration of the local microenvironment in the brain is discussed, mainly focusing on neuroinflammation, oxidative stress, and the accumulation of toxic proteins. The detrimental changes disturb the delicate balance in the brain, impacting the regenerative capacity of OPCs and compromising myelin integrity. Under pathological conditions, OPCs experience significant alterations in migration and proliferation, leading to impaired differentiation and a reduced ability to produce mature oligodendrocytes. Moreover, myelin degeneration and formation become increasingly active in AD, contributing to progressive neurodegeneration. Finally, we summarize the current therapeutic approaches targeting OPCs in AD. Strategies to revitalize OPC senescence, modulate signaling pathways to enhance OPC differentiation, and explore other potential therapeutic avenues are promising in alleviating the impact of AD on OPCs and CNS function. In conclusion, this review highlights the indispensable role of OPCs in CNS function and their involvement in the pathogenesis of AD. The intricate interplay between OPCs and the AD brain microenvironment underscores the complexity of neurodegenerative diseases. Insights from studying OPCs under pathological conditions provide a foundation for innovative therapeutic strategies targeting OPCs and fostering neurodegeneration. Future research will advance our understanding and management of neurodegenerative diseases, ultimately offering hope for effective treatments and improved quality of life for those affected by AD and related disorders.
Collapse
Affiliation(s)
- Peibin Zou
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
49
|
Stillman JM, Mendes Lopes F, Lin JP, Hu K, Reich DS, Schafer DP. Lipofuscin-like autofluorescence within microglia and its impact on studying microglial engulfment. Nat Commun 2023; 14:7060. [PMID: 37923732 PMCID: PMC10624656 DOI: 10.1038/s41467-023-42809-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
Engulfment of cellular material and proteins is a key function for microglia, a resident macrophage of the central nervous system (CNS). Among the techniques used to measure microglial engulfment, confocal light microscopy has been used the most extensively. Here, we show that autofluorescence (AF) likely due to lipofuscin (lipo-AF) and typically associated with aging, can also be detected within microglial lysosomes in the young mouse brain by light microscopy. This lipo-AF signal accumulates first within microglia and it occurs earliest in white versus gray matter. Importantly, in gray matter, lipo-AF signal can confound the interpretation of antibody-labeled synaptic material within microglia in young adult mice. We further show that there is an age-dependent accumulation of lipo-AF inside and outside of microglia, which is not affected by amyloid plaques. We finally implement a robust and cost-effective strategy to quench AF in mouse, marmoset, and human brain tissue.
Collapse
Affiliation(s)
- Jacob M Stillman
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- University of Massachusetts Chan Morningside Graduate School of Biomedical Sciences, Neuroscience Program, Worcester, MA, USA
| | - Francisco Mendes Lopes
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jing-Ping Lin
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin Hu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
50
|
Dave BP, Shah YB, Maheshwari KG, Mansuri KA, Prajapati BS, Postwala HI, Chorawala MR. Pathophysiological Aspects and Therapeutic Armamentarium of Alzheimer's Disease: Recent Trends and Future Development. Cell Mol Neurobiol 2023; 43:3847-3884. [PMID: 37725199 PMCID: PMC11407742 DOI: 10.1007/s10571-023-01408-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Alzheimer's disease (AD) is the primary cause of dementia and is characterized by the death of brain cells due to the accumulation of insoluble amyloid plaques, hyperphosphorylation of tau protein, and the formation of neurofibrillary tangles within the cells. AD is also associated with other pathologies such as neuroinflammation, dysfunction of synaptic connections and circuits, disorders in mitochondrial function and energy production, epigenetic changes, and abnormalities in the vascular system. Despite extensive research conducted over the last hundred years, little is established about what causes AD or how to effectively treat it. Given the severity of the disease and the increasing number of affected individuals, there is a critical need to discover effective medications for AD. The US Food and Drug Administration (FDA) has approved several new drug molecules for AD management since 2003, but these drugs only provide temporary relief of symptoms and do not address the underlying causes of the disease. Currently, available medications focus on correcting the neurotransmitter disruption observed in AD, including cholinesterase inhibitors and an antagonist of the N-methyl-D-aspartate (NMDA) receptor, which temporarily alleviates the signs of dementia but does not prevent or reverse the course of AD. Research towards disease-modifying AD treatments is currently underway, including gene therapy, lipid nanoparticles, and dendrimer-based therapy. These innovative approaches aim to target the underlying pathological processes of AD rather than just managing the symptoms. This review discusses the novel aspects of pathogenesis involved in the causation of AD of AD and in recent developments in the therapeutic armamentarium for the treatment of AD such as gene therapy, lipid nanoparticles, and dendrimer-based therapy, and many more.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Yesha B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kunal G Maheshwari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kaif A Mansuri
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Bhadrawati S Prajapati
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Humzah I Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|