1
|
Wang J, Gao Y, Wang B, Zhang C, Yuan Y, Xu R, Ji H, Zhang X. Low-Intensity Pulsed Ultrasound Promotes Oligodendrocyte Maturation and Remyelination by Down-regulating the Interleukin-17A/Notch1 Signaling Pathway in Mice with Ischemic Stroke. RESEARCH (WASHINGTON, D.C.) 2025; 8:0676. [PMID: 40290135 PMCID: PMC12022504 DOI: 10.34133/research.0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025]
Abstract
Increasing evidence indicates that oligodendrocyte (OL) numbers and myelin as a dynamic cellular compartment perform a key role in the maintenance of neuronal function. Inhibiting white matter (WM) demyelination or promoting remyelination has garnered interest for its potential therapeutic strategy against ischemic stroke. Our previous work has shown that low-intensity pulsed ultrasound (LIPUS) could improve stroke recovery. However, it is unclear whether LIPUS can maintain WM integrity early after stroke or promote late WM repair. This study evaluated the efficacy of LIPUS on WM repair and long-term neurologic recovery after stroke. Male adult C57BL/6 mice underwent a focal cerebral ischemia model and were randomized to receive ultrasound stimulation (30 min once daily for 14 days). The effect of LIPUS on sensorimotor function was assessed by modified neurological severity score, rotarod test, grip strength test, and gait analysis up to 28 days after stroke. We found that ischemic stroke-induced WM damage was severe on day 7 and partially recovered on day 28. LIPUS prevented neuronal and oligodendrocyte progenitor cell (OPC) death during the acute phase of stroke (d7), protected WM integrity, and reduced brain atrophy and tissue damage during the recovery phase (d28). To further confirm the effect of LIPUS on remyelination, we assessed the proliferation and differentiation of OPCs. We found that LIPUS did not increase the number of OPCs (PDGFRα+ or NG2+), but markedly increased the number of newly produced mature OLs (APC+) and myelin protein levels. Mechanistically, LIPUS may promote OL maturation and remyelination by down-regulating the interleukin-17A/Notch1 signaling pathway. In summary, LIPUS can protect OLs and neurons early after stroke and promote long-term WM repair and functional recovery. LIPUS will be a viable strategy for the treatment of ischemic stroke in the future.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Neurology,
Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Yuxiao Gao
- Department of Neurology,
Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Bin Wang
- Department of Neurology,
Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Cong Zhang
- Department of Neurology,
Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Yi Yuan
- School of Electrical Engineering,
Yanshan University, Qinhuangdao 066004, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province,
Yanshan University, Qinhuangdao 066004, China
| | - Renhao Xu
- Department of Neurology,
Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Hui Ji
- Department of Neurology,
Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Xiangjian Zhang
- Department of Neurology,
Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
2
|
Hudson HR, Sun X, Orr ME. Senescent brain cell types in Alzheimer's disease: Pathological mechanisms and therapeutic opportunities. Neurotherapeutics 2025; 22:e00519. [PMID: 39765417 PMCID: PMC12047392 DOI: 10.1016/j.neurot.2024.e00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 04/19/2025] Open
Abstract
Cellular senescence is a cell state triggered by programmed physiological processes or cellular stress responses. Stress-induced senescent cells often acquire pathogenic traits, including a toxic secretome and resistance to apoptosis. When pathogenic senescent cells form faster than they are cleared by the immune system, they accumulate in tissues throughout the body and contribute to age-related diseases, including neurodegeneration. This review highlights evidence of pathogenic senescent cells in the brain and their role in Alzheimer's disease (AD), the leading cause of dementia in older adults. We also discuss the progress and challenges of senotherapies, pharmacological strategies to clear senescent cells or mitigate their toxic effects, which hold promise as interventions for AD and related dementias (ADRD).
Collapse
Affiliation(s)
- Hannah R Hudson
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Neurology, Washington University School of Medicine in St Louis, MO, USA.
| | - Xuehan Sun
- Department of Neurology, Washington University School of Medicine in St Louis, MO, USA.
| | - Miranda E Orr
- Department of Neurology, Washington University School of Medicine in St Louis, MO, USA; St Louis VA Medical Center, St Louis, MO, USA.
| |
Collapse
|
3
|
Zhao PA, Li R, Adewunmi T, Garber J, Gustafson C, Kim J, Malone J, Savage A, Skene P, Li XJ. SPARROW reveals microenvironment-zone-specific cell states in healthy and diseased tissues. Cell Syst 2025; 16:101235. [PMID: 40112778 DOI: 10.1016/j.cels.2025.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/23/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Spatially resolved transcriptomics technologies have advanced our understanding of cellular characteristics within tissue contexts. However, current analytical tools often treat cell-type inference and cellular neighborhood identification as separate and hard clustering processes, limiting comparability across scales and samples. SPARROW addresses these challenges by jointly learning latent embeddings and soft clusterings of cell types and cellular organization. It outperformed state-of-the-art methods in cell-type inference and microenvironment zone delineation and uncovered zone-specific cell states in human and mouse tissues that competing methods missed. By integrating spatially resolved transcriptomics and single-cell RNA sequencing (scRNA-seq) data in a shared latent space, SPARROW achieves single-cell spatial resolution and whole-transcriptome coverage, enabling the discovery of both established and unknown microenvironment zone-specific ligand-receptor interactions in the human tonsil. Overall, SPARROW is a computational framework that provides a comprehensive characterization of tissue features across scales, samples, and conditions.
Collapse
Affiliation(s)
- Peiyao A Zhao
- Allen Institute for Immunology, Seattle, WA 98109, USA.
| | - Ruoxin Li
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | - Temi Adewunmi
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | | | - June Kim
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | - Adam Savage
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | - Peter Skene
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | - Xiao-Jun Li
- Allen Institute for Immunology, Seattle, WA 98109, USA.
| |
Collapse
|
4
|
Bedeschi M, Cavassi E, Romeo A, Tesei A. Glioblastoma Tumor Microenvironment and Purinergic Signaling: Implications for Novel Therapies. Pharmaceuticals (Basel) 2025; 18:385. [PMID: 40143161 PMCID: PMC11944773 DOI: 10.3390/ph18030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Glial-origin brain tumors, particularly glioblastomas (GBMs), are known for their devastating prognosis and are characterized by rapid progression and fatal outcomes. Despite advances in surgical resection, complete removal of the tumor remains unattainable, with residual cells driving recurrence that is resistant to conventional therapies. The GBM tumor microenviroment (TME) significantly impacts tumor progression and treatment response. In this review, we explore the emerging role of purinergic signaling, especially the P2X7 receptor (P2X7R). Due to its unique characteristics, it plays a key role in tumor progression and offers a potential therapeutic strategy for GBM through TME modulation. We discuss also the emerging role of the P2X4 receptor (P2X4R) as a promising therapeutic target. Overall, targeting purinergic signaling offers a potential approach to overcoming current GBM treatment limitations.
Collapse
Affiliation(s)
- Martina Bedeschi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.B.); (E.C.)
| | - Elena Cavassi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.B.); (E.C.)
| | - Antonino Romeo
- Radiation Oncology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Anna Tesei
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.B.); (E.C.)
| |
Collapse
|
5
|
Chen H, Yang G, Xu DE, Du YT, Zhu C, Hu H, Luo L, Feng L, Huang W, Sun YY, Ma QH. Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner. Neurosci Bull 2025; 41:374-390. [PMID: 39283565 PMCID: PMC11876512 DOI: 10.1007/s12264-024-01292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/10/2024] [Indexed: 12/08/2024] Open
Abstract
Oligodendrocyte lineage cells, including oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), are essential in establishing and maintaining brain circuits. Autophagy is a conserved process that keeps the quality of organelles and proteostasis. The role of autophagy in oligodendrocyte lineage cells remains unclear. The present study shows that autophagy is required to maintain the number of OPCs/OLs and myelin integrity during brain aging. Inactivation of autophagy in oligodendrocyte lineage cells increases the number of OPCs/OLs in the developing brain while exaggerating the loss of OPCs/OLs with brain aging. Inactivation of autophagy in oligodendrocyte lineage cells impairs the turnover of myelin basic protein (MBP). It causes MBP to accumulate in the cytoplasm as multimeric aggregates and fails to be incorporated into integral myelin, which is associated with attenuated endocytic recycling. Inactivation of autophagy in oligodendrocyte lineage cells impairs myelin integrity and causes demyelination. Thus, this study shows autophagy is required to maintain myelin quality during aging by controlling the turnover of myelin components.
Collapse
Affiliation(s)
- Hong Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Gang Yang
- Lab Center, Medical College of Soochow University, Suzhou, 215021, China
| | - De-En Xu
- The Wuxi No.2 People Hospital, Wuxi, 214002, China
| | - Yu-Tong Du
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Chao Zhu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Hua Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Li Luo
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Lei Feng
- Monash Suzhou Research Institute, Suzhou, 215000, China
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421, Homburg, Germany
| | - Yan-Yun Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
6
|
Hollingworth BYA, Pallier PN, Jenkins SI, Chen R. Hypoxic Neuroinflammation in the Pathogenesis of Multiple Sclerosis. Brain Sci 2025; 15:248. [PMID: 40149770 PMCID: PMC11940507 DOI: 10.3390/brainsci15030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/29/2025] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that damages the myelin sheath around the central nervous system axons, leading to neurological dysfunction. Although the initial damage is driven by inflammation, hypoxia has been reported in several brain regions of MS patients, but the significance of this for prognosis and treatment remains unclear. Neuroinflammation can induce hypoxia, and hypoxia can induce and exacerbate neuroinflammation, forming a vicious cycle. Within MS lesions, demyelination is often followed by remyelination, which may restore neurological function. However, demyelinated axons are vulnerable to damage, which leads to the accumulation of the permanent neurological dysfunction typical in MS, with this vulnerability heightened during hypoxia. Clinically approved therapies for MS are immunomodulatory, which can reduce relapse frequency/severity, but there is a lack of pro-regenerative therapies for MS, for example promoting remyelination. All tissues have protective responses to hypoxia, which may be relevant to MS lesions, especially during remyelinating episodes. When oxygen levels are reduced in the brain, constitutively expressed hypoxia-inducible factors (HIF) are stabilised, upregulating hundreds of genes, including neuroprotective factors. Furthermore, astrocytes upregulate heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) in the early stage of MS. HB-EGF promotes protective mechanisms and induces oligodendrocyte and neuron differentiation and survival. This review article outlines the neuroinflammation and hypoxia cycle in MS pathology and identifies potential therapeutic targets to limit neurodegeneration and/or promote regeneration. Both HIF and HB-EGF signalling pathways induce endogenous protection mechanisms in the CNS, promoting neuroprotection and remyelination directly, but also indirectly by modulating the immune response in MS. Promoting such endogenous protective signalling pathways could be an effective therapy for MS patients.
Collapse
Affiliation(s)
| | - Patrick N. Pallier
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Stuart I. Jenkins
- Neural Tissue Engineering Keele (NTEK), School of Medicine, Keele University, Staffordshire ST5 5BG, UK;
| | - Ruoli Chen
- School of Allied Health Professions and Pharmacy, Keele University, Staffordshire ST5 5BG, UK;
| |
Collapse
|
7
|
Yamada M, Sasaki B, Yamada N, Hayashi C, Tsumoto K, de Vega S, Suzuki N. The pericellular function of Fibulin-7 in the adhesion of oligodendrocyte lineage cells to neuronal axons during CNS myelination. Biochem Biophys Res Commun 2025; 748:151271. [PMID: 39809135 DOI: 10.1016/j.bbrc.2024.151271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Myelin is an electrical insulator that enables saltatory nerve conduction and is essential for proper functioning of the central nervous system (CNS). It is formed by oligodendrocytes (OLs) in the CNS, and during OL development various molecules, including extracellular matrix (ECM) proteins, regulate OL differentiation and myelination; however, the role of ECM proteins in these processes is not well understood. Our present work is centered on the analyses of the expression and function of fibulin-7 (Fbln7), an ECM protein of the fibulin family, in OL differentiation. In the expression analysis of Fbln7 in the CNS, we found that it was expressed at early postnatal stage and localized in the processes of OL precursor cells (OPCs), in the inner region of myelin, and in axons. The functional analysis using recombinant Fbln7 protein (rFbln7) revealed that rFbln7 promoted OPC attachment activity via β1 integrin and heparan sulfate receptors. Further, rFbln7 induced the adhesion to neurites and the differentiation of OLs. Altogether, our results show that Fbln7 promotes the adhesion between OLs and axons and OL differentiation.
Collapse
Affiliation(s)
- Momona Yamada
- Department of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Binri Sasaki
- Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute Science of Tokyo/TMDU, Tokyo, Japan
| | - Nanako Yamada
- Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute Science of Tokyo/TMDU, Tokyo, Japan
| | - Chikako Hayashi
- Department of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kouhei Tsumoto
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Susana de Vega
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Nobuharu Suzuki
- Department of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute Science of Tokyo/TMDU, Tokyo, Japan.
| |
Collapse
|
8
|
Wang Y, Ghimire S, Mangalam A, Kang Z. RiboTag-based RNA-Seq uncovers oligodendroglial lineage-specific inflammation in autoimmune encephalomyelitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630168. [PMID: 39764033 PMCID: PMC11703255 DOI: 10.1101/2024.12.24.630168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Oligodendroglial lineage cells (OLCs) are critical for neuronal support functions, including myelination and remyelination. Emerging evidence reveals their active roles in neuroinflammation, particularly in conditions like Multiple Sclerosis (MS). This study explores the inflammatory translatome of OLCs during the early onset of experimental autoimmune encephalomyelitis (EAE), an established MS model. Using RiboTag-based RNA sequencing in genetically modified Olig2-Cre RiboTag mice, we identified 1,556 upregulated and 683 downregulated genes in EAE OLCs. Enrichment analysis indicated heightened immune-related pathways, such as cytokine signaling, interferon responses, and antigen presentation, while downregulated genes were linked to neuronal development and myelination. Notably, OLCs expressed cytokines/chemokines, and their receptor, highlighting their active involvement in neuroinflammatory signaling. Functional studies demonstrated that interferon-gamma (IFN-γ) signaling in OLCs exacerbates EAE pathology by enhancing antigen presentation and chemokine production, whereas interferon-beta (IFN-β) signaling showed minimal impact. These findings provide novel insights into the inflammatory role of OLCs in EAE and suggest therapeutic potential in targeting OLC-mediated neuroinflammation for MS and related disorders.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Sudeep Ghimire
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Ashutosh Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Zizhen Kang
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
9
|
Díaz-Pérez S, DeLong JH, Rivier CA, Lee CY, Askenase MH, Zhu B, Zhang L, Brennand KJ, Martins AJ, Sansing LH. Single-nucleus RNA sequencing of human periventricular white matter in vascular dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627202. [PMID: 39713290 PMCID: PMC11661092 DOI: 10.1101/2024.12.06.627202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Vascular dementia (VaD) refers to a variety of dementias driven by cerebrovascular disease and is the second leading cause of dementia globally. VaD may be caused by ischemic strokes, intracerebral hemorrhage, and/or cerebral small vessel disease, commonly identified as white matter hyperintensities on MRI. The mechanisms underlying these white matter lesions in the periventricular brain are poorly understood. In this study we perform an extensive transcriptomic analysis on human postmortem periventricular white matter lesions in patients with VaD with the goal of identifying molecular pathways in the disease. We find increased cellular stress responses in astrocytes, oligodendrocytes, and oligodendrocyte precursor cells as well as transcriptional and translational repression in microglia in our dataset. We show that several genes identified by GWAS as being associated with white matter disease are differentially expressed in cells in VaD. Finally, we compare our dataset to an independent snRNAseq dataset of PVWM in VaD and a scRNAseq dataset on human iPSC-derived microglia exposed to oxygen glucose deprivation (OGD). We identify the increase of the heat shock protein response as a conserved feature of VaD across celltypes and show that this increase is not linked to OGD exposure. Overall, our study is the first to show that increased heat shock protein responses are a common feature of lesioned PVWM in VaD and may represent a potential therapeutic target.
Collapse
Affiliation(s)
| | - Jonathan H. DeLong
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Cyprien A. Rivier
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Chia-Yi Lee
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Michael H. Askenase
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT
| | - Le Zhang
- Department of Neurology, Yale University School of Medicine, New Haven, CT
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
| | - Kristen J. Brennand
- Department of Genetics, Yale University School of Medicine, New Haven, CT
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Andrew J. Martins
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Lauren H. Sansing
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
10
|
Zhang FL, Li AY, Niu YL, Zhang K, Zhao MH, Huang JJ, Shen W. Identification of biomarkers in Parkinson's disease by comparative transcriptome analysis and WGCNA highlights the role of oligodendrocyte precursor cells. Front Aging Neurosci 2024; 16:1485722. [PMID: 39634657 PMCID: PMC11615075 DOI: 10.3389/fnagi.2024.1485722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Background Parkinson's disease (PD) is an age-related neurodegenerative disease characterized by the death of dopamine neurons in the substantia nigra. A large number of studies have focused on dopamine neurons themselves, but so far, the pathogenesis of PD has not been fully elucidated. Results Here, we explored the significance of oligodendrocyte precursor cells (OPCs)/oligodendrocytes in the pathogenesis of PD using a bioinformatic approach. WGCNA analysis suggested that abnormal development of oligodendrocytes may play a key role in early PD. To verify the transcriptional dynamics of OPCs/oligodendrocytes, we performed differential analysis, cell trajectory construction, cell communication analysis and hdWGCNA analysis using single-cell data from PD patients. Interestingly, the results indicated that there was overlap between hub genes and differentially expressed genes (DEGs) in OPCs not in oligodendrocytes, suggesting that OPCs may be more sensitive to PD drivers. Then, we used ROC binary analysis model to identify five potential biomarkers, including AGPAT4, DNM3, PPP1R12B, PPP2R2B, and LINC00486. Conclusion In conclusion, our work highlights the potential role of OPCs in driving PD.
Collapse
Affiliation(s)
- Fa-Li Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Ai-Ying Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yi-Lin Niu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Kai Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Ming-Hui Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jiao-Jiao Huang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
11
|
Liu Y, Li Y, Zhang Y, Fang Y, Lei L, Yu J, Tan H, Sui L, Guo Q, Zhou L. Excitatory neurons and oligodendrocyte precursor cells are vulnerable to focal cortical dysplasia type IIIa as suggested by single-nucleus multiomics. Clin Transl Med 2024; 14:e70072. [PMID: 39440467 PMCID: PMC11497056 DOI: 10.1002/ctm2.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Focal cortical dysplasia (FCD) is a heterogeneous group of cortical developmental malformations that constitute a common cause of medically intractable epilepsy. FCD type IIIa (FCD IIIa) refers to temporal neocortex alterations in architectural organisation or cytoarchitectural composition in the immediate vicinity of hippocampal sclerosis. Slight alterations in the temporal neocortex of FCD IIIa patients pose a challenge for the preoperative diagnosis and definition of the resection range. METHODS We have performed multimodal integration of single-nucleus RNA sequencing and single-nucleus assay for transposase-accessible chromatin sequencing in the epileptogenic cortex of four patients with FCD IIIa, and three relatively normal temporal neocortex were chosen as controls. RESULTS Our study revealed that the most significant dysregulation occurred in excitatory neurons (ENs) and oligodendrocyte precursor cells (OPCs) in the epileptogenic cortex of FCD IIIa patients. In ENs, we constructed a transcription factor (TF)-hub gene regulatory network and found DAB1high ENs subpopulation mediates neuronal immunity characteristically in FCD IIIa. Western blotting and immunofluorescence were used to validate the changes in protein expression levels caused by some of the key genes. The OPCs were activated and exhibited aberrant phenotypes in FCD IIIa, and TFs regulating reconstructed pseudotime trajectory were identified. Finally, our results revealed aberrant intercellular communication between ENs and OPCs in FCD IIIa patients. CONCLUSIONS Our study revealed significant and intricate alterations in the transcriptomes and epigenomes in ENs and OPCs of FCD IIIa patients, shedding light on their cell type-specific regulation and potential pathogenic involvement in this disorder. This work will help evaluate the pathogenesis of cortical dysplasia and epilepsy and explore potential therapeutic targets. KEY POINTS Paired snRNA-seq and snATAC-seq data were intergrated and analysed to identify crucial subpopulations of ENs and OPCs in the epileptogenic cortex of FCD IIIa patients and explore their possible pathogenic role in the disease. A TF-hub gene regulatory network was constructed in ENs, and the DAB1high Ex-1 mediated neuronal immunity was characterstically in FCD IIIa patients. The OPCs were activated and exhibited aberrant phenotypes in FCD IIIa patients, and TFs regulating reconstructed pseudotime traectory were identified. Aberrant intercelluar communications between ENs and OPCs in FCD IIIa patients were identified.
Collapse
Affiliation(s)
- Yingying Liu
- Department of NeurologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Department of NeurologyThird Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yinchao Li
- Department of NeurologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Yaqian Zhang
- Department of NeurologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Yubao Fang
- Department of NeurologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Lei Lei
- Department of NeurologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Jiabin Yu
- Department of Epilepsy CenterThe Second Affiliated HospitalGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Hongping Tan
- Epilepsy CenterGuangdong Sanjiu Brain HospitalGuangzhouGuangdongChina
| | - Lisen Sui
- Department of Epilepsy CenterThe Second Affiliated HospitalGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Qiang Guo
- Epilepsy CenterGuangdong Sanjiu Brain HospitalGuangzhouGuangdongChina
| | - Liemin Zhou
- Department of NeurologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| |
Collapse
|
12
|
Ma Z, Zhang W, Wang C, Su Y, Yi C, Niu J. A New Acquaintance of Oligodendrocyte Precursor Cells in the Central Nervous System. Neurosci Bull 2024; 40:1573-1589. [PMID: 39042298 PMCID: PMC11422404 DOI: 10.1007/s12264-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 07/24/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are a heterogeneous multipotent population in the central nervous system (CNS) that appear during embryogenesis and persist as resident cells in the adult brain parenchyma. OPCs could generate oligodendrocytes to participate in myelination. Recent advances have renewed our knowledge of OPC biology by discovering novel markers of oligodendroglial cells, the myelin-independent roles of OPCs, and the regulatory mechanism of OPC development. In this review, we will explore the updated knowledge on OPC identity, their multifaceted roles in the CNS in health and diseases, as well as the regulatory mechanisms that are involved in their developmental stages, which hopefully would contribute to a further understanding of OPCs and attract attention in the field of OPC biology.
Collapse
Affiliation(s)
- Zexuan Ma
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wei Zhang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Chenmeng Wang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
- Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, 518107, China.
| | - Jianqin Niu
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China.
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400038, China.
| |
Collapse
|
13
|
Marshall-Phelps KL, Almeida R. Axonal neurotransmitter release in the regulation of myelination. Biosci Rep 2024; 44:BSR20231616. [PMID: 39230890 PMCID: PMC11427734 DOI: 10.1042/bsr20231616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/05/2024] Open
Abstract
Myelination of axons is a key determinant of fast action potential propagation, axonal health and circuit function. Previously considered a static structure, it is now clear that myelin is dynamically regulated in response to neuronal activity in the central nervous system (CNS). However, how activity-dependent signals are conveyed to oligodendrocytes remains unclear. Here, we review the potential mechanisms by which neurons could communicate changing activity levels to myelin, with a focus on the accumulating body of evidence to support activity-dependent vesicular signalling directly onto myelin sheaths. We discuss recent in vivo findings of activity-dependent fusion of neurotransmitter vesicles from non-synaptic axonal sites, and how modulation of this vesicular fusion regulates the stability and growth of myelin sheaths. We also consider the potential mechanisms by which myelin could sense and respond to axon-derived signals to initiate remodelling, and the relevance of these adaptations for circuit function. We propose that axonal vesicular signalling represents an important and underappreciated mode of communication by which neurons can transmit activity-regulated signals to myelinating oligodendrocytes and, potentially, more broadly to other cell types in the CNS.
Collapse
Affiliation(s)
- Katy L.H. Marshall-Phelps
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
- MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, U.K
| | - Rafael G. Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
- MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
14
|
Liu S, Xie T, Huang Y. Insights into the Pathobiology of GM1 Gangliosidosis from Single-Nucleus Transcriptomic Analysis of CNS Cells in a Mouse Model. Int J Mol Sci 2024; 25:9712. [PMID: 39273659 PMCID: PMC11395632 DOI: 10.3390/ijms25179712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
GM1 gangliosidosis is a lysosomal storage disorder characterized by the accumulation of GM1 ganglioside, leading to severe neurodegeneration and early mortality. The disease primarily affects the central nervous system, causing progressive neurodegeneration, including widespread neuronal loss and gliosis. To gain a deeper understanding of the neuropathology associated with GM1 gangliosidosis, we employed single-nucleus RNA sequencing to analyze brain tissues from both GM1 gangliosidosis model mice and control mice. No significant changes in cell proportions were detected between the two groups of animals. Differential expression analysis revealed cell type-specific changes in gene expression in neuronal and glial cells. Functional analysis highlighted the neurodegenerative processes, oxidative phosphorylation, and neuroactive ligand-receptor interactions as the significantly affected pathways. The contribution of the impairment of neurotransmitter system disruption and neuronal circuitry disruption was more important than neuroinflammatory responses to GM1 pathology. In 16-week-old GM1 gangliosidosis mice, no microglial or astrocyte activation or increased expression of innate immunity genes was detected. This suggested that nerve degeneration did not induce the inflammatory response but rather promoted glial cell clearance. Our findings provide a crucial foundation for understanding the cellular and molecular mechanisms of GM1 gangliosidosis, potentially guiding future therapeutic strategies.
Collapse
Affiliation(s)
- Sichi Liu
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ting Xie
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yonglan Huang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
15
|
Duan Y, Ye C, Liao J, Xie X. LY2940094, an NOPR antagonist, promotes oligodendrocyte generation and myelin recovery in an NOPR independent manner. Neurotherapeutics 2024; 21:e00424. [PMID: 39004556 PMCID: PMC11581876 DOI: 10.1016/j.neurot.2024.e00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
The myelin sheath plays crucial roles in brain development and neuronal functions. In the central nervous system, myelin is generated by oligodendrocytes, that differentiate from oligodendrocyte progenitor cells (OPC). In demyelinating diseases, the differentiation capacity of OPC is impaired and remyelination is dampened. Boosting remyelination by promoting OPC differentiation is a novel strategy for the treatment of demyelinating diseases. The opioid system, which consists of four receptors and their ligands, has been implicated in OPC differentiation and myelin formation. However, the exact roles of each opioid receptor and the relevant pharmacological molecules in OPC differentiation and myelin formation remain elusive. In the present study, specific agonists and antagonists of each opioid receptor were used to explore the function of opioid receptors in OPC differentiation. Nociceptin/orphanin FQ receptor (NOPR) specific antagonist LY2940094 was found to stimulate OPC differentiation and myelination in both in vitro and in vivo models. Unexpectedly, other NOPR ligands did not affect OPC differentiation, and NOPR knockdown did not mimic or impede the effect of LY2940094. LY2940094 was found to modulate the expression of the oligodendrocytes differentiation-associated transcription factors ID4 and Myrf, although the exact mechanism remains unclear. Since LY2940094 has been tested clinically to treat depression and alcohol dependency and has displayed an acceptable safety profile, it may provide an alternative approach to treat demyelinating diseases.
Collapse
Affiliation(s)
- Yanhui Duan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chenyuan Ye
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingyi Liao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China.
| |
Collapse
|
16
|
Akinlaja YO, Nishiyama A. Glial modulation of synapse development and plasticity: oligodendrocyte precursor cells as a new player in the synaptic quintet. Front Cell Dev Biol 2024; 12:1418100. [PMID: 39258226 PMCID: PMC11385347 DOI: 10.3389/fcell.2024.1418100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Synaptic communication is an important process in the central nervous system that allows for the rapid and spatially specified transfer of signals. Neurons receive various synaptic inputs and generate action potentials required for information transfer, and these inputs can be excitatory or inhibitory, which collectively determines the output. Non-neuronal cells (glial cells) have been identified as crucial participants in influencing neuronal activity and synaptic transmission, with astrocytes forming tripartite synapses and microglia pruning synapses. While it has been known that oligodendrocyte precursor cells (OPCs) receive neuronal inputs, whether they also influence neuronal activity and synaptic transmission has remained unknown for two decades. Recent findings indicate that OPCs, too, modulate neuronal synapses. In this review, we discuss the roles of different glial cell types at synapses, including the recently discovered involvement of OPCs in synaptic transmission and synapse refinement, and discuss overlapping roles played by multiple glial cell types.
Collapse
Affiliation(s)
- Yetunde O Akinlaja
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Institute of Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
- Institute of Systems Genomics, University of Connecticut, Storrs, CT, United States
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Institute of Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
- Institute of Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
17
|
Bormann D, Knoflach M, Poreba E, Riedl CJ, Testa G, Orset C, Levilly A, Cottereau A, Jauk P, Hametner S, Stranzl N, Golabi B, Copic D, Klas K, Direder M, Kühtreiber H, Salek M, Zur Nedden S, Baier-Bitterlich G, Kiechl S, Haider C, Endmayr V, Höftberger R, Ankersmit HJ, Mildner M. Single-nucleus RNA sequencing reveals glial cell type-specific responses to ischemic stroke in male rodents. Nat Commun 2024; 15:6232. [PMID: 39043661 PMCID: PMC11266704 DOI: 10.1038/s41467-024-50465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Neuroglia critically shape the brain´s response to ischemic stroke. However, their phenotypic heterogeneity impedes a holistic understanding of the cellular composition of the early ischemic lesion. Here we present a single cell resolution transcriptomics dataset of the brain´s acute response to infarction. Oligodendrocyte lineage cells and astrocytes range among the most transcriptionally perturbed populations and exhibit infarction- and subtype-specific molecular signatures. Specifically, we find infarction restricted proliferating oligodendrocyte precursor cells (OPCs), mature oligodendrocytes and reactive astrocytes, exhibiting transcriptional commonalities in response to ischemic injury. OPCs and reactive astrocytes are involved in a shared immuno-glial cross talk with stroke-specific myeloid cells. Within the perilesional zone, osteopontin positive myeloid cells accumulate in close proximity to CD44+ proliferating OPCs and reactive astrocytes. In vitro, osteopontin increases the migratory capacity of OPCs. Collectively, our study highlights molecular cross talk events which might govern the cellular composition of acutely infarcted brain tissue.
Collapse
Affiliation(s)
- Daniel Bormann
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
| | - Michael Knoflach
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
- VASCage, Centre on Clinical Stroke Research, 6020, Innsbruck, Austria
| | - Emilia Poreba
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christian J Riedl
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Giulia Testa
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Cyrille Orset
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Anthony Levilly
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Andréa Cottereau
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Philipp Jauk
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090, Vienna, Austria
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Nadine Stranzl
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Dragan Copic
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Katharina Klas
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
| | - Martin Direder
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Hannes Kühtreiber
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
| | - Melanie Salek
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
| | - Stephanie Zur Nedden
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Gabriele Baier-Bitterlich
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
- VASCage, Centre on Clinical Stroke Research, 6020, Innsbruck, Austria
| | - Carmen Haider
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Hendrik J Ankersmit
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria.
- Aposcience AG, 1200, Vienna, Austria.
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
18
|
Di Bella DJ, Domínguez-Iturza N, Brown JR, Arlotta P. Making Ramón y Cajal proud: Development of cell identity and diversity in the cerebral cortex. Neuron 2024; 112:2091-2111. [PMID: 38754415 PMCID: PMC11771131 DOI: 10.1016/j.neuron.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Since the beautiful images of Santiago Ramón y Cajal provided a first glimpse into the immense diversity and complexity of cell types found in the cerebral cortex, neuroscience has been challenged and inspired to understand how these diverse cells are generated and how they interact with each other to orchestrate the development of this remarkable tissue. Some fundamental questions drive the field's quest to understand cortical development: what are the mechanistic principles that govern the emergence of neuronal diversity? How do extrinsic and intrinsic signals integrate with physical forces and activity to shape cell identity? How do the diverse populations of neurons and glia influence each other during development to guarantee proper integration and function? The advent of powerful new technologies to profile and perturb cortical development at unprecedented resolution and across a variety of modalities has offered a new opportunity to integrate past knowledge with brand new data. Here, we review some of this progress using cortical excitatory projection neurons as a system to draw out general principles of cell diversification and the role of cell-cell interactions during cortical development.
Collapse
Affiliation(s)
- Daniela J Di Bella
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Nuria Domínguez-Iturza
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Juliana R Brown
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
Czopka T. A new gatekeeper to control oligodendrogenesis. PLoS Biol 2024; 22:e3002691. [PMID: 38990827 PMCID: PMC11239056 DOI: 10.1371/journal.pbio.3002691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
The diversity of oligodendrocyte precursor cells (OPCs) is not well understood and is actively discussed in the field. A new study in PLOS Biology describes a novel marker for an OPC subpopulation that controls oligodendrogenesis and myelination.
Collapse
Affiliation(s)
- Tim Czopka
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Gronseth JR, Nelson HN, Johnson TL, Mallon TA, Martell MR, Pfaffenbach KA, Duxbury BB, Henke JT, Treichel AJ, Hines JH. Synaptic vesicle release regulates pre-myelinating oligodendrocyte-axon interactions in a neuron subtype-specific manner. Front Cell Neurosci 2024; 18:1386352. [PMID: 38841202 PMCID: PMC11150666 DOI: 10.3389/fncel.2024.1386352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Oligodendrocyte-lineage cells are central nervous system (CNS) glia that perform multiple functions including the selective myelination of some but not all axons. During myelination, synaptic vesicle release from axons promotes sheath stabilization and growth on a subset of neuron subtypes. In comparison, it is unknown if pre-myelinating oligodendrocyte process extensions selectively interact with specific neural circuits or axon subtypes, and whether the formation and stabilization of these neuron-glia interactions involves synaptic vesicle release. In this study, we used fluorescent reporters in the larval zebrafish model to track pre-myelinating oligodendrocyte process extensions interacting with spinal axons utilizing in vivo imaging. Monitoring motile oligodendrocyte processes and their interactions with individually labeled axons revealed that synaptic vesicle release regulates the behavior of subsets of process extensions. Specifically, blocking synaptic vesicle release decreased the longevity of oligodendrocyte process extensions interacting with reticulospinal axons. Furthermore, blocking synaptic vesicle release increased the frequency that new interactions formed and retracted. In contrast, tracking the movements of all process extensions of singly-labeled oligodendrocytes revealed that synaptic vesicle release does not regulate overall process motility or exploratory behavior. Blocking synaptic vesicle release influenced the density of oligodendrocyte process extensions interacting with reticulospinal and serotonergic axons, but not commissural interneuron or dopaminergic axons. Taken together, these data indicate that alterations to synaptic vesicle release cause changes to oligodendrocyte-axon interactions that are neuron subtype specific.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jacob H. Hines
- Biology Department, Winona State University, Winona, MN, United States
| |
Collapse
|
21
|
Dennis DJ, Wang BS, Karamboulas K, Kaplan DR, Miller FD. Single-cell approaches define two groups of mammalian oligodendrocyte precursor cells and their evolution over developmental time. Stem Cell Reports 2024; 19:654-672. [PMID: 38579710 PMCID: PMC11103788 DOI: 10.1016/j.stemcr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
Here, we used single-cell RNA sequencing (scRNA-seq), single-cell ATAC sequencing (scATAC-seq), and single-cell spatial transcriptomics to characterize murine cortical OPCs throughout postnatal life. During development, we identified two groups of differentially localized PDGFRα+ OPCs that are transcriptionally and epigenetically distinct. One group (active, or actOPCs) is metabolically active and enriched in white matter. The second (homeostatic, or hOPCs) is less active, enriched in gray matter, and predicted to derive from actOPCs. In adulthood, these two groups are transcriptionally but not epigenetically distinct, and relative to developing OPCs are less active metabolically and have less open chromatin. When adult oligodendrogenesis is enhanced during experimentally induced remyelination, adult OPCs do not reacquire a developmental open chromatin state, and the oligodendrogenesis trajectory is distinct from that seen neonatally. These data suggest that there are two OPC groups subserving distinct postnatal functions and that neonatal and adult OPC-mediated oligodendrogenesis are fundamentally different.
Collapse
Affiliation(s)
- Daniel J Dennis
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Beatrix S Wang
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Konstantina Karamboulas
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
22
|
Rivera AD, Normanton JR, Butt AM, Azim K. The Genomic Intersection of Oligodendrocyte Dynamics in Schizophrenia and Aging Unravels Novel Pathological Mechanisms and Therapeutic Potentials. Int J Mol Sci 2024; 25:4452. [PMID: 38674040 PMCID: PMC11050044 DOI: 10.3390/ijms25084452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Schizophrenia is a significant worldwide health concern, affecting over 20 million individuals and contributing to a potential reduction in life expectancy by up to 14.5 years. Despite its profound impact, the precise pathological mechanisms underlying schizophrenia continue to remain enigmatic, with previous research yielding diverse and occasionally conflicting findings. Nonetheless, one consistently observed phenomenon in brain imaging studies of schizophrenia patients is the disruption of white matter, the bundles of myelinated axons that provide connectivity and rapid signalling between brain regions. Myelin is produced by specialised glial cells known as oligodendrocytes, which have been shown to be disrupted in post-mortem analyses of schizophrenia patients. Oligodendrocytes are generated throughout life by a major population of oligodendrocyte progenitor cells (OPC), which are essential for white matter health and plasticity. Notably, a decline in a specific subpopulation of OPC has been identified as a principal factor in oligodendrocyte disruption and white matter loss in the aging brain, suggesting this may also be a factor in schizophrenia. In this review, we analysed genomic databases to pinpoint intersections between aging and schizophrenia and identify shared mechanisms of white matter disruption and cognitive dysfunction.
Collapse
Affiliation(s)
- Andrea D. Rivera
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Via A. Gabelli 65, 35127 Padua, Italy;
| | - John R. Normanton
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
| | - Arthur M. Butt
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
- School of Pharmacy and Biomedical Science, University of Portsmouth, Hampshire PO1 2UP, UK
| | - Kasum Azim
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
- Independent Data Lab UG, Frauenmantelanger 31, 80937 Munich, Germany
| |
Collapse
|
23
|
Khelfaoui H, Ibaceta-Gonzalez C, Angulo MC. Functional myelin in cognition and neurodevelopmental disorders. Cell Mol Life Sci 2024; 81:181. [PMID: 38615095 PMCID: PMC11016012 DOI: 10.1007/s00018-024-05222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/15/2024]
Abstract
In vertebrates, oligodendrocytes (OLs) are glial cells of the central nervous system (CNS) responsible for the formation of the myelin sheath that surrounds the axons of neurons. The myelin sheath plays a crucial role in the transmission of neuronal information by promoting the rapid saltatory conduction of action potentials and providing neurons with structural and metabolic support. Saltatory conduction, first described in the peripheral nervous system (PNS), is now generally recognized as a universal evolutionary innovation to respond quickly to the environment: myelin helps us think and act fast. Nevertheless, the role of myelin in the central nervous system, especially in the brain, may not be primarily focused on accelerating conduction speed but rather on ensuring precision. Its principal function could be to coordinate various neuronal networks, promoting their synchronization through oscillations (or rhythms) relevant for specific information processing tasks. Interestingly, myelin has been directly involved in different types of cognitive processes relying on brain oscillations, and myelin plasticity is currently considered to be part of the fundamental mechanisms for memory formation and maintenance. However, despite ample evidence showing the involvement of myelin in cognition and neurodevelopmental disorders characterized by cognitive impairments, the link between myelin, brain oscillations, cognition and disease is not yet fully understood. In this review, we aim to highlight what is known and what remains to be explored to understand the role of myelin in high order brain processes.
Collapse
Affiliation(s)
- Hasni Khelfaoui
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Cristobal Ibaceta-Gonzalez
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Maria Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France.
- GHU-PARIS Psychiatrie Et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
| |
Collapse
|
24
|
Vagionitis S, Káradóttir RT. Functional implication for myelin regeneration in recovery from ischaemic stroke. Brain 2024; 147:1118-1120. [PMID: 38574285 PMCID: PMC10994522 DOI: 10.1093/brain/awae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
This scientific commentary refers to ‘Prolonged myelin deficits contribute to neuron loss and functional impairments after ischaemic stroke’ by Cheng et al. (https://doi.org/10.1093/brain/awae029).
Collapse
Affiliation(s)
- Stavros Vagionitis
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Ragnhildur Thóra Káradóttir
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Physiology, BioMedical Center, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
25
|
Cheng YJ, Wang F, Feng J, Yu B, Wang B, Gao Q, Wang TY, Hu B, Gao X, Chen JF, Chen YJ, Lv SQ, Feng H, Xiao L, Mei F. Prolonged myelin deficits contribute to neuron loss and functional impairments after ischaemic stroke. Brain 2024; 147:1294-1311. [PMID: 38289861 DOI: 10.1093/brain/awae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024] Open
Abstract
Ischaemic stroke causes neuron loss and long-term functional deficits. Unfortunately, effective approaches to preserving neurons and promoting functional recovery remain unavailable. Oligodendrocytes, the myelinating cells in the CNS, are susceptible to oxygen and nutrition deprivation and undergo degeneration after ischaemic stroke. Technically, new oligodendrocytes and myelin can be generated by the differentiation of oligodendrocyte precursor cells (OPCs). However, myelin dynamics and their functional significance after ischaemic stroke remain poorly understood. Here, we report numerous denuded axons accompanied by decreased neuron density in sections from ischaemic stroke lesions in human brain, suggesting that neuron loss correlates with myelin deficits in these lesions. To investigate the longitudinal changes in myelin dynamics after stroke, we labelled and traced pre-existing and newly-formed myelin, respectively, using cell-specific genetic approaches. Our results indicated massive oligodendrocyte death and myelin loss 2 weeks after stroke in the transient middle cerebral artery occlusion (tMCAO) mouse model. In contrast, myelin regeneration remained insufficient 4 and 8 weeks post-stroke. Notably, neuronal loss and functional impairments worsened in aged brains, and new myelin generation was diminished. To analyse the causal relationship between remyelination and neuron survival, we manipulated myelinogenesis by conditional deletion of Olig2 (a positive regulator) or muscarinic receptor 1 (M1R, a negative regulator) in OPCs. Deleting Olig2 inhibited remyelination, reducing neuron survival and functional recovery after tMCAO. Conversely, enhancing remyelination by M1R conditional knockout or treatment with the pro-myelination drug clemastine after tMCAO preserved white matter integrity and neuronal survival, accelerating functional recovery. Together, our findings demonstrate that enhancing myelinogenesis is a promising strategy to preserve neurons and promote functional recovery after ischaemic stroke.
Collapse
Affiliation(s)
- Yong-Jie Cheng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, 1st affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Fei Wang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Feng
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Bin Yu
- Department of Neurosurgery, 2nd affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Bin Wang
- Department of Physiology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Qing Gao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Teng-Yue Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Bo Hu
- Department of Physiology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Xing Gao
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jing-Fei Chen
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu-Jie Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, 1st affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, 2nd affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, 1st affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lan Xiao
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Neurosurgery, 2nd affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Feng Mei
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
26
|
Wang J, Zhen Y, Yang J, Yang S, Zhu G. Recognizing Alzheimer's disease from perspective of oligodendrocytes: Phenomena or pathogenesis? CNS Neurosci Ther 2024; 30:e14688. [PMID: 38516808 PMCID: PMC10958408 DOI: 10.1111/cns.14688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Accumulation of amyloid beta, tau hyperphosphorylation, and microglia activation are the three highly acknowledged pathological factors of Alzheimer's disease (AD). However, oligodendrocytes (OLs) were also widely investigated in the pathogenesis and treatment for AD. AIMS We aimed to update the regulatory targets of the differentiation and maturation of OLs, and emphasized the key role of OLs in the occurrence and treatment of AD. METHODS This review first concluded the targets of OL differentiation and maturation with AD pathogenesis, and then advanced the key role of OLs in the pathogenesis of AD based on both clinic and basic experiments. Later, we extensively discussed the possible application of the current progress in the diagnosis and treatment of this complex disease. RESULTS Molecules involving in OLs' differentiation or maturation, including various transcriptional factors, cholesterol homeostasis regulators, and microRNAs could also participate in the pathogenesis of AD. Clinical data point towards the impairment of OLs in AD patients. Basic research further supports the central role of OLs in the regulation of AD pathologies. Additionally, classic drugs, including donepezil, edaravone, fluoxetine, and clemastine demonstrate their potential in remedying OL impairment in AD models, and new therapeutics from the perspective of OLs is constantly being developed. CONCLUSIONS We believe that OL dysfunction is one important pathogenesis of AD. Factors regulating OLs might be biomarkers for early diagnosis and agents stimulating OLs warrant the development of anti-AD drugs.
Collapse
Affiliation(s)
- Jingji Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui ProvinceThe Second Affiliation Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Yilan Zhen
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
| | - Jun Yang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
- The First Affiliation Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Shaojie Yang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
| |
Collapse
|
27
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
28
|
Bormann D, Knoflach M, Poreba E, Riedl CJ, Testa G, Orset C, Levilly A, Cottereau A, Jauk P, Hametner S, Golabi B, Copic D, Klas K, Direder M, Kühtreiber H, Salek M, zur Nedden S, Baier-Bitterlich G, Kiechl S, Haider C, Endmayr V, Höftberger R, Ankersmit HJ, Mildner M. Single nucleus RNA sequencing reveals glial cell type-specific responses to ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573302. [PMID: 38234821 PMCID: PMC10793395 DOI: 10.1101/2023.12.26.573302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Reactive neuroglia critically shape the braińs response to ischemic stroke. However, their phenotypic heterogeneity impedes a holistic understanding of the cellular composition and microenvironment of the early ischemic lesion. Here we generated a single cell resolution transcriptomics dataset of the injured brain during the acute recovery from permanent middle cerebral artery occlusion. This approach unveiled infarction and subtype specific molecular signatures in oligodendrocyte lineage cells and astrocytes, which ranged among the most transcriptionally perturbed cell types in our dataset. Specifically, we characterized and compared infarction restricted proliferating oligodendrocyte precursor cells (OPCs), mature oligodendrocytes and heterogeneous reactive astrocyte populations. Our analyses unveiled unexpected commonalities in the transcriptional response of oligodendrocyte lineage cells and astrocytes to ischemic injury. Moreover, OPCs and reactive astrocytes were involved in a shared immuno-glial cross talk with stroke specific myeloid cells. In situ, osteopontin positive myeloid cells accumulated in close proximity to proliferating OPCs and reactive astrocytes, which expressed the osteopontin receptor CD44, within the perilesional zone specifically. In vitro, osteopontin increased the migratory capacity of OPCs. Collectively, our study highlights molecular cross talk events which might govern the cellular composition and microenvironment of infarcted brain tissue in the early stages of recovery.
Collapse
Affiliation(s)
- Daniel Bormann
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Michael Knoflach
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- VASCage, Research Centre on Vascular Ageing and Stroke, 6020 Innsbruck, Austria
| | - Emilia Poreba
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian J. Riedl
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giulia Testa
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Cyrille Orset
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Anthony Levilly
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Andreá Cottereau
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Philipp Jauk
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dragan Copic
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Klas
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Martin Direder
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Kühtreiber
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Melanie Salek
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Stephanie zur Nedden
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Gabriele Baier-Bitterlich
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- VASCage, Research Centre on Vascular Ageing and Stroke, 6020 Innsbruck, Austria
| | - Carmen Haider
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hendrik J. Ankersmit
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
29
|
Benarroch E. What Are the Roles of Oligodendrocyte Precursor Cells in Normal and Pathologic Conditions? Neurology 2023; 101:958-965. [PMID: 37985182 PMCID: PMC10663025 DOI: 10.1212/wnl.0000000000208000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/22/2023] Open
|