1
|
Duan S, Agger K, Messling JE, Nishimura K, Han X, Peña-Rømer I, Shliaha P, Damhofer H, Douglas M, Kohli M, Pal A, Asad Y, Van Dyke A, Reilly R, Köchl R, Tybulewicz VLJ, Hendrickson RC, Raynaud FI, Gallipoli P, Poulogiannis G, Helin K. WNK1 signalling regulates amino acid transport and mTORC1 activity to sustain acute myeloid leukaemia growth. Nat Commun 2025; 16:4920. [PMID: 40425534 PMCID: PMC12116911 DOI: 10.1038/s41467-025-59969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
The lack of curative therapies for acute myeloid leukaemia (AML) remains an ongoing challenge despite recent advances in the understanding of the molecular basis of the disease. Here we identify the WNK1-OXSR1/STK39 pathway as a previously uncharacterised dependency in AML. We show that genetic depletion and pharmacological inhibition of WNK1 or its downstream phosphorylation targets OXSR1 and STK39 strongly reduce cell proliferation and induce apoptosis in leukaemia cells in vitro and in vivo. Furthermore, we show that the WNK1-OXSR1/STK39 pathway controls mTORC1 signalling via regulating amino acid uptake through a mechanism involving the phosphorylation of amino acid transporters, such as SLC38A2. Our findings underscore an important role of the WNK1-OXSR1/STK39 pathway in regulating amino acid uptake and driving AML progression.
Collapse
Affiliation(s)
- Shunlei Duan
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Karl Agger
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jan-Erik Messling
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Koutarou Nishimura
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xuerui Han
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Isabel Peña-Rømer
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
| | - Pavel Shliaha
- Microchemistry and Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helene Damhofer
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Max Douglas
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
| | - Manas Kohli
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
| | - Akos Pal
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Yasmin Asad
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Aaron Van Dyke
- Department of Chemistry & Biochemistry, Fairfield University, Fairfield, CT, USA
| | - Raquel Reilly
- Department of Chemistry & Biochemistry, Fairfield University, Fairfield, CT, USA
| | | | | | - Ronald C Hendrickson
- Microchemistry and Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florence I Raynaud
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - George Poulogiannis
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
| | - Kristian Helin
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK.
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Ma Y, Song H, Liu S, Yu W, Feng G, Yang C, Liu Z. A Coordinated Translational Control Mediated by eEF2 Phosphorylation Safeguards Erythroid Differentiation. Int J Mol Sci 2025; 26:4801. [PMID: 40429942 PMCID: PMC12112062 DOI: 10.3390/ijms26104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Translational control is crucial for maintaining cellular homeostasis, yet the distinct features and regulatory requirements governing protein synthesis during erythropoiesis remain unclear. Here, we reveal that erythroid cells exhibit an extraordinarily high demand for protein synthesis, which is required for their differentiation but also implies the need for tight regulation to prevent excessive erythropoiesis. Notably, we identify significant phosphorylation of eukaryotic elongation factor 2 (eEF2) at threonine 56 during erythroid differentiation, which reduces protein synthesis and acts as a molecular brake to limit unchecked erythropoiesis. This is evidenced by elevated red blood cell counts in peripheral blood and increased incidence of blood hyperviscosity and thrombosis in eEF2_T56M mice, which are deficient in eEF2 phosphorylation. Mechanistic studies demonstrate that eEF2 phosphorylation selectively regulates the translation of a subset of proteins, including NFE2, which partially mediates the effects of eEF2 modification. Collectively, our findings highlight a previously unappreciated role for translational control in achieving efficient and balanced erythropoiesis, with eEF2 phosphorylation serving as a critical protective mechanism against hyperactive erythropoiesis and offering a potential therapeutic target for hematologic disorders such as polycythemia vera.
Collapse
Affiliation(s)
- Yao Ma
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (Y.M.); (H.S.); (S.L.); (W.Y.)
| | - Haozhuo Song
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (Y.M.); (H.S.); (S.L.); (W.Y.)
| | - Siming Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (Y.M.); (H.S.); (S.L.); (W.Y.)
| | - Wenjing Yu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (Y.M.); (H.S.); (S.L.); (W.Y.)
| | - Guanying Feng
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Cuiping Yang
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Zhiduo Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (Y.M.); (H.S.); (S.L.); (W.Y.)
- State Key Laboratory of Systems Medicine for Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
3
|
Fry L, Roys H, Bowlin A, Venugopal G, Bird JT, Weaver A, Byrum SD, Weinkopff T. Enhanced Translational Activity Is Linked to Lymphatic Endothelial Cell Activation in Cutaneous Leishmaniasis. Lymphat Res Biol 2025. [PMID: 40279249 DOI: 10.1089/lrb.2024.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025] Open
Abstract
Introduction: Cutaneous leishmaniasis (CL) is a significant public health problem leading to permanently disfiguring skin lesions caused by Leishmania parasites. Lesion severity stems from an excessive host inflammatory response that prevents healing. Materials and Methods: Here, we characterized the transcriptional and translational responses of lymphatic endothelial cells (LECs) during murine CL using single-cell RNA sequencing data combined with flow cytometry and in vivo puromycin incorporation to assess translational activity. Results: We identified upregulation of antigen presentation pathways including MHC-I, MHC-II, and immunoproteasome transcripts in dermal LECs from Leishmania major-infected mice compared to naive controls. LECs also exhibited increased expression of guanylate binding proteins and interferon-inducible genes, indicative of immune activation. Moreover, our findings demonstrate that LECs in leishmanial lesions displayed heightened translational activity relative to LECs from uninflamed ears, and LEC translational activity was highest in activated LECs. Furthermore, LEC translational activity exceeded that of other cell types within the lesion microenvironment. Validating the transcriptomic data, LECs in lesions expressed elevated MHC-II and programmed death-ligand 1 (PDL-1), supporting their potential role in antigen presentation. Functional assays using DQ-ovalbumin confirmed that LECs from leishmanial lesions efficiently uptake and process antigens, highlighting their capability as antigen presenting cells in the inflamed dermal microenvironment. Conclusion: Overall, our study reveals the activation status of LECs in leishmanial lesions, shedding light on their potential role in shaping local immunity and inflammation in a variety of skin diseases.
Collapse
Affiliation(s)
- Lucy Fry
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hayden Roys
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Anne Bowlin
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gopinath Venugopal
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jordan T Bird
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Alexx Weaver
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Tiffany Weinkopff
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
4
|
Baluapuri A, Zhao NC, Marina RJ, Huang KL, Kuzkina A, Amodeo ME, Stein CB, Ahn LY, Farr JS, Schaffer AE, Khurana V, Wagner EJ, Adelman K. Integrator loss leads to dsRNA formation that triggers the integrated stress response. Cell 2025:S0092-8674(25)00343-5. [PMID: 40233738 DOI: 10.1016/j.cell.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/16/2024] [Accepted: 03/13/2025] [Indexed: 04/17/2025]
Abstract
Integrator (INT) is a metazoan-specific complex that targets promoter-proximally paused RNA polymerase II (RNAPII) for termination, preventing immature RNAPII from entering gene bodies and functionally attenuating transcription of stress-responsive genes. Mutations in INT subunits are associated with many human diseases, including cancer, ciliopathies, and neurodevelopmental disorders, but how reduced INT activity contributes to disease is unknown. Here, we demonstrate that the loss of INT-mediated termination in human cells triggers the integrated stress response (ISR). INT depletion causes upregulation of short genes such as the ISR transcription factor activating transcription factor 3 (ATF3). Further, immature RNAPII that escapes into genes upon INT depletion is prone to premature termination, generating incomplete pre-mRNAs with retained introns. Retroelements within retained introns form double-stranded RNA (dsRNA) that is recognized by protein kinase R (PKR), which drives ATF4 activation and prolonged ISR. Critically, patient cells with INT mutations exhibit dsRNA accumulation and ISR activation, thereby implicating chronic ISR in diseases caused by INT deficiency.
Collapse
Affiliation(s)
- Apoorva Baluapuri
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
| | - Nicole ChenCheng Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan J Marina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Anastasia Kuzkina
- APDA Center for Advanced Research, Division of Motor Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria E Amodeo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Chad B Stein
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lucie Y Ahn
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jordan S Farr
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vikram Khurana
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; APDA Center for Advanced Research, Division of Motor Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Ludwig Center at Harvard, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Anderson GA, Hernandez M, Quinde CA, Thompson Z, Binder-Blaser V, Taylor AM, Kathrein KL. Loss of ING4 enhances hematopoietic regeneration in multipotent progenitor cells. PLoS One 2025; 20:e0316256. [PMID: 39951458 PMCID: PMC11828401 DOI: 10.1371/journal.pone.0316256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/09/2024] [Indexed: 02/16/2025] Open
Abstract
Despite its critical role in survival, many aspects of hematopoiesis remain unresolved. In the classical model of the hematopoietic program, quiescent hematopoietic stem cells (HSCs) sit at the top of the hematopoietic hierarchy, with the ability to self-renew and differentiate as needed. HSCs give rise to more proliferative progenitor cells, which possess multipotent potential, but have largely or completely lost self-renewal capabilities. Here, we have identified the tumor suppressor, Inhibitor of Growth 4 (ING4), as a critical regulator of multipotent progenitor (MPP) homeostasis. In the absence of ING4, we show that MPPs express a transcriptional program of hematopoietic activation, yet they remain quiescent with low levels of reactive oxygen species. Functionally, ING4-deficient MPPs are capable of robust regeneration following competitive bone marrow transplantation, resulting in substantially higher blood chimerism compared to wild-type MPPs. These data suggest ING4 deficiency promotes a poised state in MPPs, quiescent but transcriptionally primed for activation, and capable of converting the poised state into robust repopulation upon stress. Our model provides key tools for further identification and characterization of pathways that control quiescence and regeneration in MPPs.
Collapse
Affiliation(s)
- Georgina A. Anderson
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Marco Hernandez
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Carlos Alfaro Quinde
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Zanshé Thompson
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina, United States of America
| | - Vera Binder-Blaser
- Department of Hematology and Oncology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Alison M. Taylor
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, United States of America
| | - Katie L. Kathrein
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
6
|
Lisi-Vega LE, Pievani A, García-Fernández M, Forte D, Williams TL, Serafini M, Méndez-Ferrer S. Bone marrow mesenchymal stromal cells support translation in refractory acute myeloid leukemia. Cell Rep 2025; 44:115151. [PMID: 39932190 PMCID: PMC7617453 DOI: 10.1016/j.celrep.2024.115151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/22/2024] [Accepted: 12/13/2024] [Indexed: 03/05/2025] Open
Abstract
In acute myeloid leukemia (AML), malignant cells surviving chemotherapy rely on high mRNA translation and their microenvironmental metabolic support to drive relapse. However, the role of translational reprogramming in the niche is unclear. Here, we found that relapsing AML cells increase translation in their bone marrow (BM) niches, where BM mesenchymal stromal cells (BMSCs) become a source of eIF4A-cap-dependent translation machinery that is transferred to AML cells via extracellular vesicles (EVs) to meet their translational demands. In two independent models of highly chemo-resistant AML driven by MLL-AF9 or FLT3-ITD (internal tandem duplication) and nucleophosmin (NPMc) mutations, protein synthesis levels increase in refractory AML dependent on nestin+ BMSCs. Inhibiting cap-dependent translation in BMSCs abolishes their chemoprotective ability, while EVs from BMSCs carrying eIF4A boost AML cell translation and survival. Consequently, eIF4A inhibition synergizes with conventional chemotherapy. Together, these results suggest that AML cells rely on BMSCs to maintain an oncogenic translational program required for relapse.
Collapse
Affiliation(s)
- Livia E Lisi-Vega
- Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge CB2 0AW, UK
| | - Alice Pievani
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, 20900 Monza, Italy
| | - María García-Fernández
- Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge CB2 0AW, UK
| | - Dorian Forte
- Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge CB2 0AW, UK
| | - Tim L Williams
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Marta Serafini
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, 20900 Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Simón Méndez-Ferrer
- Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge CB2 0AW, UK; Instituto de Biomedicina de Sevilla-IBiS (Hospitales Universitarios Virgen Del Rocío y Macarena/CSIC/Universidad de Sevilla), 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain.
| |
Collapse
|
7
|
Han G, Cui M, Lu P, Zhang T, Yin R, Hu J, Chai J, Wang J, Gao K, Liu W, Yao S, Cao Z, Zheng Y, Tian W, Guo R, Shen M, Liu Z, Li W, Zhao S, Lin X, Zhang Y, Song K, Sun Y, Zhou F, Zhang H. Selective translation of nuclear mitochondrial respiratory proteins reprograms succinate metabolism in AML development and chemoresistance. Cell Stem Cell 2024; 31:1777-1793.e9. [PMID: 39357516 DOI: 10.1016/j.stem.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Mitochondrial adaptations dynamically reprogram cellular bioenergetics and metabolism and confer key properties for human cancers. However, the selective regulation of these mitochondrial responses remains largely elusive. Here, inspired by a genetic screening in acute myeloid leukemia (AML), we identify RAS effector RREB1 as a translational regulator and uncover a unique translation control system for nuclear-encoded mitochondrial proteins in human cancers. RREB1 deletion reduces mitochondrial activities and succinate metabolism, thereby damaging leukemia stem cell (LSC) function and AML development. Replenishing complex II subunit SDHD rectifies these deficiencies. Notably, inhibition of complex II re-sensitizes AML cells to venetoclax treatment. Mechanistically, a short RREB1 variant binds to a conserved motif in the 3' UTRs and cooperates with elongation factor eEF1A1 to enhance protein translation of nuclear-encoded mitochondrial mRNAs. Overall, our findings reveal a unique translation control mechanism for mitochondrial adaptations in AML pathogenesis and provide a potential strategy for targeting this vulnerability of LSCs.
Collapse
Affiliation(s)
- Guoqiang Han
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.
| | - Manman Cui
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Pengbo Lu
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Tiantian Zhang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Rong Yin
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jin Hu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jihua Chai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kexin Gao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Weidong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuxin Yao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Ziyan Cao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yanbing Zheng
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Wen Tian
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Min Shen
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zheming Liu
- Cancer Center, Renmin Hospital, Wuhan University, Wuhan, China
| | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Zhao
- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangpeng Lin
- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhui Zhang
- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Kehan Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yan Sun
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China.
| | - Haojian Zhang
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; RNA Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Muthukumar S, Tucciarone S, Germanos AA, Bellodi C. Functional characterization of tRNA-derived small RNAs in stem cells. Methods Enzymol 2024; 711:261-282. [PMID: 39952709 DOI: 10.1016/bs.mie.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Transfer RNA (tRNA)-derived RNAs (tDRs) are abundant small RNAs with emerging roles in development and tumorigenesis. Increasing evidence indicates that tDRs regulate stem cell homeostasis and differentiation, often altered in disease, highlighting the importance of fully characterizing their role in stem cell biology. Multiple studies point to protein synthesis as a crucial target of tDR-mediated control of different stem cell types. Translation is a highly regulated process that integrates various input signals from cell-intrinsic and -extrinsic cues. Notably, tDRs largely impact translation initiation and ribosome biogenesis, driving critical adaptations of the stem cell proteome and balancing dynamic transitions between self-renewal, proliferation, and cell-fate trajectories. Hematopoietic stem cells (HSCs) give rise to all circulating blood cells and exhibit exquisite sensitivity to tDR-mediated translation control impacting HSC homeostasis and differentiation. Significantly, defects in tDR levels and processing may drive malignant phenotypes in HSCs by supporting aberrant proteomic programs associated with leukemia transformation. While sequencing technologies have dramatically improved tDR detection and quantification, the specific mechanisms by which tDRs impact cellular phenotypes remain incompletely understood. With this increased resolution, further studies will lead to novel insights on the roles of tDRs in crucial stem cell phenotypes. In this chapter, we showcase useful protocols to characterize the molecular functions of tDRs in stem cell populations. We include methods to quantify the effects of tDR on protein synthesis and stem cell proliferation and differentiation. Finally, we highlight in vivo techniques to measure tDR impact on HSC engraftment potential in xenograft models.
Collapse
Affiliation(s)
- Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Silvia Tucciarone
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Alexandre André Germanos
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
9
|
Dai Y, Zhou Z, Yu W, Ma Y, Kim K, Rivera N, Mohammed J, Lantelme E, Hsu-Kim H, Chilkoti A, You L. Biomolecular condensates regulate cellular electrochemical equilibria. Cell 2024; 187:5951-5966.e18. [PMID: 39260373 PMCID: PMC11490381 DOI: 10.1016/j.cell.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/22/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Control of the electrochemical environment in living cells is typically attributed to ion channels. Here, we show that the formation of biomolecular condensates can modulate the electrochemical environment in bacterial cells, which affects cellular processes globally. Condensate formation generates an electric potential gradient, which directly affects the electrochemical properties of a cell, including cytoplasmic pH and membrane potential. Condensate formation also amplifies cell-cell variability of their electrochemical properties due to passive environmental effect. The modulation of the electrochemical equilibria further controls cell-environment interactions, thus directly influencing bacterial survival under antibiotic stress. The condensate-mediated shift in intracellular electrochemical equilibria drives a change of the global gene expression profile. Our work reveals the biochemical functions of condensates, which extend beyond the functions of biomolecules driving and participating in condensate formation, and uncovers a role of condensates in regulating global cellular physiology.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Zhengqing Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Wen Yu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Yuefeng Ma
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Kyeri Kim
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nelson Rivera
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Javid Mohammed
- Department of Immunology, Duke University, Durham, NC 27705, USA
| | - Erica Lantelme
- Department of Pathology and Immunology, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Immunology, Duke University, Durham, NC 27705, USA.
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Immunology, Duke University, Durham, NC 27705, USA; Center for Quantitative Biodesign, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Andrews JT, Zhang Z, Prasad GVRK, Huey F, Nazarova EV, Wang J, Ranaraja A, Weinkopff T, Li LX, Mu S, Birrer MJ, Huang SCC, Zhang N, Argüello RJ, Philips JA, Mattila JT, Huang L. Metabolically active neutrophils represent a permissive niche for Mycobacterium tuberculosis. Mucosal Immunol 2024; 17:825-842. [PMID: 38844208 PMCID: PMC11493682 DOI: 10.1016/j.mucimm.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Mycobacterium tuberculosis (Mtb)-infected neutrophils are often found in the airways of patients with active tuberculosis (TB), and excessive recruitment of neutrophils to the lung is linked to increased bacterial burden and aggravated pathology in TB. The basis for the permissiveness of neutrophils for Mtb and the ability to be pathogenic in TB has been elusive. Here, we identified metabolic and functional features of neutrophils that contribute to their permissiveness in Mtb infection. Using single-cell metabolic and transcriptional analyses, we found that neutrophils in the Mtb-infected lung displayed elevated mitochondrial metabolism, which was largely attributed to the induction of activated neutrophils with enhanced metabolic activities. The activated neutrophil subpopulation was also identified in the lung granulomas from Mtb-infected non-human primates. Functionally, activated neutrophils harbored more viable bacteria and displayed enhanced lipid uptake and accumulation. Surprisingly, we found that interferon-γ promoted the activation of lung neutrophils during Mtb infection. Lastly, perturbation of lipid uptake pathways selectively compromised Mtb survival in activated neutrophils. These findings suggest that neutrophil heterogeneity and metabolic diversity are key to their permissiveness for Mtb and that metabolic pathways in neutrophils represent potential host-directed therapeutics in TB.
Collapse
Affiliation(s)
- J Tucker Andrews
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Zijing Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - G V R Krishna Prasad
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Fischer Huey
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Evgeniya V Nazarova
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ananya Ranaraja
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tiffany Weinkopff
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lin-Xi Li
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael J Birrer
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stanley Ching-Cheng Huang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Nan Zhang
- Immunology, Metastasis & Microenvironment Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Rafael J Argüello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Jennifer A Philips
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA; Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lu Huang
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
11
|
Lam K, Kim YJ, Ong CM, Liu AZ, Zhou FJ, Sunshine MJ, Chua BA, Vicenzi S, Ford PW, Zhou JH, Hong Y, Bennett EJ, Crews LA, Ball ED, Signer RAJ. The Proteostasis Network is a Therapeutic Target in Acute Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614781. [PMID: 39386464 PMCID: PMC11463481 DOI: 10.1101/2024.09.24.614781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Oncogenic growth places great strain and dependence on the proteostasis network. This has made proteostasis pathways attractive therapeutic targets in cancer, but efforts to drug these pathways have yielded disappointing clinical outcomes. One exception is proteasome inhibitors, which are approved for frontline treatment of multiple myeloma. However, proteasome inhibitors are largely ineffective for treatment of other cancers, including acute myeloid leukemia (AML), although reasons for these differences are unknown. Here, we determined that proteasome inhibitors are ineffective in AML due to inability to disrupt proteostasis. In response to proteasome inhibition, AML cells activated HSF1 and autophagy, two key stem cell proteostasis pathways, to prevent unfolded protein accumulation. Inactivation of HSF1 sensitized human AML cells to proteasome inhibition, marked by unfolded protein accumulation, activation of the PERK-mediated integrated stress response, severe reductions in protein synthesis, proliferation and cell survival, and significant slowing of disease progression and extension of survival in vivo . Similarly, combined autophagy and proteasome inhibition suppressed proliferation, synergistically killed AML cells, and significantly reduced AML burden and extended survival in vivo . Furthermore, autophagy and proteasome inhibition preferentially suppressed protein synthesis and induced apoptosis in primary patient AML cells, including AML stem/progenitor cells, without severely affecting normal hematopoietic stem/progenitor cells. Combined autophagy and proteasome inhibition also activated the integrated stress response, but surprisingly this occurred in a PKR-dependent manner. These studies unravel how proteostasis pathways are co-opted to promote AML growth, progression and drug resistance, and reveal that disabling the proteostasis network is a promising strategy to therapeutically target AML.
Collapse
|
12
|
Fry L, Roys H, Bowlin A, Venugopal G, Bird JT, Weaver A, Byrum SD, Weinkopff T. Enhanced translational activity is linked to lymphatic endothelial cell activation in cutaneous leishmaniasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.605632. [PMID: 39211126 PMCID: PMC11361129 DOI: 10.1101/2024.08.07.605632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cutaneous leishmaniasis (CL) is a significant public health problem leading to permanently disfiguring skin lesions caused by Leishmania parasites. Lesion severity stems from an excessive host inflammatory response that prevents healing. Here, we characterized the transcriptional and translational responses of lymphatic endothelial cells (LECs) during murine CL using historical single-cell RNA sequencing data combined with flow cytometry and in vivo puromycin incorporation to assess translational activity. We identified upregulation of antigen presentation pathways including MHC-I, MHC-II, and immunoproteasome transcripts in dermal LECs from Leishmania major -infected mice compared to naive controls. LECs also exhibited increased expression of guanylate binding proteins and interferon-inducible genes, indicative of immune activation. Moreover, our findings demonstrate that LECs in leishmanial lesions displayed heightened translational activity relative to LECs from uninflamed ears, and LEC translational activity was highest in activated LECs. Furthermore, LEC translational activity exceeded that of other cell types within the lesion microenvironment. Validating the transcriptomic data, LECs in lesions expressed elevated MHC-II and programmed death-ligand 1 (PDL-1), supporting their potential role in antigen presentation. Functional assays using DQ-OVA confirmed that LECs from leishmanial lesions efficiently uptake and process antigens, highlighting their capability as antigen presenting cells in the inflamed dermal microenvironment. Overall, our study reveals the activation status of LECs in leishmanial lesions, shedding light on their potential role in shaping local immunity and inflammation in a variety of skin diseases.
Collapse
|
13
|
Stepanchick E, Wilson A, Sulentic AM, Choi K, Hueneman K, Starczynowski DT, Chlon TM. DDX41 haploinsufficiency causes inefficient hematopoiesis under stress and cooperates with p53 mutations to cause hematologic malignancy. Leukemia 2024; 38:1787-1798. [PMID: 38937548 PMCID: PMC11286521 DOI: 10.1038/s41375-024-02304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Germline heterozygous mutations in DDX41 predispose individuals to hematologic malignancies in adulthood. Most of these DDX41 mutations result in a truncated protein, leading to loss of protein function. To investigate the impact of these mutations on hematopoiesis, we generated mice with hematopoietic-specific knockout of one Ddx41 allele. Under normal steady-state conditions, there was minimal effect on lifelong hematopoiesis, resulting in a mild yet persistent reduction in red blood cell counts. However, stress induced by transplantation of the Ddx41+/- BM resulted in hematopoietic stem/progenitor cell (HSPC) defects and onset of hematopoietic failure upon aging. Transcriptomic analysis of HSPC subsets from the transplanted BM revealed activation of cellular stress responses, including upregulation of p53 target genes in erythroid progenitors. To understand how the loss of p53 affects the phenotype of Ddx41+/- HSPCs, we generated mice with combined Ddx41 and Trp53 heterozygous deletions. The reduction in p53 expression rescued the fitness defects in HSPC caused by Ddx41 heterozygosity. However, the combined Ddx41 and Trp53 mutant mice were prone to developing hematologic malignancies that resemble human myelodysplastic syndrome and acute myeloid leukemia. In conclusion, DDX41 heterozygosity causes dysregulation of the response to hematopoietic stress, which increases the risk of transformation with a p53 mutation.
Collapse
Affiliation(s)
- Emily Stepanchick
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew Wilson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Analise M Sulentic
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Timothy M Chlon
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.
- University of Cincinnati Cancer Center, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Klapp V, Gumustekin O, Paggetti J, Moussay E, Largeot A. Assessment of translation rate in leukemic cells and immune cells of the microenvironment by OPP protein synthesis assay. Methods Cell Biol 2024; 189:1-21. [PMID: 39393878 DOI: 10.1016/bs.mcb.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Despite being tightly regulated, messenger RNA (mRNA) translation, a manner in which cells control expression of genes and rapidly respond to stimuli, is highly dysfunctional and plastic in pathologies including cancer. Conversely, the investigation of molecular mechanisms whereby mRNA translation becomes aberrant in cancer, as well as inhibition thereof, become critical in developing novel therapeutic approaches. More specifically, in malignancies such as chronic lymphocytic leukemia in which aberrant global and transcript specific translation has been linked with poorer patient outcomes, targeting translation is a relevant approach, with various translation inhibitors under development. Here we elaborate on a protein synthesis assay by flow cytometry, O-propargyl-puromycin, demonstrating global mRNA translation rate with a variety of different applications including cell lines, primary cells or co-culture systems in vitro. This method provides a comprehensive tool in quantifying the rate of global mRNA translation in cancer cells, as well as that of the tumor microenvironment cells, or in response to inhibitory therapeutic agents while offering the possibility to simultaneously assess other cellular markers.
Collapse
Affiliation(s)
- Vanessa Klapp
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ozgu Gumustekin
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jerome Paggetti
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anne Largeot
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
15
|
Wu X, Yuan H, Wu Q, Gao Y, Duan T, Yang K, Huang T, Wang S, Yuan F, Lee D, Taori S, Plute T, Heissel S, Alwaseem H, Isay-Del Viscio M, Molina H, Agnihotri S, Hsu DJ, Zhang N, Rich JN. Threonine fuels glioblastoma through YRDC-mediated codon-biased translational reprogramming. NATURE CANCER 2024; 5:1024-1044. [PMID: 38519786 PMCID: PMC11552442 DOI: 10.1038/s43018-024-00748-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/23/2024] [Indexed: 03/25/2024]
Abstract
Cancers commonly reprogram translation and metabolism, but little is known about how these two features coordinate in cancer stem cells. Here we show that glioblastoma stem cells (GSCs) display elevated protein translation. To dissect underlying mechanisms, we performed a CRISPR screen and identified YRDC as the top essential transfer RNA (tRNA) modification enzyme in GSCs. YRDC catalyzes the formation of N6-threonylcarbamoyladenosine (t6A) on ANN-decoding tRNA species (A denotes adenosine, and N denotes any nucleotide). Targeting YRDC reduced t6A formation, suppressed global translation and inhibited tumor growth both in vitro and in vivo. Threonine is an essential substrate of YRDC. Threonine accumulated in GSCs, which facilitated t6A formation through YRDC and shifted the proteome to support mitosis-related genes with ANN codon bias. Dietary threonine restriction (TR) reduced tumor t6A formation, slowed xenograft growth and augmented anti-tumor efficacy of chemotherapy and anti-mitotic therapy, providing a molecular basis for a dietary intervention in cancer treatment.
Collapse
Affiliation(s)
- Xujia Wu
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Neurosurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Huairui Yuan
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Qiulian Wu
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yixin Gao
- Department of Neurosurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Tingting Duan
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Tengfei Huang
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Shuai Wang
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Fanen Yuan
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Derrick Lee
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Suchet Taori
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tritan Plute
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Søren Heissel
- Proteomics Resource Center, the Rockefeller University, New York, NY, USA
| | - Hanan Alwaseem
- Proteomics Resource Center, the Rockefeller University, New York, NY, USA
| | | | - Henrik Molina
- Proteomics Resource Center, the Rockefeller University, New York, NY, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dennis J Hsu
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nu Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China.
| | - Jeremy N Rich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Wang J, Hong M, Cheng Y, Wang X, Li D, Chen G, Bao B, Song J, Du X, Yang C, Zheng L, Tong Q. Targeting c-Myc transactivation by LMNA inhibits tRNA processing essential for malate-aspartate shuttle and tumour progression. Clin Transl Med 2024; 14:e1680. [PMID: 38769668 PMCID: PMC11106511 DOI: 10.1002/ctm2.1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND A series of studies have demonstrated the emerging involvement of transfer RNA (tRNA) processing during the progression of tumours. Nevertheless, the roles and regulating mechanisms of tRNA processing genes in neuroblastoma (NB), the prevalent malignant tumour outside the brain in children, are yet unknown. METHODS Analysis of multi-omics results was conducted to identify crucial regulators of downstream tRNA processing genes. Co-immunoprecipitation and mass spectrometry methods were utilised to measure interaction between proteins. The impact of transcriptional regulators on expression of downstream genes was measured by dual-luciferase reporter, chromatin immunoprecipitation, western blotting and real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) methods. Studies have been conducted to reveal impact and mechanisms of transcriptional regulators on biological processes of NB. Survival differences were analysed using the log-rank test. RESULTS c-Myc was identified as a transcription factor driving tRNA processing gene expression and subsequent malate-aspartate shuttle (MAS) in NB cells. Mechanistically, c-Myc directly promoted the expression of glutamyl-prolyl-tRNA synthetase (EPRS) and leucyl-tRNA synthetase (LARS), resulting in translational up-regulation of glutamic-oxaloacetic transaminase 1 (GOT1) as well as malate dehydrogenase 1 (MDH1) via inhibiting general control nonrepressed 2 or activating mechanistic target of rapamycin signalling. Meanwhile, lamin A (LMNA) inhibited c-Myc transactivation via physical interaction, leading to suppression of MAS, aerobic glycolysis, tumourigenesis and aggressiveness. Pre-clinically, lobeline was discovered as a LMNA-binding compound to facilitate its interaction with c-Myc, which inhibited aminoacyl-tRNA synthetase expression, MAS and tumour progression of NB, as well as growth of organoid derived from c-Myc knock-in mice. Low levels of LMNA or elevated expression of c-Myc, EPRS, LARS, GOT1 or MDH1 were linked to a worse outcome and a shorter survival time of clinical NB patients. CONCLUSIONS These results suggest that targeting c-Myc transactivation by LMNA inhibits tRNA processing essential for MAS and tumour progression.
Collapse
Affiliation(s)
- Jianqun Wang
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Mei Hong
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Yang Cheng
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Xiaojing Wang
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
- Department of GeriatricsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubei ProvinceChina
| | - Dan Li
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Guo Chen
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Banghe Bao
- Department of PathologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Jiyu Song
- Department of PathologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Xinyi Du
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Chunhui Yang
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Liduan Zheng
- Department of PathologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Qiangsong Tong
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| |
Collapse
|
17
|
Hooshmandi M, Wong C, Lister KC, Brown N, Cai W, Ho-Tieng D, Stecum P, Backman T, Kostantin E, Khoutorsky A. Protocol for measuring protein synthesis in specific cell types in the mouse brain using in vivo non-canonical amino acid tagging. STAR Protoc 2024; 5:102775. [PMID: 38085640 PMCID: PMC10783633 DOI: 10.1016/j.xpro.2023.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 11/29/2023] [Indexed: 01/14/2024] Open
Abstract
The fluorescent non-canonical amino acid tagging (FUNCAT) technique has been used to visualize newly synthesized proteins in cell lines and tissues. Here, we present a protocol for measuring protein synthesis in specific cell types in the mouse brain using in vivo FUNCAT. We describe steps for metabolically labeling newly synthesized proteins with azidohomoalanine, which introduces an azide group into the polypeptide. We then detail procedures for binding a fluorophore-conjugated alkyne to the azide group to allow its visualization. For complete details on the use and execution of this protocol, please refer to tom Dieck et al. (2012)1 and Hooshmandi et al. (2023).2.
Collapse
Affiliation(s)
- Mehdi Hooshmandi
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| | - Calvin Wong
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Kevin C Lister
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Nicole Brown
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Weihua Cai
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - David Ho-Tieng
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Patricia Stecum
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Thomas Backman
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Elie Kostantin
- Clinical Department of Laboratory Medicine, Cite-de-la-Sante Hospital, Optilab LLL and University of Montreal, Montreal, QC, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.
| |
Collapse
|
18
|
Zhang D, Gao Y, Zhu L, Wang Y, Li P. Advances and opportunities in methods to study protein translation - A review. Int J Biol Macromol 2024; 259:129150. [PMID: 38171441 DOI: 10.1016/j.ijbiomac.2023.129150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
It is generally believed that the regulation of gene expression involves protein translation occurring before RNA transcription. Therefore, it is crucial to investigate protein translation and its regulation. Recent advancements in biological sciences, particularly in the field of omics, have revolutionized protein translation research. These studies not only help characterize changes in protein translation during specific biological or pathological processes but also have significant implications in disease prevention and treatment. In this review, we summarize the latest methods in ribosome-based translation omics. We specifically focus on the application of fluorescence imaging technology and omics technology in studying overall protein translation. Additionally, we analyze the advantages, disadvantages, and application of these experimental methods, aiming to provide valuable insights and references to researchers studying translation.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
19
|
Oshima S, Sinha R, Ohno M, Nishi K, Eto K, Takaori-Kondo A, Nishi E, Yamamoto R. Nardilysin determines hematopoietic stem cell fitness by regulating protein synthesis. Biochem Biophys Res Commun 2024; 693:149355. [PMID: 38096617 DOI: 10.1016/j.bbrc.2023.149355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Nardilysin (NRDC) is a multifunctional protein required for maintaining homeostasis in various cellular and tissue contexts. However, its role in hematopoietic stem cells (HSCs) remains unclear. Here, through the conditional deletion of NRDC in hematopoietic cells, we demonstrate that NRDC is required for HSCs expansion in vitro and the reconstitution of hematopoiesis in vivo after transplantation. We found NRDC-deficient HSCs lose their self-renewal ability and display a preferential bias to myeloid differentiation in response to replication stress. Transcriptome data analysis revealed the upregulation of heat shock response-related genes in NRDC-deficient HSCs. Additionally, we observed increased protein synthesis in cultured NRDC-deficient HSCs. Thus, loss of NRDC may cause the inability to control protein synthesis in response to replication induced protein stress, leading to the impaired HSC self-renewal ability. This highlights a novel model of action of NRDC specifically in HSCs.
Collapse
Affiliation(s)
- Shinichiro Oshima
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA, 94305, USA
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Sciences, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Kiyoto Nishi
- Department of Pharmacology, Shiga University of Medical Sciences, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8507, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Sciences, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Ryo Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
20
|
Tagliatti E, Desiato G, Mancinelli S, Bizzotto M, Gagliani MC, Faggiani E, Hernández-Soto R, Cugurra A, Poliseno P, Miotto M, Argüello RJ, Filipello F, Cortese K, Morini R, Lodato S, Matteoli M. Trem2 expression in microglia is required to maintain normal neuronal bioenergetics during development. Immunity 2024; 57:86-105.e9. [PMID: 38159572 PMCID: PMC10783804 DOI: 10.1016/j.immuni.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Triggering receptor expressed on myeloid cells 2 (Trem2) is a myeloid cell-specific gene expressed in brain microglia, with variants that are associated with neurodegenerative diseases, including Alzheimer's disease. Trem2 is essential for microglia-mediated synaptic refinement, but whether Trem2 contributes to shaping neuronal development remains unclear. Here, we demonstrate that Trem2 plays a key role in controlling the bioenergetic profile of pyramidal neurons during development. In the absence of Trem2, developing neurons in the hippocampal cornus ammonis (CA)1 but not in CA3 subfield displayed compromised energetic metabolism, accompanied by reduced mitochondrial mass and abnormal organelle ultrastructure. This was paralleled by the transcriptional rearrangement of hippocampal pyramidal neurons at birth, with a pervasive alteration of metabolic, oxidative phosphorylation, and mitochondrial gene signatures, accompanied by a delay in the maturation of CA1 neurons. Our results unveil a role of Trem2 in controlling neuronal development by regulating the metabolic fitness of neurons in a region-specific manner.
Collapse
Affiliation(s)
- Erica Tagliatti
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Genni Desiato
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Sara Mancinelli
- Humanitas University, Department of Biomedical Sciences, Via Levi Montalicini 4, Pieve Emanuele 20072 Milan, Italy
| | - Matteo Bizzotto
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; Humanitas University, Department of Biomedical Sciences, Via Levi Montalicini 4, Pieve Emanuele 20072 Milan, Italy
| | - Maria C Gagliani
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine (DIMES), Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
| | - Elisa Faggiani
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | | | - Andrea Cugurra
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Paola Poliseno
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Matteo Miotto
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Rafael J Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Fabia Filipello
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Katia Cortese
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine (DIMES), Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
| | - Raffaella Morini
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Simona Lodato
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; Humanitas University, Department of Biomedical Sciences, Via Levi Montalicini 4, Pieve Emanuele 20072 Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy.
| |
Collapse
|
21
|
Yu NJ, Dai W, Li A, He M, Kleiner RE. Cell type-specific translational regulation by human DUS enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565399. [PMID: 37965204 PMCID: PMC10635104 DOI: 10.1101/2023.11.03.565399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dihydrouridine is an abundant and conserved modified nucleoside present on tRNA, but characterization and functional studies of modification sites and associated DUS writer enzymes in mammals is lacking. Here we use a chemical probing strategy, RNABPP-PS, to identify 5-chlorouridine as an activity-based probe for human DUS enzymes. We map D modifications using RNA-protein crosslinking and chemical transformation and mutational profiling to reveal D modification sites on human tRNAs. Further, we knock out individual DUS genes in two human cell lines to investigate regulation of tRNA expression levels and codon-specific translation. We show that whereas D modifications are present across most tRNA species, loss of D only perturbs the translational function of a subset of tRNAs in a cell type-specific manner. Our work provides powerful chemical strategies for investigating D and DUS enzymes in diverse biological systems and provides insight into the role of a ubiquitous tRNA modification in translational regulation.
Collapse
|
22
|
Cabrera-Cabrera F, Tull H, Capuana R, Kasvandik S, Timmusk T, Koppel I. Cell type-specific labeling of newly synthesized proteins by puromycin inactivation. J Biol Chem 2023; 299:105129. [PMID: 37543363 PMCID: PMC10497999 DOI: 10.1016/j.jbc.2023.105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023] Open
Abstract
Puromycin and its derivative O-propargyl puromycin (OPP) have recently found widespread use in detecting nascent proteins. Use of these metabolic labels in complex mixtures of cells leads to indiscriminate tagging of nascent proteomes independent of cell type. Here, we show how a widely used mammalian selection marker, puromycin N-acetyltransferase, can be repurposed for cell-specific metabolic labeling. This approach, which we named puromycin inactivation for cell-selective proteome labeling (PICSL), is based on efficient inactivation of puromycin or OPP in cells expressing puromycin N-acetyltransferase and detection of translation in other cell types. Using cocultures of neurons and glial cells from the rat brain cortex, we show the application of PICSL for puromycin immunostaining, Western blot, and mass spectrometric identification of nascent proteins. By combining PICSL and OPP-mediated proteomics, cell type-enriched proteins can be identified based on reduced OPP labeling in the cell type of interest.
Collapse
Affiliation(s)
| | - Helena Tull
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Roberta Capuana
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Sergo Kasvandik
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Protobios Llc, Tallinn, Estonia
| | - Indrek Koppel
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
23
|
Xie L, Xu Y, Ding X, Li K, Liang S, Li D, Wang Y, Fu A, Yu W, Zhan X. Selenomethionine Attenuated H 2O 2-Induced Oxidative Stress and Apoptosis by Nrf2 in Chicken Liver Cells. Antioxidants (Basel) 2023; 12:1685. [PMID: 37759988 PMCID: PMC10525281 DOI: 10.3390/antiox12091685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Earlier studies have shown that selenomethionine (SM) supplements in broiler breeders had higher deposition in eggs, further reduced the mortality of chicken embryos, and exerted a stronger antioxidant ability in offspring than sodium selenite (SS). Since previous studies also confirmed that Se deposition in eggs was positively correlated with maternal supplementation, this study aimed to directly investigate the antioxidant activities and underlying mechanisms of SS and SM on the chicken hepatocellular carcinoma cell line (LMH). The cytotoxicity results showed that the safe concentration of SM was up to 1000 ng/mL, while SS was 100 ng/mL. In Se treatments, both SS and SM significantly elevated mRNA stability and the protein synthesis rate of glutathione peroxidase (GPx) and thioredoxin reductase (TrxR), two Se-containing antioxidant enzymes. Furthermore, SM exerted protective effects in the H2O2-induced oxidant stress model by reducing free radicals (including ROS, MDA, and NO) and elevating the activities of antioxidative enzymes, which performed better than SS. Furthermore, the results showed that cotreatment with SM significantly induced apoptosis induced by H2O2 on elevating the content of Bcl-2 and decreasing caspase-3. Moreover, investigations of the mechanism revealed that SM might exert antioxidant effects on H2O2-induced LMHs by activating the Nrf2 pathway and enhancing the activities of major antioxidant selenoenzymes downstream. These findings provide evidence for the effectiveness of SM on ameliorating H2O2-induced oxidative impairment and suggest SM has the potential to be used in the prevention or adjuvant treatment of oxidative-related impairment in poultry feeds.
Collapse
Affiliation(s)
- Lingyu Xie
- Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed in East China, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (Y.X.); (X.D.); (K.L.); (S.L.); (D.L.); (A.F.)
| | - Yibin Xu
- Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed in East China, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (Y.X.); (X.D.); (K.L.); (S.L.); (D.L.); (A.F.)
| | - Xiaoqing Ding
- Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed in East China, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (Y.X.); (X.D.); (K.L.); (S.L.); (D.L.); (A.F.)
| | - Kaixuan Li
- Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed in East China, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (Y.X.); (X.D.); (K.L.); (S.L.); (D.L.); (A.F.)
| | - Shuang Liang
- Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed in East China, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (Y.X.); (X.D.); (K.L.); (S.L.); (D.L.); (A.F.)
| | - Danlei Li
- Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed in East China, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (Y.X.); (X.D.); (K.L.); (S.L.); (D.L.); (A.F.)
| | - Yongxia Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China;
| | - Aikun Fu
- Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed in East China, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (Y.X.); (X.D.); (K.L.); (S.L.); (D.L.); (A.F.)
| | - Weixiang Yu
- Animal Husbandry and Veterinary Services Center of Haiyan, Jiaxing 314300, China
| | - Xiuan Zhan
- Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed in East China, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (Y.X.); (X.D.); (K.L.); (S.L.); (D.L.); (A.F.)
| |
Collapse
|
24
|
Gonzalez-Menendez P, Phadke I, Olive ME, Joly A, Papoin J, Yan H, Galtier J, Platon J, Kang SWS, McGraw KL, Daumur M, Pouzolles M, Kondo T, Boireau S, Paul F, Young DJ, Lamure S, Mirmira RG, Narla A, Cartron G, Dunbar CE, Boyer-Clavel M, Porat-Shliom N, Dardalhon V, Zimmermann VS, Sitbon M, Dever TE, Mohandas N, Da Costa L, Udeshi ND, Blanc L, Kinet S, Taylor N. Arginine metabolism regulates human erythroid differentiation through hypusination of eIF5A. Blood 2023; 141:2520-2536. [PMID: 36735910 PMCID: PMC10273172 DOI: 10.1182/blood.2022017584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Metabolic programs contribute to hematopoietic stem and progenitor cell (HSPC) fate, but it is not known whether the metabolic regulation of protein synthesis controls HSPC differentiation. Here, we show that SLC7A1/cationic amino acid transporter 1-dependent arginine uptake and its catabolism to the polyamine spermidine control human erythroid specification of HSPCs via the activation of the eukaryotic translation initiation factor 5A (eIF5A). eIF5A activity is dependent on its hypusination, a posttranslational modification resulting from the conjugation of the aminobutyl moiety of spermidine to lysine. Notably, attenuation of hypusine synthesis in erythroid progenitors, by the inhibition of deoxyhypusine synthase, abrogates erythropoiesis but not myeloid cell differentiation. Proteomic profiling reveals mitochondrial translation to be a critical target of hypusinated eIF5A, and accordingly, progenitors with decreased hypusine activity exhibit diminished oxidative phosphorylation. This affected pathway is critical for eIF5A-regulated erythropoiesis, as interventions augmenting mitochondrial function partially rescue human erythropoiesis under conditions of attenuated hypusination. Levels of mitochondrial ribosomal proteins (RPs) were especially sensitive to the loss of hypusine, and we find that the ineffective erythropoiesis linked to haploinsufficiency of RPS14 in chromosome 5q deletions in myelodysplastic syndrome is associated with a diminished pool of hypusinated eIF5A. Moreover, patients with RPL11-haploinsufficient Diamond-Blackfan anemia as well as CD34+ progenitors with downregulated RPL11 exhibit a markedly decreased hypusination in erythroid progenitors, concomitant with a loss of mitochondrial metabolism. Thus, eIF5A-dependent protein synthesis regulates human erythropoiesis, and our data reveal a novel role for RPs in controlling eIF5A hypusination in HSPCs, synchronizing mitochondrial metabolism with erythroid differentiation.
Collapse
Affiliation(s)
- Pedro Gonzalez-Menendez
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Ira Phadke
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
- Pediatric Oncology Branch, National Cancer Institute (NCI), Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, MD
| | - Meagan E. Olive
- Proteomics Platform, Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Axel Joly
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Julien Papoin
- Feinstein Institute for Medical Research, Manhasset, NY
- EA4666 HEMATIM, Université Picardie Jules Verne, Amiens, France
| | | | - Jérémy Galtier
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Jessica Platon
- EA4666 HEMATIM, Université Picardie Jules Verne, Amiens, France
| | | | - Kathy L. McGraw
- Laboratory of Receptor Biology and Gene Expression, NCI, CCR, NIH, Bethesda, MD
| | - Marie Daumur
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Marie Pouzolles
- Pediatric Oncology Branch, National Cancer Institute (NCI), Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, MD
| | - Taisuke Kondo
- Pediatric Oncology Branch, National Cancer Institute (NCI), Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, MD
| | - Stéphanie Boireau
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Franciane Paul
- Department of Clinical Hematology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - David J. Young
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Sylvain Lamure
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Department of Clinical Hematology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Anupama Narla
- Division of Pediatric Hematology/Oncology, Stanford University, Stanford, CA
| | - Guillaume Cartron
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Department of Clinical Hematology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Myriam Boyer-Clavel
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | | | - Valérie Dardalhon
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Valérie S. Zimmermann
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Thomas E. Dever
- Section on Protein Biosynthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | | | - Lydie Da Costa
- Laboratory of Excellence GR-Ex, Paris, France
- EA4666 HEMATIM, Université Picardie Jules Verne, Amiens, France
- Service d'Hématologie Biologique (Hematology Diagnostic Laboratory), Assistance Publique–Hôpitaux de Paris, Robert Debr Hôpital, Paris, France
- Paris Cité University, Paris, France
| | - Namrata D. Udeshi
- Proteomics Platform, Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Lionel Blanc
- Feinstein Institute for Medical Research, Manhasset, NY
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
- Pediatric Oncology Branch, National Cancer Institute (NCI), Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
25
|
Villalobos-Cantor S, Barrett RM, Condon AF, Arreola-Bustos A, Rodriguez KM, Cohen MS, Martin I. Rapid cell type-specific nascent proteome labeling in Drosophila. eLife 2023; 12:83545. [PMID: 37092974 PMCID: PMC10125018 DOI: 10.7554/elife.83545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 04/09/2023] [Indexed: 04/25/2023] Open
Abstract
Controlled protein synthesis is required to regulate gene expression and is often carried out in a cell type-specific manner. Protein synthesis is commonly measured by labeling the nascent proteome with amino acid analogs or isotope-containing amino acids. These methods have been difficult to implement in vivo as they require lengthy amino acid replacement procedures. O-propargyl-puromycin (OPP) is a puromycin analog that incorporates into nascent polypeptide chains. Through its terminal alkyne, OPP can be conjugated to a fluorophore-azide for directly visualizing nascent protein synthesis, or to a biotin-azide for capture and identification of newly-synthesized proteins. To achieve cell type-specific OPP incorporation, we developed phenylacetyl-OPP (PhAc-OPP), a puromycin analog harboring an enzyme-labile blocking group that can be removed by penicillin G acylase (PGA). Here, we show that cell type-specific PGA expression in Drosophila can be used to achieve OPP labeling of newly-synthesized proteins in targeted cell populations within the brain. Following a brief 2 hr incubation of intact brains with PhAc-OPP, we observe robust imaging and affinity purification of OPP-labeled nascent proteins in PGA-targeted cell populations. We apply this method to show a pronounced age-related decline in neuronal protein synthesis in the fly brain, demonstrating the capability of PhAc-OPP to quantitatively capture in vivo protein synthesis states. This method, which we call POPPi (PGA-dependent OPP incorporation), should be applicable for rapidly visualizing protein synthesis and identifying nascent proteins synthesized under diverse physiological and pathological conditions with cellular specificity in vivo.
Collapse
Affiliation(s)
- Stefanny Villalobos-Cantor
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, United States
| | - Ruth M Barrett
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, United States
| | - Alec F Condon
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, United States
| | - Alicia Arreola-Bustos
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, United States
| | - Kelsie M Rodriguez
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, United States
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, United States
| | - Ian Martin
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, United States
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, United States
- Parkinson Center of Oregon, Oregon Health and Science University, Portland, United States
| |
Collapse
|
26
|
Chang B, Xu Q, Guo H, Zhong M, Shen R, Zhao L, Zhao J, Ma T, Chu Y, Zhang J, Fang J. Puromycin Prodrug Activation by Thioredoxin Reductase Overcomes Its Promiscuous Cytotoxicity. J Med Chem 2023; 66:3250-3261. [PMID: 36855911 DOI: 10.1021/acs.jmedchem.2c01509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Overexpression of the selenoprotein thioredoxin reductase (TrxR) has been documented in malignant tissues and is of pathological significance for many types of tumors. The antibiotic puromycin (Puro) is a protein synthesis inhibitor causing premature polypeptide chain termination during translation. The well-defined action mechanism of Puro makes it a useful tool in biomedical studies. However, the nonselective cytotoxicity of Puro limits its therapeutic applications. We report herein the construction and evaluation of two Puro prodrugs, that is, S1-Puro with a five-membered cyclic disulfide trigger and S2-Puro with a linear disulfide trigger. S1-Puro is selectively activated by TrxR and shows the TrxR-dependent cytotoxicity to cancer cells, while S2-Puro is readily activated by thiols. Furthermore, S1-Puro displays higher stability in plasma than S2-Puro. We expect that this prodrug strategy may promote the further development of Puro as a therapeutic agent.
Collapse
Affiliation(s)
- Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Qianhe Xu
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hairui Guo
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan 453100, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ruipeng Shen
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lanning Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jintao Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yajun Chu
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
27
|
Tsuchiya M, Tachibana N, Nagao K, Tamura T, Hamachi I. Organelle-selective click labeling coupled with flow cytometry allows pooled CRISPR screening of genes involved in phosphatidylcholine metabolism. Cell Metab 2023:S1550-4131(23)00050-5. [PMID: 36917984 DOI: 10.1016/j.cmet.2023.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023]
Abstract
Cellular lipid synthesis and transport are governed by intricate protein networks. Although genetic screening should contribute to deciphering the regulatory networks of lipid metabolism, technical challenges remain-especially for high-throughput readouts of lipid phenotypes. Here, we coupled organelle-selective click labeling of phosphatidylcholine (PC) with flow cytometry-based CRISPR screening technologies to convert organellar PC phenotypes into a simple fluorescence readout for genome-wide screening. This technique, named O-ClickFC, was successfully applied in genome-scale CRISPR-knockout screens to identify previously reported genes associated with PC synthesis (PCYT1A, ACACA), vesicular membrane trafficking (SEC23B, RAB5C), and non-vesicular transport (PITPNB, STARD7). Moreover, we revealed previously uncharacterized roles of FLVCR1 as a choline uptake facilitator, CHEK1 as a post-translational regulator of the PC-synthetic pathway, and CDC50A as responsible for the translocation of PC to the outside of the plasma membrane bilayer. These findings demonstrate the versatility of O-ClickFC as an unprecedented platform for genetic dissection of cellular lipid metabolism.
Collapse
Affiliation(s)
- Masaki Tsuchiya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; PRESTO (Precursory Research for Embryonic Science and Technology), JST, Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| | - Nobuhiko Tachibana
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; PRESTO (Precursory Research for Embryonic Science and Technology), JST, Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| | - Kohjiro Nagao
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; ERATO (Exploratory Research for Advanced Technology), JST, Sanbancho, Chiyodaku, Tokyo 102-0075, Japan.
| |
Collapse
|
28
|
Subramanian E, Elewa A, Brito G, Kumar A, Segerstolpe Å, Karampelias C, Björklund Å, Sandberg R, Echeverri K, Lui WO, Andersson O, Simon A. A small noncoding RNA links ribosome recovery and translation control to dedifferentiation during salamander limb regeneration. Dev Cell 2023; 58:450-460.e6. [PMID: 36893754 DOI: 10.1016/j.devcel.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/11/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023]
Abstract
Building a blastema from the stump is a key step of salamander limb regeneration. Stump-derived cells temporarily suspend their identity as they contribute to the blastema by a process generally referred to as dedifferentiation. Here, we provide evidence for a mechanism that involves an active inhibition of protein synthesis during blastema formation and growth. Relieving this inhibition results in a higher number of cycling cells and enhances the pace of limb regeneration. By small RNA profiling and fate mapping of skeletal muscle progeny as a cellular model for dedifferentiation, we find that the downregulation of miR-10b-5p is critical for rebooting the translation machinery. miR-10b-5p targets ribosomal mRNAs, and its artificial upregulation causes decreased blastema cell proliferation, reduction in transcripts that encode ribosomal subunits, diminished nascent protein synthesis, and retardation of limb regeneration. Taken together, our data identify a link between miRNA regulation, ribosome biogenesis, and protein synthesis during newt limb regeneration.
Collapse
Affiliation(s)
| | - Ahmed Elewa
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Gonçalo Brito
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anoop Kumar
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Segerstolpe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christos Karampelias
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Björklund
- Department of Cell and Molecular Biology, National Infrastructure of Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karen Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, University of Chicago, Woods Hole, MA, USA
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
29
|
Picchioni D, Schmidt KC, Loutaev I, Pavletic AJ, Sheeler C, Bishu S, Balkin TJ, Smith CB. Increased rates of brain protein synthesis during [N1,N2] sleep: L-[1- 11C]leucine PET studies in human subjects. J Cereb Blood Flow Metab 2023; 43:59-71. [PMID: 36071616 PMCID: PMC9875345 DOI: 10.1177/0271678x221121873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/30/2022] [Accepted: 07/24/2022] [Indexed: 01/28/2023]
Abstract
During sleep, reduced brain energy demands provide an opportunity for biosynthetic processes like protein synthesis. Sleep is required for some forms of memory consolidation which requires de novo protein synthesis. We measured regional cerebral protein synthesis rates (rCPS) in human subjects to ascertain how rCPS is affected during sleep. Subjects underwent three consecutive L-[1-11C]leucine PET scans with simultaneous polysomnography: 1. rested awake, 2. sleep-deprived awake, 3. sleep. Measured rCPS were similar across the three conditions. Variations in sleep stage times during sleep scans were used to estimate rCPS in sleep stages under the assumption that measured rCPS is the weighted sum of rCPS in each stage, with weights reflecting time and availability of [11C]leucine in that stage. During sleep scans, subjects spent most of the time in N2, N3, and awake and very little time in N1 and REM; rCPS in N1 and REM could not be reliably estimated. When stages N1 and N2 were combined [N1,N2], estimates of rCPS were more robust. In selective regions, estimated rCPS were statistically significantly higher (30-39%) in [N1,N2] compared with N3; estimated rCPS in N3 were similar to values measured in sleep-deprived awake scans. Results indicate increased rates of protein synthesis linked to [N1,N2] sleep.
Collapse
Affiliation(s)
- Dante Picchioni
- Section on Neuroadaptation and Protein Metabolism, National
Institute of Mental Health, Bethesda, MD, USA
- Advanced Magnetic Resonance Imaging Section, National Institute
of Neurological Disorders and Stroke, Bethesda, MD, USA
- Behavioral Biology Branch, Walter Reed Army Institute of
Research, Silver Spring, MD, USA
| | - Kathleen C Schmidt
- Section on Neuroadaptation and Protein Metabolism, National
Institute of Mental Health, Bethesda, MD, USA
| | - Inna Loutaev
- Section on Neuroadaptation and Protein Metabolism, National
Institute of Mental Health, Bethesda, MD, USA
| | - Adriana J Pavletic
- Office of the Clinical Director, National Institute of Mental
Health, Bethesda, MD, USA
| | - Carrie Sheeler
- Section on Neuroadaptation and Protein Metabolism, National
Institute of Mental Health, Bethesda, MD, USA
| | - Shrinivas Bishu
- Section on Neuroadaptation and Protein Metabolism, National
Institute of Mental Health, Bethesda, MD, USA
| | - Thomas J Balkin
- Behavioral Biology Branch, Walter Reed Army Institute of
Research, Silver Spring, MD, USA
| | - Carolyn B Smith
- Section on Neuroadaptation and Protein Metabolism, National
Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Diaz-Cuadros M, Miettinen TP, Skinner OS, Sheedy D, Díaz-García CM, Gapon S, Hubaud A, Yellen G, Manalis SR, Oldham WM, Pourquié O. Metabolic regulation of species-specific developmental rates. Nature 2023; 613:550-557. [PMID: 36599986 PMCID: PMC9944513 DOI: 10.1038/s41586-022-05574-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2022] [Indexed: 01/06/2023]
Abstract
Animals display substantial inter-species variation in the rate of embryonic development despite a broad conservation of the overall sequence of developmental events. Differences in biochemical reaction rates, including the rates of protein production and degradation, are thought to be responsible for species-specific rates of development1-3. However, the cause of differential biochemical reaction rates between species remains unknown. Here, using pluripotent stem cells, we have established an in vitro system that recapitulates the twofold difference in developmental rate between mouse and human embryos. This system provides a quantitative measure of developmental speed as revealed by the period of the segmentation clock, a molecular oscillator associated with the rhythmic production of vertebral precursors. Using this system, we show that mass-specific metabolic rates scale with the developmental rate and are therefore higher in mouse cells than in human cells. Reducing these metabolic rates by inhibiting the electron transport chain slowed down the segmentation clock by impairing the cellular NAD+/NADH redox balance and, further downstream, lowering the global rate of protein synthesis. Conversely, increasing the NAD+/NADH ratio in human cells by overexpression of the Lactobacillus brevis NADH oxidase LbNOX increased the translation rate and accelerated the segmentation clock. These findings represent a starting point for the manipulation of developmental rate, with multiple translational applications including accelerating the differentiation of human pluripotent stem cells for disease modelling and cell-based therapies.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Owen S Skinner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Dylan Sheedy
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Carlos Manlio Díaz-García
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Svetlana Gapon
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexis Hubaud
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William M Oldham
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
31
|
Keyvani Chahi A, Belew MS, Xu J, Chen HTT, Rentas S, Voisin V, Krivdova G, Lechman E, Marhon SA, De Carvalho DD, Dick JE, Bader GD, Hope KJ. PLAG1 dampens protein synthesis to promote human hematopoietic stem cell self-renewal. Blood 2022; 140:992-1008. [PMID: 35639948 PMCID: PMC9437713 DOI: 10.1182/blood.2021014698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cell (HSC) dormancy is understood as supportive of HSC function and its long-term integrity. Although regulation of stress responses incurred as a result of HSC activation is recognized as important in maintaining stem cell function, little is understood of the preventive machinery present in human HSCs that may serve to resist their activation and promote HSC self-renewal. We demonstrate that the transcription factor PLAG1 is essential for long-term HSC function and, when overexpressed, endows a 15.6-fold enhancement in the frequency of functional HSCs in stimulatory conditions. Genome-wide measures of chromatin occupancy and PLAG1-directed gene expression changes combined with functional measures reveal that PLAG1 dampens protein synthesis, restrains cell growth and division, and enhances survival, with the primitive cell advantages it imparts being attenuated by addition of the potent translation activator, c-MYC. We find PLAG1 capitalizes on multiple regulatory factors to ensure protective diminished protein synthesis including 4EBP1 and translation-targeting miR-127 and does so independently of stress response signaling. Overall, our study identifies PLAG1 as an enforcer of human HSC dormancy and self-renewal through its highly context-specific regulation of protein biosynthesis and classifies PLAG1 among a rare set of bona fide regulators of messenger RNA translation in these cells. Our findings showcase the importance of regulated translation control underlying human HSC physiology, its dysregulation under activating demands, and the potential if its targeting for therapeutic benefit.
Collapse
Affiliation(s)
- Ava Keyvani Chahi
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | - Muluken S Belew
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | - Joshua Xu
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | - He Tian Tony Chen
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | - Stefan Rentas
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | | | - Gabriela Krivdova
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eric Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
- Department of Medical Biophysics and
| | - John E Dick
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
| | - Gary D Bader
- The Donnelly Centre and
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Kristin J Hope
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
- Department of Medical Biophysics and
| |
Collapse
|
32
|
Somers HM, Fuqua JH, Bonnet FX, Rollins JA. Quantification of tissue-specific protein translation in whole C. elegans using O-propargyl-puromycin labeling and fluorescence microscopy. CELL REPORTS METHODS 2022; 2:100203. [PMID: 35497499 PMCID: PMC9046455 DOI: 10.1016/j.crmeth.2022.100203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/01/2021] [Accepted: 03/29/2022] [Indexed: 01/23/2023]
Abstract
The regulation of gene expression via protein translation is critical for growth, development, and stress response. While puromycin-based techniques have been used to quantify protein translation in C. elegans, they have been limited to using lysate from whole worms. To achieve tissue-specific quantification of ribosome activity in intact C. elegans, we report the application of O-propargyl-puromycin in a cuticle defective mutant followed by conjugation of an azide fluorophore for detection using fluorescent confocal microscopy. We apply this technique to quantify translation in response to heat shock, cycloheximide, or knockdown of translation factors. Furthermore, we demonstrate that O-propargyl-puromycin can be used to quantify translation between tissues or within a tissue like the germline. This technique is expected to have a broad range of applications in determining how protein translation is altered in different tissues in response to stress or gene knockdowns or with age.
Collapse
Affiliation(s)
- Hannah M. Somers
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME 04609, USA
| | - Jeremy H. Fuqua
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME 04609, USA
| | - Frédéric X.A. Bonnet
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME 04609, USA
| | - Jarod A. Rollins
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME 04609, USA
| |
Collapse
|
33
|
Guo N, Zheng D, Sun J, Lv J, Wang S, Fang Y, Zhao Z, Zeng S, Guo Q, Tong J, Wang Z. NAP1L5 Promotes Nucleolar Hypertrophy and Is Required for Translation Activation During Cardiomyocyte Hypertrophy. Front Cardiovasc Med 2021; 8:791501. [PMID: 34977198 PMCID: PMC8718910 DOI: 10.3389/fcvm.2021.791501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Pathological growth of cardiomyocytes during hypertrophy is characterized by excess protein synthesis; however, the regulatory mechanism remains largely unknown. Using a neonatal rat ventricular myocytes (NRVMs) model, here we find that the expression of nucleosome assembly protein 1 like 5 (Nap1l5) is upregulated in phenylephrine (PE)-induced hypertrophy. Knockdown of Nap1l5 expression by siRNA significantly blocks cell size enlargement and pathological gene induction after PE treatment. In contrast, Adenovirus-mediated Nap1l5 overexpression significantly aggravates the pro-hypertrophic effects of PE on NRVMs. RNA-seq analysis reveals that Nap1l5 knockdown reverses the pro-hypertrophic transcriptome reprogramming after PE treatment. Whereas, immune response is dominantly enriched in the upregulated genes, oxidative phosphorylation, cardiac muscle contraction and ribosome-related pathways are remarkably enriched in the down-regulated genes. Although Nap1l5-mediated gene regulation is correlated with PRC2 and PRC1, Nap1l5 does not directly alter the levels of global histone methylations at K4, K9, K27 or K36. However, puromycin incorporation assay shows that Nap1l5 is both necessary and sufficient to promote protein synthesis in cardiomyocyte hypertrophy. This is attributable to a direct regulation of nucleolus hypertrophy and subsequent ribosome assembly. Our findings demonstrate a previously unrecognized role of Nap1l5 in translation control during cardiac hypertrophy.
Collapse
Affiliation(s)
- Ningning Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Lv
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenyi Zhao
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Health Science Center, School of Pharmacy, Shenzhen University, Shenzhen, China
| | - Sai Zeng
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuxiao Guo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan, China
- *Correspondence: Jingjing Tong
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Zhihua Wang
| |
Collapse
|
34
|
Lengefeld J, Cheng CW, Maretich P, Blair M, Hagen H, McReynolds MR, Sullivan E, Majors K, Roberts C, Kang JH, Steiner JD, Miettinen TP, Manalis SR, Antebi A, Morrison SJ, Lees JA, Boyer LA, Yilmaz ÖH, Amon A. Cell size is a determinant of stem cell potential during aging. SCIENCE ADVANCES 2021; 7:eabk0271. [PMID: 34767451 PMCID: PMC8589318 DOI: 10.1126/sciadv.abk0271] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/24/2021] [Indexed: 05/05/2023]
Abstract
Stem cells are remarkably small. Whether small size is important for stem cell function is unknown. We find that hematopoietic stem cells (HSCs) enlarge under conditions known to decrease stem cell function. This decreased fitness of large HSCs is due to reduced proliferation and was accompanied by altered metabolism. Preventing HSC enlargement or reducing large HSCs in size averts the loss of stem cell potential under conditions causing stem cell exhaustion. Last, we show that murine and human HSCs enlarge during aging. Preventing this age-dependent enlargement improves HSC function. We conclude that small cell size is important for stem cell function in vivo and propose that stem cell enlargement contributes to their functional decline during aging.
Collapse
Affiliation(s)
- Jette Lengefeld
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Chia-Wei Cheng
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pema Maretich
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marguerite Blair
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannah Hagen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Melanie R. McReynolds
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, USA
| | - Emily Sullivan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kyra Majors
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Roberts
- Max Planck Institute for Biology of Ageing and CECAD, University of Cologne, Cologne, Germany
| | - Joon Ho Kang
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joachim D. Steiner
- Max Planck Institute for Biology of Ageing and CECAD, University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Teemu P. Miettinen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Scott R. Manalis
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing and CECAD, University of Cologne, Cologne, Germany
| | - Sean J. Morrison
- Children’s Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacqueline A. Lees
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laurie A. Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ömer H. Yilmaz
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
35
|
Dai W, Li A, Yu NJ, Nguyen T, Leach RW, Wühr M, Kleiner RE. Activity-based RNA-modifying enzyme probing reveals DUS3L-mediated dihydrouridylation. Nat Chem Biol 2021; 17:1178-1187. [PMID: 34556860 PMCID: PMC8551019 DOI: 10.1038/s41589-021-00874-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/02/2021] [Indexed: 11/09/2022]
Abstract
Epitranscriptomic RNA modifications can regulate RNA activity; however, there remains a major gap in our understanding of the RNA chemistry present in biological systems. Here we develop RNA-mediated activity-based protein profiling (RNABPP), a chemoproteomic strategy that relies on metabolic RNA labeling, mRNA interactome capture and quantitative proteomics, to investigate RNA-modifying enzymes in human cells. RNABPP with 5-fluoropyrimidines allowed us to profile 5-methylcytidine (m5C) and 5-methyluridine (m5U) methyltransferases. Further, we uncover a new mechanism-based crosslink between 5-fluorouridine (5-FUrd)-modified RNA and the dihydrouridine synthase (DUS) homolog DUS3L. We investigate the mechanism of crosslinking and use quantitative nucleoside liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and 5-FUrd-based crosslinking and immunoprecipitation (CLIP) sequencing to map DUS3L-dependent dihydrouridine (DHU) modifications across the transcriptome. Finally, we show that DUS3L-knockout (KO) cells have compromised protein translation rates and impaired cellular proliferation. Taken together, our work provides a general approach for profiling RNA-modifying enzyme activity in living cells and reveals new pathways for epitranscriptomic RNA regulation.
Collapse
Affiliation(s)
- Wei Dai
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA,These authors contributed equally
| | - Ang Li
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA,These authors contributed equally
| | - Nathan J. Yu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Thao Nguyen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Robert W. Leach
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA,
| |
Collapse
|
36
|
Morey TM, Esmaeili MA, Duennwald ML, Rylett RJ. SPAAC Pulse-Chase: A Novel Click Chemistry-Based Method to Determine the Half-Life of Cellular Proteins. Front Cell Dev Biol 2021; 9:722560. [PMID: 34557490 PMCID: PMC8452969 DOI: 10.3389/fcell.2021.722560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Assessing the stability and degradation of proteins is central to the study of cellular biological processes. Here, we describe a novel pulse-chase method to determine the half-life of cellular proteins that overcomes the limitations of other commonly used approaches. This method takes advantage of pulse-labeling of nascent proteins in living cells with the bioorthogonal amino acid L-azidohomoalanine (AHA) that is compatible with click chemistry-based modifications. We validate this method in both mammalian and yeast cells by assessing both over-expressed and endogenous proteins using various fluorescent and chemiluminescent click chemistry-compatible probes. Importantly, while cellular stress responses are induced to a limited extent following live-cell AHA pulse-labeling, we also show that this response does not result in changes in cell viability and growth. Moreover, this method is not compromised by the cytotoxicity evident in other commonly used protein half-life measurement methods and it does not require the use of radioactive amino acids. This new method thus presents a versatile, customizable, and valuable addition to the toolbox available to cell biologists to determine the stability of cellular proteins.
Collapse
Affiliation(s)
- Trevor M Morey
- Molecular Medicine Research Group, Robarts Research Institute, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Mohammad Ali Esmaeili
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Martin L Duennwald
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - R Jane Rylett
- Molecular Medicine Research Group, Robarts Research Institute, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| |
Collapse
|
37
|
Davies FCJ, Hope JE, McLachlan F, Marshall GF, Kaminioti-Dumont L, Qarkaxhija V, Nunez F, Dando O, Smith C, Wood E, MacDonald J, Hardt O, Abbott CM. Recapitulation of the EEF1A2 D252H neurodevelopmental disorder-causing missense mutation in mice reveals a toxic gain of function. Hum Mol Genet 2021; 29:1592-1606. [PMID: 32160274 DOI: 10.1093/hmg/ddaa042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/24/2022] Open
Abstract
Heterozygous de novo mutations in EEF1A2, encoding the tissue-specific translation elongation factor eEF1A2, have been shown to cause neurodevelopmental disorders including often severe epilepsy and intellectual disability. The mutational profile is unusual; ~50 different missense mutations have been identified but no obvious loss of function mutations, though large heterozygous deletions are known to be compatible with life. A key question is whether the heterozygous missense mutations operate through haploinsufficiency or a gain of function mechanism, an important prerequisite for design of therapeutic strategies. In order both to address this question and to provide a novel model for neurodevelopmental disorders resulting from mutations in EEF1A2, we created a new mouse model of the D252H mutation. This mutation causes the eEF1A2 protein to be expressed at lower levels in brain but higher in muscle in the mice. We compared both heterozygous and homozygous D252H and null mutant mice using behavioural and motor phenotyping alongside molecular modelling and analysis of binding partners. Although the proteomic analysis pointed to a loss of function for the D252H mutant protein, the D252H homozygous mice were more severely affected than null homozygotes on the same genetic background. Mice that are heterozygous for the missense mutation show no behavioural abnormalities but do have sex-specific deficits in body mass and motor function. The phenotyping of our novel mouse lines, together with analysis of molecular modelling and interacting proteins, suggest that the D252H mutation results in a gain of function.
Collapse
Affiliation(s)
- Faith C J Davies
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Jilly E Hope
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Fiona McLachlan
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Grant F Marshall
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Laura Kaminioti-Dumont
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Vesa Qarkaxhija
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Francis Nunez
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Owen Dando
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Colin Smith
- Academic Department of Neuropathology, Centre for Clinical Brain Sciences, Edinburgh, EH16 4SB, United Kingdom
| | - Emma Wood
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Josephine MacDonald
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Oliver Hardt
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.,Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Catherine M Abbott
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| |
Collapse
|
38
|
Kruta M, Sunshine MJ, Chua BA, Fu Y, Chawla A, Dillingham CH, Hidalgo San Jose L, De Jong B, Zhou FJ, Signer RAJ. Hsf1 promotes hematopoietic stem cell fitness and proteostasis in response to ex vivo culture stress and aging. Cell Stem Cell 2021; 28:1950-1965.e6. [PMID: 34388375 DOI: 10.1016/j.stem.2021.07.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 05/18/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022]
Abstract
Maintaining proteostasis is key to resisting stress and promoting healthy aging. Proteostasis is necessary to preserve stem cell function, but little is known about the mechanisms that regulate proteostasis during stress in stem cells, and whether disruptions of proteostasis contribute to stem cell aging is largely unexplored. We determined that ex-vivo-cultured mouse and human hematopoietic stem cells (HSCs) rapidly increase protein synthesis. This challenge to HSC proteostasis was associated with nuclear accumulation of Hsf1, and deletion of Hsf1 impaired HSC maintenance ex vivo. Strikingly, supplementing cultures with small molecules that enhance Hsf1 activation partially suppressed protein synthesis, rebalanced proteostasis, and supported retention of HSC serial reconstituting activity. Although Hsf1 was dispensable for young adult HSCs in vivo, Hsf1 deficiency increased protein synthesis and impaired the reconstituting activity of middle-aged HSCs. Hsf1 thus promotes proteostasis and the regenerative activity of HSCs in response to culture stress and aging.
Collapse
Affiliation(s)
- Miriama Kruta
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mary Jean Sunshine
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bernadette A Chua
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yunpeng Fu
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ashu Chawla
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Christopher H Dillingham
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Lorena Hidalgo San Jose
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bijou De Jong
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fanny J Zhou
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert A J Signer
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
39
|
van Bergen W, Heck AJR, Baggelaar MP. Recent advancements in mass spectrometry-based tools to investigate newly synthesized proteins. Curr Opin Chem Biol 2021; 66:102074. [PMID: 34364788 PMCID: PMC9548413 DOI: 10.1016/j.cbpa.2021.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 02/08/2023]
Abstract
Tight regulation of protein translation drives the proteome to undergo changes under influence of extracellular or intracellular signals. Despite mass spectrometry–based proteomics being an excellent method to study differences in protein abundance in complex proteomes, analyzing minute or rapid changes in protein synthesis and abundance remains challenging. Therefore, several dedicated techniques to directly detect and quantify newly synthesized proteins have been developed, notably puromycin-based, bio-orthogonal noncanonical amino acid tagging–based, and stable isotope labeling by amino acids in cell culture–based methods, combined with mass spectrometry. These techniques have enabled the investigation of perturbations, stress, or stimuli on protein synthesis. Improvements of these methods are still necessary to overcome various remaining limitations. Recent improvements include enhanced enrichment approaches and combinations with various stable isotope labeling techniques, which allow for more accurate analysis and comparison between conditions on shorter timeframes and in more challenging systems. Here, we aim to review the current state in this field.
Collapse
Affiliation(s)
- Wouter van Bergen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Marc P Baggelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, the Netherlands.
| |
Collapse
|
40
|
Liu X, Yu J, Xu L, Umphred-Wilson K, Peng F, Ding Y, Barton BM, Lv X, Zhao MY, Sun S, Hong Y, Qi L, Adoro S, Chen X. Notch-induced endoplasmic reticulum-associated degradation governs mouse thymocyte β-selection. eLife 2021; 10:e69975. [PMID: 34240701 PMCID: PMC8315795 DOI: 10.7554/elife.69975] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Signals from the pre-T cell receptor and Notch coordinately instruct β-selection of CD4-CD8-double negative (DN) thymocytes to generate αβ T cells in the thymus. However, how these signals ensure a high-fidelity proteome and safeguard the clonal diversification of the pre-selection TCR repertoire given the considerable translational activity imposed by β-selection is largely unknown. Here, we identify the endoplasmic reticulum (ER)-associated degradation (ERAD) machinery as a critical proteostasis checkpoint during β-selection. Expression of the SEL1L-HRD1 complex, the most conserved branch of ERAD, is directly regulated by the transcriptional activity of the Notch intracellular domain. Deletion of Sel1l impaired DN3 to DN4 thymocyte transition and severely impaired mouse αβ T cell development. Mechanistically, Sel1l deficiency induced unresolved ER stress that triggered thymocyte apoptosis through the PERK pathway. Accordingly, genetically inactivating PERK rescued T cell development from Sel1l-deficient thymocytes. In contrast, IRE1α/XBP1 pathway was induced as a compensatory adaptation to alleviate Sel1l-deficiency-induced ER stress. Dual loss of Sel1l and Xbp1 markedly exacerbated the thymic defect. Our study reveals a critical developmental signal controlled proteostasis mechanism that enforces T cell development to ensure a healthy adaptive immunity.
Collapse
Affiliation(s)
- Xia Liu
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| | - Jingjing Yu
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| | - Longyong Xu
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| | - Katharine Umphred-Wilson
- Department of Pathology, School of Medicine, Case Western Reserve UniversityClevelandUnited States
| | - Fanglue Peng
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| | - Yao Ding
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| | - Brendan M Barton
- Department of Pathology, School of Medicine, Case Western Reserve UniversityClevelandUnited States
| | - Xiangdong Lv
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Michael Y Zhao
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Shengyi Sun
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe UniversityMelbourneAustralia
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Stanley Adoro
- Department of Pathology, School of Medicine, Case Western Reserve UniversityClevelandUnited States
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
41
|
Dionne O, Lortie A, Gagnon F, Corbin F. Rates of protein synthesis are reduced in peripheral blood mononuclear cells (PBMCs) from fragile X individuals. PLoS One 2021; 16:e0251367. [PMID: 33974659 PMCID: PMC8112704 DOI: 10.1371/journal.pone.0251367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/23/2021] [Indexed: 12/30/2022] Open
Abstract
Background Fragile X syndrome (FXS) is the leading inherited cause of intellectual disability and is caused by the loss of expression of the Fragile X mental retardation protein (FMRP). In animal model of FXS, the absence of FMRP leads to an aberrant rate of neuronal protein synthesis, which in turn is believed to be at the origin of defects regarding spine morphology and synaptic plasticity. Normalisation of protein synthesis in these models has been associated with a rescue of FXS behavioral and biochemicals phenotype, thus establishing the rate of protein synthesis as one of the most promising monitoring biomarker for FXS. However, rate of protein synthesis alteration in fragile X individuals is not well characterized. Method We applied a robust radiolabeled assay to measure rate of protein synthesis in freshly extracted peripheral blood mononuclear cells (PBMCs) and blood platelets. We ultimately settle on PBMCs to measure and compare rate of protein synthesis in 13 males with fragile X and 14 matched controls individuals. Results Using this method, we measured a 26.9% decrease (p = 0,0193) in the rate of protein synthesis in fragile X individuals PBMCs. Furthermore, the rate of protein synthesis measurements obtained were highly reproducible, highlighting the robustness of the method. Conclusion Our work presents the first evidence of a diminution of the rate of protein synthesis in a human peripheral model of fragile X. Our results also support the finding of previous studies using brain PET imaging in Fragile X individuals. Since our assay only requires a simple venous puncture, it could be used in other cases of intellectual disability in order to determine if an aberrant rate of protein synthesis is a common general mechanism leading to impairment in synaptic plasticity and to intellectual disability.
Collapse
Affiliation(s)
- Olivier Dionne
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, Quebec, Canada
- * E-mail: (OD); (FC)
| | - Audrey Lortie
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Florence Gagnon
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - François Corbin
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, Quebec, Canada
- * E-mail: (OD); (FC)
| |
Collapse
|
42
|
Staudacher J, Rebnegger C, Gasser B. Treatment with surfactants enables quantification of translational activity by O-propargyl-puromycin labelling in yeast. BMC Microbiol 2021; 21:120. [PMID: 33879049 PMCID: PMC8056590 DOI: 10.1186/s12866-021-02185-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background Translation is an important point of regulation in protein synthesis. However, there is a limited number of methods available to measure global translation activity in yeast. Recently, O-propargyl-puromycin (OPP) labelling has been established for mammalian cells, but unmodified yeasts are unsusceptible to puromycin. Results We could increase susceptibility by using a Komagataella phaffii strain with an impaired ergosterol pathway (erg6Δ), but translation measurements are restricted to this strain background, which displayed growth deficits. Using surfactants, specifically Imipramine, instead, proved to be more advantageous and circumvents previous restrictions. Imipramine-supplemented OPP-labelling with subsequent flow cytometry analysis, enabled us to distinguish actively translating cells from negative controls, and to clearly quantify differences in translation activities in different strains and growth conditions. Specifically, we investigated K. phaffii at different growth rates, verified that methanol feeding alters translation activity, and analysed global translation in strains with genetically modified stress response pathways. Conclusions We set up a simple protocol to measure global translation activity in yeast on a single cell basis. The use of surfactants poses a practical and non-invasive alternative to the commonly used ergosterol pathway impaired strains and thus impacts a wide range of applications where increased drug and dye uptake is needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02185-3.
Collapse
Affiliation(s)
- Jennifer Staudacher
- Christian Doppler Laboratory for Growth-decoupled Protein Production in Yeast, Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria.,Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Corinna Rebnegger
- Christian Doppler Laboratory for Growth-decoupled Protein Production in Yeast, Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria.,Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Brigitte Gasser
- Christian Doppler Laboratory for Growth-decoupled Protein Production in Yeast, Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria. .,Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
43
|
Huang Y, Zhang Q, Yang L, Lin L, Xie J, Yao J, Zhou X, Zhang L, Shen H, Yang P. Puromycin-Modified Silica Microsphere-Based Nascent Proteomics Method for Rapid and Deep Nascent Proteome Profile. Anal Chem 2021; 93:6403-6413. [PMID: 33856767 DOI: 10.1021/acs.analchem.0c05393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nascent proteome is crucial in directly revealing how the expression of a gene is regulated on a translation level. In the nascent protein identification, puromycin capture is one of the pivotal methods, but it is still facing the challenge in the deep profiling of nascent proteomes due to the low abundance of most nascent proteins. Here, we describe the synthesis of puromycin-modified silica microspheres (PMSs) as the sorbent of dispersive solid-phase microextraction and the establishment of the PMS-based nascent proteomics (PMSNP) method for efficient capture and analysis of nascent proteins. The modification efficiency of puromycin groups on silica microspheres reached 91.8% through the click reaction. After the optimization and simplification of PMSNP, more than 3500 and 3900 nascent proteins were rapidly identified in HeLa cells and mouse brains within 13.5 h, respectively. The PMSNP method was successfully applied to explore changes in the translation process in a biological stress model, namely, the lipopolysaccharide-stimulated HeLa cells. Biological functional analyses revealed the unique characters of the nascent proteomes and exhibited the superiority of the PMSNP in the identification of low abundance and secreted nascent proteins, thus demonstrating the sensitivity and immediacy of the PMSNP method.
Collapse
Affiliation(s)
- Yuanyu Huang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Quanqing Zhang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Lujie Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Ling Lin
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Juanjuan Xie
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Jun Yao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Xinwen Zhou
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Lei Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Huali Shen
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China.,Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P.R. China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China.,Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
44
|
Eshraghi M, Karunadharma PP, Blin J, Shahani N, Ricci EP, Michel A, Urban NT, Galli N, Sharma M, Ramírez-Jarquín UN, Florescu K, Hernandez J, Subramaniam S. Mutant Huntingtin stalls ribosomes and represses protein synthesis in a cellular model of Huntington disease. Nat Commun 2021; 12:1461. [PMID: 33674575 PMCID: PMC7935949 DOI: 10.1038/s41467-021-21637-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
The polyglutamine expansion of huntingtin (mHTT) causes Huntington disease (HD) and neurodegeneration, but the mechanisms remain unclear. Here, we found that mHtt promotes ribosome stalling and suppresses protein synthesis in mouse HD striatal neuronal cells. Depletion of mHtt enhances protein synthesis and increases the speed of ribosomal translocation, while mHtt directly inhibits protein synthesis in vitro. Fmrp, a known regulator of ribosome stalling, is upregulated in HD, but its depletion has no discernible effect on protein synthesis or ribosome stalling in HD cells. We found interactions of ribosomal proteins and translating ribosomes with mHtt. High-resolution global ribosome footprint profiling (Ribo-Seq) and mRNA-Seq indicates a widespread shift in ribosome occupancy toward the 5' and 3' end and unique single-codon pauses on selected mRNA targets in HD cells, compared to controls. Thus, mHtt impedes ribosomal translocation during translation elongation, a mechanistic defect that can be exploited for HD therapeutics.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Pabalu P. Karunadharma
- grid.214007.00000000122199231The Scripps Research Institute, Genomic Core, Jupiter, FL USA
| | - Juliana Blin
- grid.462957.b0000 0004 0598 0706Laboratory of Biology and Cellular Modelling at Ecole Normale Supérieure of Lyon, RNA Metabolism in Immunity and Infection Lab, LBMC, Lyon, France
| | - Neelam Shahani
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Emiliano P. Ricci
- grid.462957.b0000 0004 0598 0706Laboratory of Biology and Cellular Modelling at Ecole Normale Supérieure of Lyon, RNA Metabolism in Immunity and Infection Lab, LBMC, Lyon, France
| | | | | | - Nicole Galli
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Manish Sharma
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Uri Nimrod Ramírez-Jarquín
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Katie Florescu
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Jennifer Hernandez
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Srinivasa Subramaniam
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| |
Collapse
|
45
|
Magee JA, Signer RAJ. Developmental Stage-Specific Changes in Protein Synthesis Differentially Sensitize Hematopoietic Stem Cells and Erythroid Progenitors to Impaired Ribosome Biogenesis. Stem Cell Reports 2021; 16:20-28. [PMID: 33440178 PMCID: PMC7815942 DOI: 10.1016/j.stemcr.2020.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Adult hematopoietic stem cell (HSC) self-renewal requires precise control of protein synthesis, but fetal and adult HSCs have distinct self-renewal mechanisms and lineage outputs. This raises the question of whether protein synthesis rates change with age. Here, we show that protein synthesis rates decline during HSC ontogeny, yet erythroid protein synthesis rates increase. A ribosomal mutation that impairs ribosome biogenesis (Rpl24Bst/+) disrupts both fetal and adult HSC self-renewal. However, the Rpl24Bst/+ mutation selectively impairs fetal erythropoiesis at differentiation stages that exhibit fetal-specific attenuation of protein synthesis. Developmental changes in protein synthesis thus differentially sensitize hematopoietic stem and progenitor cells to impaired ribosome biogenesis. Fetal HSCs synthesize much more protein per hour than young adult HSCs in vivo Fetal erythroid progenitors synthesize less protein than adult erythroid progenitors Differences in protein synthesis distinguish fetal and adult erythroid differentiation Rpl24Bst/+ impairs fetal and adult HSCs, but only impairs fetal erythroid progenitors
Collapse
Affiliation(s)
- Jeffrey A Magee
- Division of Hematology and Oncology, Department of Pediatrics, and Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert A J Signer
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0652, USA.
| |
Collapse
|
46
|
Wang L, Wang L, Cybula M, Drumond-Bock AL, Moxley KM, Bieniasz M. Multi-kinase targeted therapy as a promising treatment strategy for ovarian tumors expressing sfRon receptor. Genes Cancer 2020; 11:106-121. [PMID: 33488949 PMCID: PMC7805538 DOI: 10.18632/genesandcancer.205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/17/2020] [Indexed: 11/25/2022] Open
Abstract
The sfRon kinase is an important therapeutic target in ovarian cancer that contributes to prominent tumor growth and disease progression. We reasoned that a multi-kinase inhibition of sfRon pathway might be an effective strategy to achieve a sustained anti-tumor response, while simultaneously preventing treatment resistance. We performed a detailed dissection of sfRon signaling in vitro and demonstrated that S6K1 is a key component of a multi-kinase targeting strategy in sfRon expressing ovarian tumors. We selected AD80 compound that targets several kinases within sfRon pathway including AKT and S6K1, and compared its efficacy with inhibitors that selectively target either sfRon or PI3 kinase. Using human ovarian xenografts and clinically relevant patient-derived xenografts (PDXs), we demonstrated that in vivo treatment with single agent AD80 shows superior efficacy to a standard-care chemotherapy (cisplatin/paclitaxel), or to the direct inhibition of sfRon kinase by BMS777607. Our findings indicate that ovarian tumors expressing sfRon are most effectively treated with multi-kinase inhibitors simultaneously targeting AKT and S6K1, such as AD80, which results in long-term anti-tumor response and prevents metastasis development.
Collapse
Affiliation(s)
- Luyao Wang
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lin Wang
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | | | - Katherine M. Moxley
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | | |
Collapse
|
47
|
Argüello RJ, Combes AJ, Char R, Gigan JP, Baaziz AI, Bousiquot E, Camosseto V, Samad B, Tsui J, Yan P, Boissonneau S, Figarella-Branger D, Gatti E, Tabouret E, Krummel MF, Pierre P. SCENITH: A Flow Cytometry-Based Method to Functionally Profile Energy Metabolism with Single-Cell Resolution. Cell Metab 2020; 32:1063-1075.e7. [PMID: 33264598 PMCID: PMC8407169 DOI: 10.1016/j.cmet.2020.11.007] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/09/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022]
Abstract
Energetic metabolism reprogramming is critical for cancer and immune responses. Current methods to functionally profile the global metabolic capacities and dependencies of cells are performed in bulk. We designed a simple method for complex metabolic profiling called SCENITH, for single-cell energetic metabolism by profiling translation inhibition. SCENITH allows for the study of metabolic responses in multiple cell types in parallel by flow cytometry. SCENITH is designed to perform metabolic studies ex vivo, particularly for rare cells in whole blood samples, avoiding metabolic biases introduced by culture media. We analyzed myeloid cells in solid tumors from patients and identified variable metabolic profiles, in ways that are not linked to their lineage or their activation phenotype. SCENITH's ability to reveal global metabolic functions and determine complex and linked immune-phenotypes in rare cell subpopulations will contribute to the information needed for evaluating therapeutic responses or patient stratification.
Collapse
Affiliation(s)
- Rafael J Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Alexis J Combes
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Remy Char
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Julien-Paul Gigan
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ania I Baaziz
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Evens Bousiquot
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Voahirana Camosseto
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France; Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bushra Samad
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica Tsui
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Peter Yan
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Sebastien Boissonneau
- Aix-Marseille Univ, Institut de Neurosciences des Systems, Faculté de Medecine, Marseille, France
| | - Dominique Figarella-Branger
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Evelina Gatti
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France; Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; International Associated Laboratory (LIA) CNRS "Mistra", 13288 Marseille Cedex 9, France
| | - Emeline Tabouret
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Marseille, France
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Philippe Pierre
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France; Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; International Associated Laboratory (LIA) CNRS "Mistra", 13288 Marseille Cedex 9, France
| |
Collapse
|
48
|
Wu C, Ba Q, Lu D, Li W, Salovska B, Hou P, Mueller T, Rosenberger G, Gao E, Di Y, Zhou H, Fornasiero EF, Liu Y. Global and Site-Specific Effect of Phosphorylation on Protein Turnover. Dev Cell 2020; 56:111-124.e6. [PMID: 33238149 DOI: 10.1016/j.devcel.2020.10.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/05/2020] [Accepted: 10/30/2020] [Indexed: 02/02/2023]
Abstract
To date, the effects of specific modification types and sites on protein lifetime have not been systematically illustrated. Here, we describe a proteomic method, DeltaSILAC, to quantitatively assess the impact of site-specific phosphorylation on the turnover of thousands of proteins in live cells. Based on the accurate and reproducible mass spectrometry-based method, a pulse labeling approach using stable isotope-labeled amino acids in cells (pSILAC), phosphoproteomics, and a unique peptide-level matching strategy, our DeltaSILAC profiling revealed a global, unexpected delaying effect of many phosphosites on protein turnover. We further found that phosphorylated sites accelerating protein turnover are functionally selected for cell fitness, enriched in Cyclin-dependent kinase substrates, and evolutionarily conserved, whereas the glutamic acids surrounding phosphosites significantly delay protein turnover. Our method represents a generalizable approach and provides a rich resource for prioritizing the effects of phosphorylation sites on protein lifetime in the context of cell signaling and disease biology.
Collapse
Affiliation(s)
- Chongde Wu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Qian Ba
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Dayun Lu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Barbora Salovska
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pingfu Hou
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Torsten Mueller
- German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | | | - Erli Gao
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Yi Di
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
49
|
Ertay A, Liu H, Liu D, Peng P, Hill C, Xiong H, Hancock D, Yuan X, Przewloka MR, Coldwell M, Howell M, Skipp P, Ewing RM, Downward J, Wang Y. WDHD1 is essential for the survival of PTEN-inactive triple-negative breast cancer. Cell Death Dis 2020; 11:1001. [PMID: 33221821 PMCID: PMC7680459 DOI: 10.1038/s41419-020-03210-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer that lacks the oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, making it difficult to target therapeutically. Targeting synthetic lethality is an alternative approach for cancer treatment. TNBC shows frequent loss of phosphatase and tensin homologue (PTEN) expression, which is associated with poor prognosis and treatment response. To identify PTEN synthetic lethal interactions, TCGA analysis coupled with a whole-genome siRNA screen in isogenic PTEN-negative and -positive cells were performed. Among the candidate genes essential for the survival of PTEN-inactive TNBC cells, WDHD1 (WD repeat and high-mobility group box DNA-binding protein 1) expression was increased in the low vs. high PTEN TNBC samples. It was also the top hit in the siRNA screen and its knockdown significantly inhibited cell viability in PTEN-negative cells, which was further validated in 2D and 3D cultures. Mechanistically, WDHD1 is important to mediate a high demand of protein translation in PTEN-inactive TNBC. Finally, the importance of WDHD1 in TNBC was confirmed in patient samples obtained from the TCGA and tissue microarrays with clinic-pathological information. Taken together, as an essential gene for the survival of PTEN-inactive TNBC cells, WDHD1 could be a potential biomarker or a therapeutic target for TNBC.
Collapse
Affiliation(s)
- Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Huiquan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Dian Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Ping Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Charlotte Hill
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - David Hancock
- Oncogene Biology, The Francis Crick Institute, London, NW1 1AT, UK
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Marcin R Przewloka
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Mark Coldwell
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Michael Howell
- High-Throughput Screening, The Francis Crick Institute, London, NW1 1AT, UK
| | - Paul Skipp
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Rob M Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Julian Downward
- Oncogene Biology, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
50
|
Abstract
Protein homeostasis preserves stem cell function, but underlying mechanisms are largely unknown. A study reveals that protein quality control mediated by the endoplasmic reticulum-associated degradation pathway ensures proper expression of MPL, a key cell surface receptor that promotes haematopoietic stem cell function through niche interaction.
Collapse
Affiliation(s)
- Kentson Lam
- Division of Hematology and Oncology, University of California San Diego, La Jolla, CA, USA
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Robert A J Signer
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|