1
|
Soares ES, Queiroz LY, Canever JB, Griebner G, Stahler CU, Mansur DS, Prediger RDS, Cimarosti HI. SENP3 knockdown improves motor and cognitive impairments in the intranasal MPTP rodent model of Parkinson's disease. Physiol Behav 2025; 288:114725. [PMID: 39488250 DOI: 10.1016/j.physbeh.2024.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/04/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Several mechanisms underlying Parkinson's disease (PD) remain unclear, and effective treatments are still lacking. The conjugation of the small ubiquitin-like modifier (SUMO), known as SUMOylation, to key proteins in PD has shown potential beneficial effects. Considering that this process is reversed by SUMO-specific proteases (SENPs), this study addressed the effects of increased SUMO-2/3 conjugation, mediated by SENP3 knockdown, in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rodent model of PD. Two weeks after infusion of the shRNA-containing lentiviral vector into the dorsolateral striatum and one week following intranasal MPTP administration, male Wistar rats were evaluated using cognitive and motor behavioural tests. Infection efficiency was confirmed by detecting GFP expression in the dorsolateral striatum. SENP3 knockdown, verified by Western blotting, resulted in increased SUMO-2/3 conjugation. MPTP-administered rats displayed impairments in both recognition and spatial memories, while SENP3 knockdown prevented these deficits. Rats exposed to MPTP also exhibited motor dysfunction, which was ameliorated by SENP3 knockdown. These findings underscore the involvement of SUMO-2/3 conjugation in PD and its potential as a novel therapeutic target to counteract cognitive and motor impairments induced by neurodegeneration.
Collapse
Affiliation(s)
- Ericks S Soares
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Leticia Y Queiroz
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil; Postgraduate Program in Neuroscience, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Jaquelini B Canever
- Postgraduate Program in Neuroscience, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Gustavo Griebner
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Carolina U Stahler
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Daniel S Mansur
- Department of Microbiology, Immunology, and Parasitology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rui Daniel S Prediger
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil; Postgraduate Program in Neuroscience, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Helena I Cimarosti
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil; Postgraduate Program in Neuroscience, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil.
| |
Collapse
|
2
|
Seager R, Ramesh NS, Cross S, Guo C, Wilkinson KA, Henley JM. SUMOylation of MFF coordinates fission complexes to promote stress-induced mitochondrial fragmentation. SCIENCE ADVANCES 2024; 10:eadq6223. [PMID: 39365854 PMCID: PMC11451547 DOI: 10.1126/sciadv.adq6223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 10/06/2024]
Abstract
Mitochondria undergo fragmentation in response to bioenergetic stress, mediated by dynamin-related protein 1 (DRP1) recruitment to the mitochondria. The major pro-fission DRP1 receptor is mitochondrial fission factor (MFF), and mitochondrial dynamics proteins of 49 and 51 kilodaltons (MiD49/51), which can sequester inactive DRP1. Together, they form a trimeric DRP1-MiD-MFF complex. Adenosine monophosphate-activated protein kinase (AMPK)-mediated phosphorylation of MFF is necessary for mitochondrial fragmentation, but the molecular mechanisms are unclear. Here, we identify MFF as a target of small ubiquitin-like modifier (SUMO) at Lys151, MFF SUMOylation is enhanced following AMPK-mediated phosphorylation and that MFF SUMOylation regulates the level of MiD binding to MFF. The mitochondrial stressor carbonyl cyanide 3-chlorophenylhydrazone (CCCP) promotes MFF SUMOylation and mitochondrial fragmentation. However, CCCP-induced fragmentation is impaired in MFF-knockout mouse embryonic fibroblasts expressing non-SUMOylatable MFF K151R. These data suggest that the AMPK-MFF SUMOylation axis dynamically controls stress-induced mitochondrial fragmentation by regulating the levels of MiD in trimeric fission complexes.
Collapse
Affiliation(s)
- Richard Seager
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - Nitheyaa Shree Ramesh
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - Stephen Cross
- Wolfson Bioimaging Facility, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Chun Guo
- School of Biosciences, University of Sheffield, Alfred Denny Building, Sheffield, S10 2TN, UK
| | - Kevin A. Wilkinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| |
Collapse
|
3
|
Ehweiner A, Duch C, Brembs B. Wings of Change: aPKC/FoxP-dependent plasticity in steering motor neurons underlies operant self-learning in Drosophila. F1000Res 2024; 13:116. [PMID: 38779314 PMCID: PMC11109550 DOI: 10.12688/f1000research.146347.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 05/25/2024] Open
Abstract
Background Motor learning is central to human existence, such as learning to speak or walk, sports moves, or rehabilitation after injury. Evidence suggests that all forms of motor learning share an evolutionarily conserved molecular plasticity pathway. Here, we present novel insights into the neural processes underlying operant self-learning, a form of motor learning in the fruit fly Drosophila. Methods We operantly trained wild type and transgenic Drosophila fruit flies, tethered at the torque meter, in a motor learning task that required them to initiate and maintain turning maneuvers around their vertical body axis (yaw torque). We combined this behavioral experiment with transgenic peptide expression, CRISPR/Cas9-mediated, spatio-temporally controlled gene knock-out and confocal microscopy. Results We find that expression of atypical protein kinase C (aPKC) in direct wing steering motoneurons co-expressing the transcription factor FoxP is necessary for this type of motor learning and that aPKC likely acts via non-canonical pathways. We also found that it takes more than a week for CRISPR/Cas9-mediated knockout of FoxP in adult animals to impair motor learning, suggesting that adult FoxP expression is required for operant self-learning. Conclusions Our experiments suggest that, for operant self-learning, a type of motor learning in Drosophila, co-expression of atypical protein kinase C (aPKC) and the transcription factor FoxP is necessary in direct wing steering motoneurons. Some of these neurons control the wing beat amplitude when generating optomotor responses, and we have discovered modulation of optomotor behavior after operant self-learning. We also discovered that aPKC likely acts via non-canonical pathways and that FoxP expression is also required in adult flies.
Collapse
Affiliation(s)
- Andreas Ehweiner
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Bavaria, 93040, Germany
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg Universitat Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Björn Brembs
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Bavaria, 93040, Germany
| |
Collapse
|
4
|
Steiman S, Miyake T, McDermott JC. FoxP1 Represses MEF2A in Striated Muscle. Mol Cell Biol 2024; 44:57-71. [PMID: 38483114 PMCID: PMC10950271 DOI: 10.1080/10985549.2024.2323959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/14/2023] [Accepted: 01/23/2024] [Indexed: 03/19/2024] Open
Abstract
Myocyte enhancer factor 2 (MEF2) proteins are involved in multiple developmental, physiological, and pathological processes in vertebrates. Protein-protein interactions underlie the plethora of biological processes impacted by MEF2A, necessitating a detailed characterization of the MEF2A interactome. A nanobody based affinity-purification/mass spectrometry strategy was employed to achieve this goal. Specifically, the MEF2A protein complexes were captured from myogenic lysates using a GFP-tagged MEF2A protein immobilized with a GBP-nanobody followed by LC-MS/MS proteomic analysis to identify MEF2A interactors. After bioinformatic analysis, we further characterized the interaction of MEF2A with a transcriptional repressor, FOXP1. FOXP1 coprecipitated with MEF2A in proliferating myogenic cells which diminished upon differentiation (myotube formation). Ectopic expression of FOXP1 inhibited MEF2A driven myogenic reporter genes (derived from the creatine kinase muscle and myogenin genes) and delayed induction of endogenous myogenin during differentiation. Conversely, FOXP1 depletion enhanced MEF2A transactivation properties and myogenin expression. The FoxP1:MEF2A interaction is also preserved in cardiomyocytes and FoxP1 depletion enhanced cardiomyocyte hypertrophy. FOXP1 prevented MEF2A phosphorylation and activation by the p38MAPK pathway. Overall, these data implicate FOXP1 in restricting MEF2A function in order to avoid premature differentiation in myogenic progenitors and also to possibly prevent re-activation of embryonic gene expression in cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Sydney Steiman
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - Tetsuaki Miyake
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - John C. McDermott
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| |
Collapse
|
5
|
Chato-Astrain I, Pronot M, Coppola T, Martin S. Molecular Organization and Regulation of the Mammalian Synapse by the Post-Translational Modification SUMOylation. Cells 2024; 13:420. [PMID: 38474384 PMCID: PMC10930594 DOI: 10.3390/cells13050420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Neurotransmission occurs within highly specialized compartments forming the active synapse where the complex organization and dynamics of the interactions are tightly orchestrated both in time and space. Post-translational modifications (PTMs) are central to these spatiotemporal regulations to ensure an efficient synaptic transmission. SUMOylation is a dynamic PTM that modulates the interactions between proteins and consequently regulates the conformation, the distribution and the trafficking of the SUMO-target proteins. SUMOylation plays a crucial role in synapse formation and stabilization, as well as in the regulation of synaptic transmission and plasticity. In this review, we summarize the molecular consequences of this protein modification in the structural organization and function of the mammalian synapse. We also outline novel activity-dependent regulation and consequences of the SUMO process and explore how this protein modification can functionally participate in the compartmentalization of both pre- and post-synaptic sites.
Collapse
Affiliation(s)
- Isabel Chato-Astrain
- Université Côte d’Azur, CNRS, Inserm, IPMC, Sophia Antipolis, F-06560 Valbonne, France; (I.C.-A.); (T.C.)
| | - Marie Pronot
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK;
| | - Thierry Coppola
- Université Côte d’Azur, CNRS, Inserm, IPMC, Sophia Antipolis, F-06560 Valbonne, France; (I.C.-A.); (T.C.)
| | - Stéphane Martin
- Université Côte d’Azur, CNRS, Inserm, IPMC, Sophia Antipolis, F-06560 Valbonne, France; (I.C.-A.); (T.C.)
| |
Collapse
|
6
|
Gao C, Zhu H, Gong P, Wu C, Xu X, Zhu X. The functions of FOXP transcription factors and their regulation by post-translational modifications. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194992. [PMID: 37797785 DOI: 10.1016/j.bbagrm.2023.194992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
The forkhead box subfamily P (FOXP) of transcription factors, consisting of FOXP1, FOXP2, FOXP3, and FOXP4, is involved in the regulation of multisystemic functioning. Disruption of the transcriptional activity of FOXP proteins leads to neurodevelopmental disorders and immunological diseases, as well as the suppression or promotion of carcinogenesis. The transcriptional activities of FOXP proteins are directly or indirectly regulated by diverse post-translational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, O-GlcNAcylation, and methylation. Here, we discuss how post-translational modifications modulate the multiple functions of FOXP proteins and examine the implications for tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Congwen Gao
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China; College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Honglin Zhu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China
| | - Peng Gong
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors & Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China
| | - Chen Wu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China.
| | - Xuefei Zhu
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors & Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China.
| |
Collapse
|
7
|
Park SHE, Kulkarni A, Konopka G. FOXP1 orchestrates neurogenesis in human cortical basal radial glial cells. PLoS Biol 2023; 21:e3001852. [PMID: 37540706 PMCID: PMC10431666 DOI: 10.1371/journal.pbio.3001852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 08/16/2023] [Accepted: 06/21/2023] [Indexed: 08/06/2023] Open
Abstract
During cortical development, human basal radial glial cells (bRGCs) are highly capable of sustained self-renewal and neurogenesis. Selective pressures on this cell type may have contributed to the evolution of the human neocortex, leading to an increase in cortical size. bRGCs have enriched expression for Forkhead Box P1 (FOXP1), a transcription factor implicated in neurodevelopmental disorders (NDDs) such as autism spectrum disorder. However, the cell type-specific roles of FOXP1 in bRGCs during cortical development remain unexplored. Here, we examine the requirement for FOXP1 gene expression regulation underlying the production of bRGCs using human brain organoids. We examine a developmental time point when FOXP1 expression is highest in the cortical progenitors, and the bRGCs, in particular, begin to actively produce neurons. With the loss of FOXP1, we show a reduction in the number of bRGCs, as well as reduced proliferation and differentiation of the remaining bRGCs, all of which lead to reduced numbers of excitatory cortical neurons over time. Using single-nuclei RNA sequencing and cell trajectory analysis, we uncover a role for FOXP1 in directing cortical progenitor proliferation and differentiation by regulating key signaling pathways related to neurogenesis and NDDs. Together, these results demonstrate that FOXP1 regulates human-specific features in early cortical development.
Collapse
Affiliation(s)
- Seon Hye E. Park
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
8
|
Coñuecar R, Asela I, Rivera M, Galaz-Davison P, González-Higueras J, Hamilton GL, Engelberger F, Ramírez-Sarmiento CA, Babul J, Sanabria H, Medina E. DNA facilitates heterodimerization between human transcription factors FoxP1 and FoxP2 by increasing their conformational flexibility. iScience 2023; 26:107228. [PMID: 37485372 PMCID: PMC10362293 DOI: 10.1016/j.isci.2023.107228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Transcription factors regulate gene expression by binding to DNA. They have disordered regions and specific DNA-binding domains. Binding to DNA causes structural changes, including folding and interactions with other molecules. The FoxP subfamily of transcription factors in humans is unique because they can form heterotypic interactions without DNA. However, it is unclear how they form heterodimers and how DNA binding affects their function. We used computational and experimental methods to study the structural changes in FoxP1's DNA-binding domain when it forms a heterodimer with FoxP2. We found that FoxP1 has complex and diverse conformational dynamics, transitioning between compact and extended states. Surprisingly, DNA binding increases the flexibility of FoxP1, contrary to the typical folding-upon-binding mechanism. In addition, we observed a 3-fold increase in the rate of heterodimerization after FoxP1 binds to DNA. These findings emphasize the importance of structural flexibility in promoting heterodimerization to form transcriptional complexes.
Collapse
Affiliation(s)
- Ricardo Coñuecar
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Isabel Asela
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Maira Rivera
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Jorge González-Higueras
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - George L. Hamilton
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Felipe Engelberger
- Institute for Drug Discovery, Leipzig University Medical School, 04107 Leipzig, Germany
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Jorge Babul
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Hugo Sanabria
- Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Exequiel Medina
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
- Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
9
|
DelRosso N, Tycko J, Suzuki P, Andrews C, Aradhana, Mukund A, Liongson I, Ludwig C, Spees K, Fordyce P, Bassik MC, Bintu L. Large-scale mapping and mutagenesis of human transcriptional effector domains. Nature 2023; 616:365-372. [PMID: 37020022 PMCID: PMC10484233 DOI: 10.1038/s41586-023-05906-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Human gene expression is regulated by more than 2,000 transcription factors and chromatin regulators1,2. Effector domains within these proteins can activate or repress transcription. However, for many of these regulators we do not know what type of effector domains they contain, their location in the protein, their activation and repression strengths, and the sequences that are necessary for their functions. Here, we systematically measure the effector activity of more than 100,000 protein fragments tiling across most chromatin regulators and transcription factors in human cells (2,047 proteins). By testing the effect they have when recruited at reporter genes, we annotate 374 activation domains and 715 repression domains, roughly 80% of which are new and have not been previously annotated3-5. Rational mutagenesis and deletion scans across all the effector domains reveal aromatic and/or leucine residues interspersed with acidic, proline, serine and/or glutamine residues are necessary for activation domain activity. Furthermore, most repression domain sequences contain sites for small ubiquitin-like modifier (SUMO)ylation, short interaction motifs for recruiting corepressors or are structured binding domains for recruiting other repressive proteins. We discover bifunctional domains that can both activate and repress, some of which dynamically split a cell population into high- and low-expression subpopulations. Our systematic annotation and characterization of effector domains provide a rich resource for understanding the function of human transcription factors and chromatin regulators, engineering compact tools for controlling gene expression and refining predictive models of effector domain function.
Collapse
Affiliation(s)
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Peter Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Cecelia Andrews
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Aradhana
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Adi Mukund
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Ivan Liongson
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Connor Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Polly Fordyce
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Klaus L, de Almeida BP, Vlasova A, Nemčko F, Schleiffer A, Bergauer K, Hofbauer L, Rath M, Stark A. Systematic identification and characterization of repressive domains in Drosophila transcription factors. EMBO J 2023; 42:e112100. [PMID: 36545802 PMCID: PMC9890238 DOI: 10.15252/embj.2022112100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
All multicellular life relies on differential gene expression, determined by regulatory DNA elements and DNA-binding transcription factors that mediate activation and repression via cofactor recruitment. While activators have been extensively characterized, repressors are less well studied: the identities and properties of their repressive domains (RDs) are typically unknown and the specific co-repressors (CoRs) they recruit have not been determined. Here, we develop a high-throughput, next-generation sequencing-based screening method, repressive-domain (RD)-seq, to systematically identify RDs in complex DNA-fragment libraries. Screening more than 200,000 fragments covering the coding sequences of all transcription-related proteins in Drosophila melanogaster, we identify 195 RDs in known repressors and in proteins not previously associated with repression. Many RDs contain recurrent short peptide motifs, which are conserved between fly and human and are required for RD function, as demonstrated by motif mutagenesis. Moreover, we show that RDs that contain one of five distinct repressive motifs interact with and depend on different CoRs, such as Groucho, CtBP, Sin3A, or Smrter. These findings advance our understanding of repressors, their sequences, and the functional impact of sequence-altering mutations and should provide a valuable resource for further studies.
Collapse
Affiliation(s)
- Loni Klaus
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Bernardo P de Almeida
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Anna Vlasova
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Filip Nemčko
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Katharina Bergauer
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Lorena Hofbauer
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Martina Rath
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Medical University of ViennaVienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
11
|
Gustin A, Navabpour S, Farrell K, Martin K, DuVall J, Keith Ray W, Helm RF, Jarome TJ. Protein SUMOylation is a sex-specific regulator of fear memory formation in the amygdala. Behav Brain Res 2022; 430:113928. [PMID: 35597476 PMCID: PMC10431910 DOI: 10.1016/j.bbr.2022.113928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Strong evidence has implicated ubiquitin signaling in the process of fear memory formation. While less abundant than ubiquitination, evidence suggests that protein SUMOylation may also be involved in fear memory formation in neurons. However, the importance of amygdala protein SUMOylation in fear memory formation has never been directly examined. Furthermore, while recent evidence indicates that males and females differ significantly in the requirement for ubiquitin signaling during fear memory formation, whether sex differences also exist in the importance of protein SUMOylation to this process remains unknown. Here we found that males and females differ in the requirement for protein SUMOylation in the amygdala during fear memory formation. Western blot analysis revealed that while females had higher resting levels of SUMOylation, both sexes showed global increases following fear conditioning. However, SUMOylation-specific proteomic analysis revealed that only females have increased targeting of individual proteins by SUMOylation following fear conditioning, some of which were heat shock proteins. This suggests that protein SUMOylation is more robustly engaged in the amygdala of females following fear conditioning. In vivo siRNA mediated knockdown of Ube2i, the coding gene for the essential E2 ligase for SUMOylation conjugation, in the amygdala impaired fear memory in males without any effect in females. Importantly, higher siRNA concentrations than what was needed to impair memory in males reduced Ube2i levels in the amygdala of females but resulted in an increase in SUMOylation levels, suggesting a compensatory effect in females that was not observed in males. Collectively, these data reveal a novel, sex-specific role for protein SUMOylation in the amygdala during fear memory formation and expand our understanding of how ubiquitin-like signaling regulates memory formation.
Collapse
Affiliation(s)
- Aspen Gustin
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Department of Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Kayla Farrell
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Kiley Martin
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jessica DuVall
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - W Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Timothy J Jarome
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Fralin Biomedical Research Institute, Department of Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
12
|
Identification of Transcription Factors Regulating SARS-CoV-2 Tropism Factor Expression by Inferring Cell-Type-Specific Transcriptional Regulatory Networks in Human Lungs. Viruses 2022; 14:v14040837. [PMID: 35458567 PMCID: PMC9026071 DOI: 10.3390/v14040837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that caused the coronavirus disease 2019 (COVID-19) pandemic. Though previous studies have suggested that SARS-CoV-2 cellular tropism depends on the host-cell-expressed proteins, whether transcriptional regulation controls SARS-CoV-2 tropism factors in human lung cells remains unclear. In this study, we used computational approaches to identify transcription factors (TFs) regulating SARS-CoV-2 tropism for different types of lung cells. We constructed transcriptional regulatory networks (TRNs) controlling SARS-CoV-2 tropism factors for healthy donors and COVID-19 patients using lung single-cell RNA-sequencing (scRNA-seq) data. Through differential network analysis, we found that the altered regulatory role of TFs in the same cell types of healthy and SARS-CoV-2-infected networks may be partially responsible for differential tropism factor expression. In addition, we identified the TFs with high centralities from each cell type and proposed currently available drugs that target these TFs as potential candidates for the treatment of SARS-CoV-2 infection. Altogether, our work provides valuable cell-type-specific TRN models for understanding the transcriptional regulation and gene expression of SARS-CoV-2 tropism factors.
Collapse
|
13
|
Shalev I, Somekh J, Eran A. Multimodal bioinformatic analyses of the neurodegenerative disease-associated TECPR2 gene reveal its diverse roles. J Med Genet 2021; 59:1002-1009. [PMID: 34933910 DOI: 10.1136/jmedgenet-2021-108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/01/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Loss of tectonin β-propeller repeat-containing 2 (TECPR2) function has been implicated in an array of neurodegenerative disorders, yet its physiological function remains largely unknown. Understanding TECPR2 function is essential for developing much needed precision therapeutics for TECPR2-related diseases. METHODS We leveraged considerable amounts of functional data to obtain a comprehensive perspective of the role of TECPR2 in health and disease. We integrated expression patterns, population variation, phylogenetic profiling, protein-protein interactions and regulatory network data for a minimally biased multimodal functional analysis. Genes and proteins linked to TECPR2 via multiple lines of evidence were subject to functional enrichment analyses to identify molecular mechanisms involving TECPR2. RESULTS TECPR2 was found to be part of a tight neurodevelopmental gene expression programme that includes KIF1A, ATXN1, TOM1L2 and FA2H, all implicated in neurological diseases. Functional enrichment analyses of TECPR2-related genes converged on a role in late autophagy and ribosomal processes. Large-scale population variation data demonstrated that this role is non-redundant. CONCLUSIONS TECPR2 might serve as an indicator for the energy balance between protein synthesis and autophagy, and a marker for diseases associated with their imbalance, such as Alzheimer's disease and Huntington's disease. Specifically, we speculate that TECPR2 plays an important role as a proteostasis regulator during synaptogenesis, highlighting its importance in developing neurons. By advancing our understanding of TECPR2 function, this work provides an essential stepping stone towards the development of precision diagnostics and targeted treatment options for TECPR2-related disorders.
Collapse
Affiliation(s)
- Ido Shalev
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Zlotowsky Center for Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Judith Somekh
- Department of Information Systems, University of Haifa, Haifa, Israel
| | - Alal Eran
- Zlotowsky Center for Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel .,Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Nair JD, Braksator E, Yucel BP, Fletcher-Jones A, Seager R, Mellor JR, Bashir ZI, Wilkinson KA, Henley JM. Sustained postsynaptic kainate receptor activation downregulates AMPA receptor surface expression and induces hippocampal LTD. iScience 2021; 24:103029. [PMID: 34553130 PMCID: PMC8441151 DOI: 10.1016/j.isci.2021.103029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 01/21/2023] Open
Abstract
It is well established that long-term depression (LTD) can be initiated by either NMDA or mGluR activation. Here we report that sustained activation of GluK2 subunit-containing kainate receptors (KARs) leads to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) endocytosis and induces LTD of AMPARs (KAR-LTDAMPAR) in hippocampal neurons. The KAR-evoked loss of surface AMPARs is blocked by the ionotropic KAR inhibitor UBP 310 indicating that KAR-LTDAMPAR requires KAR channel activity. Interestingly, however, blockade of PKC or PKA also reduces GluA2 surface expression and occludes the effect of KAR activation. In acute hippocampal slices, kainate application caused a significant loss of GluA2-containing AMPARs from synapses and long-lasting depression of AMPAR excitatory postsynaptic currents in CA1. These data, together with our previously reported KAR-LTPAMPAR, demonstrate that KARs can bidirectionally regulate synaptic AMPARs and synaptic plasticity via different signaling pathways.
Collapse
Affiliation(s)
- Jithin D. Nair
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Ellen Braksator
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Busra P. Yucel
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Alexandra Fletcher-Jones
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Richard Seager
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jack R. Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Zafar I. Bashir
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kevin A. Wilkinson
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jeremy M. Henley
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
15
|
Binge-like Alcohol Exposure in Adolescence: Behavioural, Neuroendocrine and Molecular Evidence of Abnormal Neuroplasticity… and Return. Biomedicines 2021; 9:biomedicines9091161. [PMID: 34572345 PMCID: PMC8470908 DOI: 10.3390/biomedicines9091161] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/02/2023] Open
Abstract
Binge alcohol consumption among adolescents affects the developing neural networks underpinning reward and stress processing in the nucleus accumbens (NAc). This study explores in rats the long-lasting effects of early intermittent exposure to intoxicating alcohol levels at adolescence, on: (1) the response to natural positive stimuli and inescapable stress; (2) stress-axis functionality; and (3) dopaminergic and glutamatergic neuroadaptation in the NAc. We also assess the potential effects of the non-intoxicating phytocannabinoid cannabidiol, to counteract (or reverse) the development of detrimental consequences of binge-like alcohol exposure. Our results show that adolescent binge-like alcohol exposure alters the sensitivity to positive stimuli, exerts social and novelty-triggered anxiety-like behaviour, and passive stress-coping during early and prolonged withdrawal. In addition, serum corticosterone and hypothalamic and NAc corticotropin-releasing hormone levels progressively increase during withdrawal. Besides, NAc tyrosine hydroxylase levels increase at late withdrawal, while the expression of dopamine transporter, D1 and D2 receptors is dynamically altered during binge and withdrawal. Furthermore, the expression of markers of excitatory postsynaptic signaling—PSD95; Homer-1 and -2 and the activity-regulated spine-morphing proteins Arc, LIM Kinase 1 and FOXP1—increase at late withdrawal. Notably, subchronic cannabidiol, during withdrawal, attenuates social- and novelty-induced aversion and passive stress-coping and rectifies the hyper-responsive stress axis and NAc dopamine and glutamate-related neuroplasticity. Overall, the exposure to binge-like alcohol levels in adolescent rats makes the NAc, during withdrawal, a locus minoris resistentiae as a result of perturbations in neuroplasticity and in stress-axis homeostasis. Cannabidiol holds a promising potential for increasing behavioural, neuroendocrine and molecular resilience against binge-like alcohol harmful effects.
Collapse
|
16
|
den Hoed J, Devaraju K, Fisher SE. Molecular networks of the FOXP2 transcription factor in the brain. EMBO Rep 2021; 22:e52803. [PMID: 34260143 PMCID: PMC8339667 DOI: 10.15252/embr.202152803] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
The discovery of the FOXP2 transcription factor, and its implication in a rare severe human speech and language disorder, has led to two decades of empirical studies focused on uncovering its roles in the brain using a range of in vitro and in vivo methods. Here, we discuss what we have learned about the regulation of FOXP2, its downstream effectors, and its modes of action as a transcription factor in brain development and function, providing an integrated overview of what is currently known about the critical molecular networks.
Collapse
Affiliation(s)
- Joery den Hoed
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- International Max Planck Research School for Language SciencesMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Karthikeyan Devaraju
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Simon E Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
17
|
Neyroud D, Nosacka RL, Callaway CS, Trevino JG, Hu H, Judge SM, Judge AR. FoxP1 is a transcriptional repressor associated with cancer cachexia that induces skeletal muscle wasting and weakness. J Cachexia Sarcopenia Muscle 2021; 12:421-442. [PMID: 33527776 PMCID: PMC8061399 DOI: 10.1002/jcsm.12666] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/05/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Skeletal muscle wasting is a devastating consequence of cancer that affects up to 80% of cancer patients and associates with reduced survival. Herein, we investigated the biological significance of Forkhead box P1 (FoxP1), a transcriptional repressor that we demonstrate is up-regulated in skeletal muscle in multiple models of cancer cachexia and in cachectic cancer patients. METHODS Inducible, skeletal muscle-specific FoxP1 over-expressing (FoxP1iSkmTg/Tg ) mice were generated through crossing conditional Foxp1a transgenic mice with HSA-MCM mice that express tamoxifen-inducible Cre recombinase under control of the skeletal muscle actin promoter. To determine the requirement of FoxP1 for cancer-induced skeletal muscle wasting, FoxP1-shRNA was packaged and targeted to muscles using AAV9 delivery prior to inoculation of mice with Colon-26 Adenocarcinoma (C26) cells. RESULTS Up-regulation of FoxP1 in adult skeletal muscle was sufficient to induce features of cachexia, including 15% reduction in body mass (P < 0.05), and a 16-27% reduction in skeletal muscle mass (P < 0.05) that was characterized by a 20% reduction in muscle fibre cross-sectional area of type IIX/B muscle fibres (P = 0.020). Skeletal muscles from FoxP1iSkmTg/Tg mice also showed significant damage and myopathy characterized by the presence of centrally nucleated myofibres, extracellular matrix expansion, and were 19-26% weaker than controls (P < 0.05). Transcriptomic analysis revealed FoxP1 as a potent transcriptional repressor of skeletal muscle gene expression, with enrichment of pathways related to skeletal muscle structure and function, growth signalling, and cell quality control. Because FoxP1 functions, at least in part, as a transcriptional repressor through its interaction with histone deacetylase proteins, we treated FoxP1iSkmTg/Tg mice with Trichostatin A, and found that this completely prevented the loss of muscle mass (p = 0.007) and fibre atrophy (P < 0.001) in the tibialis anterior. In the context of cancer, FoxP1 knockdown blocked the cancer-induced repression of myocyte enhancer factor 2 (MEF2)-target genes critical to muscle differentiation and repair, improved muscle ultrastructure, and attenuated muscle fibre atrophy by 50% (P < 0.05). CONCLUSIONS In summary, we identify FoxP1 as a novel repressor of skeletal muscle gene expression that is increased in cancer cachexia, whose up-regulation is sufficient to induce skeletal muscle wasting and weakness, and required for the normal wasting response to cancer.
Collapse
Affiliation(s)
- Daria Neyroud
- Department of Physical TherapyUniversity of FloridaGainesvilleFLUSA
| | | | | | | | - Hui Hu
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Sarah M. Judge
- Department of Physical TherapyUniversity of FloridaGainesvilleFLUSA
| | - Andrew R. Judge
- Department of Physical TherapyUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
18
|
Garcia-Forn M, Boitnott A, Akpinar Z, De Rubeis S. Linking Autism Risk Genes to Disruption of Cortical Development. Cells 2020; 9:cells9112500. [PMID: 33218123 PMCID: PMC7698947 DOI: 10.3390/cells9112500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by impairments in social communication and social interaction, and the presence of repetitive behaviors and/or restricted interests. In the past few years, large-scale whole-exome sequencing and genome-wide association studies have made enormous progress in our understanding of the genetic risk architecture of ASD. While showing a complex and heterogeneous landscape, these studies have led to the identification of genetic loci associated with ASD risk. The intersection of genetic and transcriptomic analyses have also begun to shed light on functional convergences between risk genes, with the mid-fetal development of the cerebral cortex emerging as a critical nexus for ASD. In this review, we provide a concise summary of the latest genetic discoveries on ASD. We then discuss the studies in postmortem tissues, stem cell models, and rodent models that implicate recently identified ASD risk genes in cortical development.
Collapse
Affiliation(s)
- Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Boitnott
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zeynep Akpinar
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychology, College of Arts and Sciences, New York University, New York, NY 10003, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: ; Tel.: +1-212-241-0179
| |
Collapse
|
19
|
Shi VH, Craig TJ, Bishop P, Nakamura Y, Rocca D, Wilkinson KA, Henley JM. Phosphorylation of Syntaxin-1a by casein kinase 2α regulates pre-synaptic vesicle exocytosis from the reserve pool. J Neurochem 2020; 156:614-623. [PMID: 32852799 PMCID: PMC8237229 DOI: 10.1111/jnc.15161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/24/2020] [Accepted: 08/17/2020] [Indexed: 02/03/2023]
Abstract
The t-soluble NSF-attachment protein receptor protein Syntaxin-1a (Stx-1a) is abundantly expressed at pre-synaptic terminals where it plays a critical role in the exocytosis of neurotransmitter-containing synaptic vesicles. Stx-1a is phosphorylated by Casein kinase 2α (CK2α) at Ser14, which has been proposed to regulate the interaction of Stx-1a and Munc-18 to control of synaptic vesicle priming. However, the role of CK2α in synaptic vesicle dynamics remains unclear. Here, we show that CK2α over-expression reduces evoked synaptic vesicle release. Furthermore, shRNA-mediated knockdown of CK2α in primary hippocampal neurons strongly enhanced vesicle exocytosis from the reserve pool, with no effect on the readily releasable pool of primed vesicles. In neurons in which endogenous Stx-1a was knocked down and replaced with a CK2α phosphorylation-deficient mutant, Stx-1a(D17A), vesicle exocytosis was also increased. These results reveal a previously unsuspected role of CK2α phosphorylation in specifically regulating the reserve synaptic vesicle pool, without changing the kinetics of release from the readily releasable pool.
Collapse
Affiliation(s)
- Vanilla Hua Shi
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Tim J Craig
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, UK.,Department of Applied Sciences, University of the West of England, Bristol, UK
| | - Paul Bishop
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Yasuko Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Dan Rocca
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, UK
| |
Collapse
|
20
|
Nakamura Y, Morrow DH, Nathanson AJ, Henley JM, Wilkinson KA, Moss SJ. Phosphorylation on Ser-359 of the α2 subunit in GABA type A receptors down-regulates their density at inhibitory synapses. J Biol Chem 2020; 295:12330-12342. [PMID: 32620552 PMCID: PMC7458806 DOI: 10.1074/jbc.ra120.014303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Indexed: 11/06/2022] Open
Abstract
GABA type A receptors (GABAARs) mediate fast synaptic inhibition and are trafficked to functionally diverse synapses. However, the precise molecular mechanisms that regulate the synaptic targeting of these receptors are unclear. Whereas it has been previously shown that phosphorylation events in α4, β, and γ subunits of GABAARs govern their function and trafficking, phosphorylation of other subunits has not yet been demonstrated. Here, we show that the α2 subunit of GABAARs is phosphorylated at Ser-359 and enables dynamic regulation of GABAAR binding to the scaffolding proteins gephyrin and collybistin. We initially identified Ser-359 phosphorylation by MS analysis, and additional experiments revealed that it is regulated by the activities of cAMP-dependent protein kinase (PKA) and the protein phosphatase 1 (PP1) and/or PP2A. GST-based pulldowns and coimmunoprecipitation experiments demonstrate preferential binding of both gephyrin and collybistin to WT and an S359A phosphonull variant, but not to an S359D phosphomimetic variant. Furthermore, the decreased capacity of the α2 S359D variant to bind collybistin and gephyrin decreased the density of synaptic α2-containing GABAAR clusters and caused an absence of α2 enrichment in the axon initial segment. These results suggest that PKA-mediated phosphorylation and PP1/PP2A-dependent dephosphorylation of the α2 subunit play a role in the dynamic regulation of GABAAR accumulation at inhibitory synapses, thereby regulating the strength of synaptic inhibition. The MS data have been deposited to ProteomeXchange, with the data set identifier PXD019597.
Collapse
Affiliation(s)
- Yasuko Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Bristol, United Kingdom
| | - Danielle H. Morrow
- Department of Neuroscience, Tufts University, School of Medicine, Boston, Massachusetts, USA
| | - Anna J. Nathanson
- Department of Neuroscience, Tufts University, School of Medicine, Boston, Massachusetts, USA
| | - Jeremy M. Henley
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Bristol, United Kingdom
| | - Kevin A. Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Bristol, United Kingdom
| | - Stephen J. Moss
- Department of Neuroscience, Tufts University, School of Medicine, Boston, Massachusetts, USA,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom,For correspondence: S. J. Moss,
| |
Collapse
|
21
|
Folci A, Mirabella F, Fossati M. Ubiquitin and Ubiquitin-Like Proteins in the Critical Equilibrium between Synapse Physiology and Intellectual Disability. eNeuro 2020; 7:ENEURO.0137-20.2020. [PMID: 32719102 PMCID: PMC7544190 DOI: 10.1523/eneuro.0137-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023] Open
Abstract
Posttranslational modifications (PTMs) represent a dynamic regulatory system that precisely modulates the functional organization of synapses. PTMs consist in target modifications by small chemical moieties or conjugation of lipids, sugars or polypeptides. Among them, ubiquitin and a large family of ubiquitin-like proteins (UBLs) share several features such as the structure of the small protein modifiers, the enzymatic cascades mediating the conjugation process, and the targeted aminoacidic residue. In the brain, ubiquitination and two UBLs, namely sumoylation and the recently discovered neddylation orchestrate fundamental processes including synapse formation, maturation and plasticity, and their alteration is thought to contribute to the development of neurological disorders. Remarkably, emerging evidence suggests that these pathways tightly interplay to modulate the function of several proteins that possess pivotal roles for brain homeostasis as well as failure of this crosstalk seems to be implicated in the development of brain pathologies. In this review, we outline the role of ubiquitination, sumoylation, neddylation, and their functional interplay in synapse physiology and discuss their implication in the molecular pathogenesis of intellectual disability (ID), a neurodevelopmental disorder that is frequently comorbid with a wide spectrum of brain pathologies. Finally, we propose a few outlooks that might contribute to better understand the complexity of these regulatory systems in regard to neuronal circuit pathophysiology.
Collapse
Affiliation(s)
- Alessandra Folci
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
| | - Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve 9 Emanuele - Milan, Italy
| | - Matteo Fossati
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
- CNR-Institute of Neuroscience, via Manzoni 56, 20089, Rozzano (MI), Italy
| |
Collapse
|
22
|
Hamdan A, Kasabri V, Al‐Hiari Y, Arabiyat S, AlAlawi S, Bustanji Y. Dual anti‐inflammatory and antiglycation propensities of a potentially novel class of functionalized fluoroquinolones. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alaa Hamdan
- School of PharmacyThe University of Jordan Queen Rania Street Amman 11942 Jordan
| | - Violet Kasabri
- School of PharmacyThe University of Jordan Queen Rania Street Amman 11942 Jordan
| | - Yusuf Al‐Hiari
- School of PharmacyThe University of Jordan Queen Rania Street Amman 11942 Jordan
| | | | - Sundus AlAlawi
- School of PharmacyThe University of Jordan Queen Rania Street Amman 11942 Jordan
| | - Yasser Bustanji
- School of PharmacyThe University of Jordan Queen Rania Street Amman 11942 Jordan
- Hamdi Mango Center for Scientific ResearchUniversity of Jordan Amman Jordan
| |
Collapse
|
23
|
Liu P, Huang S, Ling S, Xu S, Wang F, Zhang W, Zhou R, He L, Xia X, Yao Z, Fan Y, Wang N, Hu C, Zhao X, Tucker HO, Wang J, Guo X. Foxp1 controls brown/beige adipocyte differentiation and thermogenesis through regulating β3-AR desensitization. Nat Commun 2019; 10:5070. [PMID: 31699980 PMCID: PMC6838312 DOI: 10.1038/s41467-019-12988-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/02/2019] [Indexed: 01/08/2023] Open
Abstract
β-Adrenergic receptor (β-AR) signaling is a pathway controlling adaptive thermogenesis in brown or beige adipocytes. Here we investigate the biological roles of the transcription factor Foxp1 in brown/beige adipocyte differentiation and thermogenesis. Adipose-specific deletion of Foxp1 leads to an increase of brown adipose activity and browning program of white adipose tissues. The Foxp1-deficient mice show an augmented energy expenditure and are protected from diet-induced obesity and insulin resistance. Consistently, overexpression of Foxp1 in adipocytes impairs adaptive thermogenesis and promotes diet-induced obesity. A robust change in abundance of the β3-adrenergic receptor (β3-AR) is observed in brown/beige adipocytes from both lines of mice. Molecularly, Foxp1 directly represses β3-AR transcription and regulates its desensitization behavior. Taken together, our findings reveal Foxp1 as a master transcriptional repressor of brown/beige adipocyte differentiation and thermogenesis, and provide an important clue for its targeting and treatment of obesity. Beta3-adrenergic receptor (b3-AR) signaling in response to cold activates adipose tissue thermogenesis. Here the authors identify the transcription factor FoxP1 as a direct negative regulator of b3-AR expression and show that loss of FoxP1 leads to enhanced development of thermogenic adipose tissue.
Collapse
Affiliation(s)
- Pei Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Sixia Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shifeng Ling
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuqin Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fuhua Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rujiang Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuechun Xia
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengju Yao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Fan
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Congxia Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haley O Tucker
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xizhi Guo
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
24
|
The Role of Forkhead Box Proteins in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11060865. [PMID: 31234353 PMCID: PMC6627614 DOI: 10.3390/cancers11060865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
Forkhead box (FOX) proteins are a group of transcriptional factors implicated in different cellular functions such as differentiation, proliferation and senescence. A growing number of studies have focused on the relationship between FOX proteins and cancers, particularly hematological neoplasms such as acute myeloid leukemia (AML). FOX proteins are widely involved in AML biology, including leukemogenesis, relapse and drug sensitivity. Here we explore the role of FOX transcription factors in the major AML entities, according to "The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia", and in the context of the most recurrent gene mutations identified in this heterogeneous disease. Moreover, we report the new evidences about the role of FOX proteins in drug sensitivity, mechanisms of chemoresistance, and possible targeting for personalized therapies.
Collapse
|
25
|
Weng JS, Nakamura T, Moriizumi H, Takano H, Yao R, Takekawa M. MCRIP1 promotes the expression of lung-surfactant proteins in mice by disrupting CtBP-mediated epigenetic gene silencing. Commun Biol 2019; 2:227. [PMID: 31240265 PMCID: PMC6586819 DOI: 10.1038/s42003-019-0478-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/28/2019] [Indexed: 12/26/2022] Open
Abstract
Proper regulation of epigenetic states of chromatin is crucial to achieve tissue-specific gene expression during embryogenesis. The lung-specific gene products, surfactant proteins B (SP-B) and C (SP-C), are synthesized in alveolar epithelial cells and prevent alveolar collapse. Epigenetic regulation of these surfactant proteins, however, remains unknown. Here we report that MCRIP1, a regulator of the CtBP transcriptional co-repressor, promotes the expression of SP-B and SP-C by preventing CtBP-mediated epigenetic gene silencing. Homozygous deficiency of Mcrip1 in mice causes fatal respiratory distress due to abnormal transcriptional repression of these surfactant proteins. We found that MCRIP1 interferes with interactions of CtBP with the lung-enriched transcriptional repressors, Foxp1 and Foxp2, thereby preventing the recruitment of the CtBP co-repressor complex to the SP-B and SP-C promoters and maintaining them in an active chromatin state. Our findings reveal a molecular mechanism by which cells prevent inadvertent gene silencing to ensure tissue-specific gene expression during organogenesis.
Collapse
Affiliation(s)
- Jane S. Weng
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8583 Japan
| | - Takanori Nakamura
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639 Japan
| | - Hisashi Moriizumi
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8583 Japan
| | - Hiroshi Takano
- Division of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550 Japan
| | - Ryoji Yao
- Division of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550 Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8583 Japan
| |
Collapse
|
26
|
Liu Y, Ding W, Ge H, Ponnusamy M, Wang Q, Hao X, Wu W, Zhang Y, Yu W, Ao X, Wang J. FOXK transcription factors: Regulation and critical role in cancer. Cancer Lett 2019; 458:1-12. [PMID: 31132431 DOI: 10.1016/j.canlet.2019.05.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022]
Abstract
Growing evidence suggests that alterations of gene expression including expression and activities of transcription factors are closely associated with carcinogenesis. Forkhead Box Class K (FOXK) proteins, FOXK1 and FOXK2, are a family of evolutionarily conserved transcriptional factors, which have recently been recognized as key transcriptional regulators involved in many types of cancer. Members of the FOXK family mediate a wide spectrum of biological processes, including cell proliferation, differentiation, apoptosis, autophagy, cell cycle progression, DNA damage and tumorigenesis. Therefore, the deregulation of FOXKs can affect the cell fate and they promote tumorigenesis as well as cancer progression. The mechanisms of FOXKs regulation including post-translational modifications (PTMs), microRNAs (miRNAs) and protein-protein interactions are well demonstrated. However, the detailed mechanisms of FOXKs activation and deregulation in cancer progression are still inconclusive. In this review, we summarize the regulatory mechanisms of FOXKs expression and activity, and their role in the development and progression of cancer. We have discussed whether FOXKs act as tumor suppressors/oncoproteins in tumor cells and their therapeutic applications in malignant diseases are also discussed. This review may assist in designing experimental studies involving FOXKs and it would strength the therapeutic potential of FOXKs as targets for cancers.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao 266003, China
| | - Hu Ge
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; Molecular Informatics Department, Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qiong Wang
- Molecular Informatics Department, Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Xiaodan Hao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Wu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wanpeng Yu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiang Ao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Jianxun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
27
|
Protective role of the deSUMOylating enzyme SENP3 in myocardial ischemia-reperfusion injury. PLoS One 2019; 14:e0213331. [PMID: 30973885 PMCID: PMC6459529 DOI: 10.1371/journal.pone.0213331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/02/2019] [Indexed: 12/26/2022] Open
Abstract
Interruption of blood supply to the heart is a leading cause of death and disability. However, the molecular events that occur during heart ischemia, and how these changes prime consequent cell death upon reperfusion, are poorly understood. Protein SUMOylation is a post-translational modification that has been strongly implicated in the protection of cells against a variety of stressors, including ischemia-reperfusion. In particular, the SUMO2/3-specific protease SENP3 has emerged as an important determinant of cell survival after ischemic infarct. Here, we used the Langendorff perfusion model to examine changes in the levels and localisation of SUMOylated target proteins and SENP3 in whole heart. We observed a 50% loss of SENP3 from the cytosolic fraction of hearts after preconditioning, a 90% loss after ischemia and an 80% loss after ischemia-reperfusion. To examine these effects further, we performed ischemia and ischemia-reperfusion experiments in the cardiomyocyte H9C2 cell line. Similar to whole hearts, ischemia induced a decrease in cytosolic SENP3. Furthermore, shRNA-mediated knockdown of SENP3 led to an increase in the rate of cell death upon reperfusion. Together, our results indicate that cardiac ischemia dramatically alter levels of SENP3 and suggest that this may a mechanism to promote cell survival after ischemia-reperfusion in heart.
Collapse
|
28
|
Josa-Prado F, Luo J, Rubin P, Henley JM, Wilkinson KA. Developmental profiles of SUMOylation pathway proteins in rat cerebrum and cerebellum. PLoS One 2019; 14:e0212857. [PMID: 30794696 PMCID: PMC6386258 DOI: 10.1371/journal.pone.0212857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Protein SUMOylation regulates multiple processes involved in the differentiation and maturation of cells and tissues during development. Despite this, relatively little is known about the spatial and temporal regulation of proteins that mediate SUMOylation and deSUMOylation in the CNS. Here we monitor the expression of key SUMO pathway proteins and levels of substrate protein SUMOylation in the forebrain and cerebellum of Wistar rats during development. Overall, the SUMOylation machinery is more highly-expressed at E18 and decreases thereafter, as previously described. All of the proteins investigated are less abundant in adult than in embryonic brain. Furthermore, we show for first time that the profiles differ between cerebellum and cerebrum, indicating differential regional regulation of some of the proteins analysed. These data provide further basic observation that may open a new perspective of research about the role of SUMOylation in the development of different brain regions.
Collapse
Affiliation(s)
- Fernando Josa-Prado
- Universidad Alfonso X el Sabio, Avda, de la Universidad, Madrid, España
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
- * E-mail: (FJP); (KAW)
| | - Jia Luo
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Philip Rubin
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Jeremy M. Henley
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Kevin A. Wilkinson
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
- * E-mail: (FJP); (KAW)
| |
Collapse
|
29
|
Sorting nexin 27 rescues neuroligin 2 from lysosomal degradation to control inhibitory synapse number. Biochem J 2019; 476:293-306. [PMID: 30602588 DOI: 10.1042/bcj20180504] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 01/14/2023]
Abstract
Retromer is an evolutionarily conserved endosomal trafficking complex that mediates the retrieval of cargo proteins from a degradative pathway for sorting back to the cell surface. To promote cargo recycling, the core retromer trimer of VPS (vacuolar protein sorting)26, VPS29 and VPS35 recognises cargo either directly, or through an adaptor protein, the most well characterised of which is the PDZ [postsynaptic density 95 (PSD95), disk large, zona occludens] domain-containing sorting nexin SNX27. Neuroligins (NLGs) are postsynaptic trans-synaptic scaffold proteins that function in the clustering of postsynaptic proteins to maintain synaptic stability. Here, we show that each of the NLGs (NLG1-3) bind to SNX27 in a direct PDZ ligand-dependent manner. Depletion of SNX27 from neurons leads to a decrease in levels of each NLG protein and, for NLG2, this occurs as a result of enhanced lysosomal degradation. Notably, while depletion of the core retromer component VPS35 leads to a decrease in NLG1 and NLG3 levels, NLG2 is unaffected, suggesting that, for this cargo, SNX27 acts independently of retromer. Consistent with loss of SNX27 leading to enhanced lysosomal degradation of NLG2, knockdown of SNX27 results in fewer NLG2 clusters in cultured neurons, and loss of SNX27 or VPS35 reduces the size and number of gephyrin clusters. Together, these data indicate that NLGs are SNX27-retromer cargoes and suggest that SNX27-retromer controls inhibitory synapse number, at least in part through trafficking of NLG2.
Collapse
|
30
|
Gurung S, Evans AJ, Wilkinson KA, Henley JM. ADAR2-mediated Q/R editing of GluK2 regulates kainate receptor upscaling in response to suppression of synaptic activity. J Cell Sci 2018; 131:jcs222273. [PMID: 30559217 PMCID: PMC6307878 DOI: 10.1242/jcs.222273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022] Open
Abstract
Kainate receptors (KARs) regulate neuronal excitability and network function. Most KARs contain the subunit GluK2 (also known as GRIK2), and the properties of these receptors are determined in part by ADAR2 (also known as ADARB1)-mediated mRNA editing of GluK2, which changes a genomically encoded glutamine residue into an arginine residue (Q/R editing). Suppression of synaptic activity reduces ADAR2-dependent Q/R editing of GluK2 with a consequential increase in GluK2-containing KAR surface expression. However, the mechanism underlying this reduction in GluK2 editing has not been addressed. Here, we show that induction of KAR upscaling, a phenomenon in which surface expression of receptors is increased in response to a chronic decrease in synaptic activity, results in proteasomal degradation of ADAR2, which reduces GluK2 Q/R editing. Because KARs incorporating unedited GluK2(Q) assemble and exit the ER more efficiently, this leads to an upscaling of KAR surface expression. Consistent with this, we demonstrate that partial ADAR2 knockdown phenocopies and occludes KAR upscaling. Moreover, we show that although the AMPA receptor (AMPAR) subunit GluA2 (also known as GRIA2) also undergoes ADAR2-dependent Q/R editing, this process does not mediate AMPAR upscaling. These data demonstrate that activity-dependent regulation of ADAR2 proteostasis and GluK2 Q/R editing are key determinants of KAR, but not AMPAR, trafficking and upscaling.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sonam Gurung
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Ashley J Evans
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
31
|
Tang M, Lu L, Xie F, Chen L. SUMOylation of Fragile X Mental Retardation Protein: A Critical Mechanism of FMRP-Mediated Neuronal Function. Neurosci Bull 2018; 34:1100-1102. [PMID: 30218284 DOI: 10.1007/s12264-018-0290-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/16/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Mingzhu Tang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Liqun Lu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Feng Xie
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|
32
|
Zhu B, Carmichael RE, Solabre Valois L, Wilkinson KA, Henley JM. The transcription factor MEF2A plays a key role in the differentiation/maturation of rat neural stem cells into neurons. Biochem Biophys Res Commun 2018; 500:645-649. [PMID: 29678571 PMCID: PMC5956278 DOI: 10.1016/j.bbrc.2018.04.125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
Neural stem cells (NSCs) are self-renewing multipotent stem cells that can be proliferated in vitro and differentiated into neuronal and/or glial lineages, making them an ideal model to study the processes involved in neuronal differentiation. Here we have used NSCs to investigate the role of the transcription factor MEF2A in neuronal differentiation and development in vitro. We show that although MEF2A is present in undifferentiated NSCs, following differentiation it is expressed at significantly higher levels in a subset of neuronal compared to non-neuronal cells. Furthermore, shRNA-mediated knockdown of MEF2A reduces the number of NSC-derived neurons compared to non-neuronal cells after differentiation. Together, these data indicate that MEF2A participates in neuronal differentiation/maturation from NSCs. Undifferentiated and differentiated neural stem cells (NSCs) express MEF2A in vitro. NSC-derived neurons express more MEF2A than NSC-derived glia. Ablating MEF2A reduces NSC differentiation into neurons.
Collapse
Affiliation(s)
- Bangfu Zhu
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, BS8 1TD, UK
| | - Ruth E Carmichael
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, BS8 1TD, UK
| | - Luis Solabre Valois
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, BS8 1TD, UK.
| |
Collapse
|
33
|
Carmichael RE, Wilkinson KA, Craig TJ, Ashby MC, Henley JM. MEF2A regulates mGluR-dependent AMPA receptor trafficking independently of Arc/Arg3.1. Sci Rep 2018; 8:5263. [PMID: 29588465 PMCID: PMC5869744 DOI: 10.1038/s41598-018-23440-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/13/2018] [Indexed: 01/07/2023] Open
Abstract
Differential trafficking of AMPA receptors (AMPARs) to and from the postsynaptic membrane is a key determinant of the strength of excitatory neurotransmission, and is thought to underlie learning and memory. The transcription factor MEF2 is a negative regulator of memory in vivo, in part by regulating trafficking of the AMPAR subunit GluA2, but the molecular mechanisms behind this have not been established. Here we show, via knockdown of endogenous MEF2A in primary neuronal culture, that MEF2A is specifically required for Group I metabotropic glutamate receptor (mGluR)-mediated GluA2 internalisation, but does not regulate AMPAR expression or trafficking under basal conditions. Furthermore, this process occurs independently of changes in expression of Arc/Arg3.1, a previously characterised MEF2 transcriptional target and mediator of mGluR-dependent long-term depression. These data demonstrate a novel MEF2A-dependent mechanism for the regulation of activity-dependent AMPAR trafficking.
Collapse
Affiliation(s)
- Ruth E Carmichael
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, BS8 1TD, Bristol, United Kingdom.,Centre for Research in Biosciences, University of the West of England, Bristol, BS16 1QY, United Kingdom
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, BS8 1TD, Bristol, United Kingdom
| | - Tim J Craig
- Centre for Research in Biosciences, University of the West of England, Bristol, BS16 1QY, United Kingdom
| | - Michael C Ashby
- School of Physiology, Pharmacology and Neuroscience, Centre for Synaptic Plasticity, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, BS8 1TD, Bristol, United Kingdom.
| |
Collapse
|
34
|
Coffer P, Braccioli L, Nijboer C. Forkhead box protein P1, a key player in neuronal development? Neural Regen Res 2018; 13:801-802. [PMID: 29863003 PMCID: PMC5998630 DOI: 10.4103/1673-5374.232467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Usui N, Araujo DJ, Kulkarni A, Co M, Ellegood J, Harper M, Toriumi K, Lerch JP, Konopka G. Foxp1 regulation of neonatal vocalizations via cortical development. Genes Dev 2017; 31:2039-2055. [PMID: 29138280 PMCID: PMC5733496 DOI: 10.1101/gad.305037.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022]
Abstract
Usui et al. show that deletion of Foxp1 in the developing forebrain leads to impairments in neonatal vocalizations as well as neocortical cytoarchitectonic alterations via neuronal positioning and migration. Sumoylation of Foxp1 affects neuronal differentiation and migration in the developing neocortex. The molecular mechanisms driving brain development at risk in autism spectrum disorders (ASDs) remain mostly unknown. Previous studies have implicated the transcription factor FOXP1 in both brain development and ASD pathophysiology. However, the specific molecular pathways both upstream of and downstream from FOXP1 are not fully understood. To elucidate the contribution of FOXP1-mediated signaling to brain development and, in particular, neocortical development, we generated forebrain-specific Foxp1 conditional knockout mice. We show that deletion of Foxp1 in the developing forebrain leads to impairments in neonatal vocalizations as well as neocortical cytoarchitectonic alterations via neuronal positioning and migration. Using a genomics approach, we identified the transcriptional networks regulated by Foxp1 in the developing neocortex and found that such networks are enriched for downstream targets involved in neurogenesis and neuronal migration. We also uncovered mechanistic insight into Foxp1 function by demonstrating that sumoylation of Foxp1 during embryonic brain development is necessary for mediating proper interactions between Foxp1 and the NuRD complex. Furthermore, we demonstrated that sumoylation of Foxp1 affects neuronal differentiation and migration in the developing neocortex. Together, these data provide critical mechanistic insights into the function of FOXP1 in the developing neocortex and may reveal molecular pathways at risk in ASD.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan.,Division of Developmental Higher Brain Functions, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka 565-0871, Japan
| | - Daniel J Araujo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Marissa Co
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario M5S 1A1, Canada
| | - Matthew Harper
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kazuya Toriumi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Project for Schizophrenia Research, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Jason P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario M5S 1A1, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
36
|
Siper PM, De Rubeis S, Trelles MDP, Durkin A, Di Marino D, Muratet F, Frank Y, Lozano R, Eichler EE, Kelly M, Beighley J, Gerdts J, Wallace AS, Mefford HC, Bernier RA, Kolevzon A, Buxbaum JD. Prospective investigation of FOXP1 syndrome. Mol Autism 2017; 8:57. [PMID: 29090079 PMCID: PMC5655854 DOI: 10.1186/s13229-017-0172-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
Background Haploinsufficiency of the forkhead-box protein P1 (FOXP1) gene leads to a neurodevelopmental disorder termed FOXP1 syndrome. Previous studies in individuals carrying FOXP1 mutations and deletions have described the presence of autism spectrum disorder (ASD) traits, intellectual disability, language impairment, and psychiatric features. The goal of the present study was to comprehensively characterize the genetic and clinical spectrum of FOXP1 syndrome. This is the first study to prospectively examine the genotype-phenotype relationship in multiple individuals with FOXP1 syndrome, using a battery of standardized clinical assessments. Methods Genetic and clinical data was obtained and analyzed from nine children and adolescents between the ages of 5–17 with mutations in FOXP1. Phenotypic characterization included gold standard ASD testing and norm-referenced measures of cognition, adaptive behavior, language, motor, and visual-motor integration skills. In addition, psychiatric, medical, neurological, and dysmorphology examinations were completed by a multidisciplinary team of clinicians. A comprehensive review of reported cases was also performed. All missense and in-frame mutations were mapped onto the three-dimensional structure of DNA-bound FOXP1. Results We have identified nine de novo mutations, including three frameshift, one nonsense, one mutation in an essential splice site resulting in frameshift and insertion of a premature stop codon, three missense, and one in-frame deletion. Reviewing prior literature, we found seven instances of recurrent mutations and another 34 private mutations. The majority of pathogenic missense and in-frame mutations, including all four missense mutations in our cohort, lie in the DNA-binding domain. Through structural analyses, we show that the mutations perturb amino acids necessary for binding to the DNA or interfere with the domain swapping that mediates FOXP1 dimerization. Individuals with FOXP1 syndrome presented with delays in early motor and language milestones, language impairment (expressive language > receptive language), ASD symptoms, visual-motor integration deficits, and complex psychiatric presentations characterized by anxiety, obsessive-compulsive traits, attention deficits, and externalizing symptoms. Medical features included non-specific structural brain abnormalities and dysmorphic features, endocrine and gastrointestinal problems, sleep disturbances, and sinopulmonary infections. Conclusions This study identifies novel FOXP1 mutations associated with FOXP1 syndrome, identifies recurrent mutations, and demonstrates significant clustering of missense mutations in the DNA-binding domain. Clinical findings confirm the role FOXP1 plays in development across multiple domains of functioning. The genetic findings can be incorporated into clinical genetics practice to improve accurate genetic diagnosis of FOXP1 syndrome and the clinical findings can inform monitoring and treatment of individuals with FOXP1 syndrome. Electronic supplementary material The online version of this article (10.1186/s13229-017-0172-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paige M Siper
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Silvia De Rubeis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Maria Del Pilar Trelles
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Allison Durkin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Daniele Di Marino
- Department of Informatics, Institute of Computational Science, Università della Svizzera Italiana, Lugano, Switzerland
| | - François Muratet
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yitzchak Frank
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Reymundo Lozano
- Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, Department of Psychiatry, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA USA
| | - Morgan Kelly
- Department of Psychiatry, University of Washington, Seattle, WA USA
| | | | - Jennifer Gerdts
- Department of Psychiatry, University of Washington, Seattle, WA USA
| | | | | | | | - Alexander Kolevzon
- Department of Psychiatry, Department of Pediatrics, Friedman Brain Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Joseph D Buxbaum
- Department of Psychiatry, Department of Genetics and Genomic Sciences, Department of Neuroscience, Friedman Brain Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
37
|
Evans AJ, Gurung S, Wilkinson KA, Stephens DJ, Henley JM. Assembly, Secretory Pathway Trafficking, and Surface Delivery of Kainate Receptors Is Regulated by Neuronal Activity. Cell Rep 2017; 19:2613-2626. [PMID: 28636947 PMCID: PMC5489663 DOI: 10.1016/j.celrep.2017.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/17/2017] [Accepted: 05/25/2017] [Indexed: 01/03/2023] Open
Abstract
Ionotropic glutamate receptor (iGluR) trafficking and function underpin excitatory synaptic transmission and plasticity and shape neuronal networks. It is well established that the transcription, translation, and endocytosis/recycling of iGluRs are all regulated by neuronal activity, but much less is known about the activity dependence of iGluR transport through the secretory pathway. Here, we use the kainate receptor subunit GluK2 as a model iGluR cargo to show that the assembly, early secretory pathway trafficking, and surface delivery of iGluRs are all controlled by neuronal activity. We show that the delivery of de novo kainate receptors is differentially regulated by modulation of GluK2 Q/R editing, PKC phosphorylation, and PDZ ligand interactions. These findings reveal that, in addition to short-term regulation of iGluRs by recycling/endocytosis and long-term modulation by altered transcription/translation, the trafficking of iGluRs through the secretory pathway is under tight activity-dependent control to determine the numbers and properties of surface-expressed iGluRs.
Collapse
Affiliation(s)
- Ashley J Evans
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Sonam Gurung
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - David J Stephens
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|