1
|
Bessa LJ, Egas C, Pires C, Proença L, Mascarenhas P, Pais RJ, Barroso H, Machado V, Botelho J, Alcoforado G, Mendes JJ, Alves R. Linking peri-implantitis to microbiome changes in affected implants, healthy implants, and saliva: a cross-sectional pilot study. Front Cell Infect Microbiol 2025; 15:1543100. [PMID: 40313461 PMCID: PMC12043654 DOI: 10.3389/fcimb.2025.1543100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/26/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction The rising use of dental implants is accompanied by an expected increase in peri-implant diseases, particularly peri-implantitis (PI), which poses a significant threat to implant success and necessitates a thorough understanding of its pathogenesis for effective management. Methods To gain deeper insights into the role and impact of the peri-implant microbiome in the pathogenesis and progression of PI, we analyzed 100 samples of saliva and subgingival biofilm from 40 participants with healthy implants (HI group) or with co-occurrence of diagnosed PI-affected implants and healthy implants (PI group) using shotgun metagenomic sequencing. We identified the most discriminative species distinguishing healthy from diseased study groups through log ratios and differential ranking analyses. Results and discussion Mogibacterium timidum, Schaalia cardiffensis, Parvimonas micra, Filifactor alocis, Porphyromonas endodontalis, Porphyromonas gingivalis and Olsenella uli were associated with the subgingival peri-implant biofilm. In contrast, Neisseria sp oral taxon 014, Haemophilus parainfluenzae, Actinomyces naeslundii, Rothia mucilaginosa and Rothia aeria were more prevalent in the healthy peri-implant biofilm. Functional pathways such as arginine and polyamine biosynthesis, including putrescine and citrulline biosynthesis, showed stronger correlations with PI-affected implants. In contrast, peri-implant health was characterized by the predominance of pathways involved in purine and pyrimidine deoxyribonucleotide de novo biosynthesis, glucose and glucose-1-phosphate degradation, and tetrapyrrole biosynthesis. Our findings reveal that healthy implants in PI-free oral cavities differ significantly in microbial composition and functional pathways compared to healthy implants co-occurring with PI-affected implants, which more closely resemble PI-associated profiles. This pattern extended to salivary samples, where microbial and functional biomarkers follow similar trends.
Collapse
Affiliation(s)
- Lucinda J. Bessa
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Conceição Egas
- CNC-UC – Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Cantanhede, Portugal
- CIBB – Center for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Cantanhede, Portugal
- Genoinseq – Next Generation Sequencing Unit, Biocant, Cantanhede, Portugal
| | - Carolina Pires
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Luís Proença
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Paulo Mascarenhas
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Ricardo J. Pais
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
- Bioinformatics R&D, Bioenhancer Systems Ltd, Manchester, United Kingdom
| | - Helena Barroso
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Vanessa Machado
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - João Botelho
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Gil Alcoforado
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - José João Mendes
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Ricardo Alves
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| |
Collapse
|
2
|
Wang Q, Wang BY, Pratap S, Xie H. Oral microbiome associated with differential ratios of Porphyromonas gingivalis and Streptococcus cristatus. Microbiol Spectr 2024; 12:e0348223. [PMID: 38230927 PMCID: PMC10846039 DOI: 10.1128/spectrum.03482-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
Periodontitis has recently been defined as a dysbiotic disease caused by an imbalanced oral microbiota. The transition from commensal microbial communities to periodontitis-associated ones requires colonization by specific pathogens, including Porphyromonas gingivalis. We previously reported an antagonistic relationship between Streptococcus cristatus and P. gingivalis. To determine the role of S. cristatus in altering the interactions of P. gingivalis with other oral bacteria in a complex context, we collected dental plaque samples from patients with periodontitis and assigned them to two groups based on the ratios of S. cristatus and P. gingivalis. We then characterized the microbial profiles of the dental plaque samples using shotgun metagenomic sequencing and compared the oral microbial composition and functional capabilities of the group with high S. cristatus-P. gingivalis ratios with the low ratio group. Taxonomic annotation revealed significant differences in the microbial composition at both the genus and species levels between the low and high S. cristatus-P. gingivalis ratio groups. Notably, a higher microbial diversity was observed in the samples with low S. cristatus-P. gingivalis ratios. Furthermore, the antibiotic resistance gene profiles of the two groups were also distinct, with a significantly increased abundance of the genes in the dental plaque samples with low S. cristatus-P. gingivalis ratios. It, therefore, indicates that the S. cristatus-P. gingivalis ratios influenced the virulence potential of the oral microbiome. Our work shows that enhancing the S. cristatus-P. gingivalis ratio in oral microbial communities can be an attractive approach for revising the dysbiotic oral microbiome.IMPORTANCEPeriodontitis, one of the most common chronic diseases, is linked to several systemic diseases, such as cardiovascular disease and diabetes. Although Porphyromonas gingivalis is a keystone pathogen that causes periodontitis, its levels, interactions with accessory bacteria and pathobionts in the oral microbiome, and its association with the pathogenic potential of the microbial communities are still not well understood. In this study, we revealed the role of Streptococcus cristatus and the ratios of S. cristatus and P. gingivalis in modulating the oral microbiome to facilitate a deeper understanding of periodontitis and its progression. The study has important clinical implications as it laid a foundation for developing novel non-antibiotic therapies against P. gingivalis and improving the efficiency of periodontal treatments.
Collapse
Affiliation(s)
- Qingguo Wang
- School of Applied Computational Sciences, Meharry Medical College, Nashville, Tennessee, USA
| | - Bing-Yan Wang
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Siddharth Pratap
- School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Nibali L, Stephen AS, Allaker RP, Di Pino A, Terranova V, Pisano M, Di Marca S, Ferrara V, Scicali R, Purrello F, Donos N, Regolo M, Malatino L. Associations between Host Genetic Variants and Subgingival Microbiota in Patients with the Metabolic Syndrome. Int J Mol Sci 2023; 24:16649. [PMID: 38068972 PMCID: PMC10706808 DOI: 10.3390/ijms242316649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Host genetic variants may affect oral biofilms, playing a role in the periodontitis-systemic disease axis. This is the first study to assess the associations between host genetic variants and subgingival microbiota in patients with metabolic syndrome (MetS); 103 patients with MetS underwent medical and periodontal examinations and had blood and subgingival plaque samples taken. DNA was extracted and processed, assessing a panel of selected single nucleotide polymorphisms (SNPs) first (hypothesis testing) and then expanding to a discovery phase. The subgingival plaque microbiome from these patients was profiled. Analysis of associations between host genetic and microbial factors was performed and stratified for periodontal diagnosis. Specific SNPs within RUNX2, CAMTA1 and VDR genes were associated with diversity metrics with no genome-wide associations detected for periodontitis severity or Mets components at p < 10-7. Severe periodontitis was associated with pathogenic genera and species. Some SNPs correlated with specific bacterial genera as well as with microbial taxa, notably VDR (rs12717991) with Streptococcus mutans and RUNX2 (rs3749863) with Porphyromonas gingivalis. In conclusion, variation in host genotypes may play a role in the dysregulated immune responses characterizing periodontitis and thus the oral microbiome, suggesting that systemic health-associated host traits further interact with oral health and the microbiome.
Collapse
Affiliation(s)
- Luigi Nibali
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK;
| | - Abish S. Stephen
- Centre for Immunobiology & Regenerative Medicine and Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London (QMUL), London E1 4NS, UK; (A.S.S.); (R.P.A.); (N.D.)
| | - Robert P. Allaker
- Centre for Immunobiology & Regenerative Medicine and Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London (QMUL), London E1 4NS, UK; (A.S.S.); (R.P.A.); (N.D.)
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95123 Catania, Italy (R.S.); (F.P.)
| | - Valentina Terranova
- Department of Clinical and Experimental Medicine, Cannizzaro Hospital, University of Catania, 95123 Catania, Italy (M.R.)
| | - Marcella Pisano
- Department of Clinical and Experimental Medicine, Cannizzaro Hospital, University of Catania, 95123 Catania, Italy (M.R.)
| | - Salvatore Di Marca
- Department of Clinical and Experimental Medicine, Cannizzaro Hospital, University of Catania, 95123 Catania, Italy (M.R.)
| | - Viviana Ferrara
- Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95123 Catania, Italy (R.S.); (F.P.)
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95123 Catania, Italy (R.S.); (F.P.)
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95123 Catania, Italy (R.S.); (F.P.)
| | - Nikolaos Donos
- Centre for Immunobiology & Regenerative Medicine and Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London (QMUL), London E1 4NS, UK; (A.S.S.); (R.P.A.); (N.D.)
| | - Matteo Regolo
- Department of Clinical and Experimental Medicine, Cannizzaro Hospital, University of Catania, 95123 Catania, Italy (M.R.)
- Academic Unit of Internal Medicine, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
| | - Lorenzo Malatino
- Department of Clinical and Experimental Medicine, Cannizzaro Hospital, University of Catania, 95123 Catania, Italy (M.R.)
- Academic Unit of Internal Medicine, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
| |
Collapse
|
4
|
Szczęśniak K, Veillard F, Scavenius C, Chudzik K, Ferenc K, Bochtler M, Potempa J, Mizgalska D. The Bacteroidetes Q-rule and glutaminyl cyclase activity increase the stability of extracytoplasmic proteins. mBio 2023; 14:e0098023. [PMID: 37750700 PMCID: PMC10653852 DOI: 10.1128/mbio.00980-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Exclusively in the Bacteroidetes phylum, most proteins exported across the inner membrane via the Sec system and released into the periplasm by type I signal peptidase have N-terminal glutamine converted to pyroglutamate. The reaction is catalyzed by the periplasmic enzyme glutaminyl cyclase (QC), which is essential for the growth of Porphyromonas gingivalis and other periodontopathogens. Apparently, pyroglutamyl formation stabilizes extracytoplasmic proteins and/or protects them from proteolytic degradation in the periplasm. Given the role of P. gingivalis as the keystone pathogen in periodontitis, P. gingivalis QC is a promising target for the development of drugs to treat and/or prevent this highly prevalent chronic inflammatory disease leading to tooth loss and associated with severe systemic diseases.
Collapse
Affiliation(s)
- Katarzyna Szczęśniak
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Florian Veillard
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kamila Chudzik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kinga Ferenc
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
5
|
Wang Q, Wang BY, Pratap S, Xie H. Oral microbiome associated with differential ratios of Porphyromonas gingivalis and Streptococcus cristatus. RESEARCH SQUARE 2023:rs.3.rs-3266326. [PMID: 37674718 PMCID: PMC10479432 DOI: 10.21203/rs.3.rs-3266326/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Background Periodontitis has been recently defined as a dysbiotic disease resulting from imbalanced oral microbiota. The transition of microbial communities from commensal to periodontitis-associated ones likely requires colonization by specific pathogens, including Porphyromonas gingivalis. We previously reported an antagonistic relationship between Streptococcus cristatus and P. gingivalis and the role of S. cristatus in inhibition of the biofilm formation, invasion, and gingipain enzymatic activity of P. gingivalis. Given the importance of P. gingivalis as a keystone pathogen of polymicrobial communities, the determinants of P. gingivalis levels, its interaction with the core microbiota, and association with the pathogenic potential of the microbial communities need to be addressed. Results This present study intends to determine the role of S. cristatus in altering interactions of P. gingivalis with other oral bacteria in a complex context. We collected dental plaque samples from periodontitis patients and assigned them into two groups based on their ratios of S. cristatus and P. gingivalis. We then characterized microbial profiles of the dental plaque samples using shotgun metagenomic sequencing and subsequently compared oral microbial composition and functional capabilities between groups with high or low S. cristatus-P. gingivalis ratios. Taxonomic annotation showed significant differences in microbial compositions at both genus and species levels between the two groups. Notably, a higher microbial composition diversity was observed in the samples with low S. cristatus-P. gingivalis ratios. The antibiotic resistance gene profiles of the two groups are also distinct, with significantly increased diversity and abundance of antibiotic resistance genes in the dental plaque samples with low S. cristatus-P. gingivalis ratios, which likely lead to elevated virulence potential. Conclusions Overall, our work highlights the importance of S. cristatus-P. gingivalis ratios in influencing the virulence of the oral microbiome. Approaches to enhance S. cristatus-P. gingivalis ratios in oral microbial communities will be attractive for revising the dysbiotic oral microbiome.
Collapse
Affiliation(s)
| | - Bing-Yan Wang
- University of Texas Health Science Center at Houston
| | | | | |
Collapse
|
6
|
Parga A, Balboa S, Otero-Casal P, Otero A. New Preventive Strategy against Oral Biofilm Formation in Caries-Active Children: An In Vitro Study. Antibiotics (Basel) 2023; 12:1263. [PMID: 37627682 PMCID: PMC10451667 DOI: 10.3390/antibiotics12081263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Quorum quenching (QQ) is the inhibition of bacterial communication, i.e., quorum sensing (QS). QS is a key mechanism in regulating biofilm formation and phenotype in complex bacterial communities, such as those found within cariogenic biofilms. Whereas QQ approaches were shown to effectively reduce biomass, knowledge of their impact on the taxonomic composition of oral polymicrobial biofilms remains scarce. Here, we investigate the effect of the QQ lactonase Aii20J on biomass production and taxonomical composition of biofilms. We collected supragingival plaque samples from 10 caries-free and 10 caries-active children and cultured them to generate in vitro biofilms. We describe significant biomass reductions upon Aii20J exposure, as assessed by crystal violet assays. Taxonomical profiling using 16S rRNA gene amplicon sequencing revealed no significant changes in bacterial composition at the genus level. Interestingly, at the species level Aii20J-treatment increased the abundance of Streptococcus cristatus and Streptococcus salivarius. Both S. cristatus and S. salivarius express pH-buffering enzymes (arginine deiminase and urease, respectively) that catalyze ammonia production, thereby potentially raising local pH and counteracting the biofilm's cariogenic potential. Within the limitations of the study, our findings provide evidence of the biofilm-modulating ability of QQ and offer novel insights into alternative strategies to restore homeostasis within dysbiotic ecosystems.
Collapse
Affiliation(s)
- Ana Parga
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Sabela Balboa
- Department of Microbiology and Parasitology, Center of Cross-Disciplinary Research in Environmental Technologies (CRETUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Paz Otero-Casal
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Odontology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Unit of Oral Health, Centro de Saúde Santa Comba-Negreira, SERGAS, 15841 Santa Comba, Spain
| | - Ana Otero
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| |
Collapse
|
7
|
Gershater E, Liu Y, Xue B, Shin MK, Koo H, Zheng Z, Li C. Characterizing the microbiota of cleft lip and palate patients: a comprehensive review. Front Cell Infect Microbiol 2023; 13:1159455. [PMID: 37143743 PMCID: PMC10152472 DOI: 10.3389/fcimb.2023.1159455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Orofacial cleft disorders, including cleft lip and/or palate (CL/P), are one of the most frequently-occurring congenital disorders worldwide. The health issues of patients with CL/P encompass far more than just their anatomic anomaly, as patients with CL/P are prone to having a high incidence of infectious diseases. While it has been previously established that the oral microbiome of patients with CL/P differs from that of unaffected patients, the exact nature of this variance, including the relevant bacterial species, has not been fully elucidated; likewise, examination of anatomic locations besides the cleft site has been neglected. Here, we intended to provide a comprehensive review to highlight the significant microbiota differences between CL/P patients and healthy subjects in various anatomic locations, including the teeth inside and adjacent to the cleft, oral cavity, nasal cavity, pharynx, and ear, as well as bodily fluids, secretions, and excretions. A number of bacterial and fungal species that have been proven to be pathogenic were found to be prevalently and/or specifically detected in CL/P patients, which can benefit the development of CL/P-specific microbiota management strategies.
Collapse
Affiliation(s)
| | - Yuan Liu
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Binglan Xue
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Min Kyung Shin
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hyun Koo
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhong Zheng
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| |
Collapse
|
8
|
Morillo-Lopez V, Sjaarda A, Islam I, Borisy GG, Mark Welch JL. Corncob structures in dental plaque reveal microhabitat taxon specificity. MICROBIOME 2022; 10:145. [PMID: 36064650 PMCID: PMC9446765 DOI: 10.1186/s40168-022-01323-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 07/07/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND The human mouth is a natural laboratory for studying how bacterial communities differ across habitats. Different bacteria colonize different surfaces in the mouth-teeth, tongue dorsum, and keratinized and non-keratinized epithelia-despite the short physical distance between these habitats and their connection through saliva. We sought to determine whether more tightly defined microhabitats might have more tightly defined sets of resident bacteria. A microhabitat may be characterized, for example, as the space adjacent to a particular species of bacterium. Corncob structures of dental plaque, consisting of coccoid bacteria bound to filaments of Corynebacterium cells, present an opportunity to analyze the community structure of one such well-defined microhabitat within a complex natural biofilm. Here, we investigate by fluorescence in situ hybridization and spectral imaging the composition of the cocci decorating the filaments. RESULTS The range of taxa observed in corncobs was limited to a small subset of the taxa present in dental plaque. Among four major groups of dental plaque streptococci, two were the major constituents of corncobs, including one that was the most abundant Streptococcus species in corncobs despite being relatively rare in dental plaque overall. Images showed both Streptococcus types in corncobs in all individual donors, suggesting that the taxa have different ecological roles or that mechanisms exist for stabilizing the persistence of functionally redundant taxa in the population. Direct taxon-taxon interactions were observed not only between the Streptococcus cells and the central corncob filament but also between Streptococcus cells and the limited subset of other plaque bacteria detected in the corncobs, indicating species ensembles involving these taxa as well. CONCLUSIONS The spatial organization we observed in corncobs suggests that each of the microbial participants can interact with multiple, albeit limited, potential partners, a feature that may encourage the long-term stability of the community. Additionally, our results suggest the general principle that a precisely defined microhabitat will be inhabited by a small and well-defined set of microbial taxa. Thus, our results are important for understanding the structure and organizing principles of natural biofilms and lay the groundwork for future work to modulate and control biofilms for human health. Video Abstract.
Collapse
Affiliation(s)
- Viviana Morillo-Lopez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| | - Alexandra Sjaarda
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| | - Imon Islam
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| | - Gary G. Borisy
- Present Address: Department of Microbiology, The Forsyth Institute, Cambridge, MA 02139 USA
| | - Jessica L. Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543 USA
- Present Address: Department of Microbiology, The Forsyth Institute, Cambridge, MA 02139 USA
| |
Collapse
|
9
|
Takeuchi H, Yoshikane Y, Takenaka H, Kimura A, Islam JM, Matsuda R, Okamoto A, Hashimoto Y, Yano R, Yamaguchi K, Sato S, Ishizuka S. Health Effects of Drinking Water Produced from Deep Sea Water: A Randomized Double-Blind Controlled Trial. Nutrients 2022; 14:nu14030581. [PMID: 35276942 PMCID: PMC8839038 DOI: 10.3390/nu14030581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Global trends focus on a balanced intake of foods and beverages to maintain health. Drinking water (MIU; hardness = 88) produced from deep sea water (DSW) collected offshore of Muroto, Japan, is considered healthy. We previously reported that the DSW-based drinking water (RDSW; hardness = 1000) improved human gut health. The aim of this randomized double-blind controlled trial was to assess the effects of MIU on human health. Volunteers were assigned to MIU (n = 41) or mineral water (control) groups (n = 41). Participants consumed 1 L of either water type daily for 12 weeks. A self-administered questionnaire was administered, and stool and urine samples were collected throughout the intervention. We measured the fecal biomarkers of nine short-chain fatty acids (SCFAs) and secretory immunoglobulin A (sIgA), as well as urinary isoflavones. In the MIU group, concentrations of three major SCFAs and sIgA increased postintervention. MIU intake significantly affected one SCFA (butyric acid). The metabolic efficiency of daidzein-to-equol conversion was significantly higher in the MIU group than in the control group throughout the intervention. MIU intake reflected the intestinal environment through increased production of three major SCFAs and sIgA, and accelerated daidzein-to-equol metabolic conversion, suggesting the beneficial health effects of MIU.
Collapse
Affiliation(s)
- Hiroaki Takeuchi
- Department of Medical Laboratory Sciences, Health and Sciences, International University of Health and Welfare Graduate School, 4-3 Kouzunomori, Narita-City 286-8686, Chiba, Japan; (A.K.); (J.M.I.); (R.M.); (A.O.); (Y.H.); (R.Y.); (K.Y.); (S.S.)
- Correspondence: ; Tel.: +81-476-20-7762
| | - Yu Yoshikane
- Department of Human Living Sciences, Notre Dame Seishin University, 2-16-9 Ifuku-cho, Kita-ku, Okayama-city 700-8516, Okayama, Japan;
| | - Hirotsugu Takenaka
- DyDo-T Beverage Co. Ltd., 1310-1 Hanechou-ko, Muroto-City 781-6741, Kochi, Japan;
| | - Asako Kimura
- Department of Medical Laboratory Sciences, Health and Sciences, International University of Health and Welfare Graduate School, 4-3 Kouzunomori, Narita-City 286-8686, Chiba, Japan; (A.K.); (J.M.I.); (R.M.); (A.O.); (Y.H.); (R.Y.); (K.Y.); (S.S.)
| | - Jahirul Md. Islam
- Department of Medical Laboratory Sciences, Health and Sciences, International University of Health and Welfare Graduate School, 4-3 Kouzunomori, Narita-City 286-8686, Chiba, Japan; (A.K.); (J.M.I.); (R.M.); (A.O.); (Y.H.); (R.Y.); (K.Y.); (S.S.)
| | - Reimi Matsuda
- Department of Medical Laboratory Sciences, Health and Sciences, International University of Health and Welfare Graduate School, 4-3 Kouzunomori, Narita-City 286-8686, Chiba, Japan; (A.K.); (J.M.I.); (R.M.); (A.O.); (Y.H.); (R.Y.); (K.Y.); (S.S.)
| | - Aoi Okamoto
- Department of Medical Laboratory Sciences, Health and Sciences, International University of Health and Welfare Graduate School, 4-3 Kouzunomori, Narita-City 286-8686, Chiba, Japan; (A.K.); (J.M.I.); (R.M.); (A.O.); (Y.H.); (R.Y.); (K.Y.); (S.S.)
| | - Yusuke Hashimoto
- Department of Medical Laboratory Sciences, Health and Sciences, International University of Health and Welfare Graduate School, 4-3 Kouzunomori, Narita-City 286-8686, Chiba, Japan; (A.K.); (J.M.I.); (R.M.); (A.O.); (Y.H.); (R.Y.); (K.Y.); (S.S.)
| | - Rie Yano
- Department of Medical Laboratory Sciences, Health and Sciences, International University of Health and Welfare Graduate School, 4-3 Kouzunomori, Narita-City 286-8686, Chiba, Japan; (A.K.); (J.M.I.); (R.M.); (A.O.); (Y.H.); (R.Y.); (K.Y.); (S.S.)
| | - Koichi Yamaguchi
- Department of Medical Laboratory Sciences, Health and Sciences, International University of Health and Welfare Graduate School, 4-3 Kouzunomori, Narita-City 286-8686, Chiba, Japan; (A.K.); (J.M.I.); (R.M.); (A.O.); (Y.H.); (R.Y.); (K.Y.); (S.S.)
| | - Shouichi Sato
- Department of Medical Laboratory Sciences, Health and Sciences, International University of Health and Welfare Graduate School, 4-3 Kouzunomori, Narita-City 286-8686, Chiba, Japan; (A.K.); (J.M.I.); (R.M.); (A.O.); (Y.H.); (R.Y.); (K.Y.); (S.S.)
| | - Satoshi Ishizuka
- Center for Regional Sustainability and Innovation, Kochi University, 2-17-47 Asakurahonmachi, Kochi-City 780-8073, Kochi, Japan;
| |
Collapse
|
10
|
Davies JR, Kad T, Neilands J, Kinnby B, Prgomet Z, Bengtsson T, Khalaf H, Svensäter G. Polymicrobial synergy stimulates Porphyromonas gingivalis survival and gingipain expression in a multi-species subgingival community. BMC Oral Health 2021; 21:639. [PMID: 34911531 PMCID: PMC8672593 DOI: 10.1186/s12903-021-01971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/12/2021] [Indexed: 12/03/2022] Open
Abstract
Background Dysbiosis in subgingival microbial communities, resulting from increased inflammatory transudate from the gingival tissues, is an important factor in initiation and development of periodontitis. Dysbiotic communities are characterized by increased numbers of bacteria that exploit the serum-like transudate for nutrients, giving rise to a proteolytic community phenotype. Here we investigate the contribution of interactions between members of a sub-gingival community to survival and development of virulence in a serum environment—modelling that in the subgingival pocket. Methods Growth and proteolytic activity of three Porphyromonas gingivalis strains in nutrient broth or a serum environment were assessed using A600 and a fluorescent protease substrate, respectively. Adherence of P. gingivalis strains to serum-coated surfaces was studied with confocal microscopy and 2D-gel electrophoresis of bacterial supernatants used to investigate extracellular proteins. A model multi-species sub-gingival community containing Fusobacterium nucleatum, Streptococcus constellatus, Parvimonas micra with wild type or isogenic mutants of P. gingivalis was then created and growth and proteolytic activity in serum assessed as above. Community composition over time was monitored using culture techniques and qPCR. Results The P. gingivalis strains showed different growth rates in nutrient broth related to the level of proteolytic activity (largely gingipains) in the cultures. Despite being able to adhere to serum-coated surfaces, none of the strains was able to grow alone in a serum environment. Together in the subgingival consortium however, all the included species were able to grow in the serum environment and the community adopted a proteolytic phenotype. Inclusion of P. gingivalis strains lacking gingipains in the consortium revealed that community growth was facilitated by Rgp gingipain from P. gingivalis. Conclusions In the multi-species consortium, growth was facilitated by the wild-type and Rgp-expressing strains of P. gingivalis, suggesting that Rgp is involved in delivery of nutrients to the whole community through degradation of complex protein substrates in serum. Whereas they are constitutively expressed by P. gingivalis in nutrient broth, gingipain expression in the model periodontal pocket environment (serum) appeared to be orchestrated through signaling to P. gingivalis from other members of the community, a phenomenon which then promoted growth of the whole community. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01971-9.
Collapse
Affiliation(s)
- Julia R Davies
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, 20506, Malmö, Sweden.
| | - Trupti Kad
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, 20506, Malmö, Sweden
| | - Jessica Neilands
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, 20506, Malmö, Sweden
| | - Bertil Kinnby
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, 20506, Malmö, Sweden
| | - Zdenka Prgomet
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, 20506, Malmö, Sweden
| | | | - Hazem Khalaf
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Gunnel Svensäter
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, 20506, Malmö, Sweden
| |
Collapse
|
11
|
Vaernewyck V, Arzi B, Sanders NN, Cox E, Devriendt B. Mucosal Vaccination Against Periodontal Disease: Current Status and Opportunities. Front Immunol 2021; 12:768397. [PMID: 34925337 PMCID: PMC8675580 DOI: 10.3389/fimmu.2021.768397] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Approximately 9 out of 10 adults have some form of periodontal disease, an infection-induced inflammatory disease of the tooth-supporting tissues. The initial form, gingivitis, often remains asymptomatic, but this can evolve into periodontitis, which is typically associated with halitosis, oral pain or discomfort, and tooth loss. Furthermore, periodontitis may contribute to systemic disorders like cardiovascular disease and type 2 diabetes mellitus. Control options remain nonspecific, time-consuming, and costly; largely relying on the removal of dental plaque and calculus by mechanical debridement. However, while dental plaque bacteria trigger periodontal disease, it is the host-specific inflammatory response that acts as main driver of tissue destruction and disease progression. Therefore, periodontal disease control should aim to alter the host's inflammatory response as well as to reduce the bacterial triggers. Vaccines may provide a potent adjunct to mechanical debridement for periodontal disease prevention and treatment. However, the immunopathogenic complexity and polymicrobial aspect of PD appear to complicate the development of periodontal vaccines. Moreover, a successful periodontal vaccine should induce protective immunity in the oral cavity, which proves difficult with traditional vaccination methods. Recent advances in mucosal vaccination may bridge the gap in periodontal vaccine development. In this review, we offer a comprehensive overview of mucosal vaccination strategies to induce protective immunity in the oral cavity for periodontal disease control. Furthermore, we highlight the need for additional research with appropriate and clinically relevant animal models. Finally, we discuss several opportunities in periodontal vaccine development such as multivalency, vaccine formulations, and delivery systems.
Collapse
Affiliation(s)
- Victor Vaernewyck
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, United States
- Veterinary Institute for Regenerative Cures (VIRC) School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Niek N. Sanders
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
12
|
Khocht A, Orlich M, Paster B, Bellinger D, Lenoir L, Irani C, Fraser G. Cross-sectional comparisons of subgingival microbiome and gingival fluid inflammatory cytokines in periodontally healthy vegetarians versus non-vegetarians. J Periodontal Res 2021; 56:1079-1090. [PMID: 34449089 DOI: 10.1111/jre.12922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Vegetarian diets are known to reduce inflammation. The objective of this study was to test the hypothesis that reduced inflammation associated with a vegetarian diet would promote a more commensal subgingival bacterial profile. METHODS A total of 39 periodontally healthy subjects (PD ≤3 mm, bleeding on probing <10%) were enrolled. Dietary intake was assessed by a food frequency questionnaire. A comprehensive periodontal examination was performed. Gingival crevicular fluid (GCF) and subgingival plaque samples were collected. GCF samples were assessed for interleukin-1β, interleukin-6, interleukin-8, tumor necrosis factor-alpha, and interleukin-10. Plaque samples were analyzed for bacteria using 16S rDNA sequencing on an Illumina platform. GenBank database was used for taxonomy classification. RESULTS Twenty-three subjects were categorized as vegetarian and 16 non-vegetarians. Clinical periodontal measures and GCF cytokine levels were statistically comparable between the two groups. Measures of microbial richness and alpha diversity were also comparable between the two dietary groups. Vegetarians harbored higher levels of phyla associated with gingival health (Actinobacteria, and Proteobacteria). Two species known to be associated with periodontitis (Mogibacterium timidum and Veillonella rogosae) were prominent in non-vegetarians. Pearson's correlations between GCF inflammatory cytokines and microbial taxa differed between vegetarians and non-vegetarians. In vegetarians, the anti-inflammatory cytokine IL-10 positively correlated with two species known to be associated with periodontal health (Peptidiphaga sp. HMT183 and Rothia aeria). CONCLUSIONS Diet is directly and indirectly associated with the microbial composition of subgingival plaque. A vegetarian diet may promote a subgingival microbiota associated with periodontal health.
Collapse
Affiliation(s)
- Ahmed Khocht
- Department of Periodontics, School of Dentistry, Loma Linda University, Loma Linda, California, USA
| | - Michael Orlich
- Department of Preventive Medicine, School of Medicine, Loma Linda University, Loma Linda, California, USA.,School of Public Health, Loma Linda University, Loma Linda, California, USA
| | - Bruce Paster
- Forsyth Institute, Cambridge, Massachusetts, USA
| | - Denise Bellinger
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Leticia Lenoir
- Department of Periodontics, School of Dentistry, Loma Linda University, Loma Linda, California, USA
| | - Crissy Irani
- Institute for Community Partnerships, Loma Linda University Health, Loma Linda, California, USA
| | - Gary Fraser
- Department of Preventive Medicine, School of Medicine, Loma Linda University, Loma Linda, California, USA.,School of Public Health, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
13
|
Cultivable bacterial diversity of the canine dental plaque as a potential source of bacterial infections. ACTA VET BRNO 2021. [DOI: 10.2754/avb202190020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dental diseases are a persistent problem, not only in humans, but very often in companion animals as well. Aetiological agents of these diseases are the dental plaque bacteria. In the present study, we focused on identifying cultivable bacteria living in the dental plaque of dogs, specifically dogs suffering from the early stages of periodontal disease. Canine oral bacteria pose a risk to humans that get bitten by the dog, but they also have a zoonotic potential. Dental plaque samples were taken from five dogs of small breeds. Samples were cultured under aerobic and anaerobic conditions on several types of microbiological agars. All obtained and selected bacterial colonies were identified by PCR with universal primers for the 16S rRNA gene and the sequences of the 16S rRNA gene were compared with the sequences available in the GenBank database using BLASTn analysis. A total of 75 bacteria belonging to five phyla, predominantly to Firmicutes and Proteobacteria, were identified. The most frequent species was Pasteurella canis which was detected in all samples. In addition, representatives of the genera Actinomyces, Bacillus, Bacteroides, Corynebacterium, Frederiksenia, Fusobacterium, Haemophilus, Lactobacillus, Leucobacter, Neisseria, Ottowia, Porphyromonas, Pseudomonas, Staphylococcus, Stenotrophomonas and Streptococcus were detected in the samples. In the present study, a broad spectrum of bacteria in dental plaque samples, including canine periodontal pathogens such as Porphyromonas gulae or Porphyromonas macacae were identified. In addition, highly pathogenic bacteria, specifically Actinomyces hordeovulneris, Bacillus circulans, and Bacteroides pyogenes, which pose a serious risk to human health, were detected in samples.
Collapse
|
14
|
Elashiry M, Morandini AC, Cornelius Timothius CJ, Ghaly M, Cutler CW. Selective Antimicrobial Therapies for Periodontitis: Win the "Battle and the War". Int J Mol Sci 2021; 22:ijms22126459. [PMID: 34208697 PMCID: PMC8235535 DOI: 10.3390/ijms22126459] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial therapies for periodontitis (PD) have long focused on non-selective and direct approaches. Professional cleaning of the subgingival biofilm by instrumentation of dental root surfaces, known as scaling and root planning (SRP), is the mainstay of periodontal therapy and is indisputably effective. Non-physical approaches used as adjuncts to SRP, such as chemical and biological agents, will be the focus of this review. In this regard, traditional agents such as oral antiseptics and antibiotics, delivered either locally or systemically, were briefly reviewed as a backdrop. While generally effective in winning the “battle” against PD in the short term, by reducing its signs and symptoms, patients receiving such therapies are more susceptible to recurrence of PD. Moreover, the long-term consequences of such therapies are still in question. In particular, concern about chronic use of systemic antibiotics and their influence on the oral and gut microbiota is warranted, considering antibiotic resistance plasmids, and potential transfer between oral and non-oral microbes. In the interest of winning the “battle and the war”, new more selective and targeted antimicrobials and biologics for PD are being studied. These are principally indirect, blocking pathways involved in bacterial colonization, nutrient acquisition, inflammation or cellular invasion without directly killing the pathogens. This review will focus on current and prospective antimicrobial therapies for PD, emphasizing therapies that act indirectly on the microbiota, with clearly defined cellular and molecular targets.
Collapse
|
15
|
Hajishengallis G, Lamont RJ. Polymicrobial communities in periodontal disease: Their quasi-organismal nature and dialogue with the host. Periodontol 2000 2021; 86:210-230. [PMID: 33690950 DOI: 10.1111/prd.12371] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022]
Abstract
In health, indigenous polymicrobial communities at mucosal surfaces maintain an ecological balance via both inter-microbial and host-microbial interactions that promote their own and the host's fitness, while preventing invasion by exogenous pathogens. However, genetic and acquired destabilizing factors (including immune deficiencies, immunoregulatory defects, smoking, diet, obesity, diabetes and other systemic diseases, and aging) may disrupt this homeostatic balance, leading to selective outgrowth of species with the potential for destructive inflammation. This process, known as dysbiosis, underlies the development of periodontitis in susceptible hosts. The pathogenic process is not linear but involves a positive-feedback loop between dysbiosis and the host inflammatory response. The dysbiotic community is essentially a quasi-organismal entity, where constituent organisms communicate via sophisticated physical and chemical signals and display functional specialization (eg, accessory pathogens, keystone pathogens, pathobionts), which enables polymicrobial synergy and dictates the community's pathogenic potential or nososymbiocity. In this review, we discuss early and recent studies in support of the polymicrobial synergy and dysbiosis model of periodontal disease pathogenesis. According to this concept, disease is not caused by individual "causative pathogens" but rather by reciprocally reinforced interactions between physically and metabolically integrated polymicrobial communities and a dysregulated host inflammatory response.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
16
|
Kuriki N, Asahi Y, Sotozono M, Machi H, Noiri Y, Hayashi M, Ebisu S. Next-Generation Sequencing for Determining the Effect of Arginine on Human Dental Biofilms Using an In Situ Model. PHARMACY 2021; 9:pharmacy9010018. [PMID: 33445627 PMCID: PMC7838886 DOI: 10.3390/pharmacy9010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
Oral biofilms are associated with caries, periodontal diseases, and systemic diseases. Generally, antimicrobial therapy is used as the first line of treatment for infectious diseases; however, bacteria in biofilms eventually develop antibiotic resistance. This study aimed to apply our in situ biofilm model to verify whether an arginine preparation is useful for plaque control. Ten healthy subjects who did not show signs of caries, gingivitis, or periodontitis were recruited. The dental biofilms from the subjects were obtained using our oral device before and after gargling with arginine solution for 4 weeks. We found that 8% arginine solution significantly increased the concentration of ammonium ions (NH4
+) in vitro and in vivo in saliva (p < 0.05) and decreased the proportions of the genera Atopobium and Catonella in vivo. However, the viable count was unaffected by the mouthwash. Further, oral populations of the genera Streptococcus and Neisseria tended to increase with the use of arginine. Therefore, we concluded that using an 8% arginine solution decreased the NH4
+ concentration in the oral cavity without affecting the number of viable bacteria, and that the diversity of oral bacterial flora changed. We suggest that arginine might help prevent mature biofilm formation.
Collapse
Affiliation(s)
- Nanako Kuriki
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; (Y.A.); (M.S.); (M.H.); (S.E.)
- Correspondence: ; Tel.: +81-(66)-8792927
| | - Yoko Asahi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; (Y.A.); (M.S.); (M.H.); (S.E.)
| | - Maki Sotozono
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; (Y.A.); (M.S.); (M.H.); (S.E.)
| | - Hiroyuki Machi
- Osaka University Dental Technology Institute, Suita, Osaka 565-0871, Japan;
| | - Yuichiro Noiri
- Department of Oral Health Science, Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan;
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; (Y.A.); (M.S.); (M.H.); (S.E.)
| | - Shigeyuki Ebisu
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; (Y.A.); (M.S.); (M.H.); (S.E.)
| |
Collapse
|
17
|
Ho MH, Hasturk H, Young DF, Xie H. In vivo and ex vivo actions of a novel P. gingivalis inhibitor on multi-species biofilm, inflammatory response, and periodontal bone loss. Mol Oral Microbiol 2020; 35:193-201. [PMID: 32608190 PMCID: PMC7727922 DOI: 10.1111/omi.12305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Chronic periodontitis is one of the most common infectious inflammatory diseases worldwide. Current therapeutic options for the disease are only partially and temporarily successful due to periodontal re-emergence of pathogens such as Porphyromonas gingivalis, a keystone bacterium in the oral microbial communities, which elicits a dysbiosis between the microbiota and the host. Previously, we reported a peptide inhibitor of P. gingivalis (SAPP) that specifically targets P. gingivalis and reduces its virulence potential in vitro. Here, we show that SAPP can modulate the ability of P. gingivalis to suppress the host innate immune system. Using a cytokine array analysis, we found that the levels of several cytokines including IL-6, IL-8, and MCP-1 in the culture media of human oral keratinocytes (HOKs) were significantly diminished in the presence of P. gingivalis. Whereas the levels of these cytokines were restored, at least partially, in the culture media of HOKs by SAPP treatment. Furthermore, we also observed in an ex vivo assay that SAPP efficiently inhibited biofilm primed formation by mixed-species oral bacteria, and significantly dampened the abnormally innate immune responses induced by these bacteria. We also demonstrated, using a mouse model, that SAPP could prevent alveolar bone loss induced by P. gingivalis. Our results suggest that SAPP specifically targets P. gingivalis and its associated bacterial communities and could be envisioned as an emerging therapy for periodontitis.
Collapse
Affiliation(s)
- Meng-Hsuan Ho
- Department of Oral Biology, Meharry Medical College, Nashville, TN, USA
| | - Hatice Hasturk
- Department of Applied Oral Sciences, Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, USA
| | - Daphne F. Young
- General Practice Residency Program, Meharry Medical College, Nashville, TN. USA
| | - Hua Xie
- Department of Oral Biology, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
18
|
Madej M, White JBR, Nowakowska Z, Rawson S, Scavenius C, Enghild JJ, Bereta GP, Pothula K, Kleinekathoefer U, Baslé A, Ranson NA, Potempa J, van den Berg B. Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis. Nat Microbiol 2020; 5:1016-1025. [PMID: 32393857 PMCID: PMC7610489 DOI: 10.1038/s41564-020-0716-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/31/2020] [Indexed: 12/30/2022]
Abstract
Porphyromonas gingivalis, an asaccharolytic member of the Bacteroidetes, is a keystone pathogen in human periodontitis that may also contribute to the development of other chronic inflammatory diseases. P. gingivalis utilizes protease-generated peptides derived from extracellular proteins for growth, but how these peptides enter the cell is not clear. Here, we identify RagAB as the outer-membrane importer for these peptides. X-ray crystal structures show that the transporter forms a dimeric RagA2B2 complex, with the RagB substrate-binding surface-anchored lipoprotein forming a closed lid on the RagA TonB-dependent transporter. Cryo-electron microscopy structures reveal the opening of the RagB lid and thus provide direct evidence for a 'pedal bin' mechanism of nutrient uptake. Together with mutagenesis, peptide-binding studies and RagAB peptidomics, our work identifies RagAB as a dynamic, selective outer-membrane oligopeptide-acquisition machine that is essential for the efficient utilization of proteinaceous nutrients by P. gingivalis.
Collapse
Affiliation(s)
- Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joshua B R White
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- The Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Shaun Rawson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- The Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
| | - Carsten Scavenius
- Interdisciplinary Nanoscience Center (iNANO) and the Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Interdisciplinary Nanoscience Center (iNANO) and the Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Grzegorz P Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karunakar Pothula
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany
| | | | - Arnaud Baslé
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.
| | - Bert van den Berg
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
19
|
A Mediterranean Diet Intervention Reduces the Levels of Salivary Periodontopathogenic Bacteria in Overweight and Obese Subjects. Appl Environ Microbiol 2020; 86:AEM.00777-20. [PMID: 32276980 DOI: 10.1128/aem.00777-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
The human oral cavity is a complex ecosystem, and the alterations in salivary microbial communities are associated with both oral and nonoral diseases. The Mediterranean diet (MD) is a healthy dietary pattern useful for both prevention and treatment of several diseases. To further explore the effects of the MD on human health, in this study, we investigated the changes in the salivary microbial communities in overweight/obese subjects after an individually tailored MD-based nutritional intervention. Healthy overweight and obese subjects were randomized between two intervention groups. The MD group (Med-D group) increased their MD adherence during 8 weeks of intervention while the control diet (control-D) group did not change their dietary habits. The salivary microbiota was assessed at baseline and after 4 and 8 weeks of intervention. Despite no observed changes in the overall salivary microbiota composition, we found a significant decrease in the relative abundances of species-level operational taxonomic units annotated as Porphyromonas gingivalis, Prevotella intermedia, and Treponema denticola in the Med-D group compared to that in the control-D group after 8 weeks of intervention, which are known to be associated with periodontal disease. Such variations were significantly linked to dietary variables such as MD adherence rates and intakes of animal versus vegetable proteins. In addition, increased levels of Streptococcus cristatus were observed in the Med-D group, which has been reported as an antagonistic taxon inhibiting P. gingivalis gene expression. Our findings suggest that an MD-based nutritional intervention may be implicated in reducing periodontal bacteria, and an MD may be a dietary strategy supportive of oral homeostasis.IMPORTANCE Changes in dietary behavior with increased adherence to a Mediterranean diet can determine a reduction of periodontopathogenic bacterial abundances in the saliva of overweight subjects with cardiometabolic risk due to an unhealthy lifestyle, without any change in individual energy intake, nutrient intake, and physical activity.
Collapse
|
20
|
Hanel AN, Herzog HM, James MG, Cuadra GA. Effects of Oral Commensal Streptococci on Porphyromonas gingivalis Invasion into Oral Epithelial Cells. Dent J (Basel) 2020; 8:E39. [PMID: 32370286 PMCID: PMC7345648 DOI: 10.3390/dj8020039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to determine if the interaction between common oral commensal bacteria and oral epithelial cells would provide protective effects against the invasion of periodontopathogen Porphyromonas gingivalis. Oral epithelial OKF6/Tert cells were used in co-cultures with Streptococcus gordonii, Streptococcus oralis, Streptococcus mitis, and Streptococcus intermedius. The viability of OKF6/Tert cells following a bacterial challenge was evaluated by trypan blue exclusion. The adherence of commensal species was determined by CFU counts. P. gingivalis invasion in OKF6/Tert cells was assessed before and after exposure to commensal species according to CFU counts. Viability assays show that only S. gordonii and S. intermedius display low toxicity toward OKF6/Tert cells. Both commensals adhere to OKF6/Tert cells at an average ratio of 1 CFU to 10 cells. P. gingivalis invasion into host cells is significantly reduced by 25% or 60% after exposure to S. gordonii or S. intermedius, respectively. The results suggest that these commensal species bind to host cells and diminish P. gingivalis invasion. This is important in the context of periodontal disease since P. gingivalis primarily acts on the host by invading it. Therefore, efforts to decrease invasion will eventually lead to future therapies harnessing the mechanisms employed by oral commensal bacteria.
Collapse
Affiliation(s)
- Alyssa N. Hanel
- Department of Biology, Muhlenberg College, 2400 W. Chew Street, Allentown, PA 18104, USA; (A.N.H.); (H.M.H.); (M.G.J.)
- College of Dental Medicine, Columbia University, 622 W 168th St, New York, NY 10032, USA
| | - Hannah M. Herzog
- Department of Biology, Muhlenberg College, 2400 W. Chew Street, Allentown, PA 18104, USA; (A.N.H.); (H.M.H.); (M.G.J.)
| | - Michelle G. James
- Department of Biology, Muhlenberg College, 2400 W. Chew Street, Allentown, PA 18104, USA; (A.N.H.); (H.M.H.); (M.G.J.)
| | - Giancarlo A. Cuadra
- Department of Biology, Muhlenberg College, 2400 W. Chew Street, Allentown, PA 18104, USA; (A.N.H.); (H.M.H.); (M.G.J.)
| |
Collapse
|
21
|
Sztukowska MN, Roky M, Demuth DR. Peptide and non-peptide mimetics as potential therapeutics targeting oral bacteria and oral biofilms. Mol Oral Microbiol 2019; 34:169-182. [PMID: 31389653 PMCID: PMC6772003 DOI: 10.1111/omi.12267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022]
Abstract
The development of the oral biofilm requires a complex series of interactions between host tissues and the colonizing bacteria as well as numerous interspecies interactions between the organisms themselves. Disruption of normal host-microbe homoeostasis in the oral cavity can lead to a dysbiotic microbial community that contributes to caries or periodontal disease. A variety of approaches have been pursued to develop novel potential therapeutics that are active against the oral biofilm and/or target specific oral bacteria. The structure and function of naturally occurring antimicrobial peptides from oral tissues and secretions as well as external sources such as frog skin secretions have been exploited to develop numerous peptide mimetics and small molecule peptidomimetics that show improved antimicrobial activity, increased stability and other desirable characteristics relative to the parent peptides. In addition, a rational and minimalist approach has been developed to design small artificial peptides with amphipathic α-helical properties that exhibit potent antibacterial activity. Furthermore, with an increased understanding of the molecular mechanisms of beneficial and/or antagonistic interspecies interactions that contribute to the formation of the oral biofilm, new potential targets for therapeutic intervention have been identified and both peptide-based and small molecule mimetics have been developed that target these key components. Many of these mimetics have shown promising results in in vitro and pre-clinical testing and the initial clinical evaluation of several novel compounds has demonstrated their utility in humans.
Collapse
Affiliation(s)
- Maryta N. Sztukowska
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| | - Mohammad Roky
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| | - Donald R. Demuth
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| |
Collapse
|
22
|
Inquimbert C, Bourgeois D, Bravo M, Viennot S, Tramini P, Llodra JC, Molinari N, Dussart C, Giraudeau N, Carrouel F. The Oral Bacterial Microbiome of Interdental Surfaces in Adolescents According to Carious Risk. Microorganisms 2019; 7:E319. [PMID: 31491909 PMCID: PMC6780098 DOI: 10.3390/microorganisms7090319] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
Adolescence is closely associated with a high risk of caries. The identification of specific bacteria in an oral microniche, the interdental space of the molars, according to carious risk can facilitate the prediction of future caries and the anticipation of the progression or stabilization of caries in adolescents. A cross-sectional clinical study according to the bacteriological criteria of interdental healthy adolescents and carious risk factors-low and high-using a real-time polymerase chain reaction technique was conducted. The presence of 26 oral pathogens from the interdental microbiota of 50 adolescents aged 15 to 17 years were qualitatively and quantitatively analyzed. Bacteria known to be cariogenic (Bifidobacterium dentium, Lactobacillus spp., Rothia dentocariosa, Streptococcus cristatus, Streptococcus mutans, Streptococcus salivarius, Streptococcus sobrinus, and Streptococcus wiggsiae) did not present differences in abundance according to carious risk. Periodontal bacteria from the red complex are positively correlated with carious risk. However, only 3 bacteria-S. sobrinus, E corrodens and T. forsythia-presented a significant increase in the highest group. Estimating the risk of caries associated with bacterial factors in interdental sites of molars in adolescents contributes to the better definition of carious risk status, periodicity and intensity of diagnostic, prevention and restorative services.
Collapse
Affiliation(s)
- Camille Inquimbert
- Laboratory "Systemic Health Care", EA4129, University Lyon 1, University of Lyon, 69008 Lyon, France.
- Department of Public Health, Faculty of Dental Medicine, University of Montpellier, 34090 Montpellier, France.
| | - Denis Bourgeois
- Laboratory "Systemic Health Care", EA4129, University Lyon 1, University of Lyon, 69008 Lyon, France.
| | - Manuel Bravo
- Department of Preventive and Community Dentistry, Faculty of Odontology, University of Granada, 18010 Granada, Spain.
| | - Stéphane Viennot
- Laboratory "Systemic Health Care", EA4129, University Lyon 1, University of Lyon, 69008 Lyon, France.
| | - Paul Tramini
- Department of Public Health, Faculty of Dental Medicine, University of Montpellier, 34090 Montpellier, France.
| | - Juan Carlos Llodra
- Department of Preventive and Community Dentistry, Faculty of Odontology, University of Granada, 18010 Granada, Spain.
| | - Nicolas Molinari
- Service DIM, CHU de Montpellier, UMR 5149 IMAG, University of Montpellier, 34090 Montpellier, France.
| | - Claude Dussart
- Laboratory "Systemic Health Care", EA4129, University Lyon 1, University of Lyon, 69008 Lyon, France.
| | - Nicolas Giraudeau
- Department of Public Health, Faculty of Dental Medicine, University of Montpellier, 34090 Montpellier, France.
| | - Florence Carrouel
- Laboratory "Systemic Health Care", EA4129, University Lyon 1, University of Lyon, 69008 Lyon, France.
| |
Collapse
|
23
|
Abstract
The dynamic and polymicrobial oral microbiome is a direct precursor of diseases such as dental caries and periodontitis, two of the most prevalent microbially induced disorders worldwide. Distinct microenvironments at oral barriers harbour unique microbial communities, which are regulated through sophisticated signalling systems and by host and environmental factors. The collective function of microbial communities is a major driver of homeostasis or dysbiosis and ultimately health or disease. Despite different aetiologies, periodontitis and caries are each driven by a feedforward loop between the microbiota and host factors (inflammation and dietary sugars, respectively) that favours the emergence and persistence of dysbiosis. In this Review, we discuss current knowledge and emerging mechanisms governing oral polymicrobial synergy and dysbiosis that have both enhanced our understanding of pathogenic mechanisms and aided the design of innovative therapeutic approaches for oral diseases.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Ho M, Lamont RJ, Chazin WJ, Chen H, Young DF, Kumar P, Xie H. Characterization and development of SAPP as a specific peptidic inhibitor that targets Porphyromonas gingivalis. Mol Oral Microbiol 2018; 33:430-439. [PMID: 30298683 PMCID: PMC6246824 DOI: 10.1111/omi.12246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/10/2018] [Accepted: 08/31/2018] [Indexed: 01/30/2023]
Abstract
Porphyromonas gingivalis is a keystone bacterium in the oral microbial communities that elicits a dysbiosis between the microbiota and the host. Therefore, inhibition of this organism in dental plaques has been one of the strategies for preventing and treating chronic periodontitis. We previously identified a Streptococcal ArcA derived Anti-P gingivalils Peptide (SAPP) that in vitro, is capable of repressing the expression of several virulence genes in the organism. This leads to a significant reduction in P gingivalis virulence potential, including its ability to colonize on the surface of Streptococcus gordonii, to invade human oral epithelial cells, and to produce gingipains. In this study, we showed that SAPP had minimal cytotoxicity to human oral keratinocytes and gingival fibroblasts. We observed that SAPP directly bound to the cell surface of P gingivalis, and that alterations in the sequence at the N-terminus of SAPP diminished its abilities to interact with P gingivalis cells and repressed the expression of virulence genes. Most strikingly, we demonstrated using an ex-vivo assay that besides its inhibitory activity against P gingivalis colonization, SAPP could also reduce the levels of several other oral Gram-negative bacteria strongly associated with periodontitis in multispecies biofilms. Our results provide a platform for the development of SAPP-targeted therapeutics against chronic periodontitis.
Collapse
Affiliation(s)
- M. Ho
- Department of Oral Biology, Meharry Medical College, Nashville, TN, USA
| | - R. J. Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - W. J. Chazin
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN USA
| | - H. Chen
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN USA
| | - D. F. Young
- General Practice Residency Program, Meharry Medical College, Nashville, TN. USA
| | - P. Kumar
- Department of Oral Biology, Meharry Medical College, Nashville, TN, USA
| | - H. Xie
- Department of Oral Biology, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
25
|
Dzidic M, Collado MC, Abrahamsson T, Artacho A, Stensson M, Jenmalm MC, Mira A. Oral microbiome development during childhood: an ecological succession influenced by postnatal factors and associated with tooth decay. THE ISME JOURNAL 2018; 12:2292-2306. [PMID: 29899505 PMCID: PMC6092374 DOI: 10.1038/s41396-018-0204-z] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/08/2018] [Accepted: 05/23/2018] [Indexed: 12/24/2022]
Abstract
Information on how the oral microbiome develops during early childhood and how external factors influence this ecological process is scarce. We used high-throughput sequencing to characterize bacterial composition in saliva samples collected at 3, 6, 12, 24 months and 7 years of age in 90 longitudinally followed children, for whom clinical, dietary and health data were collected. Bacterial composition patterns changed through time, starting with "early colonizers", including Streptococcus and Veillonella; other bacterial genera such as Neisseria settled after 1 or 2 years of age. Dental caries development was associated with diverging microbial composition through time. Streptococcus cristatus appeared to be associated with increased risk of developing tooth decay and its role as potential biomarker of the disease should be studied with species-specific probes. Infants born by C-section had initially skewed bacterial content compared with vaginally delivered infants, but this was recovered with age. Shorter breastfeeding habits and antibiotic treatment during the first 2 years of age were associated with a distinct bacterial composition at later age. The findings presented describe oral microbiota development as an ecological succession where altered colonization pattern during the first year of life may have long-term consequences for child´s oral and systemic health.
Collapse
Affiliation(s)
- Majda Dzidic
- Department of Health and Genomics, Center for Advanced Research in Public Health, CSISP-FISABIO, Valencia, Spain
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Department of Biotechnology, Unit of Lactic Acid Bacteria and Probiotics, Valencia, Spain
- Department of Clinical and Experimental Medicine, Division of Autoimmunity and Immune Regulation, Linköping University, Linköping, Sweden
| | - Maria C Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Department of Biotechnology, Unit of Lactic Acid Bacteria and Probiotics, Valencia, Spain
| | - Thomas Abrahamsson
- Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, Linköping, Sweden
| | - Alejandro Artacho
- Department of Health and Genomics, Center for Advanced Research in Public Health, CSISP-FISABIO, Valencia, Spain
| | - Malin Stensson
- Centre for Oral Health, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Maria C Jenmalm
- Department of Clinical and Experimental Medicine, Division of Autoimmunity and Immune Regulation, Linköping University, Linköping, Sweden
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, CSISP-FISABIO, Valencia, Spain.
| |
Collapse
|
26
|
TonB-dependent transport by the gut microbiota: novel aspects of an old problem. Curr Opin Struct Biol 2018; 51:35-43. [DOI: 10.1016/j.sbi.2018.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 12/20/2022]
|
27
|
Veith PD, Luong C, Tan KH, Dashper SG, Reynolds EC. Outer Membrane Vesicle Proteome of Porphyromonas gingivalis Is Differentially Modulated Relative to the Outer Membrane in Response to Heme Availability. J Proteome Res 2018; 17:2377-2389. [PMID: 29766714 DOI: 10.1021/acs.jproteome.8b00153] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Porphyromonas gingivalis is an anaerobic, Gram-negative oral pathogen associated with chronic periodontitis. P. gingivalis has an obligate requirement for heme, which it obtains from the host. Heme availability has been linked to disease initiation and progression. In this study we used continuous culture of the bacterium to determine the effect of heme limitation and excess on the P. gingivalis proteome. Four biological replicates of whole cell lysate (WCL) and outer membrane vesicle (OMV) samples were digested with trypsin and analyzed by tandem mass spectrometry and MaxQuant label-free quantification. In total, 1211 proteins were quantified, with 108 and 49 proteins significantly changing in abundance more than 1.5-fold ( p < 0.05) in the WCLs and OMVs, respectively. The proteins most upregulated in response to heme limitation were those involved in binding and transporting heme, whereas the four proteins most upregulated under the heme-excess condition constitute a putative heme efflux system. In general, the protein abundance ratios obtained for OMVs and WCLs agreed, indicating that changes to the OM protein composition are passed onto OMVs; however, 16 proteins were preferentially packaged into OMVs under one condition more than the other. In particular, moonlighting cytoplasmic proteins were preferentially associated with OMVs under heme excess.
Collapse
Affiliation(s)
- Paul D Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , University of Melbourne , Victoria , Victoria 3010 , Australia
| | - Caroline Luong
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , University of Melbourne , Victoria , Victoria 3010 , Australia
| | - Kheng H Tan
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , University of Melbourne , Victoria , Victoria 3010 , Australia
| | - Stuart G Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , University of Melbourne , Victoria , Victoria 3010 , Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute , University of Melbourne , Victoria , Victoria 3010 , Australia
| |
Collapse
|
28
|
Robinson J, Rostami N, Casement J, Vollmer W, Rickard A, Jakubovics N. ArcR modulates biofilm formation in the dental plaque colonizerStreptococcus gordonii. Mol Oral Microbiol 2018; 33:143-154. [DOI: 10.1111/omi.12207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 01/20/2023]
Affiliation(s)
- J.C. Robinson
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
| | - N. Rostami
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
| | - J. Casement
- Bioinformatics Support Unit; Newcastle University; Newcastle upon Tyne UK
| | - W. Vollmer
- Centre for Bacterial Cell Biology; Newcastle University; Newcastle upon Tyne UK
| | - A.H. Rickard
- Department of Epidemiology; School of Public Health; University of Michigan; Ann Arbor MI USA
| | - N.S. Jakubovics
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
| |
Collapse
|
29
|
Ho MH, Lamont RJ, Xie H. A novel peptidic inhibitor derived from Streptococcus cristatus ArcA attenuates virulence potential of Porphyromonas gingivalis. Sci Rep 2017; 7:16217. [PMID: 29176569 PMCID: PMC5701168 DOI: 10.1038/s41598-017-16522-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is a global health problem and the 6th most common infectious disease worldwide. Porphyromonas gingivalis is considered a keystone pathogen in the disease and is capable of elevating the virulence potential of the periodontal microbial community. Strategies that interfere with P. gingivalis colonization and expression of virulence factor are therefore attractive approaches for preventing and treating periodontitis. We have previously reported that an 11-mer peptide (SAPP) derived from Streptococcus cristatus arginine deiminase (ArcA) was able to repress the expression and production of several well-known P. gingivalis virulence factors including fimbrial proteins and gingipains. Herein we expand and develop these studies to ascertain the impact of this peptide on phenotypic properties of P. gingivalis related to virulence potential. We found that growth rate was not altered by exposure of P. gingivalis to SAPP, while monospecies and heterotypic biofilm formation, and invasion of oral epithelial cells were inhibited. Additionally, SAPP was able to impinge the ability of P. gingivalis to dysregulate innate immunity by repressing gingipain-associated degradation of interleukin-8 (IL8). Hence, SAPP has characteristics that could be exploited for the manipulation of P. gingivalis levels in oral communities and preventing realization of virulence potential.
Collapse
Affiliation(s)
- Meng-Hsuan Ho
- Department of Oral Biology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, 40202, USA
| | - Hua Xie
- Department of Oral Biology, Meharry Medical College, Nashville, TN, 37208, USA.
| |
Collapse
|
30
|
Sitkiewicz I. How to become a killer, or is it all accidental? Virulence strategies in oral streptococci. Mol Oral Microbiol 2017; 33:1-12. [PMID: 28727895 DOI: 10.1111/omi.12192] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2017] [Indexed: 01/03/2023]
Abstract
Streptococci are a diverse group of Gram-positive microorganisms sharing common virulence traits and similar strategies to escape the oral niche and establish an infection in other parts of the host organism. Invasive infection with oral streptococci is "a perfect storm" that requires the concerted action of multiple biotic and abiotic factors. Our understanding of streptococcal pathogenicity and infectivity should probably be less mechanistic and driven not only by the identification of novel virulence factors. The observed diversity of the genus, including the range of virulence and pathogenicity mechanisms, is most likely the result of interspecies interactions, a massive horizontal gene transfer between streptococci within a shared oral niche, recombination events, selection of specialized clones, and modification of regulatory circuits. Selective pressure by the host and bacterial communities is a driving force for the selection of virulence traits and shaping the streptococcal genome. Global regulatory events driving niche adaptation and interactions with bacterial communities and the host steer research interests towards attempts to define the oral interactome on the transcriptional level and define signal cross-feeding and co-expression and co-regulation of virulence genes.
Collapse
Affiliation(s)
- I Sitkiewicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|