1
|
Bouheraoua S, Cleeves S, Preusse M, Müsken M, Braubach P, Fuchs M, Falk C, Sewald K, Häussler S. Establishment and characterization of persistent Pseudomonas aeruginosa infections in air-liquid interface cultures of human airway epithelial cells. Infect Immun 2025; 93:e0060324. [PMID: 39964154 PMCID: PMC11895474 DOI: 10.1128/iai.00603-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 03/12/2025] Open
Abstract
Bacteria exhibit distinct behaviors in laboratory settings compared to infection environments. The presence of host cells induces changes in bacterial activity, while pathogens trigger immune responses that shape the microenvironment. Studying infection dynamics by microscopy, cytokine screening, and dual RNA sequencing in an air-liquid interface model, we found that prolonged Pseudomonas aeruginosa colonization of airway epithelium led to a pro-inflammatory response, consistent across P. aeruginosa strains, despite differences in the dynamics of this response. Concurrently, P. aeruginosa formed non-attached aggregates on the apical side of the cell layer and upregulated genes involved in biofilm formation and virulence. Notably, there was remarkable resemblance between the P. aeruginosa transcriptional profile in our model and that previously reported upon host cell contact. Developing a platform that replicates host microenvironments is vital not only for gaining deeper insights into the interplay between host and pathogen but also for evaluating therapeutic strategies in conditions that closely mirror clinical environments.
Collapse
Affiliation(s)
- Safaa Bouheraoua
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Sven Cleeves
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Christine Falk
- Institute for Transplantation Immunology, Hannover Medical School, Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Martin J, Rittersberger R, Treitler S, Kopp P, Ibraimi A, Koslowski G, Sickinger M, Dabbars A, Schindowski K. Characterization of a primary cellular airway model for inhalative drug delivery in comparison with the established permanent cell lines CaLu3 and RPMI 2650. IN VITRO MODELS 2024; 3:183-203. [PMID: 39872698 PMCID: PMC11756470 DOI: 10.1007/s44164-024-00079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 01/30/2025]
Abstract
Purpose For optimization of respiratory drug delivery, the selection of suitable in vitro cell models plays an important role in predicting the efficacy and safety of (bio)pharmaceutics and pharmaceutical formulations. Therefore, an in-depth comparison of different primary and permanent in vitro cellular airway models was performed with a focus on selecting a suitable model for inhalative antibodies. Methods Primary cells isolated from the porcine trachea were compared with the established human cell lines CaLu3 and RPMI 2650. The in vitro models were characterized for different epithelial markers by real-time quantitative polymerase chain reaction, which provides insight into the cellular composition of each model. For a few selected markers, the results from RT-qPCR were confirmed via immunofluorescence. Barrier integrity was assessed by transepithelial electrical resistance measurements and FITC-dextran permeability. Results Primary cell models retain key features of the respiratory epithelium, e.g., the formation of a tight epithelial barrier, mucin production, and the presence of club/basal cells. Furthermore, the expression of Fc receptors in the primary cell models closely resembles that in respiratory mucosal tissue, an essential parameter to consider when developing therapeutic antibodies for inhalation. Conclusion The study underlines the importance of selecting wisely appropriate in vitro models. Despite the greater effort and variability in cultivating primary airway cells, they are far superior to permanent cells and a suitable model for drug development. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-024-00079-y.
Collapse
Affiliation(s)
- Janik Martin
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Rebecca Rittersberger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Simon Treitler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Patrick Kopp
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Anit Ibraimi
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Justus-Von-Liebig-Schule, Von-Kilian-Straße 5, 79762 Waldshut-Tiengen, Germany
| | - Gabriel Koslowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Max Sickinger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Annabelle Dabbars
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| |
Collapse
|
3
|
Sandhu KK, Scott A, Tatler AL, Belchamber KBR, Cox MJ. Macrophages and the microbiome in chronic obstructive pulmonary disease. Eur Respir Rev 2024; 33:240053. [PMID: 39631929 PMCID: PMC11615662 DOI: 10.1183/16000617.0053-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/22/2024] [Indexed: 12/07/2024] Open
Abstract
COPD is a heterogeneous disease of the lungs characterised by restricted airflow. Chronic inflammation and recurrent bacterial infections are known to be important driving factors in exacerbations of this disease. Despite a marked increase in the number of alveolar macrophages present in the lungs of COPD patients, there is evidence of reduced clearance of pathogenic bacteria, leading to recurrent infection, exacerbation and subsequent lung function decline. This is thought to be attributed to a defect in the phagocytic capability of both alveolar and monocyte-derived macrophages in COPD. In addition to this defect, there is apparent selectivity in bacterial uptake by COPD macrophages because certain pathogenic genera, such as Haemophilus, Moraxella and Streptococcus, are taken up more readily than others. The respiratory microbiome plays a key role in regulating the host immune response both in health and during chronic inflammation. In patients with COPD, there are distinct changes in the composition of the respiratory microbiome, particularly the lower respiratory tract, where dominance of clinically relevant pathogenic species is commonly observed. Whether there are links between these changes in the microbiome and dysfunctional macrophage phagocytosis has not yet been widely studied. This review aims to discuss what is currently known about these phenomena and to explore interactions between macrophages and the respiratory microbiome.
Collapse
Affiliation(s)
- Karanjot K Sandhu
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, School of Infection, Inflammation and Immunity, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Department of Inflammation and Ageing, School of Infection, Inflammation and Immunity, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Aaron Scott
- Department of Inflammation and Ageing, School of Infection, Inflammation and Immunity, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research, School of Medicine, University of Nottingham, Nottingham, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Kylie B R Belchamber
- Department of Inflammation and Ageing, School of Infection, Inflammation and Immunity, College of Medicine and Health, University of Birmingham, Birmingham, UK
- These authors contributed equally
| | - Michael J Cox
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, School of Infection, Inflammation and Immunity, College of Medicine and Health, University of Birmingham, Birmingham, UK
- These authors contributed equally
| |
Collapse
|
4
|
Xu S, Tan S, Romanos P, Reedy JL, Zhang Y, Mansour MK, Vyas JM, Mecsas J, Mou H, Leong JM. Blocking HXA 3-mediated neutrophil elastase release during S. pneumoniae lung infection limits pulmonary epithelial barrier disruption and bacteremia. mBio 2024; 15:e0185624. [PMID: 39120139 PMCID: PMC11389395 DOI: 10.1128/mbio.01856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Streptococcus pneumoniae (Sp), a leading cause of community-acquired pneumonia, can spread from the lung into the bloodstream to cause septicemia and meningitis, with a concomitant threefold increase in mortality. Limitations in vaccine efficacy and a rise in antimicrobial resistance have spurred searches for host-directed therapies that target pathogenic immune processes. Polymorphonuclear leukocytes (PMNs) are essential for infection control but can also promote tissue damage and pathogen spread. The major Sp virulence factor, pneumolysin, triggers acute inflammation by stimulating the 12-lipoxygenase (12-LOX) eicosanoid synthesis pathway in epithelial cells. This pathway is required for systemic spread in a mouse pneumonia model and produces a number of bioactive lipids, including hepoxilin A3 (HXA3), a hydroxy epoxide PMN chemoattractant that has been hypothesized to facilitate breach of mucosal barriers. To understand how 12-LOX-dependent inflammation promotes dissemination during Sp lung infection and dissemination, we utilized bronchial stem cell-derived air-liquid interface cultures that lack this enzyme to show that HXA3 methyl ester (HXA3-ME) is sufficient to promote basolateral-to-apical PMN transmigration, monolayer disruption, and concomitant Sp barrier breach. In contrast, PMN transmigration in response to the non-eicosanoid chemoattractant N-formyl-L-methionyl-L-leucyl-phenylalanine (fMLP) did not lead to epithelial disruption or bacterial translocation. Correspondingly, HXA3-ME but not fMLP increased the release of neutrophil elastase (NE) from Sp-infected PMNs. Pharmacologic blockade of NE secretion or activity diminished epithelial barrier disruption and bacteremia after pulmonary challenge of mice. Thus, HXA3 promotes barrier-disrupting PMN transmigration and NE release, pathological events that can be targeted to curtail systemic disease following pneumococcal pneumonia.IMPORTANCEStreptococcus pneumoniae (Sp), a leading cause of pneumonia, can spread from the lung into the bloodstream to cause systemic disease. Limitations in vaccine efficacy and a rise in antimicrobial resistance have spurred searches for host-directed therapies that limit pathologic host immune responses to Sp. Excessive polymorphonuclear leukocyte (PMN) infiltration into Sp-infected airways promotes systemic disease. Using stem cell-derived respiratory cultures that reflect bona fide lung epithelium, we identified eicosanoid hepoxilin A3 as a critical pulmonary PMN chemoattractant that is sufficient to drive PMN-mediated epithelial damage by inducing the release of neutrophil elastase. Inhibition of the release or activity of this protease in mice limited epithelial barrier disruption and bacterial dissemination, suggesting a new host-directed treatment for Sp lung infection.
Collapse
Affiliation(s)
- Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Patricia Romanos
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Biotechnology, Francisco de Vitoria University, Madrid, Spain
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yihan Zhang
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B Levy Center for the Integrated Management of Antimicrobial Resistance, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Reedy JL, Jensen KN, Crossen AJ, Basham KJ, Ward RA, Reardon CM, Brown Harding H, Hepworth OW, Simaku P, Kwaku GN, Tone K, Willment JA, Reid DM, Stappers MHT, Brown GD, Rajagopal J, Vyas JM. Fungal melanin suppresses airway epithelial chemokine secretion through blockade of calcium fluxing. Nat Commun 2024; 15:5817. [PMID: 38987270 PMCID: PMC11237042 DOI: 10.1038/s41467-024-50100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Respiratory infections caused by the human fungal pathogen Aspergillus fumigatus are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been fully defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of the chemokines CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction in neutrophil recruitment to the apical airway both in vitro and in vivo. Aspergillus-derived melanin, a major constituent of the fungal cell wall, dampened airway epithelial chemokine secretion in response to fungi, bacteria, and exogenous cytokines. Furthermore, melanin muted pathogen-mediated calcium fluxing and hindered actin filamentation. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.
Collapse
Affiliation(s)
- Jennifer L Reedy
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kirstine Nolling Jensen
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Arianne J Crossen
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Kyle J Basham
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca A Ward
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher M Reardon
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Hannah Brown Harding
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Olivia W Hepworth
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patricia Simaku
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Geneva N Kwaku
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Kazuya Tone
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Janet A Willment
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Delyth M Reid
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Mark H T Stappers
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gordon D Brown
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jatin M Vyas
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Grassi L, Crabbé A. Recreating chronic respiratory infections in vitro using physiologically relevant models. Eur Respir Rev 2024; 33:240062. [PMID: 39142711 PMCID: PMC11322828 DOI: 10.1183/16000617.0062-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/18/2024] [Indexed: 08/16/2024] Open
Abstract
Despite the need for effective treatments against chronic respiratory infections (often caused by pathogenic biofilms), only a few new antimicrobials have been introduced to the market in recent decades. Although different factors impede the successful advancement of antimicrobial candidates from the bench to the clinic, a major driver is the use of poorly predictive model systems in preclinical research. To bridge this translational gap, significant efforts have been made to develop physiologically relevant models capable of recapitulating the key aspects of the airway microenvironment that are known to influence infection dynamics and antimicrobial activity in vivo In this review, we provide an overview of state-of-the-art cell culture platforms and ex vivo models that have been used to model chronic (biofilm-associated) airway infections, including air-liquid interfaces, three-dimensional cultures obtained with rotating-wall vessel bioreactors, lung-on-a-chips and ex vivo pig lungs. Our focus is on highlighting the advantages of these infection models over standard (abiotic) biofilm methods by describing studies that have benefited from these platforms to investigate chronic bacterial infections and explore novel antibiofilm strategies. Furthermore, we discuss the challenges that still need to be overcome to ensure the widespread application of in vivo-like infection models in antimicrobial drug development, suggesting possible directions for future research. Bearing in mind that no single model is able to faithfully capture the full complexity of the (infected) airways, we emphasise the importance of informed model selection in order to generate clinically relevant experimental data.
Collapse
Affiliation(s)
- Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| |
Collapse
|
7
|
Xu S, Tan S, Romanos P, Reedy JL, Zhang Y, Mansour MK, Vyas JM, Mecsas J, Mou H, Leong JM. Blocking HXA 3-mediated neutrophil elastase release during S. pneumoniae lung infection limits pulmonary epithelial barrier disruption and bacteremia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600637. [PMID: 38979170 PMCID: PMC11230237 DOI: 10.1101/2024.06.25.600637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Streptococcus pneumoniae (Sp), a leading cause of community-acquired pneumonia, can spread from the lung into the bloodstream to cause septicemia and meningitis, with a concomitant three-fold increase in mortality. Limitations in vaccine efficacy and a rise in antimicrobial resistance have spurred searches for host-directed therapies that target pathogenic immune processes. Polymorphonuclear leukocytes (PMNs) are essential for infection control but can also promote tissue damage and pathogen spread. The major Sp virulence factor, pneumolysin (PLY), triggers acute inflammation by stimulating the 12-lipoxygenase (12-LOX) eicosanoid synthesis pathway in epithelial cells. This pathway is required for systemic spread in a mouse pneumonia model and produces a number of bioactive lipids, including hepoxilin A3 (HXA3), a hydroxy epoxide PMN chemoattractant that has been hypothesized to facilitate breach of mucosal barriers. To understand how 12-LOX-dependent inflammation promotes dissemination during Sp lung infection and dissemination, we utilized bronchial stem cell-derived air-liquid interface (ALI) cultures that lack this enzyme to show that HXA3 methyl ester (HXA3-ME) is sufficient to promote basolateral-to-apical PMN transmigration, monolayer disruption, and concomitant Sp barrier breach. In contrast, PMN transmigration in response to the non-eicosanoid chemoattractant fMLP did not lead to epithelial disruption or bacterial translocation. Correspondingly, HXA3-ME but not fMLP increased release of neutrophil elastase (NE) from Sp-infected PMNs. Pharmacologic blockade of NE secretion or activity diminished epithelial barrier disruption and bacteremia after pulmonary challenge of mice. Thus, HXA3 promotes barrier disrupting PMN transmigration and NE release, pathological events that can be targeted to curtail systemic disease following pneumococcal pneumonia.
Collapse
Affiliation(s)
- Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Patricia Romanos
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
- Francisco de Vitoria University, Madrid, Spain
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Yihan Zhang
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
- Stuart B Levy Center for the Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA
| |
Collapse
|
8
|
Reedy JL, Jensen KN, Crossen AJ, Basham KJ, Ward RA, Reardon CM, Harding HB, Hepworth OW, Simaku P, Kwaku GN, Tone K, Willment JA, Reid DM, Stappers MHT, Brown GD, Rajagopal J, Vyas JM. Fungal melanin suppresses airway epithelial chemokine secretion through blockade of calcium fluxing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.28.534632. [PMID: 37034634 PMCID: PMC10081279 DOI: 10.1101/2023.03.28.534632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Respiratory infections caused by the human fungal pathogen Aspergillus fumigatus are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been fully defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of the chemokines CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction in neutrophil recruitment to the apical airway both in vitro and in vivo . Aspergillus -derived melanin, a major constituent of the fungal cell wall, dampened airway epithelial chemokine secretion in response to fungi, bacteria, and exogenous cytokines. Furthermore, melanin muted pathogen-mediated calcium fluxing and hindered actin filamentation. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.
Collapse
|
9
|
Ariolli A, Canè M, Di Fede M, Tavarini S, Taddei AR, Buno KP, Delany I, Rossi Paccani S, Pezzicoli A. Modeling airway persistent infection of Moraxella catarrhalis and nontypeable Haemophilus influenzae by using human in vitro models. Front Cell Infect Microbiol 2024; 14:1397940. [PMID: 38751999 PMCID: PMC11094313 DOI: 10.3389/fcimb.2024.1397940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) are two common respiratory tract pathogens often associated with acute exacerbations in Chronic Obstructive Pulmonary Disease (COPD) as well as with otitis media (OM) in children. Although there is evidence that these pathogens can adopt persistence mechanisms such as biofilm formation, the precise means through which they contribute to disease severity and chronicity remains incompletely understood, posing challenges for their effective eradication. The identification of potential vaccine candidates frequently entails the characterization of the host-pathogen interplay in vitro even though this approach is limited by the fact that conventional models do not permit long term bacterial infections. In the present work, by using air-liquid-interface (ALI) human airway in vitro models, we aimed to recreate COPD-related persistent bacterial infections. In particular, we explored an alternative use of the ALI system consisting in the assembly of an inverted epithelium grown on the basal part of a transwell membrane with the aim to enable the functionality of natural defense mechanisms such as mucociliary clearance and cellular extrusion that are usually hampered during conventional ALI infection experiments. The inversion of the epithelium did not affect tissue differentiation and considerably delayed NTHi or Mcat infection progression, allowing one to monitor host-pathogen interactions for up to three weeks. Notably, the use of these models, coupled with confocal and transmission electron microscopy, revealed unique features associated with NTHi and Mcat infection, highlighting persistence strategies including the formation of intracellular bacterial communities (IBCs) and surface-associated biofilm-like structures. Overall, this study demonstrates the possibility to perform long term host-pathogen investigations in vitro with the aim to define persistence mechanisms adopted by respiratory pathogens and individuate potential new vaccine targets.
Collapse
Affiliation(s)
- Andrea Ariolli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Martina Canè
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Martina Di Fede
- GlaxoSmithKline Vaccines s.r.l., Preclinical R&D, Siena, Italy
| | - Simona Tavarini
- GlaxoSmithKline Vaccines s.r.l., Preclinical R&D, Siena, Italy
| | - Anna Rita Taddei
- Great Equipment Center-Section of Electron Microscopy, University of Tuscia, Viterbo, Italy
| | - Kevin Pete Buno
- GlaxoSmithKline Vaccines s.r.l., Preclinical R&D, Siena, Italy
| | - Isabel Delany
- GlaxoSmithKline Vaccines s.r.l., Preclinical R&D, Siena, Italy
| | | | | |
Collapse
|
10
|
Mahieu L, Van Moll L, De Vooght L, Delputte P, Cos P. In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. FEMS Microbiol Rev 2024; 48:fuae007. [PMID: 38409952 PMCID: PMC10913945 DOI: 10.1093/femsre/fuae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.
Collapse
Affiliation(s)
- Laure Mahieu
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
11
|
Dichtl S, Posch W, Wilflingseder D. The breathtaking world of human respiratory in vitro models: Investigating lung diseases and infections in 3D models, organoids, and lung-on-chip. Eur J Immunol 2024; 54:e2250356. [PMID: 38361030 DOI: 10.1002/eji.202250356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 02/17/2024]
Abstract
The COVID-19 pandemic illustrated an urgent need for sophisticated, human tissue models to rapidly test and develop effective treatment options against this newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Thus, in particular, the last 3 years faced an extensive boost in respiratory and pulmonary model development. Nowadays, 3D models, organoids and lung-on-chip, respiratory models in perfusion, or precision-cut lung slices are used to study complex research questions in human primary cells. These models provide physiologically relevant systems for studying SARS-CoV-2 and, of course, other respiratory pathogens, but they are, too, suited for studying lung pathologies, such as CF, chronic obstructive pulmonary disease, or asthma, in more detail in terms of viral infection. With these models, the cornerstone has been laid for further advancing the organs by, for example, inclusion of several immune cell types or humoral immune components, combination with other organs in microfluidic organ-on-chip devices, standardization and harmonization of the devices for reliable and reproducible drug and vaccine testing in high throughput.
Collapse
Affiliation(s)
- Stefanie Dichtl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Graf J, Trautmann-Rodriguez M, Sabnis S, Kloxin AM, Fromen CA. On the path to predicting immune responses in the lung: Modeling the pulmonary innate immune system at the air-liquid interface (ALI). Eur J Pharm Sci 2023; 191:106596. [PMID: 37770004 PMCID: PMC10658361 DOI: 10.1016/j.ejps.2023.106596] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Chronic respiratory diseases and infections are among the largest contributors to death globally, many of which still have no cure, including chronic obstructive pulmonary disorder, idiopathic pulmonary fibrosis, and respiratory syncytial virus among others. Pulmonary therapeutics afford untapped potential for treating lung infection and disease through direct delivery to the site of action. However, the ability to innovate new therapeutic paradigms for respiratory diseases will rely on modeling the human lung microenvironment and including key cellular interactions that drive disease. One key feature of the lung microenvironment is the air-liquid interface (ALI). ALI interface modeling techniques, using cell-culture inserts, organoids, microfluidics, and precision lung slices (PCLS), are rapidly developing; however, one major component of these models is lacking-innate immune cell populations. Macrophages, neutrophils, and dendritic cells, among others, represent key lung cell populations, acting as the first responders during lung infection or injury. Innate immune cells respond to and modulate stromal cells and bridge the gap between the innate and adaptive immune system, controlling the bodies response to foreign pathogens and debris. In this article, we review the current state of ALI culture systems with a focus on innate immune cells and suggest ways to build on current models to add complexity and relevant immune cell populations.
Collapse
Affiliation(s)
- Jodi Graf
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Simone Sabnis
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
13
|
Grandy S, Scur M, Dolan K, Nickerson R, Cheng Z. Using model systems to unravel host-Pseudomonas aeruginosa interactions. Environ Microbiol 2023; 25:1765-1784. [PMID: 37290773 DOI: 10.1111/1462-2920.16440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Using model systems in infection biology has led to the discoveries of many pathogen-encoded virulence factors and critical host immune factors to fight pathogenic infections. Studies of the remarkable Pseudomonas aeruginosa bacterium that infects and causes disease in hosts as divergent as humans and plants afford unique opportunities to shed new light on virulence strategies and host defence mechanisms. One of the rationales for using model systems as a discovery tool to characterise bacterial factors driving human infection outcomes is that many P. aeruginosa virulence factors are required for pathogenesis in diverse different hosts. On the other side, many host signalling components, such as the evolutionarily conserved mitogen-activated protein kinases, are involved in immune signalling in a diverse range of hosts. Some model organisms that have less complex immune systems also allow dissection of the direct impacts of innate immunity on host defence without the interference of adaptive immunity. In this review, we start with discussing the occurrence of P. aeruginosa in the environment and the ability of this bacterium to cause disease in various hosts as a natural opportunistic pathogen. We then summarise the use of some model systems to study host defence and P. aeruginosa virulence.
Collapse
Affiliation(s)
- Shannen Grandy
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kathleen Dolan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rhea Nickerson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
14
|
Rossy T, Distler T, Meirelles LA, Pezoldt J, Kim J, Talà L, Bouklas N, Deplancke B, Persat A. Pseudomonas aeruginosa type IV pili actively induce mucus contraction to form biofilms in tissue-engineered human airways. PLoS Biol 2023; 21:e3002209. [PMID: 37527210 PMCID: PMC10393179 DOI: 10.1371/journal.pbio.3002209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/21/2023] [Indexed: 08/03/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa causes antibiotic-recalcitrant pneumonia by forming biofilms in the respiratory tract. Despite extensive in vitro experimentation, how P. aeruginosa forms biofilms at the airway mucosa is unresolved. To investigate the process of biofilm formation in realistic conditions, we developed AirGels: 3D, optically accessible tissue-engineered human lung models that emulate the airway mucosal environment. AirGels recapitulate important factors that mediate host-pathogen interactions including mucus secretion, flow and air-liquid interface (ALI), while accommodating high-resolution live microscopy. With AirGels, we investigated the contributions of mucus to P. aeruginosa biofilm biogenesis in in vivo-like conditions. We found that P. aeruginosa forms mucus-associated biofilms within hours by contracting luminal mucus early during colonization. Mucus contractions facilitate aggregation, thereby nucleating biofilms. We show that P. aeruginosa actively contracts mucus using retractile filaments called type IV pili. Our results therefore suggest that, while protecting epithelia, mucus constitutes a breeding ground for biofilms.
Collapse
Affiliation(s)
- Tamara Rossy
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tania Distler
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lucas A Meirelles
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Joern Pezoldt
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jaemin Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Lorenzo Talà
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Persat
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
15
|
Lee RE, Reidel B, Nelson MR, Macdonald JK, Kesimer M, Randell SH. Air-Liquid interface cultures to model drug delivery through the mucociliary epithelial barrier. Adv Drug Deliv Rev 2023; 198:114866. [PMID: 37196698 PMCID: PMC10336980 DOI: 10.1016/j.addr.2023.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Epithelial cells from mucociliary portions of the airways can be readily grown and expanded in vitro. When grown on a porous membrane at an air-liquid interface (ALI) the cells form a confluent, electrically resistive barrier separating the apical and basolateral compartments. ALI cultures replicate key morphological, molecular and functional features of the in vivo epithelium, including mucus secretion and mucociliary transport. Apical secretions contain secreted gel-forming mucins, shed cell-associated tethered mucins, and hundreds of additional molecules involved in host defense and homeostasis. The respiratory epithelial cell ALI model is a time-proven workhorse that has been employed in various studies elucidating the structure and function of the mucociliary apparatus and disease pathogenesis. It serves as a critical milestone test for small molecule and genetic therapies targeting airway diseases. To fully exploit the potential of this important tool, numerous technical variables must be thoughtfully considered and carefully executed.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States
| | - Boris Reidel
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mark R Nelson
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Jade K Macdonald
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Mehmet Kesimer
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States.
| |
Collapse
|
16
|
Robinson E, Herbert JA, Palor M, Ren L, Larken I, Patel A, Moulding D, Cortina-Borja M, Smyth RL, Smith CM. Trans-epithelial migration is essential for neutrophil activation during RSV infection. J Leukoc Biol 2023; 113:354-364. [PMID: 36807711 PMCID: PMC11334017 DOI: 10.1093/jleuko/qiad011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 02/04/2023] Open
Abstract
The recruitment of neutrophils to the infected airway occurs early following respiratory syncytial virus (RSV) infection, and high numbers of activated neutrophils in the airway and blood are associated with the development of severe disease. The aim of this study was to investigate whether trans-epithelial migration is sufficient and necessary for neutrophil activation during RSV infection. Here, we used flow cytometry and novel live-cell fluorescent microscopy to track neutrophil movement during trans-epithelial migration and measure the expression of key activation markers in a human model of RSV infection. We found that when migration occurred, neutrophil expression of CD11b, CD62L, CD64, NE, and MPO increased. However, the same increase did not occur on basolateral neutrophils when neutrophils were prevented from migrating, suggesting that activated neutrophils reverse migrate from the airway to the bloodstream side, as has been suggested by clinical observations. We then combined our findings with the temporal and spatial profiling and suggest 3 initial phases of neutrophil recruitment and behavior in the airways during RSV infection; (1) initial chemotaxis; (2) neutrophil activation and reverse migration; and (3) amplified chemotaxis and clustering, all of which occur within 20 min. This work and the novel outputs could be used to develop therapeutics and provide new insight into how neutrophil activation and a dysregulated neutrophil response to RSV mediates disease severity.
Collapse
Affiliation(s)
- Elisabeth Robinson
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Jenny Amanda Herbert
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - Machaela Palor
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Luo Ren
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Isobel Larken
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Alisha Patel
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Dale Moulding
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Mario Cortina-Borja
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Rosalind Louise Smyth
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Claire Mary Smith
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| |
Collapse
|
17
|
Jain P, Rauer SB, Möller M, Singh S. Mimicking the Natural Basement Membrane for Advanced Tissue Engineering. Biomacromolecules 2022; 23:3081-3103. [PMID: 35839343 PMCID: PMC9364315 DOI: 10.1021/acs.biomac.2c00402] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Advancements in the field of tissue engineering have
led to the
elucidation of physical and chemical characteristics of physiological
basement membranes (BM) as specialized forms of the extracellular
matrix. Efforts to recapitulate the intricate structure and biological
composition of the BM have encountered various advancements due to
its impact on cell fate, function, and regulation. More attention
has been paid to synthesizing biocompatible and biofunctional fibrillar
scaffolds that closely mimic the natural BM. Specific modifications
in biomimetic BM have paved the way for the development of in vitro models like alveolar-capillary barrier, airway
models, skin, blood-brain barrier, kidney barrier, and metastatic
models, which can be used for personalized drug screening, understanding
physiological and pathological pathways, and tissue implants. In this
Review, we focus on the structure, composition, and functions of in vivo BM and the ongoing efforts to mimic it synthetically.
Light has been shed on the advantages and limitations of various forms
of biomimetic BM scaffolds including porous polymeric membranes, hydrogels,
and electrospun membranes This Review further elaborates and justifies
the significance of BM mimics in tissue engineering, in particular
in the development of in vitro organ model systems.
Collapse
Affiliation(s)
- Puja Jain
- DWI-Leibniz-Institute for Interactive Materials e.V, Aachen 52074, Germany
| | | | - Martin Möller
- DWI-Leibniz-Institute for Interactive Materials e.V, Aachen 52074, Germany
| | - Smriti Singh
- Max-Planck-Institute for Medical Research, Heidelberg 69028, Germany
| |
Collapse
|
18
|
Characterization of an engineered mucus microenvironment for in vitro modeling of host-microbe interactions. Sci Rep 2022; 12:5515. [PMID: 35365684 PMCID: PMC8975841 DOI: 10.1038/s41598-022-09198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The human mucus layer plays a vital role in maintaining health by providing a physical barrier to pathogens. This biological hydrogel also provides the microenvironment for commensal bacteria. Common models used to study host–microbe interactions include gnotobiotic animals or mammalian–microbial co-culture platforms. Many of the current in vitro models lack a sufficient mucus layer to host these interactions. In this study, we engineered a mucus-like hydrogel Consisting of a mixed alginate-mucin (ALG-MUC) hydrogel network by using low concentration calcium chloride (CaCl2) as crosslinker. We demonstrated that the incorporation of ALG-MUC hydrogels into an aqueous two-phase system (ATPS) co-culture platform can support the growth of a mammalian monolayer and pathogenic bacteria. The ALG-MUC hydrogels displayed selective diffusivity against macromolecules and stability with ATPS microbial patterning. Additionally, we showed that the presence of mucin within hydrogels contributed to an increase in antimicrobial resistance in ATPS patterned microbial colonies. By using common laboratory chemicals to generate a mammalian–microbial co-culture system containing a representative mucus microenvironment, this model can be readily adopted by typical life science laboratories to study host–microbe interaction and drug discovery.
Collapse
|
19
|
Woodall MNJ, Masonou T, Case K, Smith CM. Human models for COVID-19 research. J Physiol 2021; 599:4255-4267. [PMID: 34287894 PMCID: PMC8447334 DOI: 10.1113/jp281499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Currently, therapeutics for COVID-19 are limited. To overcome this, it is important that we use physiologically relevant models to reproduce the pathology of infection and evaluate the efficacy of antiviral drugs. Models of airway infection, including the use of a human infection challenge model or well-defined, disease relevant in vitro systems can help determine the key components that perpetuate the severity of the disease. Here, we briefly review the human models that are currently being used in COVID-19 research and drug development.
Collapse
Affiliation(s)
| | - Tereza Masonou
- GOS Institute of Child HealthUniversity College LondonLondonUK
| | | | - Claire M. Smith
- GOS Institute of Child HealthUniversity College LondonLondonUK
| |
Collapse
|
20
|
Barrier-on-a-Chip with a Modular Architecture and Integrated Sensors for Real-Time Measurement of Biological Barrier Function. MICROMACHINES 2021; 12:mi12070816. [PMID: 34357226 PMCID: PMC8305171 DOI: 10.3390/mi12070816] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023]
Abstract
Biological barriers are essential for the maintenance of organ homeostasis and their dysfunction is responsible for many prevalent diseases. Advanced in vitro models of biological barriers have been developed through the combination of 3D cell culture techniques and organ-on-chip (OoC) technology. However, real-time monitoring of tissue function inside the OoC devices has been challenging, with most approaches relying on off-chip analysis and imaging techniques. In this study, we designed and fabricated a low-cost barrier-on-chip (BoC) device with integrated electrodes for the development and real-time monitoring of biological barriers. The integrated electrodes were used to measure transepithelial electrical resistance (TEER) during tissue culture, thereby quantitatively evaluating tissue barrier function. A finite element analysis was performed to study the sensitivity of the integrated electrodes and to compare them with conventional systems. As proof-of-concept, a full-thickness human skin model (FTSm) was grown on the developed BoC, and TEER was measured on-chip during the culture. After 14 days of culture, the barrier tissue was challenged with a benchmark irritant and its impact was evaluated on-chip through TEER measurements. The developed BoC with an integrated sensing capability represents a promising tool for real-time assessment of barrier function in the context of drug testing and disease modelling.
Collapse
|
21
|
Baldassi D, Gabold B, Merkel O. Air-liquid interface cultures of the healthy and diseased human respiratory tract: promises, challenges and future directions. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000111. [PMID: 34345878 PMCID: PMC7611446 DOI: 10.1002/anbr.202000111] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Air-liquid interface (ALI) culture models currently represent a valid instrument to recreate the typical aspects of the respiratory tract in vitro in both healthy and diseased state. They can help reducing the number of animal experiments, therefore, supporting the 3R principle. This review discusses ALI cultures and co-cultures derived from immortalized as well as primary cells, which are used to study the most common disorders of the respiratory tract, in terms of both pathophysiology and drug screening. The article displays ALI models used to simulate inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, cystic fibrosis, lung cancer, and viral infections. It also includes a focus on ALI cultures described in literature studying respiratory viruses such as SARS-CoV-2 causing the global Covid-19 pandemic at the time of writing this review. Additionally, commercially available models of ALI cultures are presented. Ultimately, the aim of this review is to provide a detailed overview of ALI models currently available and to critically discuss them in the context of the most prevalent diseases of the respiratory tract.
Collapse
Affiliation(s)
- Domizia Baldassi
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| | - Bettina Gabold
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| | - Olivia Merkel
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
22
|
Lopes-Pacheco M, Pedemonte N, Veit G. Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert Opin Drug Discov 2021; 16:897-913. [PMID: 33823716 DOI: 10.1080/17460441.2021.1912732] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-threatening inherited disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel expressed at the apical membrane of secretory epithelia. CF leads to multiorgan dysfunction with progressive deterioration of lung function being the major cause of untimely death. Conventional CF therapies target only symptoms and consequences downstream of the primary genetic defect and the current life expectancy and quality of life of these individuals are still very limited. AREA COVERED CFTR modulator drugs are novel-specialized therapies that enhance or even restore functional expression of CFTR mutants and have been approved for clinical use for individuals with specific CF genotypes. This review summarizes classical approaches used for the pre-clinical development of CFTR correctors and potentiators as well as emerging strategies aiming to accelerate modulator development and expand theratyping efforts. EXPERT OPINION Highly effective CFTR modulator drugs are expected to deeply modify the disease course for the majority of individuals with CF. A multitude of experimental approaches have been established to accelerate the development of novel modulators. CF patient-derived specimens are valuable cell models to predict therapeutic effectiveness of existing (and novel) modulators in a precision medicine approach.
Collapse
Affiliation(s)
| | | | - Guido Veit
- Department of Physiology, McGill University, Montréal, Canada
| |
Collapse
|
23
|
Ravindra NG, Alfajaro MM, Gasque V, Huston NC, Wan H, Szigeti-Buck K, Yasumoto Y, Greaney AM, Habet V, Chow RD, Chen JS, Wei J, Filler RB, Wang B, Wang G, Niklason LE, Montgomery RR, Eisenbarth SC, Chen S, Williams A, Iwasaki A, Horvath TL, Foxman EF, Pierce RW, Pyle AM, van Dijk D, Wilen CB. Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes. PLoS Biol 2021; 19:e3001143. [PMID: 33730024 PMCID: PMC8007021 DOI: 10.1371/journal.pbio.3001143] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/29/2021] [Accepted: 02/08/2021] [Indexed: 01/21/2023] Open
Abstract
There are currently limited Food and Drug Administration (FDA)-approved drugs and vaccines for the treatment or prevention of Coronavirus Disease 2019 (COVID-19). Enhanced understanding of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and pathogenesis is critical for the development of therapeutics. To provide insight into viral replication, cell tropism, and host-viral interactions of SARS-CoV-2, we performed single-cell (sc) RNA sequencing (RNA-seq) of experimentally infected human bronchial epithelial cells (HBECs) in air-liquid interface (ALI) cultures over a time course. This revealed novel polyadenylated viral transcripts and highlighted ciliated cells as a major target at the onset of infection, which we confirmed by electron and immunofluorescence microscopy. Over the course of infection, the cell tropism of SARS-CoV-2 expands to other epithelial cell types including basal and club cells. Infection induces cell-intrinsic expression of type I and type III interferons (IFNs) and interleukin (IL)-6 but not IL-1. This results in expression of interferon-stimulated genes (ISGs) in both infected and bystander cells. This provides a detailed characterization of genes, cell types, and cell state changes associated with SARS-CoV-2 infection in the human airway.
Collapse
Affiliation(s)
- Neal G. Ravindra
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School Medicine, New Haven, Connecticut, United States of America
- Department of Computer Science, Yale University, New Haven, Connecticut, United States of America
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale University, New Haven, Connecticut, United States of America
| | - Victor Gasque
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School Medicine, New Haven, Connecticut, United States of America
- Department of Computer Science, Yale University, New Haven, Connecticut, United States of America
- Universite Claude Bernard Lyon 1, Faculte de Medecine Lyon Est, Lyon, France
- Department de Bioinformatique, Univ Evry, Universite Paris-Saclay, Paris, France
| | - Nicholas C. Huston
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Han Wan
- Department of Molecular, Cellular, and Developmental Biology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Klara Szigeti-Buck
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United of States of America
| | - Yuki Yasumoto
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United of States of America
| | - Allison M. Greaney
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | - Victoria Habet
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Ryan D. Chow
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jennifer S. Chen
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale University, New Haven, Connecticut, United States of America
| | - Jin Wei
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale University, New Haven, Connecticut, United States of America
| | - Renata B. Filler
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale University, New Haven, Connecticut, United States of America
| | - Bao Wang
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale University, New Haven, Connecticut, United States of America
| | - Guilin Wang
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Laura E. Niklason
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
- Department of Anesthesiology, Yale University, New Haven, Connecticut, United States of America
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Stephanie C. Eisenbarth
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale University, New Haven, Connecticut, United States of America
| | - Sidi Chen
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale University, New Haven, Connecticut, United States of America
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Adam Williams
- The Jackson Laboratory, Farmington, Connecticut, United States of America
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Tamas L. Horvath
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United of States of America
| | - Ellen F. Foxman
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale University, New Haven, Connecticut, United States of America
| | - Richard W. Pierce
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Anna Marie Pyle
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - David van Dijk
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School Medicine, New Haven, Connecticut, United States of America
- Department of Computer Science, Yale University, New Haven, Connecticut, United States of America
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
24
|
Park AJ, Wright MA, Roach EJ, Khursigara CM. Imaging host-pathogen interactions using epithelial and bacterial cell infection models. J Cell Sci 2021; 134:134/5/jcs250647. [PMID: 33622798 DOI: 10.1242/jcs.250647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The age-old saying, seeing is believing, could not be truer when we think about the value of imaging interactions between epithelial cells and bacterial pathogens. Imaging and culturing techniques have vastly improved over the years, and the breadth and depth of these methods is ever increasing. These technical advances have benefited researchers greatly; however, due to the large number of potential model systems and microscopy techniques to choose from, it can be overwhelming to select the most appropriate tools for your research question. This Review discusses a variety of available epithelial culturing methods and quality control experiments that can be performed, and outlines various options commonly used to fluorescently label bacterial and mammalian cell components. Both light- and electron-microscopy techniques are reviewed, with descriptions of both technical aspects and common applications. Several examples of imaging bacterial pathogens and their interactions with epithelial cells are discussed to provide researchers with an idea of the types of biological questions that can be successfully answered by using microscopy.
Collapse
Affiliation(s)
- Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Madison A Wright
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Elyse J Roach
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.,Molecular and Cellular Imaging Facility, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada .,Molecular and Cellular Imaging Facility, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
25
|
Yonker LM, Marand A, Muldur S, Hopke A, Leung HM, De La Flor D, Park G, Pinsky H, Guthrie LB, Tearney GJ, Irimia D, Hurley BP. Neutrophil dysfunction in cystic fibrosis. J Cyst Fibros 2021; 20:1062-1071. [PMID: 33589340 DOI: 10.1016/j.jcf.2021.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Excessive neutrophil inflammation is the hallmark of cystic fibrosis (CF) airway disease. Novel technologies for characterizing neutrophil dysfunction may provide insight into the nature of these abnormalities, revealing a greater mechanistic understanding and new avenues for CF therapies that target these mechanisms. METHODS Blood was collected from individuals with CF in the outpatient clinic, CF individuals hospitalized for a pulmonary exacerbation, and non-CF controls. Using microfluidic assays and advanced imaging technologies, we characterized 1) spontaneous neutrophil migration using microfluidic motility mazes, 2) neutrophil migration to and phagocytosis of Staphylococcal aureus particles in a microfluidic arena, 3) neutrophil swarming on Candida albicans clusters, and 4) Pseudomonas aeruginosa-induced neutrophil transepithelial migration using micro-optical coherence technology (µOCT). RESULTS Participants included 44 individuals: 16 Outpatient CF, 13 Hospitalized CF, and 15 Non-CF individuals. While no differences were seen with spontaneous migration, CF neutrophils migrated towards S. aureus particles more quickly than non-CF neutrophils (p < 0.05). CF neutrophils, especially Hospitalized CF neutrophils, generated significantly larger aggregates around S. aureus particles over time. Hospitalized CF neutrophils were more likely to have dysfunctional swarming (p < 0.01) and less efficient clearing of C. albicans (p < 0.0001). When comparing trans-epithelial migration towards Pseudomonas aeruginosa epithelial infection, Outpatient CF neutrophils displayed an increase in the magnitude of transmigration and adherence to the epithelium (p < 0.05). CONCLUSIONS Advanced technologies for characterizing CF neutrophil function reveal significantly altered migratory responses, cell-to-cell clustering, and microbe containment. Future investigations will probe mechanistic basis for abnormal responses in CF to identify potential avenues for novel anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Lael M Yonker
- Massachusetts General Hospital, Department of Pediatrics, Pulmonary Division, Boston, MA, United States; Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, United States; Harvard Medical School, Department of Pediatrics, Boston, MA, United States.
| | - Anika Marand
- Massachusetts General Hospital, Center for Engineering in Medicine, Boston, MA, United States; Shriners Hospital for Children, Boston, MA, United States
| | - Sinan Muldur
- Massachusetts General Hospital, Center for Engineering in Medicine, Boston, MA, United States; Harvard Medical School, Department of Surgery, Boston, MA, United States; Shriners Hospital for Children, Boston, MA, United States
| | - Alex Hopke
- Massachusetts General Hospital, Center for Engineering in Medicine, Boston, MA, United States; Harvard Medical School, Department of Surgery, Boston, MA, United States; Shriners Hospital for Children, Boston, MA, United States
| | - Hui Min Leung
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, United States; Harvard Medical School, Department of Dermatology, Boston, MA, United States
| | - Denis De La Flor
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, United States
| | - Grace Park
- Massachusetts General Hospital, Department of Pediatrics, Pulmonary Division, Boston, MA, United States
| | - Hanna Pinsky
- Massachusetts General Hospital, Department of Pediatrics, Pulmonary Division, Boston, MA, United States
| | - Lauren B Guthrie
- Massachusetts General Hospital, Department of Pediatrics, Pulmonary Division, Boston, MA, United States
| | - Guillermo J Tearney
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, United States; Harvard Medical School, Department of Pathology, Boston, MA, United States; Harvard Medical School, Department of Dermatology, Boston, MA, United States
| | - Daniel Irimia
- Massachusetts General Hospital, Center for Engineering in Medicine, Boston, MA, United States; Harvard Medical School, Department of Surgery, Boston, MA, United States; Shriners Hospital for Children, Boston, MA, United States
| | - Bryan P Hurley
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, United States; Harvard Medical School, Department of Pediatrics, Boston, MA, United States
| |
Collapse
|
26
|
Adams W, Espicha T, Estipona J. Getting Your Neutrophil: Neutrophil Transepithelial Migration in the Lung. Infect Immun 2021; 89:IAI.00659-20. [PMID: 33526562 DOI: 10.1128/iai.00659-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neutrophil transepithelial migration is a fundamental process that facilitates the rapid trafficking of neutrophils to inflammatory foci and occurs across a diverse range of tissues. For decades there has been widespread interest in understanding the mechanisms that drive this migratory process in response to different pathogens and organ systems. This has led to the successful integration of key findings on neutrophil transepithelial migration from the intestines, lungs, liver, genitourinary tract, and other tissues into a single, cohesive model. However, recent studies have identified organ specific differences in neutrophil transepithelial migration. These findings support a model where the tissue in concert with the pro-inflammatory stimuli dictate a unique collection of signals that drive neutrophil trafficking. This review focuses on the mechanisms that drive neutrophil transepithelial migration in response to microbial infection of a single organ, the lung. Herein we provide a detailed analysis of the adhesion molecules and chemoattractants that contribute to the recruitment of neutrophil into the airways. We also highlight important advances in experimental models for studying neutrophil transepithelial migration in the lung over the last decade.
Collapse
Affiliation(s)
- Walter Adams
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| | - Taylor Espicha
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| | - Janine Estipona
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| |
Collapse
|
27
|
Heydarian M, Schweinlin M, Schwarz T, Rawal R, Walles H, Metzger M, Rudel T, Kozjak-Pavlovic V. Triple co-culture and perfusion bioreactor for studying the interaction between Neisseria gonorrhoeae and neutrophils: A novel 3D tissue model for bacterial infection and immunity. J Tissue Eng 2021; 12:2041731420988802. [PMID: 33796248 PMCID: PMC7970704 DOI: 10.1177/2041731420988802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/31/2020] [Indexed: 01/13/2023] Open
Abstract
Gonorrhea, a sexually transmitted disease caused by the bacteria Neisseria gonorrhoeae, is characterized by a large number of neutrophils recruited to the site of infection. Therefore, proper modeling of the N. gonorrhoeae interaction with neutrophils is very important for investigating and understanding the mechanisms that gonococci use to evade the immune response. We have used a combination of a unique human 3D tissue model together with a dynamic culture system to study neutrophil transmigration to the site of N. gonorrhoeae infection. The triple co-culture model consisted of epithelial cells (T84 human colorectal carcinoma cells), human primary dermal fibroblasts, and human umbilical vein endothelial cells on a biological scaffold (SIS). After the infection of the tissue model with N. gonorrhoeae, we introduced primary human neutrophils to the endothelial side of the model using a perfusion-based bioreactor system. By this approach, we were able to demonstrate the activation and transmigration of neutrophils across the 3D tissue model and their recruitment to the site of infection. In summary, the triple co-culture model supplemented by neutrophils represents a promising tool for investigating N. gonorrhoeae and other bacterial infections and interactions with the innate immunity cells under conditions closely resembling the native tissue environment.
Collapse
Affiliation(s)
| | - Matthias Schweinlin
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Schwarz
- Translational Centre Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), Würzburg, Bayern, Germany
| | - Ravisha Rawal
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Heike Walles
- Research Center "Dynamic Systems: Systems Engineering" (CDS), Otto von-Guericke-University, Magdeburg, Sachsen-Anhalt, Germany
| | - Marco Metzger
- Translational Centre Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), Würzburg, Bayern, Germany
| | - Thomas Rudel
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
28
|
Montefusco-Pereira CV, Carvalho-Wodarz CDS, Seeger J, Kloft C, Michelet R, Lehr CM. Decoding (patho-)physiology of the lung by advanced in vitro models for developing novel anti-infectives therapies. Drug Discov Today 2020; 26:148-163. [PMID: 33232842 DOI: 10.1016/j.drudis.2020.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/11/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Advanced lung cell culture models provide physiologically-relevant and complex data for mathematical models to exploit host-pathogen responses during anti-infective drug testing.
Collapse
Affiliation(s)
- Carlos Victor Montefusco-Pereira
- Department of Pharmacy, Saarland University, Saarbruecken, Germany; Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany
| | | | - Johanna Seeger
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbruecken, Germany; Department of Pharmacy, Saarland University, Saarbruecken, Germany
| |
Collapse
|
29
|
Mejías JC, Nelson MR, Liseth O, Roy K. A 96-well format microvascularized human lung-on-a-chip platform for microphysiological modeling of fibrotic diseases. LAB ON A CHIP 2020; 20:3601-3611. [PMID: 32990704 DOI: 10.1039/d0lc00644k] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Development of organoids and microfluidic on-chip models has enabled studies of organ-level disease pathophysiologies in vitro. However, current lung-on-a-chip platforms are primarily monolayer epithelial-endothelial co-cultures, separated by a thin membrane, lacking microvasculature-networks or interstitial-fibroblasts. Here we report the design, microfabrication, and characterization of a unique microphysiological on-chip device that recapitulates the human lung interstitium-airway interface through a 3D vascular network, and normal or diseased fibroblasts encapsulated within a fibrin-collagen hydrogel underneath an airlifted airway epithelium. By incorporating fibroblasts from donors with idiopathic pulmonary fibrosis (IPF), or healthy-donor fibroblasts treated with TGF-β1, we successfully created a fibrotic, alpha smooth muscle actin (αSMA)-positive disease phenotype which led to fibrosis-like transformation in club cells and ciliated cells in the airway. Using this device platform, we further modeled the cystic fibrosis (CF) epithelium and recruitment of neutrophils to the vascular networks. Our results suggest that this microphysiological model of the human lung could enable more pathophysiologically relevant studies of complex pulmonary diseases.
Collapse
Affiliation(s)
- Joscelyn C Mejías
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Marcus Center for Therapeutic Cell Characterization and Manufacturing (MCM3), Center for ImmunoEngineering, NSF ERC for Cell Manufacturing Technologies (CMaT), The Georgia Institute of Technology, EBB 3018, 950 Atlantic Dr, Atlanta, GA 30332, USA.
| | - Michael R Nelson
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Marcus Center for Therapeutic Cell Characterization and Manufacturing (MCM3), Center for ImmunoEngineering, NSF ERC for Cell Manufacturing Technologies (CMaT), The Georgia Institute of Technology, EBB 3018, 950 Atlantic Dr, Atlanta, GA 30332, USA.
| | - Olivia Liseth
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Marcus Center for Therapeutic Cell Characterization and Manufacturing (MCM3), Center for ImmunoEngineering, NSF ERC for Cell Manufacturing Technologies (CMaT), The Georgia Institute of Technology, EBB 3018, 950 Atlantic Dr, Atlanta, GA 30332, USA.
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Marcus Center for Therapeutic Cell Characterization and Manufacturing (MCM3), Center for ImmunoEngineering, NSF ERC for Cell Manufacturing Technologies (CMaT), The Georgia Institute of Technology, EBB 3018, 950 Atlantic Dr, Atlanta, GA 30332, USA.
| |
Collapse
|
30
|
Choice of Differentiation Media Significantly Impacts Cell Lineage and Response to CFTR Modulators in Fully Differentiated Primary Cultures of Cystic Fibrosis Human Airway Epithelial Cells. Cells 2020; 9:cells9092137. [PMID: 32967385 PMCID: PMC7565948 DOI: 10.3390/cells9092137] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
In vitro cultures of primary human airway epithelial cells (hAECs) grown at air–liquid interface have become a valuable tool to study airway biology under normal and pathologic conditions, and for drug discovery in lung diseases such as cystic fibrosis (CF). An increasing number of different differentiation media, are now available, making comparison of data between studies difficult. Here, we investigated the impact of two common differentiation media on phenotypic, transcriptomic, and physiological features of CF and non-CF epithelia. Cellular architecture and density were strongly impacted by the choice of medium. RNA-sequencing revealed a shift in airway cell lineage; one medium promoting differentiation into club and goblet cells whilst the other enriched the growth of ionocytes and multiciliated cells. Pathway analysis identified differential expression of genes involved in ion and fluid transport. Physiological assays (intracellular/extracellular pH, Ussing chamber) specifically showed that ATP12A and CFTR function were altered, impacting pH and transepithelial ion transport in CF hAECs. Importantly, the two media differentially affected functional responses to CFTR modulators. We argue that the effect of growth conditions should be appropriately determined depending on the scientific question and that our study can act as a guide for choosing the optimal growth medium for specific applications.
Collapse
|
31
|
Berry SB, Haack AJ, Theberge AB, Brighenti S, Svensson M. Host and Pathogen Communication in the Respiratory Tract: Mechanisms and Models of a Complex Signaling Microenvironment. Front Med (Lausanne) 2020; 7:537. [PMID: 33015094 PMCID: PMC7511576 DOI: 10.3389/fmed.2020.00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/29/2020] [Indexed: 01/15/2023] Open
Abstract
Chronic lung diseases are a leading cause of morbidity and mortality across the globe, encompassing a diverse range of conditions from infections with pathogenic microorganisms to underlying genetic disorders. The respiratory tract represents an active interface with the external environment having the primary immune function of resisting pathogen intrusion and maintaining homeostasis in response to the myriad of stimuli encountered within its microenvironment. To perform these vital functions and prevent lung disorders, a chemical and biological cross-talk occurs in the complex milieu of the lung that mediates and regulates the numerous cellular processes contributing to lung health. In this review, we will focus on the role of cross-talk in chronic lung infections, and discuss how different cell types and signaling pathways contribute to the chronicity of infection(s) and prevent effective immune clearance of pathogens. In the lung microenvironment, pathogens have developed the capacity to evade mucosal immunity using different mechanisms or virulence factors, leading to colonization and infection of the host; such mechanisms include the release of soluble and volatile factors, as well as contact dependent (juxtracrine) interactions. We explore the diverse modes of communication between the host and pathogen in the lung tissue milieu in the context of chronic lung infections. Lastly, we review current methods and approaches used to model and study these host-pathogen interactions in vitro, and the role of these technological platforms in advancing our knowledge about chronic lung diseases.
Collapse
Affiliation(s)
- Samuel B. Berry
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | | | - Susanna Brighenti
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
32
|
Drasler B, Karakocak BB, Tankus EB, Barosova H, Abe J, Sousa de Almeida M, Petri-Fink A, Rothen-Rutishauser B. An Inflamed Human Alveolar Model for Testing the Efficiency of Anti-inflammatory Drugs in vitro. Front Bioeng Biotechnol 2020; 8:987. [PMID: 32974315 PMCID: PMC7471931 DOI: 10.3389/fbioe.2020.00987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
A large number of prevalent lung diseases is associated with tissue inflammation. Clinically, corticosteroid therapies are applied systemically or via inhalation for the treatment of lung inflammation, and a number of novel therapies are being developed that require preclinical testing. In alveoli, macrophages and dendritic cells play a key role in initiating and diminishing pro-inflammatory reactions and, in particular, macrophage plasticity (M1 and M2 phenotypes shifts) has been reported to play a significant role in these reactions. Thus far, no studies with in vitro lung epithelial models have tested the comparison between systemic and direct pulmonary drug delivery. Therefore, the aim of this study was to develop an inflamed human alveolar epithelium model and to test the resolution of LPS-induced inflammation in vitro with a corticosteroid, methylprednisolone (MP). A specific focus of the study was the macrophage phenotype shifts in response to these stimuli. First, human monocyte-derived macrophages were examined for phenotype shifts upon exposure to lipopolysaccharide (LPS), followed by treatment with MP. A multicellular human alveolar model, composed of macrophages, dendritic cells, and epithelial cells, was then employed for the development of inflamed models. The models were used to test the anti-inflammatory potency of MP by monitoring the secretion of pro-inflammatory mediators (interleukin [IL]-8, tumor necrosis factor-α [TNF-α], and IL-1β) through four different approaches, mimicking clinical scenarios of inflammation and treatment. In macrophage monocultures, LPS stimulation shifted the phenotype towards M1, as demonstrated by increased release of IL-8 and TNF-α and altered expression of phenotype-associated surface markers (CD86, CD206). MP treatment of inflamed macrophages reversed the phenotype towards M2. In multicellular models, increased pro-inflammatory reactions after LPS exposure were observed, as demonstrated by protein secretion and gene expression measurements. In all scenarios, among the tested mediators the most pronounced anti-inflammatory effect of MP was observed for IL-8. Our findings demonstrate that our inflamed multicellular human lung model is a promising tool for the evaluation of anti-inflammatory potency of drug candidates in vitro. With the presented setup, our model allows a meaningful comparison of the systemic vs. inhalation administration routes for the evaluation of the efficacy of a drug in vitro.
Collapse
Affiliation(s)
- Barbara Drasler
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Bedia Begum Karakocak
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Esma Bahar Tankus
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Hana Barosova
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Mauro Sousa de Almeida
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Alke Petri-Fink
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland.,Département de Chimie, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| |
Collapse
|
33
|
Herbert JA, Deng Y, Hardelid P, Robinson E, Ren L, Moulding D, Smyth RL, Smith CM. β 2-integrin LFA1 mediates airway damage following neutrophil transepithelial migration during respiratory syncytial virus infection. Eur Respir J 2020; 56:13993003.02216-2019. [PMID: 32217648 PMCID: PMC7406857 DOI: 10.1183/13993003.02216-2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/08/2020] [Indexed: 11/05/2022]
Abstract
Respiratory syncytial virus (RSV) bronchiolitis is the most common cause of infant hospital admissions, but there is limited understanding of the mechanisms of disease, and no specific antiviral treatment. Using a novel in vitro primary transepithelial neutrophil migration model and innovative imaging methods, we show that RSV infection of nasal airway epithelium increased neutrophil transepithelial migration and adhesion to infected epithelial cells, which is associated with epithelial cell damage and reduced ciliary beat frequency, but also with a reduction in infectious viral load.Following migration, RSV infection results in greater neutrophil activation, degranulation and release of neutrophil elastase into the airway surface media compared to neutrophils that migrated across mock-infected nasal epithelial cells. Blocking of the interaction between the ligand on neutrophils (the β2-integrin LFA-1) for intracellular adhesion molecule (ICAM)-1 on epithelial cells reduced neutrophil adherence to RSV-infected cells and epithelial cell damage to pre-infection levels, but did not reduce the numbers of neutrophils that migrated or prevent the reduction in infectious viral load.These findings have provided important insights into the contribution of neutrophils to airway damage and viral clearance, which are relevant to the pathophysiology of RSV bronchiolitis. This model is a convenient, quantitative preclinical model that will further elucidate mechanisms that drive disease severity and has utility in antiviral drug discovery.
Collapse
Affiliation(s)
| | - Yu Deng
- UCL Great Ormond Street Institute of Child Health, London, UK.,Dept of Respiratory Medical Centre, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Pia Hardelid
- UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Luo Ren
- UCL Great Ormond Street Institute of Child Health, London, UK.,Dept of Respiratory Medical Centre, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Dale Moulding
- UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Claire Mary Smith
- UCL Great Ormond Street Institute of Child Health, London, UK .,Joint senior author
| |
Collapse
|
34
|
Laucirica DR, Garratt LW, Kicic A. Progress in Model Systems of Cystic Fibrosis Mucosal Inflammation to Understand Aberrant Neutrophil Activity. Front Immunol 2020; 11:595. [PMID: 32318073 PMCID: PMC7154161 DOI: 10.3389/fimmu.2020.00595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
In response to recurrent infection in cystic fibrosis (CF), powerful innate immune signals trigger polymorphonuclear neutrophil recruitment into the airway lumen. Exaggerated neutrophil proteolytic activity results in sustained inflammation and scarring of the airways. Consequently, neutrophils and their secretions are reliable clinical biomarkers of lung disease progression. As neutrophils are required to clear infection and yet a direct cause of airway damage, modulating adverse neutrophil activity while preserving their pathogen fighting function remains a key area of CF research. The factors that drive their pathological behavior are still under investigation, especially in early disease when aberrant neutrophil behavior first becomes evident. Here we examine the latest findings of neutrophils in pediatric CF lung disease and proposed mechanisms of their pathogenicity. Highlighted in this review are current and emerging experimental methods for assessing CF mucosal immunity and human neutrophil function in the laboratory.
Collapse
Affiliation(s)
- Daniel R Laucirica
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Luke W Garratt
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
35
|
Inselman A, Liu F, Wang C, Shi Q, Pang L, Mattes W, White M, Lyn-Cook B, Rosas-Hernandez H, Cuevas E, Lantz S, Imam S, Ali S, Petibone DM, Shemansky JM, Xiong R, Wang Y, Tripathi P, Cao X, Heflich RH, Slikker W. Dr. Daniel Acosta and In Vitro toxicology at the U.S. Food and Drug Administration's National Center for Toxicological Research. Toxicol In Vitro 2020; 64:104471. [PMID: 31628011 DOI: 10.1016/j.tiv.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 10/25/2022]
Abstract
For the past five years, Dr. Daniel Acosta has served as the Deputy Director of Research at the National Center for Toxicological Research (NCTR), a principle research laboratory of the U.S. Food and Drug Administration (FDA). Over his career at NCTR, Dr. Acosta has had a major impact on developing and promoting the use of in vitro assays in regulatory toxicity and product safety assessments. As Dr. Acosta nears his retirement we have dedicated this paper to his many accomplishments at the NCTR. Described within this paper are some of the in vitro studies that have been conducted under Dr. Acosta's leadership. These studies include toxicological assessments involving developmental effects, and the development and application of in vitro reproductive, heart, liver, neurological and airway cell and tissue models.
Collapse
Affiliation(s)
- Amy Inselman
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Fang Liu
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Cheng Wang
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Qiang Shi
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Li Pang
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - William Mattes
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Matthew White
- Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | | | - Elvis Cuevas
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Susan Lantz
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Syed Imam
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Syed Ali
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Dayton M Petibone
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Jennifer M Shemansky
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Rui Xiong
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Yiying Wang
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Priya Tripathi
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | | |
Collapse
|
36
|
Wang Y, Adamcakova-Dodd A, Steines BR, Jing X, Salem AK, Thorne PS. Comparison of in vitro toxicity of aerosolized engineered nanomaterials using air-liquid interface mono-culture and co-culture models. NANOIMPACT 2020; 18:100215. [PMID: 32885098 PMCID: PMC7462419 DOI: 10.1016/j.impact.2020.100215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Airborne engineered nanomaterials (ENMs) can readily enter the human body through inhalation potentially leading to adverse health effects such as cardiovascular and pulmonary diseases. Our group has previously utilized and validated an integrated low flow system capable of generating and depositing airborne ENMs directly onto cells at an air-liquid interface (ALI). To further improve this ALI method for an even closer representation of the in vivo system, a co-culture model containing epithelial, endothelial and macrophage cell lines (A549, EA.hy 926, and THP-1 differentiated macrophages) was established and validated for testing ENMs toxicity. In the co-culture model, cells were exposed to citrate-capped gold (Au), 15% silver on silica (Ag-SiO2) and copper oxide (CuO) ENMs under the same protocol (4 h ALI exposure with a target concentration of 3.5 mg/m3) and compared to responses with A549 cells only or THP-1 differentiated cells only. The toxicological profile was assessed by measuring cell viability, reactive oxygen species (ROS) production, lactate dehydrogenase (LDH) release, and interleukin (IL)-8 concentration. Results showed that 15% Ag-SiO2 induced more oxidative stress-related toxicity in the co-culture than in A549 cells alone. Both 15% Ag-SiO2 and CuO exposure produced significantly higher levels of IL-8 in the co-culture compared with A549 cells alone. Citrate-capped Au was largely inert. Further exposures of CuO on macrophages alone provided evidence of cell-cell interaction in the co-culture model. In addition, the co-culture model exhibited a similar response to primary human bronchial epithelial cells in terms of ROS and IL-8 responses after CuO exposure, suggesting a more advanced refinement of the conventional model for in vitro inhalation study.
Collapse
Affiliation(s)
- Yifang Wang
- Human Toxicology Interdisciplinary Program, University of Iowa, Iowa City, IA, USA
| | | | - Benjamin R. Steines
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA
| | - Xuefang Jing
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA
| | | | - Peter S. Thorne
- Human Toxicology Interdisciplinary Program, University of Iowa, Iowa City, IA, USA
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
37
|
Aspergillus fumigatus Cell Wall Promotes Apical Airway Epithelial Recruitment of Human Neutrophils. Infect Immun 2020; 88:IAI.00813-19. [PMID: 31767773 DOI: 10.1128/iai.00813-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Aspergillus fumigatus is a ubiquitous fungal pathogen capable of causing multiple pulmonary diseases, including invasive aspergillosis, chronic necrotizing aspergillosis, fungal colonization, and allergic bronchopulmonary aspergillosis. Intact mucociliary barrier function and early airway neutrophil responses are critical for clearing fungal conidia from the host airways prior to establishing disease. Following inhalation, Aspergillus conidia deposit in the small airways, where they are likely to make their initial host encounter with epithelial cells. Challenges in airway infection models have limited the ability to explore early steps in the interactions between A. fumigatus and the human airway epithelium. Here, we use inverted air-liquid interface cultures to demonstrate that the human airway epithelium responds to apical stimulation by A. fumigatus to promote the transepithelial migration of neutrophils from the basolateral membrane surface to the apical airway surface. Promoting epithelial transmigration with Aspergillus required prolonged exposure with live resting conidia. Swollen conidia did not expedite epithelial transmigration. Using A. fumigatus strains containing deletions of genes for cell wall components, we identified that deletion of the hydrophobic rodlet layer or dihydroxynaphthalene-melanin in the conidial cell wall amplified the epithelial transmigration of neutrophils, using primary human airway epithelium. Ultimately, we show that an as-yet-unidentified nonsecreted cell wall protein is required to promote the early epithelial transmigration of human neutrophils into the airspace in response to A. fumigatus Together, these data provide critical insight into the initial epithelial host response to Aspergillus.
Collapse
|
38
|
Long SR, Lanter BB, Pazos MA, Mou H, Barrios J, Su CW, Wang ZQ, Walker WA, Hurley BP, Shi HN. Intestinal helminth infection enhances bacteria-induced recruitment of neutrophils to the airspace. Sci Rep 2019; 9:15703. [PMID: 31673002 PMCID: PMC6823376 DOI: 10.1038/s41598-019-51991-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
Intestinal helminth infections elicit Th2-type immunity, which influences host immune responses to additional threats, such as allergens, metabolic disease, and other pathogens. Th2 immunity involves a shift of the CD4+ T-cell population from type-0 to type-2 (Th2) with increased abundance of interleukin (IL)-4 and IL-13. This study sought to investigate if existing gut-restricted intestinal helminth infections impact bacterial-induced acute airway neutrophil recruitment. C57BL/6 mice were divided into four groups: uninfected; helminth-Heligmosomoides polygyrus infected; Pseudomonas aeruginosa infected; and coinfected. Mice infected with H. polygyrus were incubated for 2 weeks, followed by P. aeruginosa intranasal inoculation. Bronchial alveolar lavage, blood, and lung samples were analyzed. Interestingly, infection with gut-restricted helminths resulted in immunological and structural changes in the lung. These changes include increased lung CD4+ T cells, increased Th2 cytokine expression, and airway goblet cell hyperplasia. Furthermore, coinfected mice exhibited significantly more airspace neutrophil infiltration at 6 hours following P. aeruginosa infection and exhibited an improved rate of survival compared with bacterial infected alone. These results suggest that chronic helminth infection of the intestines can influence and enhance acute airway neutrophil responses to P. aeruginosa infection.
Collapse
Affiliation(s)
- Shao Rong Long
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Bernard B Lanter
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Michael A Pazos
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliana Barrios
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Chien-Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Zhong Quan Wang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bryan P Hurley
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Hai Ning Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
39
|
Brown JL, Johnston W, Delaney C, Rajendran R, Butcher J, Khan S, Bradshaw D, Ramage G, Culshaw S. Biofilm-stimulated epithelium modulates the inflammatory responses in co-cultured immune cells. Sci Rep 2019; 9:15779. [PMID: 31673005 PMCID: PMC6823452 DOI: 10.1038/s41598-019-52115-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
The gingival epithelium is a physical and immunological barrier to the microbiota of the oral cavity, which interact through soluble mediators with the immune cells that patrol the tissue at the gingival epithelium. We sought to develop a three-dimensional gingivae-biofilm interface model using a commercially available gingival epithelium to study the tissue inflammatory response to oral biofilms associated with “health”, “gingivitis” and “periodontitis”. These biofilms were developed by sequential addition of microorganisms to mimic the formation of supra- and sub-gingival plaque in vivo. Secondly, to mimic the interactions between gingival epithelium and immune cells in vivo, we integrated peripheral blood mononuclear cells and CD14+ monocytes into our three-dimensional model and were able to assess the inflammatory response in the immune cells cultured with and without gingival epithelium. We describe a differential inflammatory response in immune cells cultured with epithelial tissue, and more so following incubation with epithelium stimulated by “gingivitis-associated” biofilm. These results suggest that gingival epithelium-derived soluble mediators may control the inflammatory status of immune cells in vitro, and therefore targeting of the epithelial response may offer novel therapies. This multi-cellular interface model, both of microbial and host origin, offers a robust in vitro platform to investigate host-pathogens at the epithelial surface.
Collapse
Affiliation(s)
- Jason L Brown
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK.,Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - William Johnston
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Chris Delaney
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Ranjith Rajendran
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - John Butcher
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK.,Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Shaz Khan
- Oral Healthcare R&D, GlaxoSmithKline Consumer Healthcare, Weybridge, KT13 0DE, UK
| | - David Bradshaw
- Oral Healthcare R&D, GlaxoSmithKline Consumer Healthcare, Weybridge, KT13 0DE, UK
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| | - Shauna Culshaw
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| |
Collapse
|
40
|
Pepsin Triggers Neutrophil Migration Across Acid Damaged Lung Epithelium. Sci Rep 2019; 9:13778. [PMID: 31551494 PMCID: PMC6760148 DOI: 10.1038/s41598-019-50360-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Pepsin represents a potential biomarker for extraesophageal reflux disease when detected in airways, however a direct role for pepsin in lung dysfunction has not been clearly established. Children experiencing gastroesophageal and extraesophageal reflux are often prescribed proton pump inhibitors (PPIs) to reduce gastric acid associated damage to esophageal and airway mucosa. The potential of pepsin and gastric fluid, from children that were either on or off PPI therapy, to cause inflammation and damage using a human in vitro co-culture model of the airway mucosa was evaluated herein. Exposure of the airway model to acidic solutions caused cellular damage and loss of viability, however, acid alone did not disrupt barrier integrity or instigate neutrophil trans-epithelial migration without pepsin. Gastric fluid from patients on PPI therapy exhibited only a slightly higher pH yet had significantly higher concentrations of pepsin and elicited more barrier disruption and neutrophil trans-epithelial migration compared to gastric fluid from patients off PPIs. Inflammatory and damaging responses observed with gastric fluid from patients on PPIs were largely driven by pepsin. These results indicate the potential for PPI usage to raise concentrations of pepsin in gastric fluid, which may enhance the pathological impact of micro-aspirations in children with extraesophageal reflux.
Collapse
|
41
|
Renggli K, Rousset N, Lohasz C, Nguyen OTP, Hierlemann A. Integrated Microphysiological Systems: Transferable Organ Models and Recirculating Flow. ADVANCED BIOSYSTEMS 2019; 3:e1900018. [PMID: 32627410 PMCID: PMC7610576 DOI: 10.1002/adbi.201900018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Studying and understanding of tissue and disease mechanisms largely depend on the availability of suitable and representative biological model systems. These model systems should be carefully engineered and faithfully reproduce the biological system of interest to understand physiological effects, pharmacokinetics, and toxicity to better identify new drug compounds. By relying on microfluidics, microphysiological systems (MPSs) enable the precise control of culturing conditions and connections of advanced in vitro 3D organ models that better reproduce in vivo environments. This review focuses on transferable in vitro organ models and integrated MPSs that host these transferable biological units and enable interactions between different tissue types. Interchangeable and transferrable in vitro organ models allow for independent quality control of the biological model before system assembly and building MPS assays on demand. Due to the complexity and different maturation times of individual in vitro tissues, off-chip production and quality control entail improved stability and reproducibility of the systems and results, which is important for large-scale adoption of the technology. Lastly, the technical and biological challenges and open issues for realizing and implementing integrated MPSs with transferable in vitro organ models are discussed.
Collapse
Affiliation(s)
- Kasper Renggli
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
42
|
Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, Heo I, Böttinger L, Klay D, Weeber F, Huelsz-Prince G, Iakobachvili N, Amatngalim GD, de Ligt J, van Hoeck A, Proost N, Viveen MC, Lyubimova A, Teeven L, Derakhshan S, Korving J, Begthel H, Dekkers JF, Kumawat K, Ramos E, van Oosterhout MF, Offerhaus GJ, Wiener DJ, Olimpio EP, Dijkstra KK, Smit EF, van der Linden M, Jaksani S, van de Ven M, Jonkers J, Rios AC, Voest EE, van Moorsel CH, van der Ent CK, Cuppen E, van Oudenaarden A, Coenjaerts FE, Meyaard L, Bont LJ, Peters PJ, Tans SJ, van Zon JS, Boj SF, Vries RG, Beekman JM, Clevers H. Long-term expanding human airway organoids for disease modeling. EMBO J 2019; 38:e100300. [PMID: 30643021 PMCID: PMC6376275 DOI: 10.15252/embj.2018100300] [Citation(s) in RCA: 651] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/30/2022] Open
Abstract
Organoids are self-organizing 3D structures grown from stem cells that recapitulate essential aspects of organ structure and function. Here, we describe a method to establish long-term-expanding human airway organoids from broncho-alveolar resections or lavage material. The pseudostratified airway organoids consist of basal cells, functional multi-ciliated cells, mucus-producing secretory cells, and CC10-secreting club cells. Airway organoids derived from cystic fibrosis (CF) patients allow assessment of CFTR function in an organoid swelling assay. Organoids established from lung cancer resections and metastasis biopsies retain tumor histopathology as well as cancer gene mutations and are amenable to drug screening. Respiratory syncytial virus (RSV) infection recapitulates central disease features, dramatically increases organoid cell motility via the non-structural viral NS2 protein, and preferentially recruits neutrophils upon co-culturing. We conclude that human airway organoids represent versatile models for the in vitro study of hereditary, malignant, and infectious pulmonary disease.
Collapse
Affiliation(s)
- Norman Sachs
- Oncode Institute, Hubrecht Institute-KNAW and UMC Utrecht, Utrecht, The Netherlands
| | | | | | - Inha Heo
- Oncode Institute, Hubrecht Institute-KNAW and UMC Utrecht, Utrecht, The Netherlands
| | - Lena Böttinger
- Oncode Institute, Hubrecht Institute-KNAW and UMC Utrecht, Utrecht, The Netherlands
| | - Dymph Klay
- St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
| | - Fleur Weeber
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | - Natalie Proost
- Mouse Clinic for Cancer and Aging (MCCA) Preclinical Intervention Unit, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Anna Lyubimova
- Oncode Institute, Hubrecht Institute-KNAW and UMC Utrecht, Utrecht, The Netherlands
| | - Luc Teeven
- Oncode Institute, Hubrecht Institute-KNAW and UMC Utrecht, Utrecht, The Netherlands
| | - Sepideh Derakhshan
- Wilhelmina Children's Hospital and UMC Utrecht, Utrecht, The Netherlands
| | - Jeroen Korving
- Oncode Institute, Hubrecht Institute-KNAW and UMC Utrecht, Utrecht, The Netherlands
| | - Harry Begthel
- Oncode Institute, Hubrecht Institute-KNAW and UMC Utrecht, Utrecht, The Netherlands
| | - Johanna F Dekkers
- Oncode Institute, Hubrecht Institute-KNAW and UMC Utrecht, Utrecht, The Netherlands
| | - Kuldeep Kumawat
- Wilhelmina Children's Hospital and UMC Utrecht, Utrecht, The Netherlands
| | - Emilio Ramos
- Hubrecht Organoid Technology, Utrecht, The Netherlands
| | | | | | - Dominique J Wiener
- Oncode Institute, Hubrecht Institute-KNAW and UMC Utrecht, Utrecht, The Netherlands
| | | | | | - Egbert F Smit
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging (MCCA) Preclinical Intervention Unit, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Mouse Clinic for Cancer and Aging (MCCA) Preclinical Intervention Unit, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Emile E Voest
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | - Linde Meyaard
- Wilhelmina Children's Hospital and UMC Utrecht, Utrecht, The Netherlands
| | - Louis J Bont
- Wilhelmina Children's Hospital and UMC Utrecht, Utrecht, The Netherlands
| | | | | | | | - Sylvia F Boj
- Hubrecht Organoid Technology, Utrecht, The Netherlands
| | | | - Jeffrey M Beekman
- Wilhelmina Children's Hospital and UMC Utrecht, Utrecht, The Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute-KNAW and UMC Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
43
|
Weinhart M, Hocke A, Hippenstiel S, Kurreck J, Hedtrich S. 3D organ models-Revolution in pharmacological research? Pharmacol Res 2019; 139:446-451. [PMID: 30395949 PMCID: PMC7129286 DOI: 10.1016/j.phrs.2018.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 01/15/2023]
Abstract
3D organ models have gained increasing attention as novel preclinical test systems and alternatives to animal testing. Over the years, many excellent in vitro tissue models have been developed. In parallel, microfluidic organ-on-a-chip tissue cultures have gained increasing interest for their ability to house several organ models on a single device and interlink these within a human-like environment. In contrast to these advancements, the development of human disease models is still in its infancy. Although major advances have recently been made, efforts still need to be intensified. Human disease models have proven valuable for their ability to closely mimic disease patterns in vitro, permitting the study of pathophysiological features and new treatment options. Although animal studies remain the gold standard for preclinical testing, they have major drawbacks such as high cost and ongoing controversy over their predictive value for several human conditions. Moreover, there is growing political and social pressure to develop alternatives to animal models, clearly promoting the search for valid, cost-efficient and easy-to-handle systems lacking interspecies-related differences. In this review, we discuss the current state of the art regarding 3D organ as well as the opportunities, limitations and future implications of their use.
Collapse
Affiliation(s)
- Marie Weinhart
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Andreas Hocke
- Dept. of Infectious and Respiratory Diseases, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Stefan Hippenstiel
- Dept. of Infectious and Respiratory Diseases, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Jens Kurreck
- Technical University Berlin, Institute for Biotechnology, Berlin, Germany
| | - Sarah Hedtrich
- Freie Universität Berlin, Institute for Pharmacy, Pharmacology & Toxicology, Königin-Luise-Str. 2-4, Berlin, 14195, Germany.
| |
Collapse
|
44
|
Castellani S, Di Gioia S, di Toma L, Conese M. Human Cellular Models for the Investigation of Lung Inflammation and Mucus Production in Cystic Fibrosis. Anal Cell Pathol (Amst) 2018; 2018:3839803. [PMID: 30581723 PMCID: PMC6276497 DOI: 10.1155/2018/3839803] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation, oxidative stress, mucus plugging, airway remodeling, and respiratory infections are the hallmarks of the cystic fibrosis (CF) lung disease. The airway epithelium is central in the innate immune responses to pathogens colonizing the airways, since it is involved in mucociliary clearance, senses the presence of pathogens, elicits an inflammatory response, orchestrates adaptive immunity, and activates mesenchymal cells. In this review, we focus on cellular models of the human CF airway epithelium that have been used for studying mucus production, inflammatory response, and airway remodeling, with particular reference to two- and three-dimensional cultures that better recapitulate the native airway epithelium. Cocultures of airway epithelial cells, macrophages, dendritic cells, and fibroblasts are instrumental in disease modeling, drug discovery, and identification of novel therapeutic targets. Nevertheless, they have to be implemented in the CF field yet. Finally, novel systems hijacking on tissue engineering, including three-dimensional cocultures, decellularized lungs, microfluidic devices, and lung organoids formed in bioreactors, will lead the generation of relevant human preclinical respiratory models a step forward.
Collapse
Affiliation(s)
- Stefano Castellani
- Laboratory of Regenerative and Experimental Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Laboratory of Regenerative and Experimental Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorena di Toma
- Laboratory of Regenerative and Experimental Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Laboratory of Regenerative and Experimental Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
45
|
Hasan S, Sebo P, Osicka R. A guide to polarized airway epithelial models for studies of host-pathogen interactions. FEBS J 2018; 285:4343-4358. [PMID: 29896776 DOI: 10.1111/febs.14582] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/21/2018] [Accepted: 06/11/2018] [Indexed: 11/28/2022]
Abstract
Mammalian lungs are organs exhibiting the cellular and spatial complexity required for gas exchange to support life. The respiratory epithelium internally lining the airways is susceptible to infections due to constant exposure to inhaled microbes. Biomedical research into respiratory bacterial infections in humans has been mostly carried out using small mammalian animal models or two-dimensional, submerged cultures of undifferentiated epithelial cells. These experimental model systems have considerable limitations due to host specificity of bacterial pathogens and lack of cellular and morphological complexity. This review describes the in vitro differentiated and polarized airway epithelial cells of human origin that are used as a model to study respiratory bacterial infections. Overall, these models recapitulate key aspects of the complexity observed in vivo and can help in elucidating the molecular details of disease processes observed during respiratory bacterial infections.
Collapse
Affiliation(s)
- Shakir Hasan
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| |
Collapse
|
46
|
Deng Y, Herbert JA, Smith CM, Smyth RL. An in vitro transepithelial migration assay to evaluate the role of neutrophils in Respiratory Syncytial Virus (RSV) induced epithelial damage. Sci Rep 2018; 8:6777. [PMID: 29712964 PMCID: PMC5928117 DOI: 10.1038/s41598-018-25167-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/17/2018] [Indexed: 11/19/2022] Open
Abstract
Large numbers of neutrophils migrate into the lungs of children with severe Respiratory Syncytial Virus (RSV) disease. It is unclear how these cells contribute to viral clearance and recovery from infection or whether they contribute to disease pathology. We have developed a novel in vitro model to study neutrophil migration through airway epithelial cells (AECs), the main cellular target of RSV infection. Our model reproduces a physiologically relevant cell polarity and directionality of neutrophil migration. Using this model, we found that RSV infected AECs induced rapid neutrophil transepithelial migration. We also detected increased AEC damage associated with RSV infection, with a further increase in epithelial cells shedding from the Transwell membrane following neutrophil migration. This was not observed in the mock infected controls. Neutrophils that migrated through the RSV infected AECs showed increased cell surface expression of CD11B and MPO compared to neutrophils that had not migrated. In conclusion, our in vitro co-culture assay can be used to identify critical mechanisms that mediate epithelial cell damage and promote inflammation in children with severe RSV disease.
Collapse
Affiliation(s)
- Yu Deng
- Respiratory, Critical Care & Anaesthesia, Great Ormond Street Institute of Child Health, University College London (UCL), London, United Kingdom.,Department of Respiratory medical centre, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, China International Science and Technology Cooperation base of Child development and Critical Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Jenny A Herbert
- Respiratory, Critical Care & Anaesthesia, Great Ormond Street Institute of Child Health, University College London (UCL), London, United Kingdom
| | - Claire M Smith
- Respiratory, Critical Care & Anaesthesia, Great Ormond Street Institute of Child Health, University College London (UCL), London, United Kingdom.
| | - Rosalind L Smyth
- Respiratory, Critical Care & Anaesthesia, Great Ormond Street Institute of Child Health, University College London (UCL), London, United Kingdom
| |
Collapse
|
47
|
Levardon H, Yonker LM, Hurley BP, Mou H. Expansion of Airway Basal Cells and Generation of Polarized Epithelium. Bio Protoc 2018; 8:e2877. [PMID: 30009215 DOI: 10.21769/bioprotoc.2877] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Airway basal stem cells are the progenitor cells within the airway that exhibit the capacity to self-renew and give rise to multiple types of differentiated airway epithelial cells. This stem cell-derived epithelium displays organized architecture with functional attributes of the airway mucosa. A protocol has been developed to culture and expand human airway basal stem cells while preserving their stem cell properties and capacity for subsequent mucociliary differentiation. This achievement presents a previously unrealized opportunity to maintain a durable supply of progenitor cells derived from healthy donors to differentiate into human primary airway epithelium for cellular and molecular-based studies. Further, basal stem cells can be harvested from patients with a specific airway disease, such as cystic fibrosis, enabling investigation of potentially altered behavior of disease-specific cells in the appropriate context of the airway mucosa. Here we describe, in detail, a protocol for the serial expansion of airway basal stem cells to enable the generation of nearly unlimited airway basal cells that can be stored and readily available for subsequent culturing and differentiation. In addition, we describe culturing and differentiation of airway basal stem cells on permeable transwell filters at air-liquid interface to create functional mucociliary pseudostratified polarized airway epithelial mucosa.
Collapse
Affiliation(s)
- Hannah Levardon
- Centre de Recherche en Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux, France.,Université de Bordeaux, 146 rue Léo Saignat CS 6129233 076, Bordeaux, France.,The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Lael M Yonker
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Pulmonary Division, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Bryan P Hurley
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Pulmonary Division, Massachusetts General Hospital for Children, Boston, MA, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|