1
|
Plaza-Florido A, Anguita-Ruiz A, Esteban FJ, Aguilera CM, Labayen I, Reitzner SM, Sundberg CJ, Radom-Aizik S, Ortega FB, Altmäe S. Integrated analysis of methylome and transcriptome responses to exercise training in children with overweight/obesity. Physiol Genomics 2025; 57:91-102. [PMID: 39751206 DOI: 10.1152/physiolgenomics.00059.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/06/2024] [Accepted: 11/23/2024] [Indexed: 01/04/2025] Open
Abstract
We examined the effects of a 20-wk exercise intervention on whole blood genome-wide DNA methylation signature and its association with the exercise-induced changes in gene expression profiles in boys and girls with overweight/obesity (OW/OB). Twenty-three children (10.05 ± 1.39 yr, 56% girls) with OW/OB were randomized to either a 20-wk exercise intervention [exercise group (EG); n = 10; 4 boys/6 girls] or to usual lifestyle [control group (CG); n = 13; 6 boys/7 girls]. Whole blood genome-wide methylome (CpG sites) analysis using Infinium Methylation EPIC array and transcriptome analysis using RNA-seq (STRT2 protocol) were performed. Exercise-induced modifications in DNA methylation at 485 and 386 CpGs sites in boys and girls, respectively. These CpG sites are mapped to loci enriched in distinct gene pathways related to metabolic diseases, fatty acid metabolism, and immune function. In boys, changes in the DNA methylation of 87 CpG sites (18% of the 485 CpGs sites altered by exercise) were associated with changes in the gene expression levels of 51 genes also regulated by exercise. Among girls, changes in DNA methylation at 46 CpG sites (12% of the initial 386 significant CpGs) were associated with changes in the expression levels of 30 exercise-affected genes. Genes affected by exercise that were associated with DNA methylation are related to obesity, metabolic syndrome, and inflammation. Multiomics analysis of whole blood samples from children with OW/OB suggests that gene expression response to exercise may be modulated by DNA methylation and involve gene pathways related to metabolism and immune functions.NEW & NOTEWORTHY This study pioneers the exploration into the effects of exercise on whole blood genome-wide DNA methylation patterns and its association with changes in transcriptome profiles in children with overweight/obesity. Exercise potentially impacts molecular pathways involved in metabolism and immune functions in children with overweight/obesity (sex-specific responses) through the modification of epigenetic and transcriptomic profiles. Our preliminary results provide initial steps to understand better the molecular mechanisms underlying cardiometabolic benefits of exercise in children with overweight/obesity.
Collapse
Affiliation(s)
- Abel Plaza-Florido
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California, Irvine, California, United States
| | - Augusto Anguita-Ruiz
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Francisco J Esteban
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Jaen, Spain
| | - Concepción M Aguilera
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Granada, Spain
- Instituto de Investigacion Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Idoia Labayen
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Department of Health Sciences, Institute for Sustainability & Food Chain Innovation, Public University of Navarra, Pamplona, Spain
| | - Stefan Markus Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
| | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California, Irvine, California, United States
| | - Francisco B Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
- Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Elsayed DH, Nagadi SA, Abdelrazek HMA, El-Hawy AS, El-Bassiony MF, Helmy SA, Mahmoud YK, Helal IE, Hassan ST. Dietary Nannochloropsis oculata ameliorates lead acetate induced reproductive toxicity in Barki rams: NF-κB and cytokines pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117452. [PMID: 39644577 DOI: 10.1016/j.ecoenv.2024.117452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
The study aimed to explore the protective effect of Nannochloropsis oculata (N.oculata) on lead induced reproductive toxicity in rams. Sixteen Barki rams were divided equally in to 4 groups; group A: control, group B: was administered 3 % dietary N. oculate, group C: was gavaged 5 mg/kg/day lead acetate and group D: was supplemented with 3 % dietary N. oculata and gavaged with 5 mg/kg/day lead acetate. The experiment lasted 180 days. Semen and blood samples were obtained. Ejaculates were examined for semen criteria besides, analysis of testosterone. Testicular oxidant/antioxidant markers, cytokines, gene expression of interleukin-6 (IL-6) and nuclear factor Kappa B (NF-κB) were estimated. Alga-treated rams revealed significant upgrades in semen criteria, serum testosterone and reduced glutathione (GSH); meanwhile, downregulation in malondialdehyde (MDA), IL-4, IL-2 as well as gene expressions of IL-6 and NF-κB as compared to other treated groups. However, lead-treated rams showed significant deteriorations in semen criteria and reduced GSH while significant elevations in MDA, IL-4, IL-2 as well as gene expression of IL-6 and NF-κB were noticed than control. Alga supplementation to lead-intoxicated rams significantly upgraded the lead induced alterations that were manifested by improvement in testicular histopathology. In conclusion, the addition of alga mitigated lead induced reproductive toxicity in rams via improving testosterone, oxidant/antioxidant status, semen criteria and reducing inflammatory cytokines.
Collapse
Affiliation(s)
- Doaa H Elsayed
- Department of Theriogenology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Sameer A Nagadi
- Department of Agriculture, Faculty of Environment Sciences, King Abdulaziz University, Jeddah 80269, Saudi Arabia
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Ahmed S El-Hawy
- Animal and Poultry Production Division, Desert Research Center, Cairo, Egypt
| | | | - Seham A Helmy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Yasmina K Mahmoud
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ibrahim E Helal
- Department of Agriculture, Faculty of Environment Sciences, King Abdulaziz University, Jeddah 80269, Saudi Arabia; Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Shady T Hassan
- Department of Theriogenology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
3
|
Shaikh RQ, Das S, Chaurasiya A, Ashtamy MG, Sheikh AB, Fernandes M, Tiwari S, Unnikrishnan AG, Kulkarni MJ. Discovery of Free Glycated Amines and Glycated Urea in Diabetic Plasma: Potential Implications in Diabetes. ACS OMEGA 2024; 9:24907-24915. [PMID: 38882103 PMCID: PMC11171088 DOI: 10.1021/acsomega.4c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 06/18/2024]
Abstract
The role of protein glycation in the pathogenesis of diabetes has been well established. Akin to proteins, free amino acids and other small-molecule amines are also susceptible to glycation in hyperglycemic conditions and may have a role in the pathogenesis of the disease. However, information about glycation of free amino acids and other small-molecule amines is relatively obscure. In the quest to discover small-molecule glycated amines in the plasma, we have synthesized glycated amino acids, glycated creatine, and glycated urea, and by using a high-resolution accurate mass spectrometer, a mass spectral library was developed comprising the precursor and predominant fragment masses of glycated amines. Using this information, we report the discovery of the glycation of free lysine, arginine, and leucine/isoleucine from the plasma of diabetic patients. This has great physiological significance as glycation of these amino acids may create their deficiency and affect vital physiological processes such as protein synthesis, cell signaling, and insulin secretion. Also, these glycated amino acids could serve as potential markers of diabetes and its complications. While other amines, such as creatinine and urea, accumulate in the plasma and act as biomarkers of diabetic nephropathy. For the first time, we report the detection of glycated urea in diabetic plasma, which is confirmed by matching the precursor and fragment masses with the in vitro synthesized glycated urea by using 12C6 and 13C6-glucose. Further, we quantified glycated urea detected in two forms, monoglycated urea (MGU) and diglycated urea (DGU), by a targeted mass spectrometric approach in the plasma of healthy, diabetic, and diabetic nephropathy subjects. Both MGU and DGU showed a positive correlation with clinical parameters, such as blood glucose and HbA1c. Given that urea gets converted to glycated urea in hyperglycemic conditions, it is crucial to quantify MGU and DGU along with the urea for the diagnosis of diabetic nephropathy and study their physiological role in diabetes.
Collapse
Affiliation(s)
- Rashdajabeen Q Shaikh
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sancharini Das
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | | | - Murali G Ashtamy
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Amreen B Sheikh
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Moneesha Fernandes
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Shalbha Tiwari
- Department of Diabetes and Endocrine Research, Chellaram Diabetes Institute, Pune 411021, India
| | - Ambika G Unnikrishnan
- Department of Diabetes and Endocrine Research, Chellaram Diabetes Institute, Pune 411021, India
| | - Mahesh J Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| |
Collapse
|
4
|
Zhang Y, Peng S, Dong S, Wang J, Cao Y, Ma Y, Wang C. Fatty acid-balanced oil improved nutrient digestibility, altered milk composition in lactating sows and fecal microbial composition in piglets. Anim Biosci 2024; 37:883-895. [PMID: 38419529 PMCID: PMC11065713 DOI: 10.5713/ab.23.0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 01/13/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the effects of dietary supplementation of a fatty acid-balanced oil, instead of soybean oil, on reproductive performance, nutrient digestibility, blood indexes, milk composition in lactating sows, and fecal microbial composition in piglets. METHODS Twenty-four sows (Landrace×Yorkshire, mean parity 4.96) were randomly allotted to two treatments with twelve pens per treatment and one sow per pen based on their backfat thickness and parity. The experiment began on day 107 of gestation and continued until weaning on day 21 of lactation, lasting for 28 days. The control group (CG) was fed a basal diet supplemented with 2% soybean oil and the experimental group (EG) was fed the basal diet supplemented with 2% fatty acid-balanced oil. RESULTS The fatty acid-balanced oil supplementation increased (p<0.05) the apparent total tract digestibility of dry matter, crude protein, and gross energy in sows. The lower (p<0.05) serum high-density lipoprotein cholesterol and albumin levels of sows were observed in the EG on day 21 of lactation. Dietary supplementation with the fatty acid-balanced oil decreased the fat content, increased the immunoglobulin G level, and changed (p<0.05) some fatty acid content in milk. Moreover, the fatty acid-balanced oil supplementation changed (p<0.05) the fecal microbial composition of piglets, where the average relative abundance of Spirochaetota was decreased (p<0.05) by 0.55% at the phylum level, and the average relative abundance of some potentially pathogenic fecal microorganism was decreased (p<0.05) at the species level. CONCLUSION The fatty acid-balanced oil improved nutrient digestibility, changed the serum biochemical indices and milk composition of sows, and ameliorated the fecal microbial composition of piglets.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Shuyu Peng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Shuang Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Jihua Wang
- CALID BIOTECH (WUHAN) CO., LTD, Wuhan 430073,
China
| | - Yu Cao
- CALID BIOTECH (WUHAN) CO., LTD, Wuhan 430073,
China
| | - Yongxi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Chunlin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| |
Collapse
|
5
|
Yang YL, Zeng WH, Peng Y, Zuo SY, Fu YQ, Xiao YM, Huang WL, Wen ZY, Hu W, Yang YY, Huang XF. Characterization of three lamp genes from largemouth bass ( Micropterus salmoides): molecular cloning, expression patterns, and their transcriptional levels in response to fast and refeeding strategy. Front Physiol 2024; 15:1386413. [PMID: 38645688 PMCID: PMC11026864 DOI: 10.3389/fphys.2024.1386413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Lysosomes-associated membrane proteins (LAMPs), a family of glycosylated proteins and major constituents of the lysosomal membranes, play a dominant role in various cellular processes, including phagocytosis, autophagy and immunity in mammals. However, their roles in aquatic species remain poorly known. In the present study, three lamp genes were cloned and characterized from Micropterus salmoides. Subsequently, their transcriptional levels in response to different nutritional status were investigated. The full-length coding sequences of lamp1, lamp2 and lamp3 were 1251bp, 1224bp and 771bp, encoding 416, 407 and 256 amino acids, respectively. Multiple sequence alignment showed that LAMP1-3 were highly conserved among the different fish species, respectively. 3-D structure prediction, genomic survey, and phylogenetic analysis were further confirmed that these genes are widely existed in vertebrates. The mRNA expression of the three genes was ubiquitously expressed in all selected tissues, including liver, brain, gill, heart, muscle, spleen, kidney, stomach, adipose and intestine, lamp1 shows highly transcript levels in brain and muscle, lamp2 displays highly expression level in heart, muscle and spleen, but lamp3 shows highly transcript level in spleen, liver and kidney. To analyze the function of the three genes under starvation stress in largemouth bass, three experimental treatment groups (fasted group and refeeding group, control group) were established in the current study. The results indicated that the expression of lamp1 was significant induced after starvation, and then returned to normal levels after refeeding in the liver. The expression of lamp2 and lamp3 exhibited the same trend in the liver. In addition, in the spleen and the kidney, the transcript level of lamp1 and lamp2 was remarkably increased in the fasted treatment group and slightly decreased in the refed treatment group, respectively. Collectively, our findings suggest that three lamp genes may have differential function in the immune and energetic organism in largemouth bass, which is helpful in understanding roles of lamps in aquatic species.
Collapse
Affiliation(s)
- Yan-Lin Yang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Wan-Hong Zeng
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Yong Peng
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Shi-Yu Zuo
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Yuan-Qi Fu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Yi-Ming Xiao
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Wen-Li Huang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Zheng-Yong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Wei Hu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Yu-Ying Yang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Xiao-Feng Huang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
6
|
Liao SF, Ji F, Fan P, Denryter K. Swine Gastrointestinal Microbiota and the Effects of Dietary Amino Acids on Its Composition and Metabolism. Int J Mol Sci 2024; 25:1237. [PMID: 38279233 PMCID: PMC10816286 DOI: 10.3390/ijms25021237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
Many researchers consider gut microbiota (trillions of microorganisms) an endogenous organ of its animal host, which confers a vast genetic diversity in providing the host with essential biological functions. Particularly, the gut microbiota regulates not only gut tissue structure but also gut health and gut functionality. This paper first summarized those common bacterial species (dominated by the Firmicutes, Bacteroidota, and Proteobacteria phyla) in swine gut and then briefly discussed their roles in swine nutrition and health, which include roles in nutrient metabolism, pathogen exclusion, and immunity modulation. Secondly, the current knowledge on how dietary nutrients and feed additives affect the gut bacterial composition and nutrient metabolism in pigs was discussed. Finally, how dietary amino acids affect the relative abundances and metabolism of bacteria in the swine gut was reviewed. Tryptophan supplementation promotes the growth of beneficial bacteria and suppresses pathogens, while arginine metabolism affects nitrogen recycling, impacting gut immune response and health. Glutamate and glutamine supplementations elevate the levels of beneficial bacteria and mitigate pathogenic ones. It was concluded that nutritional strategies to manipulate gut microbial ecosystems are useful measures to optimize gut health and gut functions. For example, providing pigs with nutrients that promote the growth of Lactobacillus and Bifidobacterium can lead to better gut health and growth performance, especially when dietary protein is limited. Further research to establish the mechanistic cause-and-effect relationships between amino acids and the dynamics of gut microbiota will allow swine producers to reap the greatest return on their feed investment.
Collapse
Affiliation(s)
- Shengfa F. Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Peixin Fan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Kristin Denryter
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| |
Collapse
|
7
|
Martín D, Ordás MC, Carvalho I, Díaz-Rosales P, Nuñez-Ortiz N, Vicente-Gil S, Arrogante A, Zarza C, Machado M, Costas B, Tafalla C. L-methionine supplementation modulates IgM + B cell responses in rainbow trout. Front Immunol 2023; 14:1264228. [PMID: 37881437 PMCID: PMC10597660 DOI: 10.3389/fimmu.2023.1264228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
The interest in dietary amino acids (AAs) as potential immunomodulators has been growing the recent years, since specific AAs are known to regulate key metabolic pathways of the immune response or increase the synthesis of some immune-related proteins. Methionine, tryptophan and lysine are among the ten essential AAs for fish, meaning that they cannot be produced endogenously and must be provided through the diet. To date, although dietary supplementation of fish with some of these AAs has been shown to have positive effects on some innate immune parameters and disease resistance, the effects that these AAs provoke on cells of the adaptive immune system remained unexplored. Hence, in the current study, we have investigated the effects of these three AAs on the functionality of rainbow trout (Oncorhynchus mykiss) IgM+ B cells. For this, splenic leukocytes were isolated from untreated adult rainbow trout and incubated in culture media additionally supplemented with different doses of methionine, tryptophan or lysine in the presence or absence of the model antigen TNP-LPS (2,4,6-trinitrophenyl hapten conjugated to lipopolysaccharide). The survival, IgM secreting capacity and proliferation of IgM+ B cells was then studied. In the case of methionine, the phagocytic capacity of IgM+ B cells was also determined. Our results demonstrate that methionine supplementation significantly increases the proliferative effects provoked by TNP-LPS and also up-regulates the number of cells secreting IgM, whereas tryptophan or lysine have either minor or even negative effects on rainbow trout IgM+ B cells. This increase in the number of IgM-secreting cells in response to methionine surplus was further verified in a feeding experiment, in which the beneficial effects of methionine on the specific response to anal immunization were also confirmed. The results presented demonstrate the beneficial effects of dietary supplementation with methionine on the adaptive immune responses of fish.
Collapse
Affiliation(s)
- Diana Martín
- Fish Immunology and Pathology Laboratory, Animal Health and Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - M. Camino Ordás
- Fish Immunology and Pathology Laboratory, Animal Health and Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Inês Carvalho
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Laboratory, Animal Health and Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Noelia Nuñez-Ortiz
- Fish Immunology and Pathology Laboratory, Animal Health and Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Samuel Vicente-Gil
- Fish Immunology and Pathology Laboratory, Animal Health and Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Aitor Arrogante
- Fish Immunology and Pathology Laboratory, Animal Health and Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Carlos Zarza
- Skretting Aquaculture Innovation, Stavanger, Norway
| | - Marina Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Carolina Tafalla
- Fish Immunology and Pathology Laboratory, Animal Health and Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
8
|
Xu K, Saaoud F, Shao Y, Lu Y, Wu S, Zhao H, Chen K, Vazquez-Padron R, Jiang X, Wang H, Yang X. Early hyperlipidemia triggers metabolomic reprogramming with increased SAH, increased acetyl-CoA-cholesterol synthesis, and decreased glycolysis. Redox Biol 2023; 64:102771. [PMID: 37364513 PMCID: PMC10310484 DOI: 10.1016/j.redox.2023.102771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
To identify metabolomic reprogramming in early hyperlipidemia, unbiased metabolome was screened in four tissues from ApoE-/- mice fed with high fat diet (HFD) for 3 weeks. 30, 122, 67, and 97 metabolites in the aorta, heart, liver, and plasma, respectively, were upregulated. 9 upregulated metabolites were uremic toxins, and 13 metabolites, including palmitate, promoted a trained immunity with increased syntheses of acetyl-CoA and cholesterol, increased S-adenosylhomocysteine (SAH) and hypomethylation and decreased glycolysis. The cross-omics analysis found upregulation of 11 metabolite synthetases in ApoE‾/‾ aorta, which promote ROS, cholesterol biosynthesis, and inflammation. Statistical correlation of 12 upregulated metabolites with 37 gene upregulations in ApoE‾/‾ aorta indicated 9 upregulated new metabolites to be proatherogenic. Antioxidant transcription factor NRF2-/- transcriptome analysis indicated that NRF2 suppresses trained immunity-metabolomic reprogramming. Our results have provided novel insights on metabolomic reprogramming in multiple tissues in early hyperlipidemia oriented toward three co-existed new types of trained immunity.
Collapse
Affiliation(s)
- Keman Xu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ying Shao
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Sheng Wu
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Medical Education and Data Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Kaifu Chen
- Computational Biology Program, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33125, USA
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
9
|
Ji Y, Sun Y, Liu N, Jia H, Dai Z, Yang Y, Wu Z. l-Leucine supplementation reduces growth performance accompanied by changed profiles of plasma amino acids and expression of jejunal amino acid transporters in breast-fed intra-uterine growth-retarded piglets. Br J Nutr 2023; 129:2025-2035. [PMID: 36047051 DOI: 10.1017/s0007114522002823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previously, we provided an evidence that l-Leucine supplementation facilitates growth performance in suckling piglets with normal birth weight. However, it remains hitherto obscure weather breast-fed piglets displaying intra-uterine growth restriction (IUGR) show a similar effect in response to l-Leucine provision. In this study, 7-d-old sow-reared IUGR piglets were orally administrated with l-Leucine (0, 0·7, 1·4 or 2·1 g/kg BW) twice daily for 2 weeks. Increasing leucine levels hampered the growth performance of suckling IUGR piglets. The average daily gain of IUGR piglets was significantly reduced in 1·4 g/kg BW and 2·1 g/kg BW l-Leucine supplementation groups (P < 0·05). Except for ornithine and glutamine, the plasma concentrations of other amino acids were abated as l-Leucine levels increased (P < 0·05). Leucine supplementation led to reduction in the levels of urea, blood ammonia, blood glucose, TAG and total cholesterol, as well as an elevation in the level of LDL-cholesterol in suckling IUGR piglets (P < 0·05). In addition, 1·4 g/kg BW of l-Leucine enhanced the mRNA expression of ATB0,+, whereas decreased the mRNA abundances of CAT1, y + LAT1, ASCT2 and b0,+AT in the jejunum (P < 0·05). Concomitantly, the jejunum of IUGR piglets in l-Leucine group contains more ATB0,+ and less SNAT2 protein than in the control (P < 0·05). Collectively, l-Leucine supplementation impairs growth performance in breast-fed IUGR piglets, which may be associated with depressed nutritional conditions and alterations in the uptake of amino acids and the expression of amino acid transporters in the small intestine.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Yuli Sun
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
10
|
Dini I, Mancusi A. Food Peptides for the Nutricosmetic Industry. Antioxidants (Basel) 2023; 12:antiox12040788. [PMID: 37107162 PMCID: PMC10135249 DOI: 10.3390/antiox12040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, numerous reports have described bioactive peptides (biopeptides)/hydrolysates produced from various food sources. Biopeptides are considered interesting for industrial application since they show numerous functional properties (e.g., anti-aging, antioxidant, anti-inflammatory, and antimicrobial properties) and technological properties (e.g., solubility, emulsifying, and foaming). Moreover, they have fewer side effects than synthetic drugs. Nevertheless, some challenges must be overcome before their administration via the oral route. The gastric, pancreatic, and small intestinal enzymes and acidic stomach conditions can affect their bioavailability and the levels that can reach the site of action. Some delivery systems have been studied to avoid these problems (e.g., microemulsions, liposomes, solid lipid particles). This paper summarizes the results of studies conducted on biopeptides isolated from plants, marine organisms, animals, and biowaste by-products, discusses their potential application in the nutricosmetic industry, and considers potential delivery systems that could maintain their bioactivity. Our results show that food peptides are environmentally sustainable products that can be used as antioxidant, antimicrobial, anti-aging, and anti-inflammatory agents in nutricosmetic formulations. Biopeptide production from biowaste requires expertise in analytical procedures and good manufacturing practice. It is hoped that new analytical procedures can be developed to simplify large-scale production and that the authorities adopt and regulate use of appropriate testing standards to guarantee the population's safety.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
11
|
Lee J, Kwon C, Won S, Kim H, Kil D. Evaluation of tryptophan biomass as an alternative to conventional crystalline tryptophan in broiler diets. J APPL POULTRY RES 2023. [DOI: 10.1016/j.japr.2022.100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
12
|
Pérez-Carrasco V, Uroz-Torres D, Soriano M, Solana C, Ruiz-Linares M, Garcia-Salcedo JA, Arias-Moliz MT. Microbiome in paired root apices and periapical lesions and its association with clinical signs in persistent apical periodontitis using next-generation sequencing. Int Endod J 2023; 56:622-636. [PMID: 36689323 DOI: 10.1111/iej.13893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
AIM To assess and compare the microbiome of paired root apices and periapical lesions from cases with failed endodontic treatment and to associate the microbiome and bacterial metabolic pathways in both sites with asymptomatic apical periodontitis (AAP) and symptomatic apical periodontitis (SAP), using next-generation sequencing (NGS). METHODOLOGY Matched root apices and periapical lesions of patients with failed root canal treatments were surgically extracted. Specimens were cryopulverized, bacterial DNA was extracted and the V3-V4 hypervariable regions of the 16 S rRNA gene were amplified and sequenced using the Illumina Miseq platform. Diversity and community composition were studied in the paired samples, as well as in AAP and SAP cases. Diversity indices were compared in each case by means of the Wilcoxon matched-pairs signed rank and Mann-Whitney U tests. Differences in the community composition were explored with multivariate statistical analysis and Linear discriminant analysis Effect Size (LEfSe). Bacterial functional study was performed through the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis. RESULTS Twenty-one paired apices and lesions were successfully sequenced and analysed, identifying a total of 21 phyla and 600 genera. A higher alpha-diversity was observed in the periapical lesions, although no global differences in the community composition between the two sites were found (p = .87), the most prevalent genera being Fusobacterium, Porphyromonas and Streptococcus. Prevotella, Clostridiales_vadinBB60_group, Bosea, Phreatobacter, Afipia and Xanthobacteriaceae_unclassified were enriched in SAP samples, while Pseudopropionibacterium, Campylobacter and Peptoniphilus were significantly more abundant in AAP cases (p < .05). Metabolic pathways involved in the amino acid metabolism or degradation and flagellum assembly were more abundant in SAP samples, whereas glucose metabolism-related pathways were associated with AAP. CONCLUSIONS The bacterial community composition was similar in the apices and periapical lesions. The microbiome was different in AAP and SAP samples, gram-negative bacteria showing higher relative abundances in SAP cases. An association was observed between amino acid degradation and flagellum assembly pathways, and the development of tenderness to percussion or palpation.
Collapse
Affiliation(s)
- Virginia Pérez-Carrasco
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain.,Microbiology Unit, University Hospital Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Uroz-Torres
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Private Practice, Granada, Spain
| | - Miguel Soriano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain.,Center for Research in Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Almería, Spain
| | - Carmen Solana
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Private Practice, Granada, Spain
| | - Matilde Ruiz-Linares
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Department of Stomatology, University of Granada, Granada, Spain
| | - Jose Antonio Garcia-Salcedo
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain.,Microbiology Unit, University Hospital Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Maria Teresa Arias-Moliz
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
13
|
Ma L, Jiang Y, Lu F, Wang S, Liu M, Liu F, Huang L, Li Y, Jiao N, Jiang S, Yuan X, Yang W. Quantitative Proteomic Analysis of Zearalenone-Induced Intestinal Damage in Weaned Piglets. Toxins (Basel) 2022; 14:toxins14100702. [PMID: 36287972 PMCID: PMC9609629 DOI: 10.3390/toxins14100702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Zearalenone (ZEN), also known as the F-2 toxin, is a common contaminant in cereal crops and livestock products. This experiment aimed to reveal the changes in the proteomics of ZEN-induced intestinal damage in weaned piglets by tandem mass spectrometry tags. Sixteen weaned piglets either received a basal diet or a basal diet supplemented with 3.0 mg/kg ZEN in a 32 d study. The results showed that the serum levels of ZEN, α-zearalenol, and β-zearalenol were increased in weaned piglets exposed to ZEN (p < 0.05). Zearalenone exposure reduced apparent nutrient digestibility, increased intestinal permeability, and caused intestinal damage in weaned piglets. Meanwhile, a total of 174 differential proteins (DEPs) were identified between control and ZEN groups, with 60 up-regulated DEPs and 114 down-regulated DEPs (FC > 1.20 or <0.83, p < 0.05). Gene ontology analysis revealed that DEPs were mainly involved in substance transport and metabolism, gene expression, inflammatory, and oxidative stress. The Kyoto Encyclopedia of Genes and Genomes analysis revealed that DEPs were significantly enriched in 25 signaling pathways (p < 0.05), most of which were related to inflammation and amino acid metabolism. Our study provides valuable clues to elucidate the possible mechanism of ZEN-induced intestinal injury.
Collapse
Affiliation(s)
- Lulu Ma
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Yanping Jiang
- Zhongcheng Feed Technology Co., Ltd., Feicheng 271600, China
| | - Fuguang Lu
- Shandong Yucheng Animal Husbandry Development Center Co., Ltd., Yucheng 251200, China
| | - Shujing Wang
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Mei Liu
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Faxiao Liu
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Libo Huang
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Yang Li
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Ning Jiao
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Shuzhen Jiang
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Xuejun Yuan
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.Y.); (W.Y.)
| | - Weiren Yang
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.Y.); (W.Y.)
| |
Collapse
|
14
|
L-Lysine Ameliorates Diabetic Nephropathy in Rats with Streptozotocin-Induced Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4547312. [PMID: 36132073 PMCID: PMC9484891 DOI: 10.1155/2022/4547312] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
Abstract
Introduction Diabetic nephropathy is one of the leading causes of end-stage renal disease worldwide. Uncontrolled hyperglycemia and subsequent production of glycation end-products activate the paths which lead to diabetic nephropathy. The aim of this study was to assess the effects of L-lysine on antioxidant capacity, biochemical factors, kidney function, HSP70 level, and the expression of the TGFβ, VEGF, and RAGE genes in rats with streptozocin-induced diabetes mellitus. Methods Thirty-two male Wistar rats were randomly allocated to four eight-rat groups, namely, a healthy group, a diabetic group treated with vehicle (DM + vehicle), a diabetic group treated with L-lysine (DM + Lys), and a healthy group treated with L-lysine (healthy + Lys). Rats in the DM + Lys and the healthy + Lys groups were treated with L-lysine 0.15%. The levels of fasting blood glucose, insulin, HbA1C, advanced glycation end-products (AGEs), lipid profile, serum creatinine, blood urea nitrogen, glomerular filtration rate, urine microalbumin, oxidative stress parameters, kidney histology and morphology, and TGFβ, VEGF, and RAGE gene expressions were assessed. Findings. An eight-week treatment with L-lysine significantly reduced the levels of fasting blood glucose, AGEs, kidney function parameters, oxidative stress parameters, lipid profile, and the TGFβ, VEGF, and RAGE gene expression and significantly increased the levels of serum insulin and tissue HSP70. Conclusion Treatment with L-lysine seems to slow down the progression of diabetic nephropathy.
Collapse
|
15
|
Yeshi K, Ruscher R, Loukas A, Wangchuk P. Immunomodulatory and biological properties of helminth-derived small molecules: Potential applications in diagnostics and therapeutics. FRONTIERS IN PARASITOLOGY 2022; 1:984152. [PMID: 39816468 PMCID: PMC11731824 DOI: 10.3389/fpara.2022.984152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2025]
Abstract
Parasitic helminths secrete and excrete a vast array of molecules known to help skew or suppress the host's immune response, thereby establishing a niche for sustained parasite maintenance. Indeed, the immunomodulatory potency of helminths is attributed mainly to excretory/secretory products (ESPs). The ESPs of helminths and the identified small molecules (SM) are reported to have diverse biological and pharmacological properties. The available literature reports only limited metabolites, and the identity of many metabolites remains unknown due to limitations in the identification protocols and helminth-specific compound libraries. Many metabolites are known to be involved in host-parasite interactions and pathogenicity. For example, fatty acids (e.g., stearic acid) detected in the infective stages of helminths are known to have a role in host interaction through facilitating successful penetration and migration inside the host. Moreover, excreted/secreted SM detected in helminth species are found to possess various biological properties, including anti-inflammatory activities, suggesting their potential in developing immunomodulatory drugs. For example, helminths-derived somatic tissue extracts and whole crude ESPs showed anti-inflammatory properties by inhibiting the secretion of proinflammatory cytokines from human peripheral blood mononuclear cells and suppressing the pathology in chemically-induced experimental mice model of colitis. Unlike bigger molecules like proteins, SM are ideal candidates for drug development since they are small structures, malleable, and lack immunogenicity. Future studies should strive toward identifying unknown SM and isolating the under-explored niche of helminth metabolites using the latest metabolomics technologies and associated software, which hold potential keys for finding new diagnostics and novel therapeutics.
Collapse
Affiliation(s)
- Karma Yeshi
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia
| | | | | | | |
Collapse
|
16
|
Xie S, He J, Masagounder K, Liu Y, Tian L, Tan B, Niu J. Dietary lysine levels modulate the lipid metabolism, mitochondrial biogenesis and immune response of grass carp, Ctenopharyngodon idellus. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
17
|
Anti-Inflammatory Function of Plant-Derived Bioactive Peptides: A Review. Foods 2022; 11:foods11152361. [PMID: 35954128 PMCID: PMC9368234 DOI: 10.3390/foods11152361] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation is considered to be a crucial factor in the development of chronic diseases, eight of which were listed among the top ten causes of death worldwide in the World Health Organization’s World Health Statistics 2019. Moreover, traditional drugs for inflammation are often linked to undesirable side effects. As gentler alternatives to traditional anti-inflammatory drugs, plant-derived bioactive peptides have been shown to be effective interventions against various chronic diseases, including Alzheimer’s disease, cardiovascular disease and cancer. However, an adequate and systematic review of the structures and anti-inflammatory activities of plant-derived bioactive peptides has been lacking. This paper reviews the latest research on plant-derived anti-inflammatory peptides (PAPs), mainly including the specific regulatory mechanisms of PAPs; the structure–activity relationships of PAPs; and their enzymatic processing based on the structure–activity relationships. Moreover, current research problems for PAPs are discussed, such as the shallow exploration of mechanisms, enzymatic solution determination difficulty, low yield and unknown in vivo absorption and metabolism and proposed future research directions. This work aims to provide a reference for functional activity research, nutritional food development and the clinical applications of PAPs.
Collapse
|
18
|
Deng Y, Han H, He L, Deng D, Wang J, Yin Y, Li T. Effects of Lysine-Lysine Dipeptide on Serum Amino Acid Profiles, Intestinal Morphology, and Microbiome in Suckling Piglets. Front Nutr 2022; 9:881371. [PMID: 35634396 PMCID: PMC9132013 DOI: 10.3389/fnut.2022.881371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Aims Small peptides are more energy-saving and efficiently absorbed compared to amino acids. Our study aimed to evaluate the effect of the Lys-Lys dipeptide on the improvement of growth performance, amino acid metabolism, and gut development in suckling piglets. Methods and Results Twenty-eight newborn suckling piglets were orally administrated with 0.1%, 1%, and 5% Lys-Lys dipeptide for 21 days. Our results showed that the Lys-Lys dipeptide has no significant effect on growth performance and intestinal morphology compared with the control group. We also found that the 1% Lys-Lys dipeptide significantly increased the concentrations of serum Lys, Thr, Phe, and Pro while decreasing Cys compared to the control group. Similarly, the 5% Lys-Lys dipeptide markedly increased the concentrations of serum Lys, Iso, Thr, Asp, Glu, and Pro compared to the control group. Moreover, the Lys-Lys dipeptide downregulated the expression of jejunal Slc7a1, Slc7a2, and Slc15a1 and ileal Slc7a2. Additionally, the Lys-Lys dipeptide decreased the microbiota richness indices and relative abundance of Bacteroidales. Conclusion In this study, we found that the Lys-Lys dipeptide contributes to the metabolism of amino acids but failed to affect the growth performance of piglets. Additionally, the Lys-Lys dipeptide decreased the relative abundance of Bacteroidales. These results provide a theoretical for the future application and research of Lys-Lys dipeptide in intestinal development of suckling piglets.
Collapse
Affiliation(s)
- Yuankun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Hui Han
- Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liuqin He
- Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Dun Deng
- Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Tang Ren Shen Group, Zhuzhou, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Tiejun Li
- Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| |
Collapse
|
19
|
Peng YC, Xu JX, Zeng CF, Zhao XH, You XM, Xu PP, Li LQ, Qi LN. Operable hepatitis B virus-related hepatocellular carcinoma: gut microbiota profile of patients at different ages. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:477. [PMID: 35571398 PMCID: PMC9096381 DOI: 10.21037/atm-22-1572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/20/2022] [Indexed: 11/08/2022]
Abstract
Background Age was important prognostic factors for operable hepatocellular carcinoma patients. The aim of the present study was to assess the difference in gut microbiota in patients with operable hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) at different ages ; to investigate the features of the microbiota and its function associated with different ages; to provide a preliminary look at effects of the gut microbiota dimension on prognostic. Methods From September 2020 to May 2021, patients with HBV-HCC were able to undergo liver resection and were recruited consecutively and divided into the younger age group (age <45 years) (Y.AG) (n=20), middle age group (age from 45 to 65 years) (M.AG) (n=13) 45–65 years, and older age group (age >65 years) (O.AG) (n=20). The relationships between gut microbiota and different ages were explored using 16S rRNA gene sequencing data. PICRUST2 was used to examine the metagenomic data in PHLF patients. Fisher’s exact and Mann-Whitney U-test were used for the data analysis. Results Pairwise comparison between the three groups showed that the α-diversity of Y.AG was significantly higher than that of O.AG (ACE Index, P=0.017; chao1 Index, P=0.031; observed_species Index, P=0.011; and goods_coverage Index, P=0.041). The β-diversity in the 3 groups differed significantly (stress =0.100), while the composition (β-diversity) differed significantly between the Y.AG and the M.AG (stress =0.090), the M.AG and the O.AG (stress =0.095), and the Y.AG and the O.AG (stress =0.099). At the genus level, 7 bacterial genera were significantly enriched in the O.AG compared with the Y.AG, of which Streptococcus, Blautia, Erysipelotrichaceae_UCG-003, and Fusicatenibacter represented the major variances in O.AG microbiomes. Eleven genera were significantly increased in the O.AG, of which Prevotella, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Ruminiclostridium, and Phascolarctobacterium represented the major variances in the O.AG. The Y.AG and the O.AG were predicted by PICRUSt2 analysis, which found 72 pathways related to differential gut microbiome at the genus level. Redundancy analysis showed that 7 environmental factors were significantly correlated with intestinal microorganisms, especially in the Y.AG compared with the O.AG. Conclusions Analysis of gut microbiota characteristics in patients of different ages could ultimately contribute to the development of novel avenues for the treatment of HCC at different ages.
Collapse
Affiliation(s)
- Yu-Chong Peng
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Jing-Xuan Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Chuan-Fa Zeng
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Xin-Hua Zhao
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Xue-Mei You
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Ping-Ping Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, China
| | - Lu-Nan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| |
Collapse
|
20
|
A Mixture of Valine and Isoleucine Restores the Growth of Protein-Restricted Pigs Likely through Improved Gut Development, Hepatic IGF-1 Pathway, and Plasma Metabolomic Profile. Int J Mol Sci 2022; 23:ijms23063300. [PMID: 35328720 PMCID: PMC8955368 DOI: 10.3390/ijms23063300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Valine (Val) alone or in combination with isoleucine (Ile) improves the growth under severe protein restriction; however, the underlying mechanisms remain unknown. In this study, we assessed whether Val/Ile-induced growth in protein-restricted pigs is associated with changes in gut development, hepatic insulin-like growth factor 1 (IGF-1) production, and blood metabolomics. Forty piglets were assigned to five dietary groups: positive control (PC) with standard protein content; low protein (LP) with very low protein content; and LP supplemented with Val (LPV), Ile (LPI), and Val and Ile (LPVI). LPVI reversed the negative effects of VLP diets on growth and gut morphology. Both LPV and LPVI restored the reduced transcript of IGF-1 while decreasing the transcript of insulin-like growth factor binding protein 1 (IGFBP1) in the liver. LPV and LPVI recovered the reduced plasma Val, glycine, and leucine concentrations, which were positively correlated with improved gut morphology and the hepatic IGF-1 gene expression and negatively correlated with hepatic IGFBP1 mRNA abundance. In conclusion, supplementation with a combination of Val and Ile into the VLP diets restored the decreased growth performance of pigs fed with these diets likely through improved gut development, hepatic IGF-1 expression and bioavailability, and plasma metabolomics profile.
Collapse
|
21
|
Wangchuk P, Anderson D, Yeshi K, Loukas A. Identification of Small Molecules of the Infective Stage of Human Hookworm Using LCMS-Based Metabolomics and Lipidomics Protocols. ACS Infect Dis 2021; 7:3264-3276. [PMID: 34767348 DOI: 10.1021/acsinfecdis.1c00428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hookworm infections affect millions of people worldwide and are responsible for impaired mental and physical growth in children, and anemias. There is no vaccine, and increasing anthelmintic drug resistance in nematodes of domestic animals, and reduced drug cure rates in nematode infections of humans is alarming. Despite this looming health problem, there is a significant knowledge gap in terms of nonproteinaceous "excretory/secretory products" (ESPs) and how they orchestrate a parasitic existence. In the current study, we have conducted the first metabolomic and lipidomic analysis of the infective third-stage filariform larvae (L3) of the predominant human hookworm Necator americanus using liquid chromatography-mass spectrometry. Altogether, we have identified a total of 645 small molecules that were mainly produced through amino acid and glycerophospholipid metabolism. Putatively, 495 metabolites were unique to the somatic tissue extract, and 34 metabolites were present only in the ESP component. More than 21 novel mass features with nitrogen and sulfur functional groups were detected in the ESP component for the first time from helminths. While this study could not establish the biological functions of the metabolites identified, literature searches revealed that these metabolites possess various biological properties, including anti-inflammatory activities. These metabolites are likely used by the parasite upon exposure to a host to facilitate skin penetration, passage through different tissues, and immune regulation in the small bowel. Overall, the results presented herein offer significant insight into the metabolome of N. americanus L3 and have the potential to instigate future work to establish biomarkers of infection. This area urgently needs attention, given the lack of sensitive point-of-care diagnostic tools.
Collapse
Affiliation(s)
- Phurpa Wangchuk
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Road, Smithfield, Cairns, Queensland 4878, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Royal Parade, Parkville, Victoria 3052, Australia
| | - Karma Yeshi
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Road, Smithfield, Cairns, Queensland 4878, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Road, Smithfield, Cairns, Queensland 4878, Australia
| |
Collapse
|
22
|
Gebeyew K, Yang C, He Z, Tan Z. Low-protein diets supplemented with methionine and lysine alter the gut microbiota composition and improve the immune status of growing lambs. Appl Microbiol Biotechnol 2021; 105:8393-8410. [PMID: 34617138 DOI: 10.1007/s00253-021-11620-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Feeding low-protein (LP) diets with essential amino acids could be an effective strategy for ruminants from economic, health and environmental perspectives. This study was conducted to investigate the effects of rumen-protected methionine and lysine (RML) in the LP diet on growth performance, innate immunity, and gut health of growing lambs. After 15 days of adaption, sixty-three male Hulunbuir lambs aged approximately 4 months were allotted to three dietary groups and each group had three pens with seven lambs for 60 days. The dietary treatments were as follows: a normal protein diet (14.5% CP, positive control; NP), LP diet (12.5% CP, negative control; LP), and LP diet with RML (12.5% CP, LP + RML). Lambs fed with LP + RML diet showed improved villus architecture and gut barrier function than those fed with the other two diets. The mRNA expressions of interleukin-1β, tumor necrosis factor-α, interferon-γ, toll-like receptor-4, and myeloid differentiation primary response 88 were downregulated in most regions of the intestinal segments by feeding the LP + RML diet. Compared with the NP diet, feeding lambs with the LP diet increased the abundance of Candidatus_Saccharimonas in all regions of the intestinal tract and reversed by feeding the LP + RML diet. Lambs in the LP + RML diet group had lower abundance of Erysipelotrichaceae_UCG-009 and Clostridium_sensu_stricto_1 than those in the LP diet group. The results showed that supplementing RML in the LP diet exhibited beneficial effects on host immune function, intestinal mucosal integrity, and microbiota composition. KEY POINTS: • Adding methionine and lysine in a low-protein diet improve the intestinal mucosal growth and integrity. • Feeding a low-protein diet with methionine and lysine enhance the innate immune status. • Adding methionine and lysine in a low-protein diet alter the intestinal microbiota composition.
Collapse
Affiliation(s)
- Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
- University of Chinese Academy of Science, Beijing, 100049, China.
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128, Hunan, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128, Hunan, China
| |
Collapse
|
23
|
Integrated Metabolomics and Proteomics Analyses in the Local Milieu of Islet Allografts in Rejection versus Tolerance. Int J Mol Sci 2021; 22:ijms22168754. [PMID: 34445459 PMCID: PMC8395897 DOI: 10.3390/ijms22168754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
An understanding of the immune mechanisms that lead to rejection versus tolerance of allogeneic pancreatic islet grafts is of paramount importance, as it facilitates the development of innovative methods to improve the transplant outcome. Here, we used our established intraocular islet transplant model to gain novel insight into changes in the local metabolome and proteome within the islet allograft’s immediate microenvironment in association with immune-mediated rejection or tolerance. We performed integrated metabolomics and proteomics analyses in aqueous humor samples representative of the graft’s microenvironment under each transplant outcome. The results showed that several free amino acids, small primary amines, and soluble proteins related to the Warburg effect were upregulated or downregulated in association with either outcome. In general, the observed shifts in the local metabolite and protein profiles in association with rejection were consistent with established pro-inflammatory metabolic pathways and those observed in association with tolerance were immune regulatory. Taken together, the current findings further support the potential of metabolic reprogramming of immune cells towards immune regulation through targeted pharmacological and dietary interventions against specific metabolic pathways that promote the Warburg effect to prevent the rejection of transplanted islets and promote their immune tolerance.
Collapse
|
24
|
Yeshi K, Creek DJ, Anderson D, Ritmejerytė E, Becker L, Loukas A, Wangchuk P. Metabolomes and Lipidomes of the Infective Stages of the Gastrointestinal nematodes, Nippostrongylus brasiliensis and Trichuris muris. Metabolites 2020; 10:metabo10110446. [PMID: 33171998 PMCID: PMC7694664 DOI: 10.3390/metabo10110446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023] Open
Abstract
Soil-transmitted helminths, including hookworms and whipworms, infect billions of people worldwide. Their capacity to penetrate and migrate through their hosts’ tissues is influenced by the suite of molecules produced by the infective developmental stages. To facilitate a better understanding of the immunobiology and pathogenicity of human hookworms and whipworms, we investigated the metabolomes of the infective stage of Nippostrongylus brasiliensis third-stage larvae (L3) which penetrate the skin and Trichuris muris eggs which are orally ingested, using untargeted liquid chromatography-mass spectrometry (LC-MS). We identified 55 polar metabolites through Metabolomics Standard Initiative level-1 (MSI-I) identification from N. brasiliensis and T. muris infective stages, out of which seven were unique to excretory/secretory products (ESPs) of N. brasiliensis L3. Amino acids were a principal constituent (33 amino acids). Additionally, we identified 350 putative lipids, out of which 28 (all known lipids) were unique to N. brasiliensis L3 somatic extract and four to T. muris embryonated egg somatic extract. Glycerophospholipids and glycerolipids were the major lipid groups. The catalogue of metabolites identified in this study shed light on the biology, and possible therapeutic and diagnostic targets for the treatment of these critical infectious pathogens. Moreover, with the growing body of literature on the therapeutic utility of helminth ESPs for treating inflammatory diseases, a role for metabolites is likely but has received little attention thus far.
Collapse
Affiliation(s)
- Karma Yeshi
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia; (E.R.); (L.B.); (A.L.)
- Correspondence: (K.Y.); (P.W.)
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (D.J.C.); (D.A.)
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (D.J.C.); (D.A.)
| | - Edita Ritmejerytė
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia; (E.R.); (L.B.); (A.L.)
| | - Luke Becker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia; (E.R.); (L.B.); (A.L.)
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia; (E.R.); (L.B.); (A.L.)
| | - Phurpa Wangchuk
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia; (E.R.); (L.B.); (A.L.)
- Correspondence: (K.Y.); (P.W.)
| |
Collapse
|
25
|
Mecocci S, Gevi F, Pietrucci D, Cavinato L, Luly FR, Pascucci L, Petrini S, Ascenzioni F, Zolla L, Chillemi G, Cappelli K. Anti-Inflammatory Potential of Cow, Donkey and Goat Milk Extracellular Vesicles as Revealed by Metabolomic Profile. Nutrients 2020; 12:E2908. [PMID: 32977543 PMCID: PMC7598260 DOI: 10.3390/nu12102908] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, extracellular vesicles (EVs), cell-derived micro and nano-sized structures enclosed in a double-layer membrane, have been in the spotlight for their high potential in diagnostic and therapeutic applications. Indeed, they act as signal mediators between cells and/or tissues through different mechanisms involving their complex cargo and exert a number of biological effects depending upon EVs subtype and cell source. Being produced by almost all cell types, they are found in every biological fluid including milk. Milk EVs (MEVs) can enter the intestinal cells by endocytosis and protect their labile cargos against harsh conditions in the intestinal tract. In this study, we performed a metabolomic analysis of MEVs, from three different species (i.e., bovine, goat and donkey) by mass spectroscopy (MS) coupled with Ultrahigh-performance liquid chromatography (UHPLC). Metabolites, both common or specific of a species, were identified and enriched metabolic pathways were investigated, with the final aim to evaluate their anti-inflammatory and immunomodulatory properties in view of prospective applications as a nutraceutical in inflammatory conditions. In particular, metabolites transported by MEVs are involved in common pathways among the three species. These metabolites, such as arginine, asparagine, glutathione and lysine, show immunomodulating effects. Moreover, MEVs in goat milk showed a greater number of enriched metabolic pathways as compared to the other kinds of milk.
Collapse
Affiliation(s)
- Samanta Mecocci
- Dipartimento di Medicina Veterinaria, University of Perugia, 06123 Perugia, Italy; (S.M.); (L.P.)
- Centro di Ricerca sul Cavallo Sportivo, University of Perugia, 06123 Perugia, Italy
| | - Federica Gevi
- Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, 01100 Viterbo, Italy; (F.G.); (L.Z.)
| | - Daniele Pietrucci
- Dipartimento per l’Innovazione Nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, 01100 Viterbo, Italy;
| | - Luca Cavinato
- Dipartimento di Biologia e Biotecnologie C. Darwin, Università di Roma la Sapienza, 00185 Roma, Italy; (L.C.); (F.R.L.); (F.A.)
| | - Francesco R. Luly
- Dipartimento di Biologia e Biotecnologie C. Darwin, Università di Roma la Sapienza, 00185 Roma, Italy; (L.C.); (F.R.L.); (F.A.)
| | - Luisa Pascucci
- Dipartimento di Medicina Veterinaria, University of Perugia, 06123 Perugia, Italy; (S.M.); (L.P.)
| | - Stefano Petrini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche, 06126 Perugia, Italy;
| | - Fiorentina Ascenzioni
- Dipartimento di Biologia e Biotecnologie C. Darwin, Università di Roma la Sapienza, 00185 Roma, Italy; (L.C.); (F.R.L.); (F.A.)
| | - Lello Zolla
- Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, 01100 Viterbo, Italy; (F.G.); (L.Z.)
| | - Giovanni Chillemi
- Dipartimento per l’Innovazione Nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, 01100 Viterbo, Italy;
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, CNR, 70126 Bari, Italy
| | - Katia Cappelli
- Dipartimento di Medicina Veterinaria, University of Perugia, 06123 Perugia, Italy; (S.M.); (L.P.)
- Centro di Ricerca sul Cavallo Sportivo, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
26
|
Huang L, Ren P, Ouyang Z, Wei T, Kong X, Li T, Yin Y, He S, Yang C, He Q. Effect of fermented feed on growth performance, holistic metabolism and fecal microbiota in weanling piglets. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Eating right for a healthier heart: Food choice contributes to cardiometabolic benefits and reduction of carotid intima-media thickness. Nutrition 2020; 78:110892. [PMID: 32721768 DOI: 10.1016/j.nut.2020.110892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Diets may alter an individual's metabolism and inflammation, collectively leading to the modulation of cardiovascular health and disease process. The aim of this study was to investigate the effects of diets and diet-associated metabolites on metabolic profiles, inflammatory status, and severity of atherosclerosis. METHODS A cross-sectional study was conducted with 81 healthy adults in Taiwan. A food frequency questionnaire was obtained for evaluating dietary intake. Carotid intima-media thickness (CIMT), a relevant marker of subclinical atherosclerosis, was measured by ultrasound. RESULTS Consumption of instant noodles and sugary beverages was associated with worse metabolic profiles. In contrast, the intake of fresh fruit and green vegetables was correlated with better metabolic parameters. Sugary beverages were dose-dependently correlated with higher expressions of toll-like receptor (TLR)2 and TLR4 on monocytes, whereas fresh fruit intake was associated with lower TLRs. Furthermore, consumption of green vegetables, brown rice, and >2000 mL/d of water was inversely correlated with CIMT. The diet-associated metabolites including trimethylamine N-oxide and S-adenosyl-l-homocysteine, were positively associated with CIMT, whereas l-lysine and l-carnitine were associated with decreased CIMT. Interestingly, intake of strict vegetarian foods resulted in lower serum total cholesterol levels without a detectable effect on inflammatory status or CIMT. CONCLUSIONS Independent of the pattern of strict vegetarian foods, individuals who consumed more vegetables, fresh fruit, and water showed better cardiovascular health as evidenced by their metabolic and inflammatory status and CIMT results.
Collapse
|
28
|
MNase Profiling of Promoter Chromatin in Salmonella typhimurium-Stimulated GM12878 Cells Reveals Dynamic and Response-Specific Nucleosome Architecture. G3-GENES GENOMES GENETICS 2020; 10:2171-2178. [PMID: 32404364 PMCID: PMC7341138 DOI: 10.1534/g3.120.401266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleosome is the primary unit of chromatin structure and commonly imputed as a regulator of nuclear events, although the exact mechanisms remain unclear. Recent studies have shown that certain nucleosomes can have different sensitivities to micrococcal nuclease (MNase) digestion, resulting in the release of populations of nucleosomes dependent on the concentration of MNase. Mapping MNase sensitivity of nucleosomes at transcription start sites genome-wide reveals an important functional nucleosome organization that correlates with gene expression levels and transcription factor binding. In order to understand nucleosome distribution and sensitivity dynamics during a robust genome response, we mapped nucleosome position and sensitivity using multiple concentrations of MNase. We used the innate immune response as a model system to understand chromatin-mediated regulation. Herein we demonstrate that stimulation of a human lymphoblastoid cell line (GM12878) with heat-killed Salmonella typhimurium (HKST) results in changes in nucleosome sensitivity to MNase. We show that the HKST response alters the sensitivity of -1 nucleosomes at highly expressed promoters. Finally, we correlate the increased sensitivity with response-specific transcription factor binding. These results indicate that nucleosome sensitivity dynamics reflect the cellular response to HKST and pave the way for further studies that will deepen our understanding of the specificity of genome response.
Collapse
|
29
|
Abou-Elkhair R, Ahmed H, Ketkat S, Selim S. Supplementation of a low-protein diet with tryptophan, threonine, and valine and its impact on growth performance, blood biochemical constituents, immune parameters, and carcass traits in broiler chickens. Vet World 2020; 13:1234-1244. [PMID: 32801578 PMCID: PMC7396355 DOI: 10.14202/vetworld.2020.1234-1244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/14/2020] [Indexed: 12/30/2022] Open
Abstract
AIM This study aimed to investigate the effects of protein reduction with supplementation of limiting amino acids (AA, tryptophan, threonine, and valine) on growth performance, blood biochemical, immunity parameters, and carcass traits in broiler chickens. MATERIALS AND METHODS Three hundred one-day-old broiler chicks were randomly allotted into three treatment groups, with five replicates per treatment and 20 broiler chickens per replicate. The three experimental diets were formulated with different dietary crude protein (CP) %, (control [CON] and CON with 1% [CP-1%] or 2% [CP-2%] less CP units) during the starter, grower, and finisher phases. The CP of the experimental diets were 22, 21, and 20% for the starting period (day 1-14); 20, 19, and 18% CP for the growing period (day 15-28); and 18, 17, and 16% CP for the finishing period (day 29-35) in CON, CP-1%, and CP-2%, respectively. The low-CP diets (CP-1% and CP-2%) were supplemented with combined AA, threonine+tryptophan+valine, to meet the respective levels of the CON diet. RESULTS The CP-2% group had greater (p<0.05; linear, p<0.05) final body weight and gain and better feed conversion ratio. The combined AA inclusion in the low-CP diet (CP-1% and CP-2%) increased (p<0.001; linear, p<0.001) carcass and breast meat yield as well as CP% of breast meat. The reduction of CP% with AA supplementation (CP-2%) decreased (p<0.05; linear, p<0.05) serum triglycerides, glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and alkaline phosphatase, while increased (p<0.01; linear, p<0.01) phagocytic activity and phagocytic index. The mRNA expression of splenic and cecal tonsil interleukin 4 and interferon gamma was upregulated (p<0.001; linear, p<0.001) in the low-CP diets supplemented with AA (CP-1% and CP-2%). Dietary supplementation with AA to low-protein diets improved (p<0.01; linear, p<0.01) the economic returns of broiler chickens. CONCLUSION A reduction of dietary CP and increased synthetic AA such as threonine, valine, and tryptophan should be considered to improve performance, health, and immunity in broiler chickens.
Collapse
Affiliation(s)
- Reham Abou-Elkhair
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Hamada Ahmed
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Damanhour University, Egypt
| | - Sara Ketkat
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Shaimaa Selim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shibin El-Kom, 32514, Egypt
| |
Collapse
|
30
|
Ao X, Zhang S, Kim J, Kim I. Effect of dietary standardized ileal digestible lysine and copper density on growth performance, nutrient digestibility, blood profiles, fecal microbiota, backfat thickness and lean meat percentage in growing pigs. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Palencia JYP, Resende M, Lemes MAG, Mendes MFSA, Silva SR, Otani L, Schinckel AP, Abreu MLT, Cantarelli VS. Relative bioavailability of l-lysine sulfate is equivalent to that of l-lysine HCl for nursery piglets. J Anim Sci 2019; 97:269-278. [PMID: 30312466 PMCID: PMC6313129 DOI: 10.1093/jas/sky394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/10/2018] [Indexed: 01/16/2023] Open
Abstract
Supplementary l-lysine sources include l-lysine HCl and l-lysine sulfate. l-Lysine sulfate contains at least 50% l-Lys and other components as residues from the fermentation process, other amino acids, and other organic and inorganic substances, being an alternative to l-Lys HCl. The aim of this study was to evaluate the relative bioavailability (RBV) of l-Lys sulfate in comparison with l-Lys HCl and its effects on performance, blood parameters, intestinal functionality, and the apparent total tract digestibility in nursery piglets. A total of 168 female piglets (DB90 × PIC337), weaned at 22 d (BW = 6.29 ± 0.41 kg), were distributed in seven dietary treatments and eight replicates, with three pigs per pen. The experimental period of 42 d was divided into two phases (phase 1, days 0-21; phase 2, days 21 to 42). The basal diet (CON) was lysine-deficient formulated to meet 73% of standardized ileal digestible Lys requirements. For the other diets, the CON was supplemented with three levels (80%, 90%, and 100% of standardized ileal digestible Lys requirements) of l-Lys sulfate (70% l-Lys) or l-Lys HCl (79% l-Lys). There were no significant differences (P > 0.05) in the performance and concentrations of plasma urea and creatinine between the l-Lys sources. The RBV of l-Lys sulfate relative to l-Lys HCl was 106%, 119%, and 117% for effects on ADG, G:F, and plasma urea, respectively. Lys deficiency resulted in a greater (P < 0.05) incidence of diarrhea, while pigs supplemented with Lys sulfate or Lys HCl showed greater (P < 0.05) villus height in the jejunum when compared to those receiving the CON. Diets supplemented with l-Lys sulfate had greater (P < 0.05) apparent total tract digestibility of dry matter, gross energy, and crude protein. In conclusion, the RBV of l-Lys sulfate for effects on ADG, G:F, and plasma urea is equivalent to that of l-Lys HCl for nursery piglets.
Collapse
Affiliation(s)
- Jorge Y P Palencia
- Animal Science Department, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Maíra Resende
- Animal Science Department, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Marina A G Lemes
- Animal Science Department, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Melissa F S A Mendes
- Animal Science Department, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Sudário R Silva
- Animal Science Department, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Lyssa Otani
- CJ do Brasil, Ind. Com. Prod. Alim. Ltda, São Paulo, Brazil
| | | | - Márvio L T Abreu
- Animal Science Department, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Vinícius S Cantarelli
- Animal Science Department, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| |
Collapse
|
32
|
van Sadelhoff JHJ, Perez Pardo P, Wu J, Garssen J, van Bergenhenegouwen J, Hogenkamp A, Hartog A, Kraneveld AD. The Gut-Immune-Brain Axis in Autism Spectrum Disorders; A Focus on Amino Acids. Front Endocrinol (Lausanne) 2019; 10:247. [PMID: 31057483 PMCID: PMC6477881 DOI: 10.3389/fendo.2019.00247] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/29/2019] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorder (ASD) is a range of neurodevelopmental conditions that affect communication and social behavior. Besides social deficits, systemic inflammation, gastrointestinal immune-related problems, and changes in the gut microbiota composition are characteristic for people with ASD. Animal models showed that these characteristics can induce ASD-associated behavior, suggesting an intimate relationship between the microbiota, gut, immune system and the brain in ASD. Multiple factors can contribute to the development of ASD, but mutations leading to enhanced activation of the mammalian target of rapamycin (mTOR) are reported frequently. Hyperactivation of mTOR leads to deficits in the communication between neurons in the brain and to immune impairments. Hence, mTOR might be a critical factor linking the gut-brain-immune axis in ASD. Pharmacological inhibition of mTOR is shown to improve ASD-associated behavior and immune functions, however, the clinical use is limited due to severe side reactions. Interestingly, studies have shown that mTOR activation can also be modified by nutritional stimuli, in particular by amino acids. Moreover, specific amino acids are demonstrated to inhibit inflammation, improve gut barrier function and to modify the microbiota composition. In this review we will discuss the gut-brain-immune axis in ASD and explore the potential of amino acids as a treatment option for ASD, either via modification of mTOR activity, the immune system or the gut microbiota composition.
Collapse
Affiliation(s)
- Joris H. J. van Sadelhoff
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Paula Perez Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jiangbo Wu
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anita Hartog
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Veterinary Pharmacology, Institute for Risk Assessment Studies, Faculty of Veterinary Sciences, Utrecht University, Utrecht, Netherlands
- *Correspondence: Aletta D. Kraneveld
| |
Collapse
|
33
|
Han H, Li Y, Fang J, Liu G, Yin J, Li T, Yin Y. Gut Microbiota and Type 1 Diabetes. Int J Mol Sci 2018; 19:ijms19040995. [PMID: 29584630 PMCID: PMC5979537 DOI: 10.3390/ijms19040995] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022] Open
Abstract
Recently, the onset of type 1 diabetes (T1D) has increased rapidly and became a major public health concern worldwide. Various factors are associated with the development of T1D, such as diet, genome, and intestinal microbiota. The gastrointestinal (GI) tract harbors a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host homeostasis and metabolic diseases. Recent evidence shows that altered gut bacterial composition (dysbiosis) is highly associated with the pathogenesis of insulin dysfunction and T1D and, thus, targeting gut microbiota may serve as a therapeutic potential for T1D patients. In this study, we updated the effect of gut microbiota on T1D and potential mechanisms were discussed.
Collapse
Affiliation(s)
- Hui Han
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Yuying Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Gang Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
| | - Jie Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Tiejun Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China.
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China.
| |
Collapse
|
34
|
Yin J, Li Y, Han H, Liu Z, Zeng X, Li T, Yin Y. Long-term effects of lysine concentration on growth performance, intestinal microbiome, and metabolic profiles in a pig model. Food Funct 2018; 9:4153-4163. [DOI: 10.1039/c8fo00973b] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lysine is a common limiting amino acid in human and animal diets and plays an important role in cell proliferation and metabolism.
Collapse
Affiliation(s)
- Jie Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences
- Changsha
- China
| | - Yuying Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences
- Changsha
- China
| | - Hui Han
- Laboratory of Animal Nutritional Physiology and Metabolic Process
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences
- Changsha
- China
| | - Zhaojin Liu
- Department of Animal Science
- Hunan Agriculture University
- Changsha 410125
- China
| | - Xiangfang Zeng
- College of Animal Science and Technology
- Chinese Agriculture University
- Beijing
- China
| | - Tiejun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences
- Changsha
- China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences
- Changsha
- China
| |
Collapse
|