1
|
Yang Q, Chang X, Lee JY, Wisniewski H, Zhou Y, Bernstein AD, Bonder EM, Kaelber JT, Wu T, Pedrielli G, Zhang F. Angle-controllable RNA tiles for programable array assembly and RNA sensing. Nat Commun 2025; 16:3728. [PMID: 40253384 PMCID: PMC12009304 DOI: 10.1038/s41467-025-58938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/03/2025] [Indexed: 04/21/2025] Open
Abstract
Programmed self-assembly of RNA nanostructures presents a strategic approach to developing biomaterials with tailored properties and functionalities. Despite advancements, the variety, complexity, and programmability of de novo engineered RNA nanostructures remain limited. Here, we introduce a category of artificially designed RNA tiles by integrating antiparallel crossovers and T-junctions, featuring a controllable angle of either 65o or 90o. A total of 22 distinct tiles are explored, significantly expanding the collection of artificially designed multi-stranded RNA tiles. We investigate the design strategies that affect array assembly including T-loop configuration, sticky end pairing, structural diversification, and variations in annealing methods. Additionally, one single-stranded TC-RNA tile is designed and folded co-transcriptionally, suggesting promising applications in synthetic biology and molecular engineering. Furthermore, we demonstrate the integration of split broccoli RNA aptamers into the multi-stranded monomer tiles, enabling fluorescence activation along linear arrays for programmable RNA sensing. The facile incorporation with RNA functional nanostructures highlights the vast potential of these RNA tiles in constructing more sophisticated nanostructures for diverse biomaterial applications.
Collapse
Affiliation(s)
- Qi Yang
- Department of Chemistry, Rutgers University, Newark, NJ, 07102, USA
| | - Xu Chang
- Department of Chemistry, Rutgers University, Newark, NJ, 07102, USA
| | - Jung Yeon Lee
- Department of Chemistry, Rutgers University, Newark, NJ, 07102, USA
| | - Henry Wisniewski
- Department of Chemistry, Rutgers University, Newark, NJ, 07102, USA
| | - You Zhou
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, 85281, USA
- ASU-Mayo Center for Innovative Imaging, Arizona State University, Tempe, AZ, 85281, USA
| | - Ashley D Bernstein
- Rutgers CryoEM & Nanoimaging Facility, Rutgers University, Piscataway, NJ, 08854, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ, 07102, USA
| | - Jason T Kaelber
- Rutgers CryoEM & Nanoimaging Facility, Rutgers University, Piscataway, NJ, 08854, USA
| | - Teresa Wu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, 85281, USA
- ASU-Mayo Center for Innovative Imaging, Arizona State University, Tempe, AZ, 85281, USA
| | - Giulia Pedrielli
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, 85281, USA
- ASU-Mayo Center for Innovative Imaging, Arizona State University, Tempe, AZ, 85281, USA
| | - Fei Zhang
- Department of Chemistry, Rutgers University, Newark, NJ, 07102, USA.
| |
Collapse
|
2
|
Wang C, Gao Y, Liu K, Zhang Y, Sun Z, Huang M, Qu Z, Yu S, Han J, Mei Z, Dou S, Jiang J, Li Y, Li N, Huang C, Dong Y, Yang B, Du W. tiRNA-HAR contributes to ischemic myocardial injury via facilitating HuR-mediated stability of P53. Transl Res 2025:S1931-5244(25)00038-6. [PMID: 40252996 DOI: 10.1016/j.trsl.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/02/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
Cardiomyocyte death due to heart occlusion of coronary artery is the main driver to myocardial infarction (MI) and subsequent heart failure progression. tsRNA, a small RNA fragment from tRNA, have been shown to be implicated in many physiological and pathological processes by exerting different biological functions, but the roles of tsRNA in ischemic cardiac injury remained to be determined. The present study identified a hypoxia responsive-tiRNA (tiRNA-HAR) was markedly upregulated in ischemic mouse myocardium and hypoxic cardiomyocytes, respectively. Enforced expression of tiRNA-HAR by transfecting its mimic caused and aggravated, while knockdown of tiRNA-HAR mitigated cardiomyocyte apoptosis upon hypoxia. Cardiac specific knockdown of tiRNA-HAR mediated by AAV9 (adeno-associated virus 9) harboring an antisense oligonucleotide reduced cardiomyocytes apoptosis and improved cardiac function after MI. Mechanistically, tiRNA-HAR directly bound to HuR and enhanced the binding capacity of HuR and P53, thereby increasing the stability of P53. Silencing of HuR partially reversed the aggravative effects of tiRNA-HAR overexpression on cardiomyocyte apoptosis in the context of hypoxia. Collectively, our study reveals tiRNA-HAR play a critical role in regulating cardiomyocytes apoptosis and cardiac injury via targeting HuR/P53 signaling axis after MI, and tiRNA-HAR might be a novel therapeutic target for treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Changhao Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yuelin Gao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Kuiwu Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yaozhi Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Zhiyong Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Min Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Zhezhe Qu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shuting Yu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jiaqi Han
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Zhongting Mei
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shunkang Dou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jianhao Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Ying Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Na Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Chuanhao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yuechao Dong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Baofeng Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, China.
| | - Weijie Du
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, China.
| |
Collapse
|
3
|
Ma L, Zhao F, Zhao Z, Zhang L, Yao J, Ma Q, Deng X, Wang J, Gu Y, Zhang J, Darwish HYA. Differential expression of tRNA-derived small RNAs in Juvenile and adult sheep skin: implications for developmental and immune regulation. BMC Genomics 2025; 26:144. [PMID: 39953408 PMCID: PMC11829391 DOI: 10.1186/s12864-025-11345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND tRNA fragments (tRFs) are small non-coding RNAs generated from cleaved tRNA molecules, playing key roles in gene regulation and cellular processes. Produced by ribonucleases like angiogenin and Dicer, tRFs vary in length and function in gene silencing and stress responses. They interact with Argonaute proteins and affect mRNA levels, and are emerging as potential diagnostic and therapeutic targets for diseases such as cancer and neurodegenerative disorders. Given that the skin is the largest organ in mammals, it serves as an ideal model for studying development and various diseases. Therefore, this study investigates tRF expression in sheep skin tissues to understand their regulatory roles during growth and development. RESULTS This study analyzed skin tissue from five 1-month-old lambs and five 24-month-old adult Tan sheep using small RNA sequencing and proteomics. Raw sequencing data were filtered and aligned to identify various tsRNAs, while proteomic data were assessed for differential expression. Principal Component Analysis (PCA) revealed distinct separation between juvenile and adult samples based on tsRNA expression patterns, indicating intra-group similarity and inter-group differences. Differentially expressed tsRNAs were identified, with 19 highly expressed tsRNAs at 1 month of age. Proteomic screening identified 932 highly expressed and 835 lowly expressed proteins in the 1-month-old group, with functional enrichment highlighting immunity and inflammation pathways. Predictive analysis of tsRNA target genes intersected with 20 differentially expressed proteins involved in mitochondrial metabolism and stress response. CONCLUSION This study reveals that tsRNAs significantly influence developmental and immune processes in sheep, with distinct expression patterns between juveniles and adults. Future research should validate these findings and further elucidate the functional mechanisms of tsRNA regulation.
Collapse
Affiliation(s)
- Lina Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Fengru Zhao
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - Zhengwei Zhao
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Letian Zhang
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Jiajie Yao
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Qing Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xuemei Deng
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Jiankui Wang
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China.
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| | - Hesham Y A Darwish
- Department of Applied Biotechnology, Molecular Biology Researches & Studies Institute, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
4
|
Fu Y, Sang J, Zhang F, Jiang S, Li F, Liang T, Xu C. Exosomal tRF-1003 induces angiogenesis via regulating the HIF1α/VEGF signaling in multiple myeloma. Int Immunopharmacol 2025; 146:113862. [PMID: 39689600 DOI: 10.1016/j.intimp.2024.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/07/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Multiple myeloma (MM) remains a therapeutically challenging hematologic malignancy characterized by frequent relapse and disease progression. Angiogenesis regulated by non-coding RNAs plays a vital role in MM pathogenesis. Despite the potential clinical applications of tsRNAs, the specific mechanisms by which they contribute to MM progression, particularly through angiogenesis within the bone marrow microenvironment, remain elusive. METHODS In this study, we focused on the role of exosomal tRF-1003 in MM progression. Serum and bone marrow samples from relapsed and refractory multiple myeloma (R/RMM) and newly diagnosed multiple myeloma (NDMM) patients were analyzed for tsRNA expression. Functional assays, including transwell migration, wound-healing assays, and in vivo tumor formation studies, were employed to assess the angiogenic potential of tRF-1003 in HUVEC. Mechanistic studies were conducted to understand how tRF-1003 modulates the HIF-1α/VEGF signaling pathway through interaction with MAPK1. RESULTS We found that tRF-1003 was significantly upregulated in serum exosomes derived from R/RMM patients. Exosomal tRF-1003 was efficiently delivered to endothelial cells, leading to enhanced angiogenesis both in vitro and in vivo. Mechanistically, tRF-1003 was shown to activate HIF-1α/VEGF signaling in endothelial cells by downregulating MAPK1 expression, thereby promoting angiogenesis. Overexpression of MAPK1 in endothelial cells partially reversed the angiogenic effects induced by exosomal tRF-1003. CONCLUSION Our findings reveal that exosomal tRF-1003 plays a pivotal role in MM angiogenesis by modulating the HIF-1α/VEGF signaling pathway through MAPK1. These insights provide a novel perspective on the mechanisms driving MM progression and highlight the potential therapeutic value of targeting tRF-1003 in managing multiple myeloma.
Collapse
Affiliation(s)
- Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha 410000, China; Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha 410000, China
| | - Jianyao Sang
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha 410000, China
| | - Fangrong Zhang
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha 410000, China
| | - Siyi Jiang
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha 410000, China
| | - Fangfang Li
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha 410000, China
| | - Ting Liang
- Department of Blood Transfusion, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518000, China.
| | - Cong Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518000, China.
| |
Collapse
|
5
|
Qiu P, Jiang Q, Song H. Unveiling the hidden world of transfer RNA-derived small RNAs in inflammation. J Inflamm (Lond) 2024; 21:46. [PMID: 39533297 PMCID: PMC11556027 DOI: 10.1186/s12950-024-00418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a newly discovered class of small noncoding RNAs (sncRNAs) that include tRNA-derived stress-induced RNAs (tiRNAs) and tRNA-derived fragments (tRFs). Following the development of high-throughput sequencing technology, an increasing number of tsRNAs have been discovered with vital functions in different physiological and pathophysiological processes. Extensive research has revealed that tsRNAs are involved in various diseases, such as cancers, autoimmune illnesses and other diseases. This review focuses on the role and significance of tsRNAs in inflammation, such as the regulation of substances including inflammatory inducers, inflammatory cells and inflammatory factors, which contribute to the pathogenesis of inflammation-related diseases. Moreover, we discuss in-depth the molecular pathogenic mechanisms of tsRNAs in inflammation-related diseases through different signaling pathways and assess their clinical value, providing new perspectives for the exploration of tsRNA functions and inflammation-related diseases.
Collapse
Affiliation(s)
- Peiru Qiu
- Health Science Center, Ningbo University, Ningbo, China
| | - Qi Jiang
- Gastroenterology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Haojun Song
- Gastroenterology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China.
- Department of Gastroenterology, Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Biobank, Ningbo, China.
| |
Collapse
|
6
|
Cai J, Li C, Liu S, Tan M, Sun Y, Sun X, Yang M, He B. Angiogenin-mediated tsRNAs control inflammation and metabolic disorder by regulating NLRP3 inflammasome. Cell Death Differ 2024; 31:1057-1069. [PMID: 38740959 PMCID: PMC11303556 DOI: 10.1038/s41418-024-01311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
The cellular stress response system in immune cells plays a crucial role in regulating the development of inflammatory diseases. In response to cellular damage or microbial infection, the assembly of the NLRP3 inflammasome induces pyroptosis and the release of inflammatory cytokines. Meanwhile, Angiogenin (Ang)-mediated transfer RNA-derived small RNAs (tsRNAs) promote cell survival under stressful conditions. While both tsRNAs and inflammasomes are induced under stress conditions, the interplay between these two systems and their implications in regulating inflammatory diseases remains poorly understood. In this study, it was demonstrated that Ang deficiency exacerbated sodium arsenite-induced activation of NLRP3 inflammasome and pyroptosis. Moreover, Ang-induced 5'-tsRNAs inhibited NLRP3 inflammasome activation and pyroptosis. Mechanistically, 5'-tsRNAs recruit DDX3X protein into stress granules (SGs), consequently inhibiting the interaction between DDX3X and NLRP3, thus leading to the suppression of NLRP3 inflammasome activation. Furthermore, in vivo results showed that Ang deficiency led to the downregulation of tsRNAs, ultimately leading to an exacerbation of NLRP3 inflammasome-dependent inflammation, including lipopolysaccharide-induced systemic inflammation and type-2 diabetes-related inflammation. Altogether, our study sheds a new light on the role of Ang-induced 5'-tsRNAs in regulating NLRP3 inflammasome activation via SGs, and highlights tsRNAs as a promising target for the treatment of NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Jiangxue Cai
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chenxuan Li
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Suyuan Liu
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Meiling Tan
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yiran Sun
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaoxiao Sun
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Miaoxin Yang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Bin He
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
7
|
Li D, Xie X, Yin N, Wu X, Yi B, Zhang H, Zhang W. tRNA-Derived Small RNAs: A Novel Regulatory Small Noncoding RNA in Renal Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:1-11. [PMID: 38322624 PMCID: PMC10843216 DOI: 10.1159/000533811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/23/2023] [Indexed: 02/08/2024]
Abstract
Background tRNA-derived small RNAs (tsRNAs) are an emerging class of small noncoding RNAs derived from tRNA cleavage. Summary With the development of high-throughput sequencing, various biological roles of tsRNAs have been gradually revealed, including regulation of mRNA stability, transcription, translation, direct interaction with proteins and as epigenetic factors, etc. Recent studies have shown that tsRNAs are also closely related to renal disease. In clinical acute kidney injury (AKI) patients and preclinical AKI models, the production and differential expression of tsRNAs in renal tissue and plasma were observed. Decreased expression of tsRNAs was also found in urine exosomes from chronic kidney disease patients. Dysregulation of tsRNAs also appears in models of nephrotic syndrome and patients with lupus nephritis. And specific tsRNAs were found in high glucose model in vitro and in serum of diabetic nephropathy patients. In addition, tsRNAs were also differentially expressed in patients with kidney cancer and transplantation. Key Messages In the present review, we have summarized up-to-date works and reviewed the relationship and possible mechanisms between tsRNAs and kidney diseases.
Collapse
Affiliation(s)
- Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xian Xie
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Ni Yin
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xueqin Wu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| |
Collapse
|
8
|
Yang N, Li R, Liu R, Yang S, Zhao Y, Xiong W, Qiu L. The Emerging Function and Promise of tRNA-Derived Small RNAs in Cancer. J Cancer 2024; 15:1642-1656. [PMID: 38370372 PMCID: PMC10869971 DOI: 10.7150/jca.89219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/01/2024] [Indexed: 02/20/2024] Open
Abstract
Fragments derived from tRNA, called tRNA-derived small RNAs (tsRNAs), have attracted widespread attention in the past decade. tsRNAs are widespread in prokaryotic and eukaryotic transcriptome, which contains two main types, tRNA-derived fragments (tRFs) and tRNA-derived stress-inducing RNA (tiRNAs), derived from the precursor tRNAs or mature tRNAs. According to differences in the cleavage position, tRFs can be divided into tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF, whereas tiRNAs can be divided into 5'-tiRNA and 3'-tiRNA. Studies have found that tRFs and tiRNAs are abnormally expressed in a variety of human malignant tumors, promote or inhibit the proliferation and apoptosis of cancer cells by regulating the expression of oncogene, and play an important role in the aggressive metastasis and progression of tumors. This article reviews the biological origins of various tsRNAs, introduces their functions and new concepts of related mechanisms, and focuses on the molecular mechanisms of tsRNAs in cancer, including breast cancer, prostate cancer, colorectal cancer, lung cancer, b-cell lymphoma, and chronic lymphoma cell leukemia. Lastly, this article puts forward some unresolved problems and future research prospects.
Collapse
Affiliation(s)
- Na Yang
- College of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, China
- College of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Ruijun Li
- College of Foreign Languages, Chuxiong Normal University, Chuxiong 675000, China
| | - Ruai Liu
- College of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Shengjie Yang
- The People's Hospital of ChuXiong Yi Autonomous Prefecture, Chuxiong 675000, China
| | - Yi Zhao
- The People's Hospital of ChuXiong Yi Autonomous Prefecture, Chuxiong 675000, China
| | - Wei Xiong
- College of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Lu Qiu
- College of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, China
| |
Collapse
|
9
|
Li Y, Gao J, Wang Y, Cai J, Wu D, Wang L, Pu W, Yu F, Zhu S. The functions of a 5' tRNA-Ala-derived fragment in gene expression. PLANT PHYSIOLOGY 2023; 193:1126-1141. [PMID: 37350495 DOI: 10.1093/plphys/kiad361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Transfer RNA (tRNA) can produce smaller RNA fragments called tRNA-derived fragments (tRFs). tRFs play critical roles in multiple cellular programs, although the functional mechanisms of tRFs remain largely unknown in plants. In this study, we examined the phenotype associated with 5' tRF-Ala (tRF-Ala, produced from tRNA-Ala) overexpression and knockdown lines (tDR-Ala-OE and tDR-Ala-kd, respectively) and the mechanisms by which tRF-Ala affects mRNA levels in Arabidopsis (Arabidopsis thaliana). We investigated the candidate proteins associated with tRF-Ala by quantitative proteomics and confirmed the direct interaction between tRF-Ala and the splicing factor SERINE-ARGININE RICH PROTEIN 34 (SR34). A transcriptome sequencing analysis showed that 318 genes among all the genes (786) with substantial alternative splicing (AS) variance in tDR-Ala-OE lines are targets of SR34. tRF-Ala diminished the binding affinity between SR34 and its targets by direct competition for interaction with SR34. These findings reveal the critical roles of tRF-Ala in regulating mRNA levels and splicing.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Junping Gao
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Ying Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Jun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Dousheng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Long Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Wenxuan Pu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Wang J, Hua G, Yang X, Zhang L, Ma Y, Ma Q, Li R, Wu K, Zhao Y, Deng X. A newly identified small tRNA fragment reveals the regulation of different wool types and oxidative stress in lambs. Sci Rep 2023; 13:10213. [PMID: 37353550 PMCID: PMC10290153 DOI: 10.1038/s41598-023-36895-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
Novel small RNAs derived from tRNAs are continuously identified, however, their biological functions are rarely reported. Here, we accidentally found the reads peak at 32nt during statistical analysis on the miRNA-seq data of lamb skin tissue, and found that it was related to the wool type of lambs. This 32nt peak was composed of small tRNA fragments. The main component sequence of this peak was a novel small tRNA derived from Glycyl tRNA (tRNAGly), the expression level of tRNAGly-derived tRNA fragments (tRFGly) was 5.77 folds higher in the coarse wool lambs than that in the fine wool lambs. However, in contrast, the expression of tRNAGly in the skin of fine wool lambs is 6.28 folds more than that in coarse wool lambs. tRNAGly promoted the synthesis of high glycine protein including KAP6 in fine wool lamb skin. These proteins were reported as the major genes for fine curly wool. Integrative analysis of target gene prediction, proteomics and metabolomics results revealed that tRFGly reduced the level of reactive oxygen species (ROS) in the skin of coarse wool lambs by targeted inhibition of the Metabolic signal and the corresponding Glutathione metabolic pathway, on the contrary, the level of oxidative stress in the skin of fine wool lambs was significantly higher. This study revealed for the first time the relationship between tRNAGly and its derived tRFGly and animal traits. tRFGly has the function of targeting and regulating protein synthesis. At the same time, tRFGly can reduce the expression of its resource complete tRNA, thereby reducing its ability to transport specific amino acid and affecting the expression of corresponding proteins.
Collapse
Affiliation(s)
- Jiankui Wang
- State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Guoying Hua
- State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xue Yang
- State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Letian Zhang
- State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yuhao Ma
- State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qing Ma
- Animal Science Institute of Ningxia Agriculture and Forestry Academy, Yinchuan, 750002, China
| | - Rui Li
- Jinfeng Animal Husbandry Group Co., Ltd., Chifeng, 024000, China
| | - Keliang Wu
- State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yaofeng Zhao
- State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xuemei Deng
- State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Horváth V, Guirao-Rico S, Salces-Ortiz J, Rech GE, Green L, Aprea E, Rodeghiero M, Anfora G, González J. Gene expression differences consistent with water loss reduction underlie desiccation tolerance of natural Drosophila populations. BMC Biol 2023; 21:35. [PMID: 36797754 PMCID: PMC9933328 DOI: 10.1186/s12915-023-01530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Climate change is one of the main factors shaping the distribution and biodiversity of organisms, among others by greatly altering water availability, thus exposing species and ecosystems to harsh desiccation conditions. However, most of the studies so far have focused on the effects of increased temperature. Integrating transcriptomics and physiology is key to advancing our knowledge on how species cope with desiccation stress, and these studies are still best accomplished in model organisms. RESULTS Here, we characterized the natural variation of European D. melanogaster populations across climate zones and found that strains from arid regions were similar or more tolerant to desiccation compared with strains from temperate regions. Tolerant and sensitive strains differed not only in their transcriptomic response to stress but also in their basal expression levels. We further showed that gene expression changes in tolerant strains correlated with their physiological response to desiccation stress and with their cuticular hydrocarbon composition, and functionally validated three of the candidate genes identified. Transposable elements, which are known to influence stress response across organisms, were not found to be enriched nearby differentially expressed genes. Finally, we identified several tRNA-derived small RNA fragments that differentially targeted genes in response to desiccation stress. CONCLUSIONS Overall, our results showed that basal gene expression differences across individuals should be analyzed if we are to understand the genetic basis of differential stress survival. Moreover, tRNA-derived small RNA fragments appear to be relevant across stress responses and allow for the identification of stress-response genes not detected at the transcriptional level.
Collapse
Affiliation(s)
- Vivien Horváth
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | | | | | - Gabriel E Rech
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - Llewellyn Green
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - Eugenio Aprea
- Agriculture Food Environment Centre (C3A), University of Trento, San Michele All'adige (TN), Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige (TN), Italy
| | - Mirco Rodeghiero
- Agriculture Food Environment Centre (C3A), University of Trento, San Michele All'adige (TN), Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige (TN), Italy
| | - Gianfranco Anfora
- Agriculture Food Environment Centre (C3A), University of Trento, San Michele All'adige (TN), Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige (TN), Italy
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain.
| |
Collapse
|
12
|
Choi EJ, Wu W, Zhang K, Yuan X, Deng J, Ismail D, Buck DL, Thomason KS, Garofalo RP, Zhang S, Bao X. Parent tRNA Modification Status Determines the Induction of Functional tRNA-Derived RNA by Respiratory Syncytial Virus Infection. Viruses 2022; 15:57. [PMID: 36680097 PMCID: PMC9860972 DOI: 10.3390/v15010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
tRNA-derived RNA fragments (tRFs) are a recently discovered family of small noncoding RNAs (sncRNAs). We previously reported that respiratory syncytial virus (RSV) infection induces functional tRFs, which are derived from a limited subset of parent tRNAs, in airway epithelial cells. Such induction is also observed in nasopharyngeal wash samples from RSV patients and correlates to RSV genome copies, suggesting a clinical significance of tRFs in RSV infection. This work also investigates whether the modification of parent tRNAs is changed by RSV to induce tRFs, using one of the most inducible tRFs as a model. We discovered that RSV infection changed the methylation modification of adenine at position 57 in tRNA glutamic acid, with a codon of CTC (tRNA-GluCTC), and the change is essential for its cleavage. AlkB homolog 1, a previously reported tRNA demethylase, appears to remove methyladenine from tRNA-GluCTC, prompting the subsequent production of tRFs from the 5'-end of tRNA-GluCTC, a regulator of RSV replication. This study demonstrates for the first time the importance of post-transcriptional modification of tRNAs in tRF biogenesis following RSV infection, providing critical insights for antiviral strategy development.
Collapse
Affiliation(s)
- Eun-Jin Choi
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wenzhe Wu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ke Zhang
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiaohong Yuan
- Department of Biological and Chemical Science, New York Institute of Technology, New York, NY 10023, USA
| | - Junfang Deng
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Deena Ismail
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Darby L. Buck
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kerrie S. Thomason
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute of Translational Science, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shenglong Zhang
- Department of Biological and Chemical Science, New York Institute of Technology, New York, NY 10023, USA
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute of Translational Science, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
13
|
Needhamsen M, Khoonsari PE, Zheleznyakova GY, Piket E, Hagemann-Jensen M, Han Y, Gierlich J, Ekman D, Jagodic M. Integration of small RNAs from plasma and cerebrospinal fluid for classification of multiple sclerosis. Front Genet 2022; 13:1042483. [PMID: 36468035 PMCID: PMC9713411 DOI: 10.3389/fgene.2022.1042483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2024] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune, neurological disease, commonly presenting with a relapsing-remitting form, that later converts to a secondary progressive stage, referred to as RRMS and SPMS, respectively. Early treatment slows disease progression, hence, accurate and early diagnosis is crucial. Recent advances in large-scale data processing and analysis have progressed molecular biomarker development. Here, we focus on small RNA data derived from cell-free cerebrospinal fluid (CSF), cerebrospinal fluid cells, plasma and peripheral blood mononuclear cells as well as CSF cell methylome data, from people with RRMS (n = 20), clinically/radiologically isolated syndrome (CIS/RIS, n = 2) and neurological disease controls (n = 14). We applied multiple co-inertia analysis (MCIA), an unsupervised and thereby unbiased, multivariate method for simultaneous data integration and found that the top latent variable classifies RRMS status with an Area Under the Receiver Operating Characteristics (AUROC) score of 0.82. Variable selection based on Lasso regression reduced features to 44, derived from the small RNAs from plasma (20), CSF cells (8) and cell-free CSF (16), with a marginal reduction in AUROC to 0.79. Samples from SPMS patients (n = 6) were subsequently projected on the latent space and differed significantly from RRMS and controls. On contrary, we found no differences between relapse and remission or between inflammatory and non-inflammatory disease controls, suggesting that the latent variable is not prone to inflammatory signals alone, but could be MS-specific. Hence, we here showcase that integration of small RNAs from plasma and CSF can be utilized to distinguish RRMS from SPMS and neurological disease controls.
Collapse
Affiliation(s)
- Maria Needhamsen
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Payam Emami Khoonsari
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Galina Yurevna Zheleznyakova
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Eliane Piket
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | - Yanan Han
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jannik Gierlich
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Diana Ekman
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Shen J, Zhao X, Zhong Y, Yang P, Gao P, Wu X, Wang X, An W. Exosomal ncRNAs: The pivotal players in diabetic wound healing. Front Immunol 2022; 13:1005307. [PMID: 36420273 PMCID: PMC9677725 DOI: 10.3389/fimmu.2022.1005307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Diabetes is the most prevalent metabolic disease in the world today. In addition to elevated blood glucose, it also causes serious complications, which has a significant effect on the quality of life of patients. Diabetic trauma is one of complications as a result of the interaction of diabetic neuropathy, peripheral vascular disease, infection, trauma, and other factors. Diabetic trauma usually leads to poor healing of the trauma and even to severe foot ulcers, wound gangrene, and even amputation, causing serious psychological, physical, and financial burdens to diabetic patients. Non-coding RNAs (ncRNAs) carried by exosomes have been demonstrated to be relevant to the development and treatment of diabetes and its complications. Exosomes act as vehicle, which contain nucleic acids such as mRNA and microRNA (miRNA), and play a role in the intercellular communication and the exchange of substances between cells. Because exosomes are derived from cells, there are several advantages over synthetic nanoparticle including good biocompatibility and low immunogenicity. Exosomal ncRNAs could serve as markers for the clinical diagnosis of diabetes and could also be employed to accelerate diabetic wound healing via the regulation of the immune response and modulation of cell function. ncRNAs in exosomes can be employed to promote diabetic wound healing by regulating inflammation and accelerating re-vascularization, re-epithelialization, and extracellular matrix remodeling. Herein, exosomes in terms of ncRNA (miRNA, lncRNA, and circRNA) to accelerate diabetic wounds healing were summarized, and we discussed the challenge of the loading strategy of ncRNA into exosomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenlin An
- *Correspondence: Xudong Wang, ; Wenlin An,
| |
Collapse
|
15
|
Wilson B, Dutta A. Function and Therapeutic Implications of tRNA Derived Small RNAs. Front Mol Biosci 2022; 9:888424. [PMID: 35495621 PMCID: PMC9043108 DOI: 10.3389/fmolb.2022.888424] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022] Open
Abstract
tRNA derived small RNAs are mainly composed of tRNA fragments (tRFs) and tRNA halves (tiRs). Several functions have been attributed to tRFs and tiRs since their initial characterizations, spanning all aspects of regulation of the Central Dogma: from nascent RNA silencing, to post-transcriptional gene silencing, and finally, to translational regulation. The length distribution, sequence diversity, and multifaceted functions of tRFs and tiRs positions them as attractive new models for small RNA therapeutics. In this review, we will discuss the principles of tRF biogenesis and function in order to highlight their therapeutic potential.
Collapse
Affiliation(s)
- Briana Wilson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Anindya Dutta
- Department of Genetics, University of Alabama, Birmingham, AL, United States
| |
Collapse
|
16
|
Wu W, Choi EJ, Wang B, Zhang K, Adam A, Huang G, Tunkle L, Huang P, Goru R, Imirowicz I, Henry L, Lee I, Dong J, Wang T, Bao X. Changes of Small Non-coding RNAs by Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Front Mol Biosci 2022; 9:821137. [PMID: 35281271 PMCID: PMC8905365 DOI: 10.3389/fmolb.2022.821137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/19/2022] [Indexed: 01/11/2023] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19), which results from the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a significant global public health threat, with molecular mechanisms underlying its pathogenesis largely unknown. In the context of viral infections, small non-coding RNAs (sncRNAs) are known to play important roles in regulating the host responses, viral replication, and host-virus interaction. Compared with other subfamilies of sncRNAs, including microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), tRNA-derived RNA fragments (tRFs) are relatively new and emerge as a significant regulator of host-virus interactions. Using T4 PNK-RNA-seq, a modified next-generation sequencing (NGS), we found that sncRNA profiles in human nasopharyngeal swabs (NPS) samples are significantly impacted by SARS-CoV-2. Among impacted sncRNAs, tRFs are the most significantly affected and most of them are derived from the 5'-end of tRNAs (tRF5). Such a change was also observed in SARS-CoV-2-infected airway epithelial cells. In addition to host-derived ncRNAs, we also identified several small virus-derived ncRNAs (svRNAs), among which a svRNA derived from CoV2 genomic site 346 to 382 (sv-CoV2-346) has the highest expression. The induction of both tRFs and sv-CoV2-346 has not been reported previously, as the lack of the 3'-OH ends of these sncRNAs prevents them to be detected by routine NGS. In summary, our studies demonstrated the involvement of tRFs in COVID-19 and revealed new CoV2 svRNAs.
Collapse
Affiliation(s)
- Wenzhe Wu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Eun-Jin Choi
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Binbin Wang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Ke Zhang
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Awadalkareem Adam
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Gengming Huang
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Leo Tunkle
- miRcore, Ann Arbor, MI, United States
- Department of Nuclear Engineering and Radiological Sience, University of Michigan, Ann Arbor, MI, United States
- Department of Computer Science, University of Michigan, Ann Arbor, MI, United States
| | - Philip Huang
- miRcore, Ann Arbor, MI, United States
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Rohit Goru
- miRcore, Ann Arbor, MI, United States
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Isabella Imirowicz
- miRcore, Ann Arbor, MI, United States
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Leanne Henry
- miRcore, Ann Arbor, MI, United States
- Department of Computer Science, University of Michigan, Ann Arbor, MI, United States
| | - Inhan Lee
- miRcore, Ann Arbor, MI, United States
| | - Jianli Dong
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, United States
- The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, United States
| | - Tian Wang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, United States
- The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaoyong Bao
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, United States
- The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, United States
- The Institute of Translational Sciences, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
17
|
Hu Y, Cai A, Xu J, Feng W, Wu A, Liu R, Cai W, Chen L, Wang F. An emerging role of the 5' termini of mature tRNAs in human diseases: Current situation and prospects. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166314. [PMID: 34863896 DOI: 10.1016/j.bbadis.2021.166314] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
The fundamental biological roles of a class of small noncoding RNAs (sncRNAs), derived from mature tRNAs or pre-tRNAs, in human diseases have received increasing attention in recent years. These ncRNAs are called tRNA-derived fragments (tRFs) or tRNA-derived small RNAs (tsRNAs). tRFs mainly include tRF-1, tRF-5, tRF-3 and tRNA halves (tiRNAs or tRHs), which are produced by enzyme-specific cleavage of tRNAs. Here, we classify tRF-5 and 5' tiRNAs into the same category: 5'-tRFs and review the biological functions and regulatory mechanisms of 5'-tRFs in cancer and other diseases (metabolic diseases, neurodegenerative diseases, pathological stress injury and virus infection) to provide a new theoretical basis for the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yuhao Hu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Aiting Cai
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Jing Xu
- Department of Laboratory Medicine, School of public health, Nantong University, Jiangsu, China
| | - Wei Feng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Anqi Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Ruoyu Liu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Weihua Cai
- Department of Hepatology Laboratory, Nantong Third Hospital Affiliated to Nantong University, Jiangsu, China
| | - Lin Chen
- Department of Hepatology Laboratory, Nantong Third Hospital Affiliated to Nantong University, Jiangsu, China.
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China.
| |
Collapse
|
18
|
Wu W, Choi EJ, Wang B, Zhang K, Adam A, Huang G, Tunkle L, Huang P, Goru R, Imirowicz I, Henry L, Lee I, Dong J, Wang T, Bao X. Changes of small non-coding RNAs by severe acute respiratory syndrome coronavirus 2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34981063 DOI: 10.1101/2021.12.16.472982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19), which results from the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a significant global public health threat, with molecular mechanisms underlying its pathogenesis largely unknown. Small non-coding RNAs (sncRNAs) are known to play important roles in almost all biological processes. In the context of viral infections, sncRNAs have been shown to regulate the host responses, viral replication, and host-virus interaction. Compared with other subfamilies of sncRNAs, including microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), tRNA-derived RNA fragments (tRFs) are relatively new and emerge as a significant regulator of host-virus interactions. Using T4 PNK-RNA-seq, a modified next-generation sequencing (NGS), we recently found that nasopharyngeal swabs (NPS) samples from SARS-CoV-2 positive and negative subjects show a significant difference in sncRNA profiles. There are about 166 SARS-CoV-2-impacted sncRNAs. Among them, tRFs are the most significantly affected and almost all impacted tRFs are derived from the 5'-end of tRNAs (tRF5). Using a modified qRT-PCR, which was recently developed to specifically quantify tRF5s by isolating the tRF signals from its corresponding parent tRNA signals, we validated that tRF5s derived from tRNA GluCTC (tRF5-GluCTC), LysCTT (tRF5-LysCTT), ValCAC (tRF5-ValCAC), CysGCA (tRF5-CysGCA) and GlnCTG (tRF5-GlnCTG) are enhanced in NPS samples of SARS-CoV2 patients and SARS-CoV2-infected airway epithelial cells. In addition to host-derived ncRNAs, we also identified several sncRNAs derived from the virus (svRNAs), among which a svRNA derived from CoV2 genomic site 346 to 382 (sv-CoV2-346) has the highest expression. The induction of both tRFs and sv-CoV2-346 has not been reported previously, as the lack of the 3'-OH ends of these sncRNAs prevents them to be detected by routine NGS. In summary, our studies demonstrated the involvement of tRFs in COVID-19 and revealed new CoV2 svRNAs.
Collapse
|
19
|
Wen JT, Huang ZH, Li QH, Chen X, Qin HL, Zhao Y. Research progress on the tsRNA classification, function, and application in gynecological malignant tumors. Cell Death Discov 2021; 7:388. [PMID: 34907180 PMCID: PMC8671397 DOI: 10.1038/s41420-021-00789-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
A large number of small non-coding RNAs derived from tRNAs, called tRNA-derived small RNA (tsRNAs), have been identified by high-throughput RNA sequencing of cell lines. Further research has revealed that they are not produced via random tRNA degradation, but through degradation by specific nuclease cleavages, such as Elac Ribonuclease Z 2 (ELAC2)/RNase Z, RNase L, Dicer, and angiogenin (ANG), the tsRNAs can be classified into the following types based on the location from which they have been derived from the parental tRNA: tRF-1s, tRF-3s, tRF-5s, tiRNA, and tRF-2s/i-tRFs. Moreover, tsRNAs are a type of small RNAs with diverse functions, including gene expression regulation, anti-apoptosis, translation inhibition, participation in epigenetic regulation, initial virus reverse transcription, promote virus replication and cell-to-cell communication. Certain types of tsRNAs are overexpressed in cancer tissues, but are underexpressed in normal tissues. Therefore, the relationship between tsRNAs and the occurrence and development of cancer has attracted significant research attention. Research advancements have contributed to further discoveries of the biological activities of tsRNAs, but the mechanisms of their biogenesis and functions have not been fully elucidated. This article reviews the classification and biological functions of tsRNAs, and introduces the research progress in gynecological malignancies.
Collapse
Affiliation(s)
- Jing-Tao Wen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zheng-Hao Huang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Qian-Hui Li
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xi Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Hong-Lei Qin
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
20
|
Pandey KK, Madhry D, Ravi Kumar YS, Malvankar S, Sapra L, Srivastava RK, Bhattacharyya S, Verma B. Regulatory roles of tRNA-derived RNA fragments in human pathophysiology. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:161-173. [PMID: 34513302 PMCID: PMC8413677 DOI: 10.1016/j.omtn.2021.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hundreds of tRNA genes and pseudogenes are encoded by the human genome. tRNAs are the second most abundant type of RNA in the cell. Advancement in deep-sequencing technologies have revealed the presence of abundant expression of functional tRNA-derived RNA fragments (tRFs). They are either generated from precursor (pre-)tRNA or mature tRNA. They have been found to play crucial regulatory roles during different pathological conditions. Herein, we briefly summarize the discovery and recent advances in deciphering the regulatory role played by tRFs in the pathophysiology of different human diseases.
Collapse
Affiliation(s)
- Kush Kumar Pandey
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Deeksha Madhry
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Y S Ravi Kumar
- Department of Biotechnology, M.S. Ramaiah, Institute of Technology, MSR Nagar, Bengaluru, India
| | - Shivani Malvankar
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
21
|
Wang X, Li W, Lu S, Ma Z. Modulation of the Wound Healing through Noncoding RNA Interplay and GSK-3 β/NF- κB Signaling Interaction. Int J Genomics 2021; 2021:9709290. [PMID: 34485505 PMCID: PMC8413067 DOI: 10.1155/2021/9709290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/10/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetic foot ulcers are seriously endangering the physical and mental health of patients. Due to the long duration of inflammation, the treatment of nonhealing wounds in diabetes is one of the most prominent healthcare problems in the world. The nuclear factor kappa B (NF-κB) signaling pathway, a classical pathway that triggers inflammatory response, is regulated by many regulators, such as glycogen synthase kinase 3 beta (GSK-3β). Noncoding RNAs, a large class of molecules that regulate gene expression at the posttranscriptional or posttranslational level, play an important role in various stages of wound healing, especially in the stage of inflammation. Herein, we summarized the roles of noncoding RNAs in the NF-κB/GSK-3β signaling, which might provide new ideas for the treatment of diabetic wound healing.
Collapse
Affiliation(s)
- Xianyi Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wanqiu Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shengdi Lu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
22
|
Pereira M, Ribeiro DR, Pinheiro MM, Ferreira M, Kellner S, Soares AR. m 5U54 tRNA Hypomodification by Lack of TRMT2A Drives the Generation of tRNA-Derived Small RNAs. Int J Mol Sci 2021; 22:ijms22062941. [PMID: 33799331 PMCID: PMC8001983 DOI: 10.3390/ijms22062941] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/15/2023] Open
Abstract
Transfer RNA (tRNA) molecules contain various post-transcriptional modifications that are crucial for tRNA stability, translation efficiency, and fidelity. Besides their canonical roles in translation, tRNAs also originate tRNA-derived small RNAs (tsRNAs), a class of small non-coding RNAs with regulatory functions ranging from translation regulation to gene expression control and cellular stress response. Recent evidence indicates that tsRNAs are also modified, however, the impact of tRNA epitranscriptome deregulation on tsRNAs generation is only now beginning to be uncovered. The 5-methyluridine (m5U) modification at position 54 of cytosolic tRNAs is one of the most common and conserved tRNA modifications among species. The tRNA methyltransferase TRMT2A catalyzes this modification, but its biological role remains mostly unexplored. Here, we show that TRMT2A knockdown in human cells induces m5U54 tRNA hypomodification and tsRNA formation. More specifically, m5U54 hypomodification is followed by overexpression of the ribonuclease angiogenin (ANG) that cleaves tRNAs near the anticodon, resulting in accumulation of 5′tRNA-derived stress-induced RNAs (5′tiRNAs), namely 5′tiRNA-GlyGCC and 5′tiRNA-GluCTC, among others. Additionally, transcriptomic analysis confirms that down-regulation of TRMT2A and consequently m5U54 hypomodification impacts the cellular stress response and RNA stability, which is often correlated with tiRNA generation. Accordingly, exposure to oxidative stress conditions induces TRMT2A down-regulation and tiRNA formation in mammalian cells. These results establish a link between tRNA hypomethylation and ANG-dependent tsRNAs formation and unravel m5U54 as a tRNA cleavage protective mark.
Collapse
Affiliation(s)
- Marisa Pereira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810 Aveiro, Portugal; (M.P.); (D.R.R.); (M.M.P.); (M.F.)
| | - Diana R. Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810 Aveiro, Portugal; (M.P.); (D.R.R.); (M.M.P.); (M.F.)
| | - Miguel M. Pinheiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810 Aveiro, Portugal; (M.P.); (D.R.R.); (M.M.P.); (M.F.)
| | - Margarida Ferreira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810 Aveiro, Portugal; (M.P.); (D.R.R.); (M.M.P.); (M.F.)
| | - Stefanie Kellner
- Department of Chemistry, Ludwig Maximilians University Munich, 81377 Munich, Germany;
- Institute of Pharmaceutical Chemistry, Goethe-University, 60438 Frankfurt, Germany
| | - Ana R. Soares
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810 Aveiro, Portugal; (M.P.); (D.R.R.); (M.M.P.); (M.F.)
- Correspondence:
| |
Collapse
|
23
|
Choi EJ, Wu W, Zhang K, Lee I, Kim IH, Lee YS, Bao X. ELAC2, an Enzyme for tRNA Maturation, Plays a Role in the Cleavage of a Mature tRNA to Produce a tRNA-Derived RNA Fragment During Respiratory Syncytial Virus Infection. Front Mol Biosci 2021; 7:609732. [PMID: 33604354 PMCID: PMC7884774 DOI: 10.3389/fmolb.2020.609732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in young children. However, effective treatment against RSV is unavailable. tRNA-derived RNA fragments (tRFs) are a recently discovered family of non-coding RNAs. We made an early observation that RSV infection causes significant induction of tRFs, which are mainly derived from the 5’-end of mature tRNAs (tRF5). However, their functions and biogenesis mechanism are not fully understood. Herein, we identified an enzyme responsible for the induction of a functional tRF5 derived from tRNA-Gln-CTG (tRF5-GlnCTG). We found that tRF5-GlnCTG promotes RSV replication and its induction, assessed by Northern blot and a new qRT-PCR-based method, is regulated by ribonuclease ELAC2. ELAC2-mediated tRF5 induction has never been reported. We also found that ELAC2 is associated with RSV N and NS1 proteins. Given the fact that tRF5-GlnCTG plays a role in RSV replication, the identification of ELAC2 being responsible for tRF5-GlnCTG induction could provide new insights into therapeutic strategy development against RSV infection.
Collapse
Affiliation(s)
- Eun-Jin Choi
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Wenzhe Wu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Ke Zhang
- Department of Chemistry, The University of Houston Clear Lake, Clear Lake, TX, United States
| | - Inhan Lee
- miRcore, Ann Arbor, MI, United States
| | - In-Hoo Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Xiaoyong Bao
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, United States.,Sealy Center for Molecular Medicine, The University of Texas Medical Branch, Galveston, TX, United States.,The Institute of Translational Sciences, The University of Texas Medical Branch, Galveston, TX, United States.,The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
24
|
Wu W, Lee I, Spratt H, Fang X, Bao X. tRNA-Derived Fragments in Alzheimer's Disease: Implications for New Disease Biomarkers and Neuropathological Mechanisms. J Alzheimers Dis 2021; 79:793-806. [PMID: 33337366 DOI: 10.3233/jad-200917] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia caused by irreversible neurodegeneration, with the onset mechanisms elusive. tRNA-derived RNA fragments (tRFs), a recently discovered family of small non-coding RNAs (sncRNAs), have been found to associate with many human diseases, including infectious, metabolic, and neurological diseases. However, whether tRFs play a role in human AD development is not known. OBJECTIVE This study aimed to explore whether tRFs are involved in human AD. METHODS Thirty-four postmortem human hippocampus samples were used. The expression of Drosha, Dicer, and angiogenin (ANG), three ribonucleases responsible for the biogenesis of sncRNAs, was determined by qRT-PCR and western blot. The tRFs in the hippocampus was detected by qRT-PCR or northern blot. We also used qRT-PCR to quantify NOP2/Sun RNA methyltransferase 2 (NSun2) and polyadenylation factor I subunit 1 (CLP1), two tRNA modification enzymes. RESULTS tRFs derived from a subset of tRNAs are significantly altered in the hippocampus of AD patients. The expression change of some tRFs showed age- and disease stage-dependent. ANG is significantly enhanced in AD, suggesting its role in inducing tRFs in AD. The expression of NSun2 in AD patients younger than 65 was significantly decreased. According to a previous report supporting NSun2-mediated tRNA methylation modification making tRNA less susceptible to ANG-mediated cleavage, our results suggested that the decrease in NSun2 may make tRNAs less methylated and subsequently enhanced tRF production from ANG-mediated tRNA cleavage. CONCLUSION Our studies demonstrated for the first time the involvement of tRFs in human AD.
Collapse
Affiliation(s)
- Wenzhe Wu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Heidi Spratt
- Department of Preventive Medicine and Population Health, The University of Texas Medical Branch, Galveston, TX, USA.,The Institute of Translational Sciences, The University of Texas Medical Branch, Galveston, TX, USA
| | - Xiang Fang
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA
| | - Xiaoyong Bao
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA.,The Institute of Translational Sciences, The University of Texas Medical Branch, Galveston, TX, USA.,Sealy Center for Molecular Medicine, and The University of Texas Medical Branch, Galveston, TX, USA.,The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
25
|
Cao Z, Rosenkranz D, Wu S, Liu H, Pang Q, Zhang X, Liu B, Zhao B. Different classes of small RNAs are essential for head regeneration in the planarian Dugesia japonica. BMC Genomics 2020; 21:876. [PMID: 33287698 PMCID: PMC7722302 DOI: 10.1186/s12864-020-07234-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Planarians reliably regenerate all body parts after injury, including a fully functional head and central nervous system. But until now, the expression dynamics and functional role of miRNAs and other small RNAs during the process of head regeneration are not well understood. Furthermore, little is known about the evolutionary conservation of the relevant small RNAs pathways, rendering it difficult to assess whether insights from planarians will apply to other taxa. RESULTS In this study, we applied high throughput sequencing to identify miRNAs, tRNA fragments and piRNAs that are dynamically expressed during head regeneration in Dugesia japonica. We further show that knockdown of selected small RNAs, including three novel Dugesia-specific miRNAs, during head regeneration induces severe defects including abnormally small-sized eyes, cyclopia and complete absence of eyes. CONCLUSIONS Our findings suggest that a complex pool of small RNAs takes part in the process of head regeneration in Dugesia japonica and provide novel insights into global small RNA expression profiles and expression changes in response to head amputation. Our study reveals the evolutionary conserved role of miR-124 and brings further promising candidate small RNAs into play that might unveil new avenues for inducing restorative programs in non-regenerative organisms via small RNA mimics based therapies.
Collapse
Affiliation(s)
- Zhonghong Cao
- grid.412509.b0000 0004 1808 3414School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo, 255049 People’s Republic of China
| | - David Rosenkranz
- grid.5802.f0000 0001 1941 7111Institute of Organismic and Molecular Evolution (iOME), Anthropology, Anselm-Franz-von-Bentzel-Weg 7, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Suge Wu
- grid.412509.b0000 0004 1808 3414School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo, 255049 People’s Republic of China
| | - Hongjin Liu
- grid.412509.b0000 0004 1808 3414School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo, 255049 People’s Republic of China
| | - Qiuxiang Pang
- grid.412509.b0000 0004 1808 3414School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo, 255049 People’s Republic of China
| | - Xiufang Zhang
- grid.412509.b0000 0004 1808 3414School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo, 255049 People’s Republic of China
| | - Baohua Liu
- grid.412509.b0000 0004 1808 3414School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo, 255049 People’s Republic of China
| | - Bosheng Zhao
- grid.412509.b0000 0004 1808 3414School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo, 255049 People’s Republic of China
| |
Collapse
|
26
|
Magee R, Rigoutsos I. On the expanding roles of tRNA fragments in modulating cell behavior. Nucleic Acids Res 2020; 48:9433-9448. [PMID: 32890397 PMCID: PMC7515703 DOI: 10.1093/nar/gkaa657] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
The fragments that derive from transfer RNAs (tRNAs) are an emerging category of regulatory RNAs. Known as tRFs, these fragments were reported for the first time only a decade ago, making them a relatively recent addition to the ever-expanding pantheon of non-coding RNAs. tRFs are short, 16-35 nucleotides (nts) in length, and produced through cleavage of mature and precursor tRNAs at various positions. Both cleavage positions and relative tRF abundance depend strongly on context, including the tissue type, tissue state, and disease, as well as the sex, population of origin, and race/ethnicity of an individual. These dependencies increase the urgency to understand the regulatory roles of tRFs. Such efforts are gaining momentum, and comprise experimental and computational approaches. System-level studies across many tissues and thousands of samples have produced strong evidence that tRFs have important and multi-faceted roles. Here, we review the relevant literature on tRF biology in higher organisms, single cell eukaryotes, and prokaryotes.
Collapse
Affiliation(s)
- Rogan Magee
- Computational Medicine Center, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Isidore Rigoutsos
- To whom correspondence should be addressed. Tel: +1 215 503 4219; Fax: +1 215 503 0466;
| |
Collapse
|
27
|
He J, Xue Y, Wang Q, Zhou X, Liu L, Zhang T, Shang C, Ma J, Ma T. Long non-coding RNA MIAT regulates blood tumor barrier permeability by functioning as a competing endogenous RNA. Cell Death Dis 2020; 11:936. [PMID: 33127881 PMCID: PMC7603350 DOI: 10.1038/s41419-020-03134-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Blood-tumor barrier (BTB) presents a major obstacle to brain drug delivery. Therefore, it is urgent to enhance BTB permeability for the treatment of glioma. In this study, we demonstrated that MIAT, ZAK, and phosphorylated NFκB-p65 (p-NFκB-p65) were upregulated, while miR-140-3p was downregulated in glioma-exposed endothelial cells (GECs) of BTB compared with those in endothelial cells cocultured with astrocytes (ECs) of blood-brain barrier (BBB). MIAT inhibited miR-140-3p expression, increased the expression of ZAK, enhanced the ratio of p-NFκB-p65:NFκB-p65, and promoted the endothelial leakage of BTB. Our current study revealed that miR-140-3p was complementary to the ZAK 3'untranslated regions (3'-UTR), and luciferase activity of ZAK was inhibited by miR-140-3p in 293T cells. MiR-140-3p silencing resulted in an increase in BTB permeability by targeting ZAK, while overexpression of miR-140-3p had the opposite results in GECs of BTB. Overexpression of ZAK induced an increase in BTB permeability, and this effect was related to ZAK's ability to mediate phosphorylation of NFκB-p65. Conversely, ZAK silencing get opposite results in GECs of BTB. As a molecular sponge of miR-140-3p, MIAT attenuated its negative regulation of the target gene ZAK by adsorbing miR-140-3p. P-NFκB-p65 as a transcription factor negatively regulated the expression of TJ-associated proteins by means of chip assay and luciferase assay. Single or combined application of MIAT and miR-140-3p effectively promoted antitumor drug doxorubicin (Dox) across BTB to induce apoptosis of glioma cells. In summary, MIAT functioned as a miR-140-3p sponge to regulate the expression of its target gene ZAK, which contribution to phosphorylation of NFκB-p65 was associated with an increase in BTB permeability by down-regulating the expression of TJ associated proteins, thereby promoting Dox delivery across BTB. These results might provide a novel strategy and target for chemotherapy of glioma.
Collapse
Affiliation(s)
- Jiayuan He
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Qingyuan Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Xinxin Zhou
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110034, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Tianyuan Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Chao Shang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China. .,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
28
|
Molla-Herman A, Angelova MT, Ginestet M, Carré C, Antoniewski C, Huynh JR. tRNA Fragments Populations Analysis in Mutants Affecting tRNAs Processing and tRNA Methylation. Front Genet 2020; 11:518949. [PMID: 33193603 PMCID: PMC7586317 DOI: 10.3389/fgene.2020.518949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/03/2020] [Indexed: 01/16/2023] Open
Abstract
tRNA fragments (tRFs) are a class of small non-coding RNAs (sncRNAs) derived from tRNAs. tRFs are highly abundant in many cell types including stem cells and cancer cells, and are found in all domains of life. Beyond translation control, tRFs have several functions ranging from transposon silencing to cell proliferation control. However, the analysis of tRFs presents specific challenges and their biogenesis is not well understood. They are very heterogeneous and highly modified by numerous post-transcriptional modifications. Here we describe a bioinformatic pipeline (tRFs-Galaxy) to study tRFs populations and shed light onto tRNA fragments biogenesis in Drosophila melanogaster. Indeed, we used small RNAs Illumina sequencing datasets extracted from wild type and mutant ovaries affecting two different highly conserved steps of tRNA biogenesis: 5'pre-tRNA processing (RNase-P subunit Rpp30) and tRNA 2'-O-methylation (dTrm7_34 and dTrm7_32). Using our pipeline, we show how defects in tRNA biogenesis affect nuclear and mitochondrial tRFs populations and other small non-coding RNAs biogenesis, such as small nucleolar RNAs (snoRNAs). This tRF analysis workflow will advance the current understanding of tRFs biogenesis, which is crucial to better comprehend tRFs roles and their implication in human pathology.
Collapse
Affiliation(s)
- Anahi Molla-Herman
- Collège de France, CIRB, CNRS Inserm UMR 7241, PSL Research University, Paris, France
| | - Margarita T. Angelova
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Maud Ginestet
- Collège de France, CIRB, CNRS Inserm UMR 7241, PSL Research University, Paris, France
| | - Clément Carré
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Jean-René Huynh
- Collège de France, CIRB, CNRS Inserm UMR 7241, PSL Research University, Paris, France
| |
Collapse
|
29
|
Park J, Ahn SH, Shin MG, Kim HK, Chang S. tRNA-Derived Small RNAs: Novel Epigenetic Regulators. Cancers (Basel) 2020; 12:cancers12102773. [PMID: 32992597 PMCID: PMC7599909 DOI: 10.3390/cancers12102773] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cells must synthesize new proteins to maintain its life and tRNA (transfer RNA) is an essential component of the translation process. tRNA-derived small RNA (tsRNA) is a relatively uncharacterized small RNA, derived from enzymatic cleavage of the tRNAs. Accumulating evidences suggest that tsRNA is an abundant, highly modified, dynamically regulated small-RNA and interacts with other types of RNAs or proteins. Moreover, it is abnormally expressed in multiple human diseases including systemic lupus, neurological disorder, metabolic disorder and cancer, implying its diverse function in the initiation or progression of such diseases. In this review, we summarize the classification of tsRNA and its role focused on the epigenetic regulation. Further, we discuss the limitation of current knowledge about the tsRNA and its potential applications. Abstract An epigenetic change is a heritable genetic alteration that does not involve any nucleotide changes. While the methylation of specific DNA regions such as CpG islands or histone modifications, including acetylation or methylation, have been investigated in detail, the role of small RNAs in epigenetic regulation is largely unknown. Among the many types of small RNAs, tRNA-derived small RNAs (tsRNAs) represent a class of noncoding small RNAs with multiple roles in diverse physiological processes, including neovascularization, sperm maturation, immune modulation, and stress response. Regarding these roles, several pioneering studies have revealed that dysregulated tsRNAs are associated with human diseases, such as systemic lupus, neurological disorder, metabolic disorder, and cancer. Moreover, recent findings suggest that tsRNAs regulate the expression of critical genes linked with these diseases by a variety of mechanisms, including epigenetic regulation. In this review, we will describe different classes of tsRNAs based on their biogenesis and will focus on their role in epigenetic regulation.
Collapse
Affiliation(s)
- Joonhyeong Park
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (J.P.); (M.G.S.)
| | - Se Hee Ahn
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - Myung Geun Shin
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (J.P.); (M.G.S.)
| | - Hak Kyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (J.P.); (M.G.S.)
- Correspondence: (H.K.K.); (S.C.); Tel.: +82-2-820-5197 (H.K.K.); +82-2-3010-2095 (S.C.)
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
- Correspondence: (H.K.K.); (S.C.); Tel.: +82-2-820-5197 (H.K.K.); +82-2-3010-2095 (S.C.)
| |
Collapse
|
30
|
Abstract
Systematics is described for annotation of variations in RNA molecules. The conceptual framework is part of Variation Ontology (VariO) and facilitates depiction of types of variations, their functional and structural effects and other consequences in any RNA molecule in any organism. There are more than 150 RNA related VariO terms in seven levels, which can be further combined to generate even more complicated and detailed annotations. The terms are described together with examples, usually for variations and effects in human and in diseases. RNA variation type has two subcategories: variation classification and origin with subterms. Altogether six terms are available for function description. Several terms are available for affected RNA properties. The ontology contains also terms for structural description for affected RNA type, post-transcriptional RNA modifications, secondary and tertiary structure effects and RNA sugar variations. Together with the DNA and protein concepts and annotations, RNA terms allow comprehensive description of variations of genetic and non-genetic origin at all possible levels. The VariO annotations are readable both for humans and computer programs for advanced data integration and mining.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
31
|
Kim HK, Yeom JH, Kay MA. Transfer RNA-Derived Small RNAs: Another Layer of Gene Regulation and Novel Targets for Disease Therapeutics. Mol Ther 2020; 28:2340-2357. [PMID: 32956625 DOI: 10.1016/j.ymthe.2020.09.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/23/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Decades after identification as essential for protein synthesis, transfer RNAs (tRNAs) have been implicated in various cellular processes beyond translation. tRNA-derived small RNAs (tsRNAs), referred to as tRNA-derived fragments (tRFs) or tRNA-derived, stress-induced RNAs (tiRNAs), are produced by cleavage at different sites from mature or pre-tRNAs. They are classified into six major types representing potentially thousands of unique sequences and have been implicated to play a wide variety of regulatory roles in maintaining normal homeostasis, cancer cell viability, tumorigenesis, ribosome biogenesis, chromatin remodeling, translational regulation, intergenerational inheritance, retrotransposon regulation, and viral replication. However, the detailed mechanisms governing these processes remain unknown. Aberrant expression of tsRNAs is found in various human disease conditions, suggesting that a further understanding of the regulatory role of tsRNAs will assist in identifying novel biomarkers, potential therapeutic targets, and gene-regulatory tools. Here, we highlight the classification, biogenesis, and biological role of tsRNAs in regulatory mechanisms of normal and disease states.
Collapse
Affiliation(s)
- Hak Kyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
32
|
Yu M, Lu B, Zhang J, Ding J, Liu P, Lu Y. tRNA-derived RNA fragments in cancer: current status and future perspectives. J Hematol Oncol 2020; 13:121. [PMID: 32887641 PMCID: PMC7487644 DOI: 10.1186/s13045-020-00955-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/24/2020] [Indexed: 01/02/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have been the focus of many studies over the last few decades, and their fundamental roles in human diseases have been well established. Transfer RNAs (tRNAs) are housekeeping ncRNAs that deliver amino acids to ribosomes during protein biosynthesis. tRNA fragments (tRFs) are a novel class of small ncRNAs produced through enzymatic cleavage of tRNAs and have been shown to play key regulatory roles similar to microRNAs. Development and application of high-throughput sequencing technologies has provided accumulating evidence of dysregulated tRFs in cancer. Aberrant expression of tRFs has been found to participate in cell proliferation, invasive metastasis, and progression in several human malignancies. These newly identified functional tRFs also have great potential as new biomarkers and therapeutic targets for cancer treatment. In this review, we focus on the major biological functions of tRFs including RNA silencing, translation regulation, and epigenetic regulation; summarize recent research on the roles of tRFs in different types of cancer; and discuss the potential of using tRFs as clinical biomarkers for cancer diagnosis and prognosis and as therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Mengqian Yu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Bingjian Lu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jisong Zhang
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Jinwang Ding
- Department of Head and Neck Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| | - Pengyuan Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China.,Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yan Lu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
33
|
Green JA, Ansari MY, Ball H, Haqqi TM. tRNA-derived fragments (tRFs) regulate post-transcriptional gene expression via AGO-dependent mechanism in IL-1β stimulated chondrocytes. Osteoarthritis Cartilage 2020; 28:1102-1110. [PMID: 32407895 PMCID: PMC8418333 DOI: 10.1016/j.joca.2020.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Recent studies have shown that tRNA-derived RNA fragments (tRFs) are novel regulators of post-transcriptional gene expression. However, the expression profiles and their role in post-transcriptional gene regulation in chondrocytes is unknown. Here, we determined tRFs expression profile and explored tRF-3003a role in post-transcriptional gene regulation in IL-1β stimulated chondrocytes. METHODS We used qPCR arrays to determine tRNAs and tRFs expression in age- and sex-matched primary human OA chondrocytes and TC28/I2 cells stimulated with IL-1β. Chondrocytes were transfected with tRNA-CysGCA overexpression plasmid or tRF-3003a mimic and 3'UTR luciferase reporter plasmids of mRNAs harboring predicted tRF target "seed sequence". The AGO-RNA-induced silencing complex (AGO-RISC)-dependent repressive activity of tRF-3003a was determined by siRNA-mediated knockdown of AGO2. RESULTS IL-1β increased the expression levels of specific tRNAs and of tRF-3003a, a type 3 tRF produced by the cleavage of tRNA-CysGCA. tRF-3003a "seed sequence" was identified in the 3'UTR of JAK3 mRNA and tRNA-CysGCA overexpression or transfection of a tRF-3003a mimic in chondrocytes downregulated JAK3 expression and significantly reduced the activity of the 3'UTR reporter. RIP assay showed enrichment of tRF-3003a into AGO2/RISC in IL-1β treated chondrocytes. The suppressive effect of tRF-3003a on JAK3 3'UTR reporter was abrogated with siRNA-mediated depletion of AGO2. CONCLUSIONS We demonstrate that under pathological conditions chondrocytes display perturbations in the expression profile of specific tRNAs and tRFs. Furthermore, a specific tRF namely tRF-3003a can post-transcriptionally regulate JAK3 expression via AGO/RISC formation in chondrocytes. Identification of this novel mechanism may be of value in the design of precision therapies for OA.
Collapse
Affiliation(s)
- J. A. Green
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272
| | - M. Y. Ansari
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272
| | - H.C. Ball
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272
| | - T. M. Haqqi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272,Corresponding author: Prof. Dr. Tariq M. Haqqi; Department of Anatomy & Neurobiology, Northeast Ohio Medical University, 4209 St Rt 44, Rootstown, OH 44272
| |
Collapse
|
34
|
Shigematsu M, Kirino Y. Oxidative stress enhances the expression of 2',3'-cyclic phosphate-containing RNAs. RNA Biol 2020; 17:1060-1069. [PMID: 32397797 DOI: 10.1080/15476286.2020.1766861] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Eukaryotic cells equip robust systems to respond to stress conditions. In stressed mammalian cells, angiogenin endoribonuclease cleaves anticodon-loops of tRNAs to generate tRNA halves termed tRNA-derived stress-induced RNAs (tiRNAs), which promote stress granule formation and regulate translation. The 5'-tiRNAs (5'-tRNA halves) contain a 2',3'-cyclic phosphate (cP) and thus belong to cP-containing RNAs (cP-RNAs). The cP-RNAs form a hidden layer of the transcriptome because standard RNA-seq cannot amplify and sequence them. In this study, we performed genome-wide analyses of short cP-RNA transcriptome in oxidative stress-exposed human cells. Using cP-RNA-seq that can specifically sequence cP-RNAs, we identified tiRNAs and numerous other cP-RNAs that are mainly derived from rRNAs and mRNAs. Although tiRNAs were produced from a wide variety of tRNA species, abundant species of tiRNAs were derived from a focal-specific subset of tRNAs. Regarding rRNA- and mRNA-derived cP-RNAs, determination of the processing sites of substrate RNAs revealed highly specific RNA cleavage events between pyrimidines and adenosine in generation of those cP-RNAs. Those cP-RNAs were derived from specific loci of substrate RNAs rather than from the overall region, implying that cP-RNAs are produced by regulated biogenesis pathways and not by random degradation events. We experimentally confirmed the identified sequences to be expressed as cP-RNAs in the cells, and their expressions were upregulated upon induction of oxidative stress. These analyses of the cP-RNA transcriptome unravel an abundant class of short ncRNAs that accumulate in cells under oxidative stress.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Zhu C, Sun B, Nie A, Zhou Z. The tRNA-associated dysregulation in immune responses and immune diseases. Acta Physiol (Oxf) 2020; 228:e13391. [PMID: 31529760 DOI: 10.1111/apha.13391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/31/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
Abstract
Transfer RNA (tRNA), often considered as a housekeeping molecule, mainly participates in protein translation by transporting amino acids to the ribosome. Nevertheless, accumulating evidence has shown that tRNAs are closely related to various physiological and pathological processes. The proper functioning of the immune system is the key to human health. The aim of this review is to investigate the relationships between tRNAs and the immune system. We detail the biogenesis and structure of tRNAs and summarize the pathogen tRNA-mediated infection and host responses. In addition, we address recent advances in different aspects of tRNA-associated dysregulation in immune responses and immune diseases, such as tRNA molecules, tRNA modifications, tRNA derivatives and tRNA aminoacylation. Therefore, tRNAs play an important role in immune regulation. Although our knowledge of tRNAs in the context of immunity remains, for the most part, unknown, this field deserves in-depth research to provide new ideas for the treatment of immune diseases.
Collapse
Affiliation(s)
- Chunsheng Zhu
- Department of Chinese Medicine The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Bao Sun
- Department of Clinical Pharmacology Xiangya Hospital Central South University Changsha China
- Hunan Key Laboratory of Pharmacogenetics Institute of Clinical Pharmacology Central South University Changsha China
| | - Anzheng Nie
- Department of Chinese Medicine The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Zheng Zhou
- Department of Chinese Medicine The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
36
|
Erber L, Hoffmann A, Fallmann J, Betat H, Stadler PF, Mörl M. LOTTE-seq (Long hairpin oligonucleotide based tRNA high-throughput sequencing): specific selection of tRNAs with 3'-CCA end for high-throughput sequencing. RNA Biol 2020; 17:23-32. [PMID: 31486704 PMCID: PMC6948972 DOI: 10.1080/15476286.2019.1664250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023] Open
Abstract
Transfer RNAs belong to the most abundant type of ribonucleic acid in the cell, and detailed investigations revealed correlations between alterations in the tRNA pool composition and certain diseases like breast cancer. However, currently available methods do not sample the entire tRNA pool or lack specificity for tRNAs. A specific disadvantage of such methods is that only full-length tRNAs are analysed, while tRNA fragments or incomplete cDNAs due to RT stops at modified nucleosides are lost. Another drawback in certain approaches is that the tRNA fraction has to be isolated and separated from high molecular weight RNA, resulting in considerable labour costs and loss of material. Based on a hairpin-shaped adapter oligonucleotide selective for tRNA transcripts, we developed a highly specific protocol for efficient and comprehensive high-throughput analysis of tRNAs that combines the benefits of existing methods and eliminates their disadvantages. Due to a 3'-TGG overhang, the adapter is specifically ligated to the tRNA 3'-CCA end. Reverse transcription prior to the ligation of a second adapter allows to include prematurely terminated cDNA products, increasing the number of tRNA reads. This strategy renders this approach a powerful and universal tool to analyse the tRNA pool of cells and organisms under different conditions in health and disease.
Collapse
Affiliation(s)
- Lieselotte Erber
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Anne Hoffmann
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- Facultad de Ciencias, Universidad Nacional de Colombia, Sede Botoga, Colombia
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
- Department of Theoretical Chemistry of the University of Vienna, Vienna, Austria
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
37
|
Lu L, Gaffney SG, Cannataro VL, Townsend J. Transfer RNA methyltransferase gene NSUN2 mRNA expression modifies the effect of T cell activation score on patient survival in head and neck squamous carcinoma. Oral Oncol 2019; 101:104554. [PMID: 31887619 DOI: 10.1016/j.oraloncology.2019.104554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/02/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To investigate how T-cell activation interacts with NSUN2 to influence HNSCC patient survival. MATERIALS AND METHODS The relationships between T-cell activation status (Activation, Intermediate, and Exhaustion), NSUN2 expression, and patient survival were evaluated using Kaplan-Meier survival curves and multivariate Cox regression models in a public dataset with 520 HNSCC patients. HPV status was determined based on a VirusScan analysis of RNA-seq data. RESULTS Among the patients with high NSUN2 expression, the Activation group exhibited longer survival than the Exhaustion group (trend P = 0.056). Adjusted hazards ratios (HRs) were 0.77 (95% CI: 0.49-1.19) for the Intermediate vs Exhaustion, and 0.61 (0.36-1.03) for Activation vs. Exhaustion. In contrast, there is a positive association between T-cell activation score and mortality in the patients with low NSUN2 expression (trend P = 0.016). The adjusted HRs were 1.97 (1.12-3.47) for the Intermediate vs Exhaustion, and 2.06 (1.16-3.68) for the Activation vs Exhaustion. In multivariate cox models with or without HPV status, the interaction between T-cell activation status and NSUN2 expression was statistically significant (P = 0.004 for with HPV status, and P = 0.002 for without, respectively). When not controlling for NSUN2 expression, there was no significant association between T-cell activation score and patient mortality (P = 0.84). CONCLUSIONS An interaction between NSUN2 expression and T-cell activation status affects patient survival in HNSCC regardless of HPV status, suggesting that NSUN2 is a potential precision marker for immune-checkpoint blockade, and a potential therapeutic target.
Collapse
Affiliation(s)
- Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, Center for Biomedical Data Science, Yale Cancer Center, Yale University, 60 College Street, New Haven, CT 06520-8034, USA.
| | - Stephen G Gaffney
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, 06520, USA
| | - Vincent L Cannataro
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, 06520, USA
| | - Jeffrey Townsend
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|