1
|
Lee SE, Lee H, Kim JH, Park S, Oh YT, Choi H, Kim JM, Jo HJ, Park JH, Jin HJ, Lee KH, Han SH, Kim H, Oh JK, Kim BH. Direct Surface Modification of the Epidermis Using Mussel-Inspired Polydopamine with Multiple Anti-Biofouling Functions. Adv Healthc Mater 2025:e2500597. [PMID: 40411877 DOI: 10.1002/adhm.202500597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 05/12/2025] [Indexed: 05/26/2025]
Abstract
The surface properties of the epidermis are crucial in pathogen adhesion and proliferation. Moreover, damage to the epidermis caused by various physical and chemical attacks provides a favorable environment for pathogen penetration and proliferation through the exposed internal living tissue. Surface modification of the epidermis to impart anti-biofouling properties can provide effective protection against infections. In this study, a facile method of imparting multiple anti-biofouling functions by directly modifying the epidermal surface of an organism using dopamine, which is a mussel-inspired substance, is introduced. Biocompatible polydopamine (PDA) is uniformly applied to organic surfaces with diverse morphological features and surface energies, indicating its versatility. In addition, the reliability of epidermal modification with PDA is confirmed via the PDA-induced prevention of chronic changes in the impedance of the epidermis. Critically, the PDA-modified epidermis exhibited various anti-biofouling functions, including antibacterial and anti-adsorption properties against bacteria and cellular/noncellular microorganisms, respectively. Improved antibacterial properties are successfully realized via integration with tobramycin, which is a representative antibiotic. Direct surface modification using PDA offers an innovative approach to safeguard biological surfaces, particularly the human epidermis, against various pathogens, with potential for application in medical patches and skin-attached devices.
Collapse
Affiliation(s)
- Su Eon Lee
- Department of Robotics and Mechatronics Engineering, DGIST, Daegu, 42988, Republic of Korea
| | - Hanna Lee
- Department of Polymer Science and Engineering, Dankook University, Yongin, 16890, Republic of Korea
| | - Jang Hwan Kim
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Sungwook Park
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Young Taek Oh
- Department of Materials Science and Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | - Hayoung Choi
- Department of Polymer Science and Engineering, Dankook University, Yongin, 16890, Republic of Korea
| | - Jeong-Min Kim
- Division of Emerging Infectious Diseases, KDCA, Cheongju, 28159, Republic of Korea
| | - Hye-Jun Jo
- Division of Emerging Infectious Diseases, KDCA, Cheongju, 28159, Republic of Korea
| | - Jun Hyun Park
- Department of Robotics and Mechatronics Engineering, DGIST, Daegu, 42988, Republic of Korea
| | - Ho Jun Jin
- Department of Robotics and Mechatronics Engineering, DGIST, Daegu, 42988, Republic of Korea
| | - Kwan Hyi Lee
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02481, Republic of Korea
| | - Seung Ho Han
- Electronic Convergence Materials & Devices Research Center, Korea Electronics Technology Institute (KETI), Seongnam, 13509, Republic of Korea
| | - Hojun Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, UST, Seoul, 02792, Republic of Korea
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, Yongin, 16890, Republic of Korea
| | - Bong Hoon Kim
- Department of Robotics and Mechatronics Engineering, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
2
|
Ashurbekova K, Alonso-Lerma B, Ashurbekova K, Muriqi A, Barandiaran L, Janković IŠ, Modin E, Santos JI, Perez-Jimenez R, Petravić M, Nolan M, Knez M. Growing Hybrid Cuticles: Metallochitins as an Emerging Family of Bioactive Mimics of Chitin. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10118-10128. [PMID: 39885658 DOI: 10.1021/acsami.4c19728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Inspired by the properties of natural chitin, the present work provides the first solid foundation for growing conformal ultrathin antibacterial films of organic chitin through a solvent-free molecular layer deposition (MLD) process. This work establishes the initial groundwork for growing biomimetic hybrid cuticles by combining sugar-type molecules with vapor-phase metal-organic precursors, which we term metallochitins or, more generally, metallosaccharides. The MLD process, featuring mild temperatures and solvent-free conditions, provides exceptional conformality and thickness precision, ensuring highly conformal coatings on diverse high aspect ratio substrates. In vitro testing confirmed that the MLD-grown metallochitins not only promote the growth of various cell lines but also prevent adhesion of both Gram-negative and Gram-positive bacteria. The choice of the metal in the hybrid enables selective antimicrobial activity against Gram-negative bacteria or comprehensive antibacterial effects, which can be controlled as desired.
Collapse
Affiliation(s)
| | | | | | - Arbresha Muriqi
- Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
| | | | - Iva Šarić Janković
- Faculty of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Rijeka 51000, Croatia
| | - Evgeny Modin
- CIC nanoGUNE, Donostia-San Sebastián 20018, Spain
| | - José I Santos
- NMR Facility, SGIker, University of the Basque Country (UPV/EHU), Avenida Tolosa 72, Donostia-San Sebastián 20018, Spain
| | - Raul Perez-Jimenez
- IKERBASQUE Basque Foundation for Science, Bilbao 48009, Spain
- CIC bioGUNE, Bizkaia Science and Technology Park, Derio 48160, Spain
| | - Mladen Petravić
- Faculty of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Rijeka 51000, Croatia
| | - Michael Nolan
- Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
| | - Mato Knez
- CIC nanoGUNE, Donostia-San Sebastián 20018, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
3
|
Franco AJ, Alocilja E. Adsorption Studies of Salmonella Enteritidis and Escherichia coli on Chitosan-Coated Magnetic Nanoparticles. Cells 2025; 14:225. [PMID: 39937016 PMCID: PMC11817960 DOI: 10.3390/cells14030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
One of the challenges of microbiological testing is the complex and lengthy sample preparation, causing delays in getting the final result. Immunomagnetic separation is one of the sample preparation techniques recently used to overcome this complexity. However, it is expensive, fragile, and requires cold storage. This study aimed to use chitosan-coated magnetic nanoparticles (cMNP) to capture bacterial cells from a simulated matrix and understand the interaction between the bacteria and the cMNP using batch adsorption studies. To illustrate the concept, Salmonella Enteritidis and Escherichia coli were used. Results showed that the adsorption of Salmonella Enteritidis and E. coli fitted the pseudo-second-order kinetic model (R2 = 0.939 and 0.968, respectively) and the Freundlich isotherm model (R2 = 0.999 and 0.970, respectively). The increased ionic strength enhanced bacterial adsorption, and the highest capture efficiency was observed at pH 4 (32.8% and 98.1% for Salmonella Enteritidis and E. coli, respectively). These results show that chemisorption plays a significant role in bacterial adsorption to cMNP. Furthermore, increasing ionic strength and acidic pH (pH 4) significantly affects the adsorption of Salmonella Enteritidis and E. coli on cMNP, making them crucial for enhancing the performance of cMNP-based sample preparation methods.
Collapse
Affiliation(s)
- Anthony James Franco
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn Alocilja
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Arul Murugan P, Bellare J. Design and development of vaginal wall mimicking poly( ϵ-caprolactone) based nanofibrous prosthetic mesh for pelvic organ prolapse: evaluation of biocompatibility and antibacterial ability. Biomed Mater 2025; 20:025013. [PMID: 39715589 DOI: 10.1088/1748-605x/ada2d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
Mechanical non-conformance of conventionally used transvaginal non-degradable meshes has led to complications such as organ perforation, dyspareunia caused by mesh stiffness and stress shielding. In this study, we have solved the dire need to mimic the mechanical properties of the vaginal wall by designing and developing a soft and elastic mesh made of polycaprolactone (PCL), citric acid modified polyethylene glycol (PEGC) and zinc oxide (ZnO) prepared through electrospinning and testedin vitroandin vivo. The mesh containing 90:10:0.1 of PCL, PEGC and ZnO (PEGC-15 0.1ZnO mesh) conforms to the mechanical properties of the vaginal wall of the pelvic floor, has a burst strength of ∼35 N even after gamma-sterilization and 28 d of degradation inin vitro.In vitrostudies using adipose-derived stem cells revealed that the PCL-PEGC-15 0.1ZnO meshes were biocompatible and supported higher collagen production than commercial mesh.An in vitrobacterial adhesion study showed a 2-log reduction compared to commercially available mesh for prolapse treatment. Initial biocompatibility assessment in a rabbit model also showed that the PCL-PEGC-15 0.1ZnO mesh is biocompatible and supports fibrosis throughout the mesh. The softness and flexibility of the PCL-PEGC-15 0.1ZnO mesh based onin vitrotrials and initialin vivotrials show that the mesh has a potential clinical impact for pelvic floor repair treatment.
Collapse
Affiliation(s)
- Preethi Arul Murugan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
- Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| |
Collapse
|
5
|
Martí ML, Cano Aristizábal V, Motrich R, Valenti LE, Giacomelli CE. Defending Ti6Al4V against Biofilm Formation with Albumin Biofunctionalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2089-2102. [PMID: 39812140 DOI: 10.1021/acs.langmuir.4c04867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Surface biofunctionalization with structurally perturbed albumin, as well as with other plasmatic proteins, inhibits the initial bacterial adhesion and biofilm formation, involved in numerous healthcare-associated infections. In fact, we have reported this protective effect with thermally treated plasmatic proteins, such as albumin and fibrinogen, adsorbed on flat silica surfaces. Here, we show that albumin biofunctionalization also works properly on flat Ti6Al4V substrates, which are widely used to fabricate medical devices. The protective effect is conserved even in biologically relevant fluids, containing other proteins that potentially adsorb onto and/or displace preadsorbed albumin from the biofunctionalized substrates. We further demonstrate that the presence of structurally perturbed albumin on the substrate does not trigger macrophage activation and the release of inflammatory mediators. Consequently, surface biofunctionalization with thermally perturbed albumin is a simple strategy to prepare antibacterial, nonimmunogenic medical devices.
Collapse
Affiliation(s)
- Ma Laura Martí
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Viviana Cano Aristizábal
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Rubén Motrich
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunologia (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Laura E Valenti
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Carla E Giacomelli
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
6
|
Liu Y, Liao J, Tang S, Zhou C, Tan Z, Salem AZM. Physicochemical profiles of mixed ruminal microbes in response to surface tension and specific surface area. Front Vet Sci 2025; 11:1514952. [PMID: 39834927 PMCID: PMC11743942 DOI: 10.3389/fvets.2024.1514952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction In ruminants, a symbiotic rumen microbiota is responsible for supporting the digestion of dietary fiber and contributes to health traits closely associated with meat and milk quality. A holistic view of the physicochemical profiles of mixed rumen microbiota (MRM) is not well-illustrated. Methods The experiment was performed with a 3 × 4 factorial arrangement of the specific surface area (SSA: 3.37, 3.73, and 4.44 m2/g) of NDF extracted from rice straw and the surface tension (ST: 54, 46, 43, and 36 dyn/cm) of a fermented medium in a fermentation time series of 6, 12, 24, 48 h with three experimental units. Here, we used three rumen-fistulated adult Liuyang black goats as the rumen liquid donors for this experiment. Results It was found that increasing SSA decreased the average acetate/propionate ratio (A/P, p < 0.05) and increased the molarity of propionate (p < 0.05). Increasing ST decreased total volatile fatty acid (tVFA) concentration (p < 0.01). Greater SSA increased (p < 0.01) MRM hydrophobicity, whereas increasing ST increased MRM cell membrane permeability (p < 0.01). The neutral detergent fiber digestibility (NDFD, r = 0.937) and tVFA (r = 0.809) were positively correlated with the membrane permeability of MRM. Discussion The surface tension of the artificial medium and substrate-specific surface area had a significant influence on MRM's fermentation profiles, hydrophobicity, and permeability. The results suggest that physical environmental properties are key in regulating rumen fermentation function and homeostasis in the gastrointestinal tract ecosystem.
Collapse
Affiliation(s)
- Yong Liu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Junrui Liao
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Shaoxun Tang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Abdelfattah Z. M. Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
7
|
Yashwanth A, Huang R, Iepure M, Mu M, Zhou W, Kunadu A, Carignan C, Yegin Y, Cho D, Oh JK, Taylor MT, Akbulut MES, Min Y. Food packaging solutions in the post-per- and polyfluoroalkyl substances (PFAS) and microplastics era: A review of functions, materials, and bio-based alternatives. Compr Rev Food Sci Food Saf 2025; 24:e70079. [PMID: 39680570 DOI: 10.1111/1541-4337.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Food packaging (FP) is essential for preserving food quality, safety, and extending shelf-life. However, growing concerns about the environmental and health impacts of conventional packaging materials, particularly per- and polyfluoroalkyl substances (PFAS) and microplastics, are driving a major transformation in FP design. PFAS, synthetic compounds with dual hydro- and lipophobicity, have been widely employed in food packaging materials (FPMs) to impart desirable water and grease repellency. However, PFAS bioaccumulate in the human body and have been linked to multiple health effects, including immune system dysfunction, cancer, and developmental problems. The detection of microplastics in various FPMs has raised significant concerns regarding their potential migration into food and subsequent ingestion. This comprehensive review examines the current landscape of FPMs, their functions, and physicochemical properties to put into perspective why there is widespread use of PFAS and microplastics in FPMs. The review then addresses the challenges posed by PFAS and microplastics, emphasizing the urgent need for sustainable and bio-based alternatives. We highlight promising advancements in sustainable and renewable materials, including plant-derived polysaccharides, proteins, and waxes, as well as recycled and upcycled materials. The integration of these sustainable materials into active packaging systems is also examined, indicating innovations in oxygen scavengers, moisture absorbers, and antimicrobial packaging. The review concludes by identifying key research gaps and future directions, including the need for comprehensive life cycle assessments and strategies to improve scalability and cost-effectiveness. As the FP industry evolves, a holistic approach considering environmental impact, functionality, and consumer acceptance will be crucial in developing truly sustainable packaging solutions.
Collapse
Affiliation(s)
- Arcot Yashwanth
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Rundong Huang
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Monica Iepure
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Minchen Mu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Wentao Zhou
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Angela Kunadu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Courtney Carignan
- Department of Food Science and Human Nutrition, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Yagmur Yegin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dongik Cho
- Department of Polymer Science and Engineering, Dankook University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Matthew T Taylor
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Mustafa E S Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Younjin Min
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
- Material Science and Engineering Program, University of California, Riverside, California, USA
| |
Collapse
|
8
|
Uehara A, Maekawa M, Sakamoto Y, Nakagawa K. Agglutination of Escherichia coli, Clostridium perfringens, and Salmonella enterica through competitive exclusion using potassium chloride with gum arabic. Int Microbiol 2024:10.1007/s10123-024-00625-4. [PMID: 39738815 DOI: 10.1007/s10123-024-00625-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Bacterial infections causing necrotic enteritis and diarrhea pose a considerable economic loss to the animal industry. Using mannose oligosaccharides as competitive exclusion agents is an alternative method to antibiotic growth promoters; however, these materials are rapidly metabolized by gut microbiota, posing a challenge in sustaining their efficacy. The aim of this study was to identify an agglutination material that is effective against pathogens. Polysaccharides and salts were assessed using agglutination assays, microscopy, and zeta potential analysis. Gum arabic (GA) demonstrated strong agglutination against Escherichia coli and Salmonella enterica. Potassium chloride altered the cell form of Clostridium perfringens from rod-like to coccoid. When combined with GA, KCl effectively agglutinated all three bacterial species tested. Zeta potential analysis showed that agglutination resulted from bacteria, GA, and KCl interactions. Among various salts mixed with GA, KCl was found to strongly agglutinate C. perfringens upon its change into the coccoid form. Moreover, this combination has been shown to agglutinate mixtures of pathogens, such as C. perfringens and S. enterica. Thus, a combination of GA and KCl offers a potential solution to combat the pathogens associated with necrotic enteritis and diarrhea in animals.
Collapse
Affiliation(s)
- Akinori Uehara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki-Ku, Kawasaki City, Kanagawa Prefecture, 210-8681, Japan.
| | - Mayumi Maekawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki-Ku, Kawasaki City, Kanagawa Prefecture, 210-8681, Japan
| | - Yasuteru Sakamoto
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki-Ku, Kawasaki City, Kanagawa Prefecture, 210-8681, Japan
| | - Kazuki Nakagawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki-Ku, Kawasaki City, Kanagawa Prefecture, 210-8681, Japan
| |
Collapse
|
9
|
Esfandiari N, Khosrovan S, Mirjalili M. A study on disinfection and adhesion behaviour between bacteria and photocatalytic nanostructures by extended DLVO. ENVIRONMENTAL TECHNOLOGY 2024; 45:6106-6120. [PMID: 38549515 DOI: 10.1080/09593330.2024.2325381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/04/2024] [Indexed: 12/05/2024]
Abstract
Recently, there has been a growing concern regarding the increased contamination of water by bacteria. As a result, more attention has been paid to the potential benefits of utilizing nano adsorbents and photocatalysis for water purification. In order to better manipulate the physicochemical properties, it is crucial to gain a comprehensive understanding of the molecular behaviour between nanoparticles and pathogens. This article investigates the various interactions that can occur between Fe3O4-SiO2-TiO2 (FST) nanoparticles and bacterial cells. Moreover, it explores the impact of the SiO2 mid-layer and the governing interaction in the adhesion and degradation processes. In this regard, FST nanoparticles were prepared, and their adhesion behaviour to E. coli bacterial cells was evaluated using extended DLVO (Derjaguin-Landau-Verwey-Overbeek) theory. The following results revealed that the presence of silica transformed FST into a more hydrophobic material with a positively charged surface, thereby enhancing its affinity for bacterial adsorption. Additionally, SiO2 prevented electron/hole recombination. Amongst the various interactions, Lewis acid-base interactions had the greatest influence on the total energy and lacking energy barriers led to irreversible adhesion. Moreover, the presence of an increased number of ·OH groups on the surface resulted in enhanced bactericidal properties of FST, leading to severe damage of E. coli cells through the formation of a greater number of hydrogen bonds on the bacterial surface, which is the basis of the proposed mechanism for destruction of the bacterial structure.
Collapse
Affiliation(s)
- Naeemeh Esfandiari
- Department of Materials Science & Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Setareh Khosrovan
- Department of Materials Science & Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mostafa Mirjalili
- Department of Materials Science & Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Wu Z, Thoresen PP, Maršík D, Matsakas L, Kulišová M, Fous K, Maťátková O, Masák J, Rova U, Ytreberg E, Granhag L, Christakopoulos P, Shi Y. High acetone soluble organosolv lignin extraction and its application towards green antifouling and wear-resistant coating. Int J Biol Macromol 2024; 282:137456. [PMID: 39532169 DOI: 10.1016/j.ijbiomac.2024.137456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Marine fouling poses significant challenges to the efficiency and longevity of marine engineering equipment. To address this issue, developing effective marine antifouling coatings is critical to ensure the economic viability, environmental sustainability, and safety of offshore operations. In this study, we developed an innovative green antifouling and wear-resistant coating based on lignin, a renewable and sustainable resource. Lignin is considered environmentally friendly because it is abundant, biodegradable, and reduces reliance on petroleum-based materials. The coating was formulated with a controlled hydrophilic-to-hydrophobic ratio of 2:8, leveraging lignin's unique properties. Applying lignin increased the water contact angle by 14.5 %, improving surface hydrophobicity and contributing to the coating's antifouling efficacy. Moreover, the mechanical strength of the coating was enhanced by approximately 200 %, significantly boosting its durability in harsh marine environments. Additionally, the friction coefficient was reduced by about 85 %, further preventing organism adhesion. These results demonstrate that lignin-based coatings offer a greener alternative to traditional antifouling solutions. The results of this study not only help advance antifouling coating technology but are also consistent with the broader goal of promoting environmental responsibility in marine engineering practice.
Collapse
Affiliation(s)
- Zhipeng Wu
- Division of Machine Elements, Luleå University of Technology, 97187 Luleå, Sweden
| | - Petter Paulsen Thoresen
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Dominik Maršík
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Markéta Kulišová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Karel Fous
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Olga Maťátková
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Jan Masák
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Erik Ytreberg
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE 412 96, Gothenburg, Sweden
| | - Lena Granhag
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE 412 96, Gothenburg, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden.
| | - Yijun Shi
- Division of Machine Elements, Luleå University of Technology, 97187 Luleå, Sweden.
| |
Collapse
|
11
|
De Plano LM, Caratozzolo M, Conoci S, Guglielmino SPP, Franco D. Impact of Nutrient Starvation on Biofilm Formation in Pseudomonas aeruginosa: An Analysis of Growth, Adhesion, and Spatial Distribution. Antibiotics (Basel) 2024; 13:987. [PMID: 39452253 PMCID: PMC11504098 DOI: 10.3390/antibiotics13100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives: This study investigates the impact of nutrient availability on the growth, adhesion, and biofilm formation of Pseudomonas aeruginosa ATCC 27853 under static conditions. Methods: Bacterial behaviour was evaluated in nutrient-rich Luria-Bertani (LB) broth and nutrient-limited M9 media, specifically lacking carbon (M9-C), nitrogen (M9-N), or phosphorus (M9-P). Bacterial adhesion was analysed microscopically during the transition from reversible to irreversible attachment (up to 120 min) and during biofilm production/maturation stages (up to 72 h). Results: Results demonstrated that LB and M9 media supported bacterial growth, whereas nutrient-starved conditions halted growth, with M9-C and M9-N inducing stationary phases and M9-P leading to cell death. Fractal analysis was employed to characterise the spatial distribution and complexity of bacterial adhesion patterns, revealing that nutrient-limited conditions affected both adhesion density and biofilm architecture, particularly in M9-C. In addition, live/dead staining confirmed a higher proportion of dead cells in M9-P over time (at 48 and 72 h). Conclusions: This study highlights how nutrient starvation influences biofilm formation and bacterial dispersion, offering insights into the survival strategies of P. aeruginosa in resource-limited environments. These findings should contribute to a better understanding of biofilm dynamics, with implications for managing biofilm-related infections and industrial biofouling.
Collapse
Affiliation(s)
- Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Manuela Caratozzolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- LAB Sense Beyond Nano—URT Department of Sciences Physics and Technologies of Matter (DSFTM) CNR, 98166 Messina, Italy
| | - Salvatore P. P. Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
12
|
Kwon H, Lim DJ, Choi C. Prevention of foodborne viruses and pathogens in fresh produce and root vegetables. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:219-285. [PMID: 40023562 DOI: 10.1016/bs.afnr.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Every year, 1 in 10 people suffers from food poisoning, and in recent years, the highest number of foodborne outbreaks has been attributed to roots/underground vegetables and fresh produce. Major pathogens include as Escherichia coli, Salmonella enterica, Listeria monocytogenes, Human Norovirus, Hepatitis A virus and Cyclospora. The primary sources of contamination for agriculture products stem from uncontrolled exposure to soil, water, and animal waste. Contamination can occur in various ways during food cultivation, harvesting, processing, and distribution. Mechanical washing and disinfection are primarily employed as practices to control biological contaminants such as bacteria, viruses, and parasites. Current practices may encounter challenges such as microbial resistance to disinfectants or antibiotics, and the cleaning effectiveness could be compromised due to the internalization of bacteria and viruses into some plants. High-pressure processing, pulse electric fields, and cold plasma are environmentally friendly technologies, albeit with associated costs. Low-temperature sterilization technologies capable of controlling biological contaminants, such as bacteria and viruses, play a crucial role in preventing food safety issues. Compared to conventional cleaning methods, these technologies are effective in controlling microorganisms that are strongly attached to the food surface or internalized due to damage. Periodic surveillance is essential to ensure the overall microbiological safety of fresh produce and root vegetables.
Collapse
Affiliation(s)
- Hyojin Kwon
- Department of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Dong Jae Lim
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
13
|
Wang T, Su E. Guardians of Future Food Safety: Innovative Applications and Advancements in Anti-biofouling Materials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21973-21985. [PMID: 39332908 DOI: 10.1021/acs.jafc.4c05156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Biofilm formation is a widespread natural phenomenon that poses a substantial threat to food microbiological safety, with direct implications for consumer health. To combat this challenge effectively, one promising strategy involves the development of functional anti-biofouling layers on food-contact surfaces to deter microbial adhesion. Herein, we explore the methodologies for fabricating both hydrophilic and hydrophobic anti-biofouling materials, along with a detailed examination of their inherent antiadhesive mechanisms. Furthermore, we provide concise insights into exemplary applications of anti-biofouling materials within the context of the food industry. This comprehensive analysis not only advances our understanding of biofilm prevention but also sets the stage for innovative developments in anti-biofouling materials and their future applications in food science. These advancements hold the potential to significantly enhance food microbiological safety, ensuring that consumers can confidently enjoy food products of the highest standards in terms of hygiene and quality.
Collapse
Affiliation(s)
- Tao Wang
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Vice Z, de Florio W, Masabni J, Cisneros-Zevallos L, Castillo A, Kerth CR, Akbulut M, Taylor TM. Superhydrophobic coatings reduce human bacterial foodborne pathogen attachment to woods used in fresh produce harvest and postharvest packing. Food Microbiol 2024; 123:104586. [PMID: 39038892 DOI: 10.1016/j.fm.2024.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/24/2024]
Abstract
Wood is reportedly more difficult to maintain in hygienic condition versus other food contact materials, yet its use in produce packing and retail warrants efforts to reduce the risk of microbial pathogen contamination and attachment. This study characterized antifouling capabilities of fluorinated silanes applied to wood used in fresh edible produce handling to render the wood superhydrophobic and less supportive of bacterial pathogen attachment. Pine and oak cubic coupon surfaces were treated with 1% (w/w) silane or left untreated. Treated and untreated coupons were inoculated with Salmonella enterica or Listeria monocytogenes and held to facilitate pathogen attachment for 1, 4, or 8 h. Silane treatment of wood produced significant reductions in the proportions of strongly attaching cells for both pathogens versus loosely attaching cells (P < 0.01). Salmonella attachment demonstrated a dependency on wood treatment; silane-treated wood supported a lower fraction of strongly adhering cells (1.87 ± 1.24 log CFU/cm2) versus untreated wood (3.72 ± 0.67 log CFU/cm2). L. monocytogenes demonstrated significant declines in strongly attaching cells during extended exposure to silane-treated wood, from 7.59 ± 0.14 to 5.27 ± 0.68 log CFU/cm2 over 8 h post-inoculation. Microscopic analysis demonstrated silane treatment increased the surface roughness of both woods, leading to superhydrophobic conditions on wood surfaces, consequently decreasing strong attachment of pathogenic bacteria.
Collapse
Affiliation(s)
- Zachariah Vice
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - William de Florio
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Joseph Masabni
- Department of Horticultural Sciences, Texas A&M AgriLife Extension, Dallas, TX, 75252, USA
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Alejandro Castillo
- Department of Food Science and Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Chris R Kerth
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Mustafa Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Thomas M Taylor
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
15
|
Wouters M, Van Moll L, De Vooght L, Choińska E, Idaszek J, Szlązak K, Heljak MK, Święszkowski W, Cos P. Polymyxin B Peptide Hydrogel Coating: A Novel Approach to Prevent Ventilator-Associated Pneumonia. Int J Mol Sci 2024; 25:10269. [PMID: 39408597 PMCID: PMC11477085 DOI: 10.3390/ijms251910269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Ventilator-associated pneumonia (VAP) remains one of the most common hospital-acquired infections (HAI). Considering the complicated diagnosis and the lack of effective treatment, prophylactic measures are suggested as the new standard to prevent the disease. Although VAP often manifests a polymicrobial nature, Pseudomonas aeruginosa remains one of the pathogens associated with the highest morbidity and mortality rates within these mechanically ventilated patients. In this paper, we report on the development of an antibacterial hydrogel coating using the polymyxin B (PMB) peptide to prevent bacterial adhesion to the polymeric substrate. We fully characterized the properties of the coating using atomic force microscopy (AFM), scanning electron microscopy (SEM), wettability analyses and Fourier-transform infrared (FTIR) and Raman spectroscopy. Furthermore, several biological assays confirmed the antibacterial and anti-biofilm effect of the tubing for at least 8 days against P. aeruginosa. On top of that, the produced coating is compliant with the requirements regarding cytocompatibility stated in the ISO (International Organization for Standardization) 10993 guidelines and an extended release of PMB over a period of at least 42 days was detected. In conclusion, this study serves as a foundation for peptide-releasing hydrogel formulas in the prevention of VAP.
Collapse
Affiliation(s)
- Milan Wouters
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, 2000 Antwerp, Belgium; (M.W.); (L.V.M.); (L.D.V.)
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, 2000 Antwerp, Belgium; (M.W.); (L.V.M.); (L.D.V.)
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, 2000 Antwerp, Belgium; (M.W.); (L.V.M.); (L.D.V.)
| | - Emilia Choińska
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Joanna Idaszek
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Karol Szlązak
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Marcin K. Heljak
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Wojciech Święszkowski
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, 2000 Antwerp, Belgium; (M.W.); (L.V.M.); (L.D.V.)
| |
Collapse
|
16
|
Shineh G, Mobaraki M, Afzali E, Alakija F, Velisdeh ZJ, Mills DK. Antimicrobial Metal and Metal Oxide Nanoparticles in Bone Tissue Repair. BIOMEDICAL MATERIALS & DEVICES 2024; 2:918-941. [DOI: 10.1007/s44174-024-00159-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/06/2024] [Indexed: 01/06/2025]
|
17
|
Čuk N, Simončič B, Fink R, Tomšič B. Bacterial Adhesion to Natural and Synthetic Fibre-Forming Polymers: Influence of Material Properties. Polymers (Basel) 2024; 16:2409. [PMID: 39274042 PMCID: PMC11397841 DOI: 10.3390/polym16172409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Polymer-based textiles have a major impact on human well-being, as they provide the desired functional protection and aesthetic comfort when worn. However, natural and synthetic polymer-based textiles can also pose serious health risks, as they are surfaces that allow the adhesion of various bacteria, including pathogenic bacteria. To minimise these problems, antibacterial chemical treatments are generally applicable in the case of polymer-based textiles. However, to avoid the use of potentially toxic chemicals, sustainable approaches require the customised design of non-adhesive polymer-based textiles, considering their chemical, physicochemical, constructional, and textural properties. Before designing, several articles are required to gain sufficient knowledge of the described object. Despite the urgent need to combat bacteria (on polymer-based textiles), which pose a serious global health risk, only a few review articles have been published that address bacterial adhesion in the context of superhydrophobic and antibacterial textile materials, while only one review article holistically addresses the textile factors and their influence on this phenomenon. The aim of this review article is to expand the insufficient knowledge about bacterial adhesion to polymer-based textiles on the basis of theoretical findings and real examples through a high degree of structuring, simplification, holistic consideration, and visualization. Therefore, this review provides an insight into the mechanisms involved in bacterial adhesion and a comprehensive overview of the influence of different textile factors, such as chemical composition, hydrophilicity/hydrophobicity, surface charge, surface free energy, roughness, and porosity, on bacterial adhesion. To emphasise the importance of the synergistic effect of the combined textile factors, examples of the influence of hydrophilicity/hydrophobicity in combination with surface charge, surface roughness, and porosity are discussed. From the review, it can be concluded that the combination of hydrophilicity/hydrophobicity and the surface charge of textile fibres and bacteria is crucial for bacterial adhesion, with roughness and porosity being the most important factors among the constructive and textural properties of polymer-based textiles.
Collapse
Affiliation(s)
- Nina Čuk
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva cesta 12, 1000 Ljubljana, Slovenia
| | - Barbara Simončič
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva cesta 12, 1000 Ljubljana, Slovenia
| | - Rok Fink
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Brigita Tomšič
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva cesta 12, 1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Lee H, Oh JK. Durable, Photostable Omniphobic Synthetic Leather Surfaces with Anti-Biofouling Properties for Hygienic Applications. Polymers (Basel) 2024; 16:1983. [PMID: 39065305 PMCID: PMC11281141 DOI: 10.3390/polym16141983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Globally, the public health domain is increasingly emphasizing the need for surfaces that can resist bacterial contamination, as the consumption of bacteria-infected substance may cause illnesses. Thus, this study aimed to modify polyurethane (PU) synthetic leather surfaces by coating their upper layer with fluorine-functionalized nano-silica particles (FNPs). This simple modification imparted omniphobic characteristics, realizing anti-biofouling and self-cleaning properties. The effectiveness in preventing bacterial adhesion was confirmed by the dip-inoculation method using Escherichia coli O157:H7 and Staphylococcus epidermidis. Bacterial adhesion was evaluated based on bacterial counts using the pour plate method and by directly enumerating from scanning electron microscopy images. The attachment of bacteria to the modified omniphobic FNPs-coated PU leather surface decreased by over 98.2% compared to that on the bare surface. We expect that the method developed in this study will significantly reduce or even eliminate the potential risks associated with various biological cross-contamination scenarios, thereby enhancing hygiene standards.
Collapse
Affiliation(s)
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, Yongin-si 16890, Republic of Korea
| |
Collapse
|
19
|
Potuck A, Webb J, Patel J. Perspective on the influence of suspension manufacturing unit operations on bioburden viability and selection of sampling points at the pilot scale. Pharm Dev Technol 2024; 29:618-626. [PMID: 38938157 DOI: 10.1080/10837450.2024.2372576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The suspension wet media milling manufacturing process is a complex multi-unit operation, resulting in drug substance comminution to a target particle size. As a result of this complexity, microbial contamination is of paramount concern, particularly for suspensions dosed for parenteral use. This perspective sought to review the influence of (4) critical manufacturing unit operations using a quality risk management approach to better identify and articulate impact of each unit operation on bioburden viability. The manufacturing unit operations in scope included slurry compounding, deaeration, milling, and filling. Bow tie risk analysis was used as a visual gap analysis tool to evaluate if conventional controls were appropriate to detect and mitigate potential for microbial contamination. A deep dive into these unit operations clarified that mechanisms such as turbohypobiosis, cavitation during deaeration, high energy milling, and inert overlay may have an appreciable influence on bioburden viability and proliferation. The resultant analysis also explicated that endotoxin oversight must be closely monitored through barriers (input material controls, water quality controls) to minimize impact to the product and patient. The identified manufacturing unit operations were not appropriate as mitigating controls for endotoxin. The output of this article relates risk intersections for microbial contamination during wet media milling and offers insights in critical areas for intervention.
Collapse
Affiliation(s)
- Alicia Potuck
- Sterile Operations, Clinical Supply Chain, GSK, King of Prussia, PA, USA
| | - Johnna Webb
- Microbiology, Systems, & Analytical Services, Analytical Development, GSK, King of Prussia, PA, USA
| | - Jhanvee Patel
- Sterile Operations, Clinical Supply Chain, GSK, King of Prussia, PA, USA
| |
Collapse
|
20
|
Vidović K, Hočevar S, Grgić I, Metarapi D, Dominović I, Mifka B, Gregorič A, Alfoldy B, Ciglenečki I. Do bromine and surface-active substances influence the coastal atmospheric particle growth? Heliyon 2024; 10:e31632. [PMID: 38828296 PMCID: PMC11140702 DOI: 10.1016/j.heliyon.2024.e31632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
New particle formation (NPF) is considered a major source of aerosol particles and cloud condensation nuclei (CCN); however, our understanding of NPF and the subsequent particle growth mechanisms in coastal areas remains limited. This study provides evidence of frequent NPF events followed by particle growth in the middle Adriatic Sea during the summer months at the coastal station of Rogoznica in Croatia. To our knowledge, this is the first study to report such events in this region. Our research aims to improve the understanding of NPF by investigating particle growth through detailed physicochemical characterization and event classification. We used a combination of online measurements and offline particle collection, followed by a thorough chemical analysis. Our results suggest the role of bromine in the particle growth process and provide evidence for its involvement in combination with organic compounds. In addition, we demonstrated the significant influence of surface-active substances (SAS) on particle growth. NPF and particle growth events have been observed in air masses originating from the Adriatic Sea, which can serve as an important source of volatile organic compounds (VOC). Our study shows an intricate interplay between bromine, organic carbon (OC), and SAS in atmospheric particle growth, contributing to a better understanding of coastal NPF processes. In this context, we also introduced a new approach using the semi-empirical 1st derivative method to determine the growth rate for each time point that is not sensitive to the nonlinear behavior of the particle growth over time. We observed that during NPF and particle growth event days, the OC concentration measured in the ultrafine mode particle fraction was higher compared to non-event days. Moreover, in contrast to non-event days, bromine compounds were detected in the ultrafine mode atmospheric particle fraction on nearly all NPF and particle growth event days. Regarding sulfuric acid, the measured sulfate concentration in the ultrafine mode atmospheric particle fraction on both NPF event and non-event days showed no significant differences. This suggests that sulfuric acid may not be the primary factor influencing the appearance of NPF and the particle growth process in the coastal region of Rogoznica.
Collapse
Affiliation(s)
- Kristijan Vidović
- National Institute of Chemistry, Department of Analytical Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Physical Oceanography Chemistry of Aquatic Systems, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Samo Hočevar
- National Institute of Chemistry, Department of Analytical Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Irena Grgić
- National Institute of Chemistry, Department of Analytical Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Dino Metarapi
- National Institute of Chemistry, Department of Analytical Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Iva Dominović
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Physical Oceanography Chemistry of Aquatic Systems, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Boris Mifka
- Faculty of Physics University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Asta Gregorič
- University of Nova Gorica, Center for Atmospheric Research, Vipavska 11c, 5270 Ajdovščina, Slovenia
- Aerosol d.o.o., Kamniška 39A, 1000, Ljubljana, Slovenia
| | | | - Irena Ciglenečki
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Physical Oceanography Chemistry of Aquatic Systems, Bijenička cesta 54, 10000, Zagreb, Croatia
| |
Collapse
|
21
|
DeFlorio W, Zaza A, Arcot Y, Min Y, Castillo A, Taylor M, Cisneros-Zevallos L, Akbulut MES. Bioinspired Superhydrophobic Nanocoating Based on Polydopamine and Nanodiamonds to Mitigate Bacterial Attachment to Polyvinyl Chloride Surfaces in Food Industry Environments. Ind Eng Chem Res 2024; 63:6235-6248. [PMID: 38617109 PMCID: PMC11009964 DOI: 10.1021/acs.iecr.3c04230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Polyvinyl chloride (PVC) is commonly utilized as a food-contact surface by the food industry for processing and storage purposes due to its durability, ease of fabrication, and cost-effectiveness. Herein, we report a composite coating for the superhydrophobization of PVC without the use of polyfluoroalkyl chemistry. This coating rendered the PVC superhydrophobic, exhibiting a static water contact angle of 151.9 ± 0.7° and a contact angle hysteresis of only 3.1 ± 1.0°. The structure of this composite coating, consisting of polydopamine, nanodiamonds, and an alkyl silane, was investigated by utilizing both scanning electron microscopy and atomic force microscopy. Surface chemistry was probed using attenuated total reflectance-Fourier transform infrared, and the surface wetting behavior was thoroughly characterized using both static and dynamic water contact angle measurements. It was demonstrated that the superhydrophobic PVC was cleanable using a food-grade surfactant, becoming wet in contact with high concentration surfactant solutions, but regaining its nonwetting property upon rinsing with water. It was demonstrated that the coating produced a 2.1 ± 0.1 log10 reduction (99.2%) in the number of Escherichia coli O157:H7 cells and a 2.2 ± 0.1 log10 reduction (99.3%) in the number of Salmonella enterica Typhimurium cells that were able to adsorb onto PVC surfaces over a 24 h period. The use of this fluorine-free superhydrophobic coating on PVC equipment, such as conveyor belts within food production facilities, may help to mitigate bacterial cross-contamination and curb the spread of foodborne illnesses.
Collapse
Affiliation(s)
- William DeFlorio
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Abdulla Zaza
- Department
of Chemical Engineering, Texas A&M University
at Qatar, Doha 23874, Qatar
| | - Yashwanth Arcot
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Younjin Min
- Depart
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Alejandro Castillo
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Matthew Taylor
- Department
of Animal Science, Texas A&M University, College Station, Texas 77843, United States
| | - Luis Cisneros-Zevallos
- Department
of Horticultural Sciences, Texas A&M
University, College Station, Texas 77843, United States
| | - Mustafa E. S. Akbulut
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
22
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
23
|
Needham P, Page RC, Yehl K. Phage-layer interferometry: a companion diagnostic for phage therapy and a bacterial testing platform. Sci Rep 2024; 14:6026. [PMID: 38472239 PMCID: PMC10933294 DOI: 10.1038/s41598-024-55776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
The continuing and rapid emergence of antibiotic resistance (AMR) calls for innovations in antimicrobial therapies. A promising, 're-emerging' approach is the application of bacteriophage viruses to selectively infect and kill pathogenic bacteria, referred to as phage therapy. In practice, phage therapy is personalized and requires companion diagnostics to identify efficacious phages, which are then formulated into a therapeutic cocktail. The predominant means for phage screening involves optical-based assays, but these methods cannot be carried out in complex media, such as colored solutions, inhomogeneous mixtures, or high-viscosity samples, which are often conditions encountered in vivo. Moreover, these assays cannot distinguish phage binding and lysis parameters, which are important for standardizing phage cocktail formulation. To address these challenges, we developed Phage-layer Interferometry (PLI) as a companion diagnostic. Herein, PLI is assessed as a quantitative phage screening method and prototyped as a bacterial detection platform. Importantly, PLI is amenable to automation and is functional in complex, opaque media, such as baby formula. Due to these newfound capabilities, we foresee immediate and broad impact of PLI for combating AMR and protecting against foodborne illnesses.
Collapse
Affiliation(s)
- Patrick Needham
- Department of Chemistry and Biochemistry, Miami University, Oxford, 45056, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, 45056, USA
| | - Kevin Yehl
- Department of Chemistry and Biochemistry, Miami University, Oxford, 45056, USA.
| |
Collapse
|
24
|
Song SH, Bae M, Oh JK. Durable Surface Modification of Low-Density Polyethylene/Nano-Silica Composite Films with Bacterial Antifouling and Liquid-Repelling Properties for Food Hygiene and Safety. Polymers (Basel) 2024; 16:292. [PMID: 38276700 PMCID: PMC10819097 DOI: 10.3390/polym16020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The growing prevalence of antimicrobial resistance in bacterial strains has increased the demand for preventing biological deterioration on the surfaces of films used in applications involving food contact materials (FCMs). Herein, we prepared superhydrophobic film surfaces using a casting process that involved the combination of low-density polyethylene (LDPE) with solutions containing surface energy-reducing silica (SRS). The bacterial antifouling properties of the modified film surfaces were evaluated using Escherichia coli O157:H7 and Staphylococcus epidermidis via the dip-inoculation technique. The reduction in bacterial populations on the LDPE film embedded with SRS was confirmed to be more than 2 log-units, which equates to over 99%, when compared to the bare LDPE film. Additionally, the modified film demonstrated liquid-repelling properties against food-related contaminants, such as blood, beverages, and sauces. Moreover, the modified film demonstrated enhanced durability and robustness compared to one of the prevalent industry methods, dip-coating. We anticipate that the developed LDPE/nano-silica composite film represents a promising advancement in the multidisciplinary aspects of food hygiene and safety within the food industry, particularly concerning FCMs.
Collapse
Affiliation(s)
- Sang Ha Song
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Republic of Korea;
| | - Michael Bae
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77845, USA
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Republic of Korea;
| |
Collapse
|
25
|
Ugur GE, Rux K, Boone JC, Seaman R, Avci R, Gerlach R, Phillips A, Heveran C. Biotrapping Ureolytic Bacteria on Sand to Improve the Efficiency of Biocementation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2075-2085. [PMID: 38176018 DOI: 10.1021/acsami.3c13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Microbially induced calcium carbonate precipitation (MICP) has emerged as a novel technology with the potential to produce building materials through lower-temperature processes. The formation of calcium carbonate bridges in MICP allows the biocementation of aggregate particles to produce biobricks. Current approaches require several pulses of microbes and mineralization media to increase the quantity of calcium carbonate minerals and improve the strength of the material, thus leading to a reduction in sustainability. One potential technique to improve the efficiency of strength development involves trapping the bacteria on the aggregate surfaces using silane coupling agents such as positively charged 3-aminopropyl-methyl-diethoxysilane (APMDES). This treatment traps bacteria on sand through electrostatic interactions that attract negatively charged walls of bacteria to positively charged amine groups. The APMDES treatment promoted an abundant and immediate association of bacteria with sand, increasing the spatial density of ureolytic microbes on sand and promoting efficient initial calcium carbonate precipitation. Though microbial viability was compromised by treatment, urea hydrolysis was minimally affected. Strength was gained much more rapidly for the APMDES-treated sand than for the untreated sand. Three injections of bacteria and biomineralization media using APMDES-treated sand led to the same strength gain as seven injections using untreated sand. The higher strength with APMDES treatment was not explained by increased calcium carbonate accrual in the structure and may be influenced by additional factors such as differences in the microstructure of calcium carbonate bridges between sand particles. Overall, incorporating pretreatment methods, such as amine silane coupling agents, opens a new avenue in biomineralization research by producing materials with an improved efficiency and sustainability.
Collapse
Affiliation(s)
- Gizem Elif Ugur
- Mechanical and Industrial Engineering Department, Montana State University, Bozeman, Montana 59717, United States
| | - Kylee Rux
- Civil and Environmental Engineering Department, Montana State University, Bozeman, Montana 59717, United States
| | - John Connor Boone
- Mechanical and Industrial Engineering Department, Montana State University, Bozeman, Montana 59717, United States
| | - Rachel Seaman
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Recep Avci
- Department of Physics, Montana State University, Bozeman, Montana 59717, United States
| | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Chemical & Biological Engineering Department, Montana State University, Bozeman, Montana 59717, United States
| | - Adrienne Phillips
- Civil and Environmental Engineering Department, Montana State University, Bozeman, Montana 59717, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Chelsea Heveran
- Mechanical and Industrial Engineering Department, Montana State University, Bozeman, Montana 59717, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
26
|
Arcot Y, Mu M, Lin YT, DeFlorio W, Jebrini H, Kunadu APH, Yegin Y, Min Y, Castillo A, Cisneros-Zevallos L, Taylor TM, Akbulut ME. Edible nano-encapsulated cinnamon essential oil hybrid wax coatings for enhancing apple safety against food borne pathogens. Curr Res Food Sci 2024; 8:100667. [PMID: 38292343 PMCID: PMC10825335 DOI: 10.1016/j.crfs.2023.100667] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024] Open
Abstract
Post-harvest losses of fruits due to decay and concerns regarding microbial food safety are significant within the produce processing industry. Additionally, maintaining the quality of exported commodities to distant countries continues to pose a challenge. To address these issues, the application of bioactive compounds, such as essential oils, has gained recognition as a means to extend shelf life by acting as antimicrobials. Herein, we have undertaken an innovative approach by nano-encapsulating cinnamon-bark essential oil using whey protein concentrate and imbibing nano-encapsulates into food-grade wax commonly applied on produce surfaces. We have comprehensively examined the physical, chemical, and antimicrobial properties of this hybrid wax to evaluate its efficacy in combatting the various foodborne pathogens that frequently trouble producers and handlers in the post-harvest processing industry. The coatings as applied demonstrated a static contact angle of 85 ± 1.6°, and advancing and receding contact angles of 90 ± 1.1° and 53.0 ± 1.6°, respectively, resembling the wetting properties of natural waxes on apples. Nanoencapsulation significantly delayed the release of essential oil, increasing the half-life by 61 h compared to its unencapsulated counterparts. This delay correlated with statistically significant reductions (p = 0.05) in bacterial populations providing both immediate and delayed (up to 72 h) antibacterial effects as well as expanded fungal growth inhibition zones compared to existing wax technologies, demonstrating promising applicability for high-quality fruit storage and export. The utilization of this advanced produce wax coating technology offers considerable potential for bolstering food safety and providing enhanced protection against bacteria and fungi for produce commodities.
Collapse
Affiliation(s)
- Yashwanth Arcot
- Artie McFerrin Department of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Minchen Mu
- Artie McFerrin Department of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yu-Ting Lin
- Artie McFerrin Department of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - William DeFlorio
- Artie McFerrin Department of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Haris Jebrini
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, USA
| | | | - Yagmur Yegin
- Massachusetts Institute of Technology, Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Younjin Min
- Depart of Chemical and Environmental Engineering, University of California, Riverside, CA, USA, 92521
| | - Alejandro Castillo
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, USA
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Thomas M. Taylor
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Mustafa E.S. Akbulut
- Artie McFerrin Department of Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
27
|
Uttam I, Sudarsan S, Ray R, Chinnappan R, Yaqinuddin A, Al-Kattan K, Mani NK. A Hypothetical Approach to Concentrate Microorganisms from Human Urine Samples Using Paper-Based Adsorbents for Point-of-Care Molecular Assays. Life (Basel) 2023; 14:38. [PMID: 38255653 PMCID: PMC10820215 DOI: 10.3390/life14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
This hypothesis demonstrates that the efficiency of loop-mediated isothermal amplification (LAMP) for nucleic acid detection can be positively influenced by the preconcentration of microbial cells onto hydrophobic paper surfaces. The mechanism of this model is based on the high affinity of microbes towards hydrophobic surfaces. Extensive studies have demonstrated that hydrophobic surfaces exhibit enhanced bacterial and fungal adhesion. By exploiting this inherent affinity of hydrophobic paper substrates, the preconcentration approach enables the adherence of a greater number of target cells, resulting in a higher concentration of target templates for amplification directly from urine samples. In contrast to conventional methods, which often involve complex procedures, this approach offers a simpler, cost-effective, and user-friendly alternative. Moreover, the integration of cell adhesion, LAMP amplification, and signal readout within paper origami-based devices can provide a portable, robust, and highly efficient platform for rapid nucleic acid detection. This innovative hypothesis holds significant potential for point-of-care (POC) diagnostics and field surveillance applications. Further research and development in this field will advance the implementation of this technology, contributing to improved healthcare systems and public health outcomes.
Collapse
Affiliation(s)
- Isha Uttam
- Microfluidics, Sensors and Diagnostics (µSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.U.); (S.S.)
| | - Sujesh Sudarsan
- Microfluidics, Sensors and Diagnostics (µSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.U.); (S.S.)
| | - Rohitraj Ray
- Department of BioSystems Science and Engineering (BSSE), Indian Institute of Science, CV Raman Rd, Bangalore 560012, Karnataka, India;
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.Y.); (K.A.-K.)
- Tissue/Organ Bioengineering & BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.Y.); (K.A.-K.)
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.Y.); (K.A.-K.)
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (µSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.U.); (S.S.)
| |
Collapse
|
28
|
Voinova VV, Zhuikov VA, Zhuikova YV, Sorokina AA, Makhina TK, Bonartseva GA, Parshina EY, Hossain MA, Shaitan KV, Pryadko AS, Chernozem RV, Mukhortova YR, Shlapakova LE, Surmenev RA, Surmeneva MA, Bonartsev AP. Adhesion of Escherichia coli and Lactobacillus fermentum to Films and Electrospun Fibrous Scaffolds from Composites of Poly(3-hydroxybutyrate) with Magnetic Nanoparticles in a Low-Frequency Magnetic Field. Int J Mol Sci 2023; 25:208. [PMID: 38203380 PMCID: PMC10778586 DOI: 10.3390/ijms25010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The ability of materials to adhere bacteria on their surface is one of the most important aspects of their development and application in bioengineering. In this work, the effect of the properties of films and electrospun scaffolds made of composite materials based on biosynthetic poly(3-hydroxybutyrate) (PHB) with the addition of magnetite nanoparticles (MNP) and their complex with graphene oxide (MNP/GO) on the adhesion of E. coli and L. fermentum under the influence of a low-frequency magnetic field and without it was investigated. The physicochemical properties (crystallinity; surface hydrophilicity) of the materials were investigated by X-ray structural analysis, differential scanning calorimetry and "drop deposition" methods, and their surface topography was studied by scanning electron and atomic force microscopy. Crystal violet staining made it possible to reveal differences in the surface charge value and to study the adhesion of bacteria to it. It was shown that the differences in physicochemical properties of materials and the manifestation of magnetoactive properties of materials have a multidirectional effect on the adhesion of model microorganisms. Compared to pure PHB, the adhesion of E. coli to PHB-MNP/GO, and for L. fermentum to both composite materials, was higher. In the magnetic field, the adhesion of E. coli increased markedly compared to PHB-MNP/GO, whereas the effect on the adhesion of L. fermentum was reversed and was only evident in samples with PHB-MNP. Thus, the resultant factors enhancing and impairing the substrate binding of Gram-negative E. coli and Gram-positive L. fermentum turned out to be multidirectional, as they probably have different sensitivity to them. The results obtained will allow for the development of materials with externally controlled adhesion of bacteria to them for biotechnology and medicine.
Collapse
Affiliation(s)
- Vera V. Voinova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Vsevolod A. Zhuikov
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (V.A.Z.); (Y.V.Z.); (T.K.M.); (G.A.B.)
| | - Yulia V. Zhuikova
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (V.A.Z.); (Y.V.Z.); (T.K.M.); (G.A.B.)
| | - Anastasia A. Sorokina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Tatiana K. Makhina
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (V.A.Z.); (Y.V.Z.); (T.K.M.); (G.A.B.)
| | - Garina A. Bonartseva
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (V.A.Z.); (Y.V.Z.); (T.K.M.); (G.A.B.)
| | - Evgeniia Yu. Parshina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Muhammad Asif Hossain
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Konstantin V. Shaitan
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Artyom S. Pryadko
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
| | - Roman V. Chernozem
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Yulia R. Mukhortova
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Lada E. Shlapakova
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
| | - Roman A. Surmenev
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Maria A. Surmeneva
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Anton P. Bonartsev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| |
Collapse
|
29
|
Woern C, Grossmann L. Microbial gas fermentation technology for sustainable food protein production. Biotechnol Adv 2023; 69:108240. [PMID: 37647973 DOI: 10.1016/j.biotechadv.2023.108240] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
The development of novel, sustainable, and robust food production technologies represents one of the major pillars to address the most significant challenges humanity is going to face on earth in the upcoming decades - climate change, population growth, and resource depletion. The implementation of microfoods, i.e., foods formulated with ingredients from microbial cultivation, into the food supply chain has a huge potential to contribute towards energy-efficient and nutritious food manufacturing and represents a means to sustainably feed a growing world population. This review recapitulates and assesses the current state in the establishment and usage of gas fermenting bacteria as an innovative feedstock for protein production. In particular, we focus on the most promising representatives of this taxon: the hydrogen-oxidizing bacteria (hydrogenotrophs) and the methane-oxidizing bacteria (methanotrophs). These unicellular microorganisms can aerobically metabolize gaseous hydrogen and methane, respectively, to provide the required energy for building up cell material. A protein yield over 70% in the dry matter cell mass can be reached with no need for arable land and organic substrates making it a promising alternative to plant- and animal-based protein sources. We illuminate the holistic approach to incorporate protein extracts obtained from the cultivation of gas fermenting bacteria into microfoods. Herein, the fundamental properties of the bacteria, cultivation methods, downstream processing, and potential food applications are discussed. Moreover, this review covers existing and future challenges as well as sustainability aspects associated with the production of microbial protein through gas fermentation.
Collapse
Affiliation(s)
- Carlos Woern
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
30
|
Masuda T, Watanabe Y, Kozuka Y, Saegusa Y, Takai M. Bactericidal Ability of Well-Controlled Cationic Polymer Brush Surfaces and the Interaction Analysis by Quartz Crystal Microbalance with Dissipation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16522-16531. [PMID: 37930305 DOI: 10.1021/acs.langmuir.3c02472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
In this study, cationic poly(2-(methacryloyloxy)ethyl) trimethylammonium chloride) (PMTAC) brush surfaces were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP), and their properties were systematically investigated to discuss the factors affecting their bactericidal properties and interactions with proteins. Model equations for the analysis of electrophoretic behaviors were considered for accurate parameter estimation to indicate the charge density at the interface. The zeta potential dependency of the PMTAC brushes was successfully analyzed using Smolchowski's equation and the Gouy-Chapman model, which describes the diffusive electric double layer. The analysis of the quartz crystal microbalance with dissipation (QCM-D) indicated that the electrostatic interaction promoted protein adsorption, with a large quantity of a negatively charged protein, bovine serum albumin (BSA), being adsorbed. The bactericidal efficiency of the high-graft-density polymer brush (0.45 chains nm-2) was higher than that of the low-graft-density polymer brush (0.06 chains nm-2). To investigate the mechanism of this phenomenon, we applied the dissipation change (ΔD) of QCM-D analysis. The BSA was likewise adsorbed when the brush structure was changed; however, the negative ΔD indicated that the BSA-adsorbed, high-graft-density PMTAC brush became a rigid state. In the bacteria culture media, the behaviors were the same as BSA adsorption, and the high-graft-density polymer brush was also estimated to be more rigid than the low-graft-density polymer brush. Moreover, for S. aureus adhesion after incubating in TSB, a small slope of ΔD/ΔF plots considered initial adsorption of bacteria on the high-graft-density polymer brush strongly interacted compared to that of the low-graft-density polymer brush. The scattered value of the slope of ΔD/ΔF on the high-graft-density polymer brush was considered to be due to the dead bacteria between the bacteria and the polymer brush interface. These investigations for a well-defined cationic polymer brush will contribute to the design of antibacterial surfaces.
Collapse
Affiliation(s)
- Tsukuru Masuda
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan
| | - Yoichi Watanabe
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan
| | - Yuta Kozuka
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan
| | - Yui Saegusa
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan
| |
Collapse
|
31
|
Hackemann VCJ, Hagel S, Jandt KD, Rödel J, Löffler B, Tuchscherr L. The Controversial Effect of Antibiotics on Methicillin-Sensitive S. aureus: A Comparative In Vitro Study. Int J Mol Sci 2023; 24:16308. [PMID: 38003500 PMCID: PMC10671744 DOI: 10.3390/ijms242216308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Methicillin-sensitive Staphylococcus (S.) aureus (MSSA) bacteremia remains a global challenge, despite the availability of antibiotics. Primary treatments include β-lactam agents such as cefazolin and flucloxacillin. Ongoing discussions have focused on the potential synergistic effects of combining these agents with rifampicin or fosfomycin to combat infections associated with biofilm formation. Managing staphylococcal infections is challenging due to antibacterial resistance, biofilms, and S. aureus's ability to invade and replicate within host cells. Intracellular invasion shields the bacteria from antibacterial agents and the immune system, often leading to incomplete bacterial clearance and chronic infections. Additionally, S. aureus can assume a dormant phenotype, known as the small colony variant (SCV), further complicating eradication and promoting persistence. This study investigated the impact of antibiotic combinations on the persistence of S. aureus 6850 and its stable small colony variant (SCV strain JB1) focusing on intracellular survival and biofilm formation. The results from the wild-type strain 6850 demonstrate that β-lactams combined with RIF effectively eliminated biofilms and intracellular bacteria but tend to select for SCVs in planktonic culture and host cells. Higher antibiotic concentrations were associated with an increase in the zeta potential of S. aureus, suggesting reduced membrane permeability to antimicrobials. When using the stable SCV mutant strain JB1, antibiotic combinations with rifampicin successfully cleared planktonic bacteria and biofilms but failed to eradicate intracellular bacteria. Given these findings, it is reasonable to report that β-lactams combined with rifampicin represent the optimal treatment for MSSA bacteremia. However, caution is warranted when employing this treatment over an extended period, as it may elevate the risk of selecting for small colony variants (SCVs) and, consequently, promoting bacterial persistence.
Collapse
Affiliation(s)
| | - Stefan Hagel
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Klaus D Jandt
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743 Jena, Germany
| | - Jürgen Rödel
- Institute for Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| | - Bettina Löffler
- Institute for Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| | - Lorena Tuchscherr
- Institute for Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
32
|
Lee D, Song S, Cho G, Dalle Ore LC, Malmstadt N, Fuwad A, Kim SM, Jeon TJ. Elucidating the Molecular Interactions between Lipids and Lysozyme: Evaporation Resistance and Bacterial Barriers for Dry Eye Disease. NANO LETTERS 2023; 23:9451-9460. [PMID: 37842945 DOI: 10.1021/acs.nanolett.3c02936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Dry eye disease (DED) is a chronic condition characterized by ocular dryness and inflammation. The tear film lipid layer (TFLL) is the outermost layer composed of lipids and proteins that protect the ocular surface. However, environmental contaminants can disrupt its structure, potentially leading to DED. Although the importance of tear proteins in the TFLL functionality has been clinically recognized, the molecular mechanisms underlying TFLL-protein interactions remain unclear. In this study, we investigated tear protein-lipid interactions and analyzed their role in the TFLL functionality. The results show that lysozyme (LYZ) increases the stability of the TFLL by reducing its surface tension and increasing its surface pressure, resulting in increased TFLL evaporation and bacterial invasion resistance, with improved wettability and lubrication performance. These findings highlight the critical role of LYZ in maintaining ocular health and provide potential avenues for investigating novel approaches to DED treatment and patient well-being.
Collapse
Affiliation(s)
- Deborah Lee
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Seoyoon Song
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Geonho Cho
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Lucia C Dalle Ore
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Noah Malmstadt
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Ahmed Fuwad
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Sun Min Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
33
|
Villapún VM, Man K, Carter L, Penchev P, Dimov S, Cox S. Laser texturing of additively manufactured implants: A tool to programme biological response. BIOMATERIALS ADVANCES 2023; 153:213574. [PMID: 37542913 DOI: 10.1016/j.bioadv.2023.213574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
The advent of additive manufacturing (AM) is rapidly shaping healthcare technologies pushing forward personalisation and enhanced implant functionalisation to improve clinical outcomes. AM techniques such as powder bed fusion (PBF) have been adopted despite the need to modify the as-built surface post manufacture. Medical device manufacturers have focused their efforts on refining various physical and chemical surface finishing approaches, however there is little consensus and some methods risk geometry alteration or contamination. This has led to a growing interest in laser texturing technologies to engineer the device surface. Herein, several bioinspired micro and nano textures were applied to laser PBF Ti-6Al-V4 substrates to alter physicochemical properties and in-turn we sought to understand what influences these alterations had on a human osteosarcoma cell line (MG63). Significant variations in roughness and time dependent contact angles were revealed between different patterns provide a tool to elicit desired biological responses. All surface treatments effectively enhanced early cell behaviour and in particular coverage was increased for the micro-textures. Influence of the patterns on cell differentiation was less consistent with alkaline phosphatase content increased only for the channel, grid and dual textures. While long term (21 days) mineralisation was found to be significantly enhanced in grids, dual, triangles and shark skin textures. Further regression analysis of all physicochemical and biological variables indicated that several properties should be used to strongly correlate cell behaviour, resulting in 82 % of the 21 day mineralisation dataset explained through a combination of roughness kurtosis and glycerol contact angle. Overall, this manuscript demonstrates the ability of laser texturing to offer tailored cell-surface interactions, which can be tuned to offer a tool to drive functional customisation of anatomically customised medical devices.
Collapse
Affiliation(s)
- Victor M Villapún
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| | - Kenny Man
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center, Utrecht GA 3508, the Netherlands
| | - Luke Carter
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Pavel Penchev
- Department of Mechanical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Stefan Dimov
- Department of Mechanical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Sophie Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
34
|
Prinz Setter O, Jiang X, Segal E. Rising to the surface: capturing and detecting bacteria by rationally-designed surfaces. Curr Opin Biotechnol 2023; 83:102969. [PMID: 37494819 DOI: 10.1016/j.copbio.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Analytical microbiology has made substantial progress since its conception, starting from potato slices, through selective agar media, to engineered surfaces modified with capture probes. While the latter represents the dominant approach in designing sensors for bacteria detection, the importance of sensor surface properties is frequently ignored. Herein, we highlight their significant role in the complex process of bacterial transition from planktonic to sessile, representing the first and critical step in bacteria detection. We present the main surface features and discuss their effect on the bio-solid interface and the resulting sensing capabilities for both flat and particulate systems. The concepts of rationally-designed surfaces for enhanced bacterial detection are presented with recent examples of sensors (capture probe-free) relying solely on surface cues.
Collapse
Affiliation(s)
- Ofer Prinz Setter
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Xin Jiang
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel; The Russel Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| |
Collapse
|
35
|
Lopes LM, Germiniani LGL, Rocha Neto JBM, Andrade PF, da Silveira GAT, Taketa TB, Gonçalves MDC, Beppu MM. Preparation and characterization of porous membranes of glucomannan and silver decorated cellulose nanocrystals for application as biomaterial. Int J Biol Macromol 2023; 250:126236. [PMID: 37562469 DOI: 10.1016/j.ijbiomac.2023.126236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Bacterial infection usually represents a threat in medical wound care, due to the increase in treatment complexity and the risk of antibiotic resistance. For presenting interesting characteristics for the use as biomaterial, natural polymers have been explored for this application. Among them, a promising candidate is the konjac glucomannan (KGM) with outstanding biocompatibility and biodegradability but lack of antibacterial activity. In this study, KGM was combined with silver decorated cellulose nanocrystals (CNC-Ag) to prepare membranes by using a recent reported casting-freezing method. The results highlight the potential anti-adhesive activity of the new materials against Staphylococcus aureus upon contact, without the burst release of silver nanoparticles. Furthermore, the incorporation of CNC enhanced the thermal stability of these membranes while preserving the favorable mechanical properties of the KGM-based material. These findings highlight a straightforward approach to enhance the antibacterial properties of natural polymers, which can be effectively useful in medical devices like wound dressings that typically lack such properties.
Collapse
Affiliation(s)
- Laise Maia Lopes
- University of Campinas, School of Chemical Engineering, Campinas, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Teixeira-Santos R, Gomes LC, Vieira R, Sousa-Cardoso F, Soares OSGP, Mergulhão FJ. Exploring Nitrogen-Functionalized Graphene Composites for Urinary Catheter Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2604. [PMID: 37764632 PMCID: PMC10536687 DOI: 10.3390/nano13182604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Graphene has been broadly studied, particularly for the fabrication of biomedical devices, owing to its physicochemical and antimicrobial properties. In this study, the antibiofilm efficacy of graphene nanoplatelet (GNP)-based composites as coatings for urinary catheters (UCs) was investigated. GNPs were functionalized with nitrogen (N-GNP) and incorporated into a polydimethylsiloxane (PDMS) matrix. The resulting materials were characterized, and the N-GNP/PDMS composite was evaluated against single- and multi-species biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Both biofilm cell composition and structure were analyzed. Furthermore, the antibacterial mechanisms of action of N-GNP were explored. The N-GNP/PDMS composite showed increased hydrophobicity and roughness compared to PDMS. In single-species biofilms, this composite significantly reduced the number of S. aureus, P. aeruginosa, and K. pneumoniae cells (by 64, 41, and 29%, respectively), and decreased S. aureus biofilm culturability (by 50%). In tri-species biofilms, a 41% reduction in total cells was observed. These results are aligned with the outcomes of the biofilm structure analysis. Moreover, N-GNP caused changes in membrane permeability and triggered reactive oxygen species (ROS) synthesis in S. aureus, whereas in Gram-negative bacteria, it only induced changes in cell metabolism. Overall, the N-GNP/PDMS composite inhibited biofilm development, showing the potential of these carbon materials as coatings for UCs.
Collapse
Affiliation(s)
- Rita Teixeira-Santos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.T.-S.); (L.C.G.); (R.V.); (F.S.-C.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Luciana C. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.T.-S.); (L.C.G.); (R.V.); (F.S.-C.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Rita Vieira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.T.-S.); (L.C.G.); (R.V.); (F.S.-C.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Francisca Sousa-Cardoso
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.T.-S.); (L.C.G.); (R.V.); (F.S.-C.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Olívia S. G. P. Soares
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe J. Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.T.-S.); (L.C.G.); (R.V.); (F.S.-C.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| |
Collapse
|
37
|
Hsieh PC, Chien HW. Biomimetic surfaces: Insights on the role of surface topography and wetting properties in bacterial attachment and biofilm formation. Colloids Surf B Biointerfaces 2023; 228:113389. [PMID: 37290200 DOI: 10.1016/j.colsurfb.2023.113389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
The study explores the impact of biomimetic surfaces on bacterial attachment and biofilm formation. Specifically, it investigates the effects of topographic scale and wetting behavior on the attachment and growth of Staphylococcus aureus and Escherichia coli on four different biomimetic surfaces: rose petals, Paragrass leaves, shark skin, and goose feathers. Using soft lithography, epoxy replicas with surface topographies similar to those of the natural surfaces were created. The static water contact angles of the replicas exceeded the hydrophobic threshold of 90°, while the hysteresis angles were found to be in the order of goose feathers, shark skin, Paragrass leaves, and rose petals. The results showed that bacterial attachment and biofilm formation were the lowest on rose petals and the highest on goose feathers, regardless of the bacterial strain. Additionally, the study revealed that surface topography had a significant impact on biofilm formation, with smaller feature sizes inhibiting biofilm formation. Hysteresis angle, rather than static water contact angle, was identified as a critical factor to consider when evaluating bacterial attachment behavior. These unique insights have the potential to lead to the development of more effective biomimetic surfaces for the prevention and eradication of biofilms, ultimately improving human health and safety.
Collapse
Affiliation(s)
- Po-Cheng Hsieh
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan; Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| |
Collapse
|
38
|
Cho D, Oh JK. Silica Nanoparticle-Infused Omniphobic Polyurethane Foam with Bacterial Anti-Adhesion and Antifouling Properties for Hygiene Purposes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2035. [PMID: 37513046 PMCID: PMC10385342 DOI: 10.3390/nano13142035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
In this study, a method for preventing cross-infection through the surface coating treatment of polyurethane (PU) foam using functionalized silica nanoparticles was developed. Experimental results confirmed that the fabricated PU foam exhibited omniphobic characteristics, demonstrating strong resistance to both polar and nonpolar contaminants. Additionally, quantitative analysis using the pour plate method and direct counting with a scanning electron microscope determined that the treated material exhibited anti-adhesion properties against bacteria. The fabricated PU foam also demonstrated a high level of resistance to the absorption of liquids commonly found in medical facilities, including blood, 0.9% sodium chloride solution, and 50% glycerol. Mechanical durability and stability were verified through repeated compression tests and chemical leaching tests, respectively. The proposed coated PU foam is highly effective at preventing fouling from polar and nonpolar fluids as well as bacteria, making it well-suited for use in a range of fields requiring strict hygiene standards, including the medical, food, and environmental industries.
Collapse
Affiliation(s)
- Dongik Cho
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Republic of Korea
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Republic of Korea
| |
Collapse
|
39
|
El-Tantawy AI, Elmongy EI, Elsaeed SM, Abdel Aleem AAH, Binsuwaidan R, Eisa WH, Salman AU, Elharony NE, Attia NF. Synthesis, Characterization, and Docking Study of Novel Thioureidophosphonate-Incorporated Silver Nanocomposites as Potent Antibacterial Agents. Pharmaceutics 2023; 15:1666. [PMID: 37376114 DOI: 10.3390/pharmaceutics15061666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Newly synthesized mono- and bis-thioureidophosphonate (MTP and BTP) analogues in eco-friendly conditions were employed as reducing/capping cores for 100, 500, and 1000 mg L-1 of silver nitrate. The physicochemical properties of silver nanocomposites (MTP(BTP)/Ag NCs) were fully elucidated using spectroscopic and microscopic tools. The antibacterial activity of the nanocomposites was screened against six multidrug-resistant pathogenic strains, comparable to ampicillin and ciprofloxacin commercial drugs. The antibacterial performance of BTP was more substantial than MTP, notably with the best minimum inhibitory concentration (MIC) of 0.0781 mg/mL towards Bacillus subtilis, Salmonella typhi, and Pseudomonas aeruginosa. Among all, BTP provided the clearest zone of inhibition (ZOI) of 35 ± 1.00 mm against Salmonella typhi. After the dispersion of silver nanoparticles (AgNPs), MTP/Ag NCs offered dose-dependently distinct advantages over the same nanoparticle with BTP; a more noteworthy decline by 4098 × MIC to 0.1525 × 10-3 mg/mL was recorded for MTP/Ag-1000 against Pseudomonas aeruginosa over BTP/Ag-1000. Towards methicillin-resistant Staphylococcus aureus (MRSA), the as-prepared MTP(BTP)/Ag-1000 displayed superior bactericidal ability in 8 h. Because of the anionic surface of MTP(BTP)/Ag-1000, they could effectively resist MRSA (ATCC-43300) attachment, achieving higher antifouling rates of 42.2 and 34.4% at most optimum dose (5 mg/mL), respectively. The tunable surface work function between MTP and AgNPs promoted the antibiofilm activity of MTP/Ag-1000 by 1.7 fold over BTP/Ag-1000. Lastly, the molecular docking studies affirmed the eminent binding affinity of BTP over MTP-besides the improved binding energy of MTP/Ag NC by 37.8%-towards B. subtilis-2FQT protein. Overall, this study indicates the immense potential of TP/Ag NCs as promising nanoscale antibacterial candidates.
Collapse
Affiliation(s)
- Ahmed I El-Tantawy
- Department of Chemistry, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Shimaa M Elsaeed
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | | | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Wael H Eisa
- Spectroscopy Department, Physics Division, National Research Centre (NRC), Cairo 12622, Egypt
| | - Ayah Usama Salman
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Noura Elsayed Elharony
- Department of Chemistry, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Nour F Attia
- Gas Analysis and Fire Safety Laboratory, Chemistry Division, National Institute for Standards, 136, Giza 12211, Egypt
| |
Collapse
|
40
|
Marin-Silva DA, Romano N, Damonte L, Giannuzzi L, Pinotti A. Hybrid materials based on chitosan functionalized with green synthesized copper nanoparticles: Physico-chemical and antimicrobial analysis. Int J Biol Macromol 2023; 242:124898. [PMID: 37207748 DOI: 10.1016/j.ijbiomac.2023.124898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Recently, the development of materials with antimicrobial properties has become a challenge under scrutiny. The incorporation of copper nanoparticles (NpCu) into a chitosan matrix appears to represent a viable strategy to contain the particles and prevent their oxidation. Regarding the physical properties, the nanocomposite films (CHCu) showed a decrease in the elongation at break (5 %) and an increase in the tensile strength of 10 % concerning chitosan films (control). They also showed solubility values lower than 5 % while the swelling diminished by 50 %, on average. The dynamical mechanical analysis (DMA) of nanocomposites revealed two thermal events located at 113° and 178 °C, which matched the glass transitions of the CH-enriched phase and nanoparticles-enriched phase, respectively. In addition, the thermogravimetric analysis (TGA) detected a greater stability of the nanocomposites. Chitosan films and the NpCu-loaded nanocomposites demonstrated excellent antibacterial capacity against Gram-negative and Gram-positive bacteria, proved through diffusion disc, zeta potential, and ATR-FTIR techniques. Additionally, the penetration of individual NpCu particles into bacterial cells and the leakage of cell content were verified by TEM. The mechanism of the antibacterial activity of the nanocomposites involved the interaction of chitosan with the bacterial outer membrane or cell wall and the diffusion of the NpCu through the cells. These materials could be applied in diverse fields of biology, medicine, or food packaging.
Collapse
Affiliation(s)
- Diego Alejandro Marin-Silva
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, UNLP, CICPBA), 47 y 116 S/N, 1900 La Plata, Argentina
| | - Nelson Romano
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, UNLP, CICPBA), 47 y 116 S/N, 1900 La Plata, Argentina
| | - Laura Damonte
- Dto. de Física, UNLP-IFLP, CCT-CONICET La Plata, Argentina; Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Leda Giannuzzi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, UNLP, CICPBA), 47 y 116 S/N, 1900 La Plata, Argentina; Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Adriana Pinotti
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, UNLP, CICPBA), 47 y 116 S/N, 1900 La Plata, Argentina; Facultad de Ingeniería, UNLP, La Plata, Argentina.
| |
Collapse
|
41
|
Arik N, Elcin E, Tezcaner A, Oktem HA. Optimization of whole-cell bacterial bioreporter immobilization on electrospun cellulose acetate (CA) and polycaprolactone (PCL) fibers for arsenic detection. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:666. [PMID: 37178337 DOI: 10.1007/s10661-023-11227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023]
Abstract
Arsenic contamination is a critical global problem, and its widespread environmental detection is becoming a prominent issue. Herein, electrospun fibers of cellulose acetate (CA) and polycaprolactone (PCL) were successfully fabricated and used as the support material for immobilization of arsenic-sensing bacterial bioreporter for the first time. To date, no attempt has been made to immobilize fluorescent whole-cell bioreporter cells on electrospun fibers for arsenic detection. CA and PCL electrospun fibers were fabricated via traditional electrospinning technique and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and contact angle meter. Following immobilization of the bacterial bioreporter cells, the immobilized bacteria were also characterized by viability assay using AlamarBlue. The effects of growth phase and cell concentration on the fluorescence response of fiber-immobilized arsenic bioreporters to arsenic were also investigated. After immobilization of arsenic bioreporters on 10 wt% PCL fiber, 91% of bacterial cells remained viable, while this value was 55.4% for cells immobilized on 12.5 wt% CA fiber. Bioreporter cells in the exponential growth phase were shown to be more sensitive to arsenic compared to aged cells. While both the electropsun PCL- and CA-immobilized bioreporters successfully detected 50 and 100 µg/L of arsenite (As (III)) concentrations, the PCL-immobilized bioreporter showed better fluorescence performance which should be investigated in future studies. This study helps to fill some gaps in the literature and demonstrates the potential for using electrospun fiber-immobilized arsenic whole-cell bioreporter for arsenic detection in water.
Collapse
Affiliation(s)
- Nehir Arik
- Department of Molecular Biology and Genetics, Middle East Technical University, 06800, Ankara, Turkey
| | - Evrim Elcin
- Department of Agricultural Biotechnology, Aydın Adnan Menderes University, 09970, Aydın, Turkey
| | - Aysen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Hüseyin Avni Oktem
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
42
|
Catley T, Corrigan RM, Parnell AJ. Designing Effective Antimicrobial Nanostructured Surfaces: Highlighting the Lack of Consensus in the Literature. ACS OMEGA 2023; 8:14873-14883. [PMID: 37151499 PMCID: PMC10157858 DOI: 10.1021/acsomega.2c08068] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/07/2023] [Indexed: 05/09/2023]
Abstract
Research into nanostructured materials, inspired by the topography of certain insect wings, has provided a potential pathway toward drug-free antibacterial surfaces, which may be vital in the ongoing battle against antimicrobial resistance. However, to produce viable antibacterial nanostructured surfaces, we must first understand the bactericidal mechanism of action and how to optimize them to kill the widest range of microorganisms. This review discusses the parameters of nanostructured surfaces that have been shown to influence their bactericidal efficiency and highlights the highly variable nature of many of the findings. A large-scale analysis of the literature is also presented, which further shows a lack of clarity in what is understood about the factors influencing bactericidal efficiency. The potential reasons for the ambiguity, including how the killing effect may be a result of multiple factors and issues with nonstandardized testing of the antibacterial properties of nanostructured surfaces, are then discussed. Finally, a standard method for testing of antimicrobial killing is proposed that will allow comparison between studies and enable a deeper understanding about nanostructured surfaces and how to optimize their bactericidal efficiency.
Collapse
Affiliation(s)
- Thomas
E. Catley
- Department
of Physics and Astronomy, University of
Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom
| | - Rebecca M. Corrigan
- Molecular
Microbiology, School of Biosciences, University
of Sheffield, Firth Court, Sheffield S10 2TN, United Kingdom
| | - Andrew J. Parnell
- Department
of Physics and Astronomy, University of
Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom
| |
Collapse
|
43
|
Mu M, Liu S, DeFlorio W, Hao L, Wang X, Salazar KS, Taylor M, Castillo A, Cisneros-Zevallos L, Oh JK, Min Y, Akbulut M. Influence of Surface Roughness, Nanostructure, and Wetting on Bacterial Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5426-5439. [PMID: 37014907 PMCID: PMC10848269 DOI: 10.1021/acs.langmuir.3c00091] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Indexed: 05/11/2023]
Abstract
Bacterial fouling is a persistent problem causing the deterioration and failure of functional surfaces for industrial equipment/components; numerous human, animal, and plant infections/diseases; and energy waste due to the inefficiencies at internal and external geometries of transport systems. This work gains new insights into the effect of surface roughness on bacterial fouling by systematically studying bacterial adhesion on model hydrophobic (methyl-terminated) surfaces with roughness scales spanning from ∼2 nm to ∼390 nm. Additionally, a surface energy integration framework is developed to elucidate the role of surface roughness on the energetics of bacteria and substrate interactions. For a given bacteria type and surface chemistry; the extent of bacterial fouling was found to demonstrate up to a 75-fold variation with surface roughness. For the cases showing hydrophobic wetting behavior, both increased effective surface area with increasing roughness and decreased activation energy with increased surface roughness was concluded to enhance the extent of bacterial adhesion. For the cases of superhydrophobic surfaces, the combination of factors including (i) the surpassing of Laplace pressure force of interstitial air over bacterial adhesive force, (ii) the reduced effective substrate area for bacteria wall due to air gaps to have direct/solid contact, and (iii) the reduction of attractive van der Waals force that holds adhering bacteria on the substrate were summarized to weaken the bacterial adhesion. Overall, this study is significant in the context of designing antifouling coatings and systems as well as explaining variations in bacterial contamination and biofilm formation processes on functional surfaces.
Collapse
Affiliation(s)
- Minchen Mu
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Shuhao Liu
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - William DeFlorio
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Li Hao
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou, Guangdong 510225, P. R. China
| | - Xunhao Wang
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Karla Solis Salazar
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Matthew Taylor
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Alejandro Castillo
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Luis Cisneros-Zevallos
- Department
of Horticultural Sciences, Texas A&M
University, College Station, Texas 77843, United States
| | - Jun Kyun Oh
- Department
of Polymer Science and Engineering, Dankook
University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Younjin Min
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Mustafa Akbulut
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
44
|
Agustín MDR, Stengel P, Kellermeier M, Tücking KS, Müller M. Monitoring Growth and Removal of Pseudomonas Biofilms on Cellulose-Based Fabrics. Microorganisms 2023; 11:microorganisms11040892. [PMID: 37110314 PMCID: PMC10143030 DOI: 10.3390/microorganisms11040892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Biofilms are often tolerant towards routine cleaning and disinfection processes. As they can grow on fabrics in household or healthcare settings, resulting in odors and serious health problems, it is necessary to contain biofilms through eradication strategies. The current study proposes a novel test model for the growth and removal of biofilms on textiles with Pseudomonas fluorescens and the opportunistic nosocomial pathogen Pseudomonas aeruginosa as model organisms. To assess the biofilm removal on fabrics, (1) a detergent-based, (2) enzyme-based, and (3) combined formulation of both detergent and enzymes (F1/2) were applied. Biofilms were analyzed microscopically (FE-SEM, SEM, 3D laser scanning- and epifluorescence microscopy), via a quartz crystal microbalance with mass dissipation monitoring (QCM-D) as well as plate counting of colonies. This study indicated that Pseudomonas spp. form robust biofilms on woven cellulose that can be efficiently removed via F1/2, proven by a significant reduction (p < 0.001) of viable bacteria in biofilms. Moreover, microscopic analysis indicated a disruption and almost complete removal of the biofilms after F1/2 treatment. QCM-D measurements further confirmed a maximal mass dissipation change after applying F1/2. The combination strategy applying both enzymes and detergent is a promising antibiofilm approach to remove bacteria from fabrics.
Collapse
|
45
|
Latag GV, Nakamura T, Palai D, Mondarte EAQ, Hayashi T. Investigation of Three-Dimensional Bacterial Adhesion Manner on Model Organic Surfaces Using Quartz Crystal Microbalance with Energy Dissipation Monitoring. ACS APPLIED BIO MATERIALS 2023; 6:1185-1194. [PMID: 36802460 PMCID: PMC10031553 DOI: 10.1021/acsabm.2c01012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Bacterial biofilms reduce the performance and efficiency of biomedical and industrial devices. The initial step in forming bacterial biofilms is the weak and reversible attachment of the bacterial cells onto the surface. This is followed by bond maturation and secretion of polymeric substances, which initiate irreversible biofilm formation, resulting in stable biofilms. This implies that understanding the initial reversible stage of the adhesion process is crucial to prevent bacterial biofilm formation. In this study, we analyzed the adhesion processes of E. coli on self-assembled monolayers (SAMs) with different terminal groups using optical microscopy and quartz crystal microbalance with energy dissipation (QCM-D) monitoring. We found that a considerable number of bacterial cells adhere to hydrophobic (methyl-terminated) and hydrophilic protein-adsorbing (amine- and carboxy-terminated) SAMs forming dense bacterial adlayers while attaching weakly to hydrophilic protein-resisting SAMs [oligo(ethylene glycol) (OEG) and sulfobetaine (SB)], forming sparse but dissipative bacterial adlayers. Moreover, we observed positive shifts in the resonant frequency for the hydrophilic protein-resisting SAMs at high overtone numbers, suggesting how bacterial cells cling to the surface using their appendages as explained by the coupled-resonator model. By exploiting the differences in the acoustic wave penetration depths at each overtone, we estimated the distance of the bacterial cell body from different surfaces. The estimated distances provide a possible explanation for why bacterial cells tend to attach firmly to some surfaces and weakly to others. This result is correlated to the strength of the bacterium-substratum bonds at the interface. Elucidating how the bacterial cells adhere to different surface chemistries can be a suitable guide in identifying surfaces with a more significant probability of contamination by bacterial biofilms and designing bacteria-resistant surfaces and coatings with excellent bacterial antifouling characteristics.
Collapse
Affiliation(s)
- Glenn Villena Latag
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Taichi Nakamura
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Debabrata Palai
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Evan Angelo Quimada Mondarte
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| |
Collapse
|
46
|
Khalaf MM, Gouda M, Mohamed IMA, Abd El-Lateef HM. Different additives of gold nanoparticles and lithium oxide loaded chitosan based films; controlling optical and structural properties, evaluating cell viability. Biochem Biophys Res Commun 2023; 649:118-124. [PMID: 36764114 DOI: 10.1016/j.bbrc.2023.01.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Natural chitosan-based films (CS) were fabricated by changing ingredient corporations between gold nanoparticles (AuNPs), lithium oxide (Li2O), and graphene oxide (GO). A Series of films with different components were obtained. The structural examination is executed by XRD, FTIR, and EDX to analyze crystal structure, chemical bonding, and chemical contents, respectively. The findings illustrated that, the Li2O@CS exhibited the lowest contact angle with 70 ± 4.6°. Scanning Electron Microscopy (SEM) displayd rod-shaped AuNPs with an average length of 0.3 μm and an average width of 90 nm. The refractive index of CS recorded 2.142, while AuNPs/Li2O/GO@CS slightly declined to 2.085. Concerning AuNPs/Li2O/GO@CS, the detected cell viability percentage of normal lung cells among the usage of 156.25 μg/mL is 98.91%, while 9.77 μg/mL achieved 125.78%. Therefore, combining AuNPs, GO and Li2O within the CS matrix results in films of boosted biocompatibility and can be suggested for medical applications.
Collapse
Affiliation(s)
- Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia; Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - M Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
| | - Ibrahim M A Mohamed
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia; Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| |
Collapse
|
47
|
Kokol V, Kos M, Vivod V, Gunde-Cimerman N. Cationised Fibre-Based Cellulose Multi-Layer Membranes for Sterile and High-Flow Bacteria Retention and Inactivation. MEMBRANES 2023; 13:284. [PMID: 36984670 PMCID: PMC10059598 DOI: 10.3390/membranes13030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Low-cost, readily available, or even disposable membranes in water purification or downstream biopharma processes are becoming attractive alternatives to expensive polymeric columns or filters. In this article, the potential of microfiltration membranes prepared from differently orientated viscose fibre slivers, infused with ultrafine quaternised (qCNF) and amino-hydrophobised (aCNF) cellulose nanofibrils, were investigated for capturing and deactivating the bacteria from water during vacuum filtration. The morphology and capturing mechanism of the single- and multi-layer structured membranes were evaluated using microscopic imaging and colloidal particles. They were assessed for antibacterial efficacy and the retention of selected bacterial species (Escherichia coli, Staphylococcus aureus, Micrococcus luteus), differing in the cell envelope structure, hydrodynamic biovolume (shape and size) and their clustering. The aCNF increased biocidal efficacy significantly when compared to qCNF-integrated membrane, although the latter retained bacteria equally effectively by a thicker multi-layer structured membrane. The retention of bacterial cells occurred through electrostatic and hydrophobic interactions, as well as via interfibrous pore diffusion, depending on their physicochemical properties. For all bacterial strains, the highest retention (up to 100% or log 6 reduction) at >50 L/h∗bar∗m2 flow rate was achieved with a 4-layer gradient-structured membrane containing different aCNF content, thereby matching the performance of industrial polymeric filters used for removing bacteria.
Collapse
Affiliation(s)
- Vanja Kokol
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Monika Kos
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Vera Vivod
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
48
|
Wang J, Li P, Wang N, Wang J, Xing D. Antibacterial features of material surface: strong enough to serve as antibiotics? J Mater Chem B 2023; 11:280-302. [PMID: 36533438 DOI: 10.1039/d2tb02139k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteria are small but need big efforts to control. The use of antibiotics not only produces superbugs that are increasingly difficult to inactivate, but also raises environmental concerns with the growing consumption. It is now believed that the antibacterial task can count on some physiochemical features of material surfaces, which can be anti-adhesive or bactericidal without releasing toxicants. It is necessary to evaluate to what extent can we rely on the surface design since the actual application scenarios will need the antibacterial performance to be sharp, robust, environmentally friendly, and long-lasting. Herein, we review the recent laboratory advances that have been classified based on the specific surface features, including hydrophobicity, charge potential, micromorphology, stiffness and viscosity, and photoactivity, and the antibacterial mechanisms of each feature are included to provide a basic rationale for future design. The significance of anti-biofilms is also introduced, given the big role of biofilms in bacteria-caused damage. A perspective on the potential wide application of antibacterial surface features as a substitute or supplement to antibiotics is then discussed. Surface design is no doubt a solution worthy to explore, and future success will be a result of further progress in multiple directions, including mechanism study and material preparation.
Collapse
Affiliation(s)
- Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China. .,CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, China Academy of Sciences, Qingdao 266071, China.
| | - Ping Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Ning Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, China Academy of Sciences, Qingdao 266071, China.
| | - Jing Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, China Academy of Sciences, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
49
|
Ullah A, Mirani ZA, Binbin S, Wang F, Chan MWH, Aslam S, Yonghong L, Hassan N, Naveed M, Hussain S, Khatoon Z. An Elucidative Study of the Anti-biofilm Effect of Selenium Nanoparticles (SeNPs) on Selected Biofilm Producing Pathogenic Bacteria: A Disintegrating Effect of SeNPs on Bacteria. Process Biochem 2023. [DOI: 10.1016/j.procbio.2022.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
50
|
Rychtowski P, Paszkiewicz O, Román-Martínez MC, Lillo-Ródenas MÁ, Markowska-Szczupak A, Tryba B. Impact of TiO 2 Reduction and Cu Doping on Bacteria Inactivation under Artificial Solar Light Irradiation. Molecules 2022; 27:molecules27249032. [PMID: 36558165 PMCID: PMC9784163 DOI: 10.3390/molecules27249032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Preparation of TiO2 using the hydrothermal treatment in NH4OH solution and subsequent thermal heating at 500-700 °C in Ar was performed in order to introduce some titania surface defects. The highest amount of oxygen vacancies and Ti3+ surface defects were observed for a sample heat-treated at 500 °C. The presence of these surface defects enhanced photocatalytic properties of titania towards the deactivation of two bacteria species, E. coli and S. epidermidis, under artificial solar lamp irradiation. Further modification of TiO2 was targeted towards the doping of Cu species. Cu doping was realized through the impregnation of the titania surface by Cu species supplied from various copper salts in an aqueous solution and the subsequent heating at 500 °C in Ar. The following precursors were used as a source of Cu: CuSO4, CuNO3 or Cu(CH3COO)2. Cu doping was performed for raw TiO2 after a hydrothermal process with and without NH4OH addition. The obtained results indicate that Cu species were deposited on the titania surface defects in the case of reduced TiO2, but on the TiO2 without NH4OH modification, Cu species were attached through the titania adsorbed hydroxyl groups. Cu doping on TiO2 increased the absorption of light in the visible range. Rapid inactivation of E. coli within 30 min was obtained for the ammonia-reduced TiO2 heated at 500 °C and TiO2 doped with Cu from CuSO4 solution. Photocatalytic deactivation of S. epidermidis was greatly enhanced through Cu doping on TiO2. Impregnation of TiO2 with CuSO4 was the most effective for inactivation of both E. coli and S. epidermidis.
Collapse
Affiliation(s)
- Piotr Rychtowski
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70–322 Szczecin, Poland
- Correspondence:
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, Piastów 42, 71–065 Szczecin, Poland
| | - Maria Carmen Román-Martínez
- Department of Inorganic Chemistry and Materials Institute (IUMA), Faculty of Sciences, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 Alicante, Spain
| | - Maria Ángeles Lillo-Ródenas
- Department of Inorganic Chemistry and Materials Institute (IUMA), Faculty of Sciences, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 Alicante, Spain
| | - Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, Piastów 42, 71–065 Szczecin, Poland
| | - Beata Tryba
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70–322 Szczecin, Poland
| |
Collapse
|