1
|
Lyu T, Liu X, Liu Y, Yang Z, Li P, Lu Y, Zhao P, Chen J, Ye C. Naringin in repairing articular cartilage injury by activating TGF-β/Smad signaling pathway to attenuate inflammatory response. Arch Biochem Biophys 2025; 768:110396. [PMID: 40120921 DOI: 10.1016/j.abb.2025.110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/14/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Naringin protects cartilage and attenuates inflammation. This study investigated the mechanism by which naringin activates the TGF-β/Smad signaling pathway to attenuate the inflammatory response and repair rabbit articular cartilage injury. A ring bone extraction drill was used to create a rabbit articular cartilage injury model. Sixteen Japanese white rabbits were divided into Sham, Mod, Nar, and Con groups and treated for 12 weeks. Compared with the Mod group, obvious signs of morphological and structural repair of cartilage injury were observed in the Nar group. The ICRS, BV/TV, and BS/TV scores increased, whereas the Wakitani and Tb.Sp scores decreased. Furthermore, ADAMTS-5 levels were significantly reduced, and TGF-β1 levels were significantly increased. The average light density of P-Smad3 in the repaired tissue was significantly elevated, whereas that of MMP-13 was significantly reduced. Compared with that in the Sham group, the transcription and expression levels of TβRII, type II collagen, P-TβRII, and P-Smad2 in the repair tissues of the Mod group were lower. This was reversed in the Nar group. Therefore, naringin administration can improve the morphology and structure of articular cartilage injury, reduce the concentration and expression levels of pro-inflammatory factors in the joint fluid and repair tissues, and increase the concentrations and expression levels of anti-inflammatory factors in the joint fluid and repair tissues. Thus, naringin exerts a positive effect by reducing the inflammatory response and repairing articular cartilage injury. This mechanism is closely related to the activation of the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Tiancheng Lyu
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiangchun Liu
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuxuan Liu
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Pengyang Li
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yingdong Lu
- Pathology Department, Guang'anmen Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Pengyuan Zhao
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Chen
- Preventive Treatment of Disease Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Chao Ye
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Wadan AHS, Moshref AS, Emam AM, Bakry YG, Khalil BO, Chaurasia A, Ibrahim RAH, Badawy T, Mehanny SS. Mitochondrial dysfunction as a key player in aggravating periodontitis among diabetic patients: review of the current scope of knowledge. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04025-x. [PMID: 40272516 DOI: 10.1007/s00210-025-04025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/05/2025] [Indexed: 04/25/2025]
Abstract
Periodontitis is a prevalent inflammatory disease that leads to significant periodontal tissue destruction and compromised dental health, with its severity exacerbated in individuals with Diabetes Mellitus (DM). This review explores the complex relationship between mitochondrial dysfunction and periodontitis in diabetic patients. Recent studies indicate that the excessive production of reactive oxygen species (ROS), primarily generated by dysfunctional mitochondrial electron transport chain (ETC) complexes, contributes to oxidative stress (OS) and subsequent periodontal tissue damage. The interplay between impaired mitochondrial biogenesis, apoptosis of periodontal cells, and ROS accumulation highlights a critical area of concern in understanding the pathophysiology of diabetic periodontitis. Furthermore, altered glycemic control due to inflammatory processes associated with periodontitis may perpetuate a cyclical detriment to oral and systemic health. This review aims to highlight the mechanistic roles of mitochondrial dysfunction in the aggravation of periodontitis among diabetic patients, emphasizing further research to identify potential therapeutic targets and improve treatment efficacy for this dual pathology.
Collapse
Affiliation(s)
- Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt.
| | | | | | | | | | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, King George'S Medical University, Lucknow, India
| | - Reham A H Ibrahim
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt
| | - Tamer Badawy
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Samah S Mehanny
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Ryu T, Chang Y, Yoo JJ, Lee SH, Jeong SW, Kim SG, Kim YS, Kim HS, Yang K, Jang JY. Glucosamine supplementation attenuates progression of metabolic dysfunction-associated steatotic liver disease and related comorbidities. Clin Nutr 2025; 47:119-128. [PMID: 40020645 DOI: 10.1016/j.clnu.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/21/2025] [Accepted: 02/10/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND & AIMS This study examines the impact of glucosamine on the progression and outcomes of metabolic dysfunction-associated steatotic liver disease (MASLD), and metabolic dysfunction and alcohol-associated liver disease (MetALD) using a large scale cohort. METHODS Present study utilized inverse probability of treatment weighting (IPTW) to adjust for confounders in this cohort study. Participants were classified based on glucosamine use, and primary and secondary outcomes included all-cause mortality, liver cirrhosis, cardiovascular disease, cerebrovascular disease, and chronic kidney disease (CKD) incidences. Cox proportional hazards models were used to assess hazard ratios and 95 % confidence intervals. RESULTS We found that glucosamine significantly reduces all-cause mortality in MASLD and MetALD cohorts after IPTW adjustment (P < 0.001). Additionally, glucosamine use was associated with lower liver cirrhosis incidence in MASLD both before (P = 0.003) and after IPTW adjustment (P = 0.046). Glucosamine also decreased cardiovascular disease risk in MASLD (P < 0.001) and MetALD (P = 0.037) cohorts, though it showed no significant impact on cerebrovascular disease incidence. Furthermore, glucosamine use was associated with a significantly lower incidence of CKD in the MASLD cohort (P = 0.034) and the entire cohort (P = 0.030), but not in the No steatotic liver disease cohort or MetALD cohort. CONCLUSION The findings suggest that glucosamine could be a beneficial supplementary therapy for managing steatotic liver diseases, particularly for patients at high risk for cardiovascular and renal complications. Further clinical trials are required to validate these potential benefits.
Collapse
Affiliation(s)
- Tom Ryu
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea
| | - Young Chang
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea
| | - Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Republic of Korea
| | - Sae Hwan Lee
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
| | - Soung Won Jeong
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Republic of Korea
| | - Young Seok Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Republic of Korea
| | - Hong Soo Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
| | - Keungmo Yang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| | - Jae Young Jang
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea.
| |
Collapse
|
4
|
Liu W, Yu Y, Zhang Z, Li Z, Wu Y, Xie L, Xu Z, Chang C. Nutrition supplementation combined with exercise versus exercise alone in treating knee osteoarthritis: a double-blinded, randomised, placebo-controlled trial. Age Ageing 2025; 54:afaf010. [PMID: 39982001 DOI: 10.1093/ageing/afaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Indexed: 02/22/2025] Open
Abstract
OBJECTIVE To investigate the effectiveness of formula nutrition supplementation (mainly containing glucosamine sulphate, chondroitin sulphate and rhizoma drynariae) plus supervised exercise versus exercise alone for the treatment of knee osteoarthritis (OA). METHODS This was a double-blinded, single-centre, randomised, placebo-controlled trial. The study recruited 65 participants (40-75 years) with knee OA. Participants were randomly allocated to nutrition supplementation plus exercise (N + E) group or placebo plus exercise (P + E) group. The intervention lasted for 6 months. The primary outcome was the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score. Secondary outcomes included physical function and performance scores, lower extremity strength and serum biomarkers. RESULTS Among the 65 randomised patients, 56 (86%) completed the trial. At 3 months, more participants in the N + E group than in the P + E group achieved minimum clinically important difference (MCID) in WOMAC total score (19/30 [63.3%] vs 8/26 [30.8%]; P < .01). At 6 months, more participants in the N + E group than in the P + E group achieved MCID in WOMAC stiffness score (19/30 [63.3%] vs 10/26 [38.5%]; P < .05). Meanwhile, at 6 months the decreased percentages of WOMAC stiffness score in the N + E group was greater than in the P + E group (P < .05). The flexor peak torque at 120°/s and 180°/s in the N + E group were significantly higher than those in the P + E group at 3 months (P < .05). Moreover, compared with baseline, improvements in the WOMAC overall and pain score, visual analogue scale pain and 30-second chair stand test were observed in both groups at 6 months. However, these indicators in the N + E group were improved as early as 3 months (P < .05). CONCLUSIONS The improvement effects of nutrition supplementation plus exercise were superior to those of exercise alone, and the improvement occurred earlier. Nutrition supplementation plus exercise would be a more efficient strategy for knee OA.
Collapse
Affiliation(s)
- Wei Liu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
| | - Yingxiang Yu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
| | - Zhida Zhang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
| | - Zhongxia Li
- Department of Health Research, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Yanpu Wu
- Department of Health Research, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Lan Xie
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
| | - Ziyi Xu
- Department of Health Research, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Cuiqing Chang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
| |
Collapse
|
5
|
Ge F, Sun Y, Han CC, Wei ZL, Guan X, Guo SW, Quan S, Zhou JG, Pang RP. Plasma Glutaminyl-Peptide Cyclotransferase Mediates Glucosamine-Metabolism-Driven Protection Against Hypertension: A Mendelian Randomization Study. Int J Mol Sci 2024; 25:12106. [PMID: 39596173 PMCID: PMC11593689 DOI: 10.3390/ijms252212106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Hypertension is one of the major risk factors for morbidity and mortality worldwide. In this study, Mendelian randomization was utilized to investigate how dietary supplement intake can impact hypertension based on circulating plasma metabolite genome-wide association study (GWAS) datasets, protein quantitative trait loci (pQTLs) of plasma proteins, and multiple public summary-level GWAS data. Pathway enrichment analysis combined with the results of inverse variance weighted Mendelian randomization revealed that a lower risk of hypertension was associated with the dietary intake of glucosamine, an anti-inflammatory supplement: odds ratio (OR) (95% CI): 0.888 (0.824-0.958). Additionally, glucosamine 6-phosphate N-acetyltransferase was identified as a protective factor against hypertension, OR (95% CI): 0.995 (0.992-0.998), shedding light on the potential protective mechanism of glucosamine. Mediation Mendelian randomization indicated that the protective effect of glucosamine metabolism was mediated by glutaminyl-peptide cyclotransferase, with a mediation proportion of 12.1% (5.9-18.2%), p < 0.05. This study offers new insights into preventive strategies for individuals with hypertension risk.
Collapse
Affiliation(s)
- Fei Ge
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu Sun
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cong-Cong Han
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zi-Liang Wei
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Guan
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, China
| | - Si-Wan Guo
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shui Quan
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Guo Zhou
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, China
| | - Rui-Ping Pang
- Department of Physiology, Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Fatima A, Choudhary MI, Siddiqui S, Zafar H, Hu K, Wahab AT. Insights into the molecular interactions between urease subunit gamma from MRSA and drugs: an integrative approach by STD-NMR and molecular docking studies. RSC Adv 2024; 14:30859-30872. [PMID: 39355333 PMCID: PMC11443414 DOI: 10.1039/d4ra01732c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/07/2024] [Indexed: 10/03/2024] Open
Abstract
Staphylococcus aureus, an important human pathogen, is developing resistance against a wide range of antibiotics. The antibiotic resistance in S. aureus has created the need to identify new drug targets, and to develop new drugs candidates. In the current study, urease subunit gamma from Methicillin Resistant Staphylococcus aureus (MRSA 252) was studied as a potential drug target, through protein-ligand interactions. Urease is the main virulence factor of MRSA, it catalyzes the conversion of urea into ammonia that is required for the survival of bacteria during acid stress. Its subunits and accessory proteins can serve as targets for drug discovery and development. Present study describes the cloning, expression, and purification of urease subunit gamma from MRSA 252. This was followed by screening of 100 US-FDA approved drugs against this protein using STD-NMR spectroscopy and among them, 15 drugs showed significant STD effects. In silico studies predicted that these drugs interacted mainly via non-covalent interactions, such as hydrogen bond, aromatic hydrogen bonding, π-π stacking, π-cation interactions, salt bridges, and halogen bonding. The thermal stability of UreA in the presence of these interacting drugs was evaluated using differential scanning fluorimetry (DSF), which revealed a significant effect on the T m of UreA. Additionally, the inhibitory effects of these drugs on urease activity were assessed using a urease inhibition assay with Jack bean urease. The results showed that these drugs possess enzyme inhibitory activity, potentially impacting the survival of S. aureus. These hits need further biochemical and mechanistic studies to validate their therapeutic potential against the MRSA infections.
Collapse
Affiliation(s)
- Anum Fatima
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - M Iqbal Choudhary
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah-22254 Saudi Arabia
| | - Shezaib Siddiqui
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Humaira Zafar
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Kaifeng Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine Chengdu Sichuan-611137 China
| | - Atia-Tul Wahab
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| |
Collapse
|
7
|
Jia Z, Zhang X, Li Z, Yan H, Tian X, Luo C, Ma K, Li L, Zhang L. Hydrogen sulfide mitigates ox‑LDL‑induced NLRP3/caspase‑1/GSDMD dependent macrophage pyroptosis by S‑sulfhydrating caspase‑1. Mol Med Rep 2024; 30:135. [PMID: 38873985 PMCID: PMC11188054 DOI: 10.3892/mmr.2024.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/19/2024] [Indexed: 06/15/2024] Open
Abstract
Macrophage pyroptosis mediates vascular inflammation and atherosclerosis (AS). Hydrogen sulfide (H2S) exerts a protective role in preventing inflammation and AS. However, its molecular mechanisms of regulating the pyroptosis signaling pathway and inhibiting macrophage pyroptosis remain unexplored. The present study aimed to determine whether H2S mitigates macrophage pyroptosis by downregulating the pyroptosis signaling pathway and S‑sulfhydrating caspase‑1 under the stimulation of oxidized low‑density lipoprotein (ox‑LDL), a pro‑atherosclerotic factor. Macrophages derived from THP‑1 monocytes were pre‑treated using exogenous H2S donors sodium hydrosulfide (NaHS) and D,L‑propargylglycine (PAG), a pharmacological inhibitor of endogenous H2S‑producing enzymes, alone or in combination. Subsequently, cells were stimulated with ox‑LDL or the desulfhydration reagent dithiothreitol (DTT) in the presence or absence of NaHS and/or PAG. Following treatment, the levels of H2S in THP‑1 derived macrophages were measured by a methylene blue colorimetric assay. The pyroptotic phenotype of THP‑1 cells was observed and evaluated by light microscopy, Hoechst 33342/propidium iodide fluorescent staining and lactate dehydrogenase (LDH) release assay. Caspase‑1 activity in THP‑1 cells was assayed by caspase‑1 activity assay kit. Immunofluorescence staining was used to assess the accumulation of active caspase‑1. Western blotting and ELISA were performed to determine the expression of pyroptosis‑specific markers (NLRP3, pro‑caspase‑1, caspase‑1, GSDMD and GSDMD‑N) in cells and the secretion of pyroptosis‑related cytokines [interleukin (IL)‑1β and IL‑18] in the cell‑free media, respectively. The S‑sulfhydration of pro‑caspase‑1 in cells was assessed using a biotin switch assay. ox‑LDL significantly induced macrophage pyroptosis by activating the pyroptosis signaling pathway. Inhibition of endogenous H2S synthesis by PAG augmented the pro‑pyroptotic effects of ox‑LDL. Conversely, exogenous H2S (NaHS) ameliorated ox‑LDL‑and ox‑LDL + PAG‑induced macrophage pyroptosis by suppressing the activation of the pyroptosis signaling pathway. Mechanistically, ox‑LDL and the DTT increased caspase‑1 activity and downstream events (IL‑1β and IL‑18 secretion) of the caspase‑1‑dependent pyroptosis pathway by reducing S‑sulfhydration of pro‑caspase‑1. Conversely, NaHS increased S‑sulfhydration of pro‑caspase‑1, reducing caspase‑1 activity and caspase‑1‑dependent macrophage pyroptosis. The present study demonstrated the molecular mechanism by which H2S ameliorates macrophage pyroptosis by suppressing the pyroptosis signaling pathway and S‑sulfhydration of pro‑caspase‑1, thereby suppressing the generation of active caspase-1 and activity of caspase-1.
Collapse
Affiliation(s)
- Zhenli Jia
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
| | - Xulin Zhang
- Department of Blood Transfusion, Shenzhen Children's Hospital, Shenzhen, Guangdong 518034, P.R. China
| | - Zhiyi Li
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
| | - Hanyu Yan
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
| | - Xiangqin Tian
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Chenghua Luo
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
| | - Ketao Ma
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Ling Li
- Department of Medical Morphology, Medical Teaching Experimental Center, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Liang Zhang
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| |
Collapse
|
8
|
Wang L, Zhang X, Shen J, Wei Y, Zhao T, Xiao N, Lv X, Qin D, Xu Y, Zhou Y, Xie J, Li Z, Xie Z. Models of gouty nephropathy: exploring disease mechanisms and identifying potential therapeutic targets. Front Med (Lausanne) 2024; 11:1305431. [PMID: 38487029 PMCID: PMC10937455 DOI: 10.3389/fmed.2024.1305431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Gouty nephropathy (GN) is a metabolic disease with persistently elevated blood uric acid levels. The main manifestations of GN are crystalline kidney stones, chronic interstitial nephritis, and renal fibrosis. Understanding the mechanism of the occurrence and development of GN is crucial to the development of new drugs for prevention and treatment of GN. Currently, most studies exploring the pathogenesis of GN are primarily based on animal and cell models. Numerous studies have shown that inflammation, oxidative stress, and programmed cell death mediated by uric acid and sodium urate are involved in the pathogenesis of GN. In this article, we first review the mechanisms underlying the abnormal intrinsic immune activation and programmed cell death in GN and then describe the characteristics and methods used to develop animal and cell models of GN caused by elevated uric acid and deposited sodium urate crystals. Finally, we propose potential animal models for GN caused by abnormally high uric acid levels, thereby provide a reference for further investigating the methods and mechanisms of GN and developing better prevention and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jing Xie
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaofu Li
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaohu Xie
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
9
|
Ai B, Chen L, Cai M, Fu J, Li H, Lin H, Zhang Z. No Associations Between Glucosamine Supplementation and Dementia or Parkinson's Disease: Findings From a Large Prospective Cohort Study. J Gerontol A Biol Sci Med Sci 2024; 79:glad123. [PMID: 37158699 DOI: 10.1093/gerona/glad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND We investigated the associations between habitual use of glucosamine and incident dementia and Parkinson's disease in a population-based cohort. METHODS Using the UK Biobank data, we included around 0.29 million middle- to old-aged participants free of dementia or Parkinson's disease at baseline. Glucosamine supplementation was measured by questionnaire at baseline. Some participants additionally answered 1-5 rounds of 24-hour dietary recalls afterwards, particularly 112 243 participants (for dementia) and 112 084 (for Parkinson's disease). Incident cases of dementia and Parkinson's disease were identified through linkage to health administrative data sets. We examined the associations of glucosamine supplementation with incident dementia and Parkinson's disease using Cox proportional-hazards regression models with adjustment for various covariates. RESULTS During the study period (median follow-up: 9.1-10.9 years), 4 404 and 1 637 participants developed dementia and Parkinson's disease, respectively. Glucosamine intake was not associated with incident dementia or Parkinson's disease. In fully adjusted models, the hazard ratios associated with glucosamine intake were 1.06 [95% confidence interval (CI): 0.99, 1.14] for dementia and 0.97(95% CI: 0.86, 1.09) for Parkinson's disease. In the subsample, similar results were found as the frequency of reported glucosamine use over multiple dietary surveys was associated with neither of the 2 conditions. CONCLUSIONS Habitual supplementation of glucosamine was not associated with incident dementia or Parkinson's disease.
Collapse
Affiliation(s)
- Baozhuo Ai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lan Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiaying Fu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Haitao Li
- Department of Social Medicine and Health Service Management, Shenzhen University, Shenzhen, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Ping D, Qi J, Li M, Sun X, Peng Y, Liu C. Fuzheng Huayu recipe alleviates liver fibrosis via inhibiting NLRP3 inflammasome activation in macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117001. [PMID: 37544346 DOI: 10.1016/j.jep.2023.117001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzheng Huayu recipe (FZHY) is a commonly used Traditional Chinese Medicine formula for treating liver fibrosis in clinical settings. Despite its widespread use, the specific curative effects and underlying pharmacological mechanisms of FZHY in treating liver fibrosis are not yet fully understood. AIM AND STUDY This study aims to investigate the antifibrotic mechanism of FZHY treatment by exploring its effects on the activation of NOD-like receptor protein 3 (NLRP3) inflammasome in macrophages. MATERIALS AND METHODS In order to investigate the impact of FZHY on the activation and priming of NLRP3 inflammasome in clinical trials and animal experiments using immunohistochemistry and Western blotting. Twenty-four C57BL/6 mice were used to induce liver fibrosis by feeding a diet that contained 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). To study inflammasome function, Lipopolysaccharide (LPS)/adenine triphosphate (ATP) induced NLRP3 inflammasome activation was induced in bone marrow-derived macrophages (BMDMs) isolated from wild mice. The effects of macrophage NLRP3 inflammasome activation on the function of hepatic stellate cells (HSCs) were explored by treating primary HSCs with preconditioned media from BMDMs culture. RESULTS FZHY treatment resulted in the downregulation of NLRP3 protein expression and inhibition of its priming and activation in both human fibrotic livers and DDC-induced liver fibrosis. Furthermore, FZHY was observed to block the activation of the NLRP3 inflammasome pathway, which can lead to excessive inflammatory cytokine release in supernatants and cell lysates in response to LPS and ATP. Lastly, treatment with FZHY was able to inhibit the activation of HSCs induced by supernatants from macrophages. CONCLUSIONS FZHY has been shown to potentially prevent NLRP3 inflammasome activation in macrophages which can result in the suppression of HSCs activation. Ultimately, these effects may lead to the improvement of liver fibrosis. The ability of FZHY to act on this novel mechanism represents an important aspect of its therapeutic potential for liver fibrosis.
Collapse
Affiliation(s)
- Dabing Ping
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingshu Qi
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Meng Li
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, 201203, China.
| |
Collapse
|
11
|
Bonam SR, Mastrippolito D, Georgel P, Muller S. Pharmacological targets at the lysosomal autophagy-NLRP3 inflammasome crossroads. Trends Pharmacol Sci 2024; 45:81-101. [PMID: 38102020 DOI: 10.1016/j.tips.2023.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Many aspects of cell homeostasis and integrity are maintained by the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome. The NLRP3 oligomeric protein complex assembles in response to exogenous and endogenous danger signals. This inflammasome has also been implicated in the pathogenesis of a range of disease conditions, particularly chronic inflammatory diseases. Given that NLRP3 modulates autophagy, which is also a key regulator of inflammasome activity, excessive inflammation may be controlled by targeting this intersecting pathway. However, specific niche areas of NLRP3-autophagy interactions and their reciprocal regulatory mechanisms remain underexplored. Consequently, we lack treatment methods specifically targeting this pivotal axis. Here, we discuss the potential of such strategies in the context of autoimmune and metabolic diseases and propose some research avenues.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dylan Mastrippolito
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France
| | - Philippe Georgel
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
| |
Collapse
|
12
|
Tajik E, Vaezi Z, Tabarsa M, Hekmat A, Naderi-Manesh H. Grafting of sinapic acid onto glucosamine nanoparticle as a potential therapeutic drug with enhanced anti-inflammatory activities in osteoarthritis treatment. Int J Biol Macromol 2023; 253:127454. [PMID: 37844822 DOI: 10.1016/j.ijbiomac.2023.127454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Glucosamine (Glu) is a cartilage and joint fluid matrix precursor that modulates osteoarthritic joint changes. To improve the enzymatic stability, glucosamine was developed into nanoglucosamine by the ionic gelation method through sodium tripolyphosphate (TPP) as cross-linking agent. The optimized mass ratio of Glu:TPP was (3:1) with the particle size 163 ± 25 nm and surface charge -5 mV. Then Sinapic acid (SA) as a natural phenolic acid with strong antioxidant and antimicrobial activities has been grafted onto glucosamine nanoparticles (GluNPs) with grafting efficiency (73 ± 6 %). The covalent insertion of SA was confirmed by UV-Vis, FTIR, 1HNMR, XRD, and FESEM analyses and the other physicochemical properties were also characterized. SA-g-GluNPs showed spherical shape with a mean diameter of 255 ± 20 nm and zeta potential +16 mV. The in vitro release profile of SA-g-GluNPs exhibited the sustained and pH-dependent drug release property. SA-g-GluNPs had a more pronounced effect on reducing the elevated levels of LPS-induced oxidative stress and pro-inflammatory cytokines than free SA in the human chondrocyte C28/I2 cell line. Furthermore, the antibacterial properties against E. coli and S. aureus were also improved by SA-g-GluNPs. This study demonstrated the potential of phenolic acid grafted GluNPs in therapeutic drug applications for chondroprotection and food industries.
Collapse
Affiliation(s)
- Ehteram Tajik
- Department of Biophysics, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Zahra Vaezi
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Tabarsa
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran; Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Azadeh Hekmat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Hossein Naderi-Manesh
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran; Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Postal codes: 14115-154 Tehran, Iran.
| |
Collapse
|
13
|
Li F, Zhang Z, Bai Y, Che Q, Cao H, Guo J, Su Z. Glucosamine Improves Non-Alcoholic Fatty Liver Disease Induced by High-Fat and High-Sugar Diet through Regulating Intestinal Barrier Function, Liver Inflammation, and Lipid Metabolism. Molecules 2023; 28:6918. [PMID: 37836761 PMCID: PMC10574579 DOI: 10.3390/molecules28196918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disease syndrome. The prevalence of NAFLD has continued to increase globally, and NAFLD has become a worldwide public health problem. Glucosamine (GLC) is an amino monosaccharide derivative of glucose. GLC has been proven to not only be effective in anti-inflammation applications, but also to modulate the gut microbiota effectively. Therefore, in this study, the therapeutic effect of GLC in the NAFLD context and the mechanisms underlying these effects were explored. Specifically, an NAFLD model was established by feeding mice a high-fat and high-sugar diet (HFHSD), and the HFHSD-fed NAFLD mice were treated with GLC. First, we investigated the effect of treating NAFLD mice with GLC by analyzing serum- and liver-related indicator levels. We found that GLC attenuated insulin resistance and inflammation, increased antioxidant function, and attenuated serum and liver lipid metabolism in the mice. Then, we investigated the mechanism underlying liver lipid metabolism, inflammation, and intestinal barrier function in these mice. We found that GLC can improve liver lipid metabolism and relieve insulin resistance and oxidative stress levels. In addition, GLC treatment increased intestinal barrier function, reduced LPS translocation, and reduced liver inflammation by inhibiting the activation of the LPS/TLR4/NF-κB pathway, thereby effectively ameliorating liver lesions in NAFLD mice.
Collapse
Affiliation(s)
- Feng Li
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
14
|
Liu W, Peng J, Wu Y, Ye Z, Zong Z, Wu R, Li H. Immune and inflammatory mechanisms and therapeutic targets of gout: An update. Int Immunopharmacol 2023; 121:110466. [PMID: 37311355 DOI: 10.1016/j.intimp.2023.110466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Gout is an autoimmune disease characterized by acute or chronic inflammation and damage to bone joints induced due to the precipitation of monosodium urate (MSU) crystals. In recent years, with the continuous development of animal models and ongoing clinical investigations, more immune cells and inflammatory factors have been found to play roles in gouty inflammation. The inflammatory network involved in gout has been discovered, providing a new perspective from which to develop targeted therapy for gouty inflammation. Studies have shown that neutrophil macrophages and T lymphocytes play important roles in the pathogenesis and resolution of gout, and some inflammatory cytokines, such as those in the interleukin-1 (IL-1) family, have been shown to play anti-inflammatory or proinflammatory roles in gouty inflammation, but the mechanisms underlying their roles are unclear. In this review, we explore the roles of inflammatory cytokines, inflammasomes and immune cells in the course of gout development and the research status of therapeutic drugs used for inflammation to provide insights into future targeted therapy for gouty inflammation and the direction of gout pathogenesis research.
Collapse
Affiliation(s)
- Wenji Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China; The Second Clinical Medical College of Nanchang University, 330006 Nanchang, China
| | - Jie Peng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China; The Second Clinical Medical College of Nanchang University, 330006 Nanchang, China
| | - Yixin Wu
- Queen Mary College of Nanchang University, 330006 Nanchang, China
| | - Zuxiang Ye
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China; The Second Clinical Medical College of Nanchang University, 330006 Nanchang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, 330006 Nanchang, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China.
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China.
| |
Collapse
|
15
|
Barillas-Lara MI, daSilva-deAbreu A, Ventura HO. Association of Glucosamine Supplementation and Incidence of Heart Failure. Mayo Clin Proc 2023; 98:1118-1120. [PMID: 37536800 DOI: 10.1016/j.mayocp.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023]
Affiliation(s)
| | | | - Hector O Ventura
- John Ochsner Heart and Vascular Institute, Ochsner Medical Center, New Orleans, LA; The University of Queensland Ochsner Clinical School, The University of Queensland, New Orleans, LA.
| |
Collapse
|
16
|
Wilken F, Buschner P, Benignus C, Behr AM, Rieger J, Beckmann J. Pharmatherapeutic Treatment of Osteoarthrosis-Does the Pill against Already Exist? A Narrative Review. J Pers Med 2023; 13:1087. [PMID: 37511701 PMCID: PMC10381646 DOI: 10.3390/jpm13071087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this narrative review is to summarize the current pharmacotherapeutic treatment options for osteoarthritis (OA). Is therapy still mainly symptomatic or does the pill against arthrosis already exist? Causal and non-causal, as well as future therapeutic approaches, are discussed. Various surgical and non-surgical treatment options are available that can help manage symptoms, slow down progression, and improve quality of life. To date, however, therapy is still mainly symptomatic, often using painkilling and anti-inflammatory drugs until the final stage, which is usually joint replacement. These "symptomatic pills against" have side effects and do not alter the progression of OA, which is caused by an imbalance between degenerative and regenerative processes. Next to resolving mechanical issues, the goal must be to gain a better understanding of the cellular and molecular basis of OA. Recently, there has been a lot of interest in cartilage-regenerative medicine and in the current style of treating rheumatoid arthritis, where drug therapy ("the pill against") has been established to slow down or even stop the progression of rheumatoid arthritis and has banned the vast majority of former almost regular severe joint destructions. However, the "causal pill against" OA does not exist so far. First, the early detection of osteoarthritis by means of biomarkers and imaging should therefore gain more focus. Second, future therapeutic approaches have to identify innovative therapeutic approaches influencing inflammatory and metabolic processes. Several pharmacologic, genetic, and even epigenetic attempts are promising, but none have clinically improved causal therapy so far, unfortunately.
Collapse
Affiliation(s)
- Frauke Wilken
- Department of Orthopedic Surgery and Traumatology, Hospital Barmherzige Brüder Munich, Romanstr. 93, 80639 München, Germany
| | - Peter Buschner
- Department of Orthopedic Surgery and Traumatology, Hospital Barmherzige Brüder Munich, Romanstr. 93, 80639 München, Germany
| | - Christian Benignus
- Department of Traumatology and Orthopedic Surgery, Hospital Ludwigsburg, Posilipostr. 4, 71640 Ludwigsburg, Germany
| | - Anna-Maria Behr
- Department of Orthopedic Surgery and Traumatology, Hospital Barmherzige Brüder Munich, Romanstr. 93, 80639 München, Germany
| | - Johannes Rieger
- Department of Orthopedic Surgery and Traumatology, Hospital Barmherzige Brüder Munich, Romanstr. 93, 80639 München, Germany
| | - Johannes Beckmann
- Department of Orthopedic Surgery and Traumatology, Hospital Barmherzige Brüder Munich, Romanstr. 93, 80639 München, Germany
| |
Collapse
|
17
|
Wang X, Zhao Y, Wang D, Liu C, Qi Z, Tang H, Liu Y, Zhang S, Cui Y, Li Y, Liu R, Shen Y. ALK-JNK signaling promotes NLRP3 inflammasome activation and pyroptosis via NEK7 during Streptococcus pneumoniae infection. Mol Immunol 2023; 157:78-90. [PMID: 37001294 DOI: 10.1016/j.molimm.2023.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Streptococcus pneumoniae (S. pneumoniae), a clinically important pathogen worldwide, causes serious invasive diseases, such as pneumonia, otitis media, and meningitis. The NLR family pyrin domain-containing 3 (NLRP3) inflammasome, an important component of the innate immune system, plays a key role in defense against pathogen infection; however the specific activation mechanism induced by S. pneumoniae infection is not fully understood. Here, primary mouse macrophages were selected as the in vitro cell model, and the effect of kinases on S. pneumoniae infection-induced NLRP3 inflammasome activation was investigated in vivo and in vitro using the western blot/RT-PCR/Co-IP/immunofluorescence staining/ELISA with or without kinase inhibitor or siRNA pretreatment. In this study, we found that the formation of the NEK7-NLRP3 complex significantly increased during S. pneumoniae infection and that anaplastic lymphoma kinase (ALK) and Jun N-terminal kinase (JNK) were phosphorylated rapidly. ALK and JNK inhibitors significantly reduced the ability of bacterial killing, the gene expression of NLRP3 inflammasome, the formation of apoptosis-associated speck-like protein containing caspase-recruitment domain (ASC) specks and the NEK7-NLRP3 complex, which in turn decreased the activation level of NLRP3 inflammasome-associated molecules and the maturation of interleukin-1β (IL-1β). In addition, ALK regulated the phosphorylation of JNK. Interestingly, the ALK/JNK/NEK7-NLRP3 signaling pathway is also involved in regulating pyroptosis and IL-1β secretion triggered by S. pneumoniae infection. In conclusion, our data suggest, for the first time, that the ALK/JNK/NEK7-NLRP3 signaling pathway may play an important role in NLRP3 inflammasome activation and pyroptosis and consequently regulate the host immune response upon S. pneumoniae infection.
Collapse
Affiliation(s)
- Xia Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yan Zhao
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, PR China
| | - Dan Wang
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, PR China
| | - Chang Liu
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, PR China
| | - Zhi Qi
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, PR China
| | - Huixin Tang
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, PR China
| | - Yashan Liu
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, PR China
| | - Shiqi Zhang
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, PR China
| | - Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yingying Li
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Ruiqing Liu
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, PR China; The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, PR China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, PR China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, PR China; Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, PR China.
| | - Yanna Shen
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, PR China.
| |
Collapse
|
18
|
Chen Y, Zhang Y, Li N, Jiang Z, Li X. Role of mitochondrial stress and the NLRP3 inflammasome in lung diseases. Inflamm Res 2023; 72:829-846. [PMID: 36905430 PMCID: PMC10007669 DOI: 10.1007/s00011-023-01712-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND As an organelle essential for intracellular energy supply, mitochondria are involved in intracellular metabolism and inflammation, and cell death. The interaction of mitochondria with the NLRP3 inflammasome in the development of lung diseases has been extensively studied. However, the exact mechanism by which mitochondria mediate the activation of the NLRP3 inflammasome and trigger lung disease is still unclear. METHODS The literatures related to mitochondrial stress, NLRP3 inflammasome and lung diseases were searched in PubMed. RESULTS This review aims to provide new insights into the recently discovered mitochondrial regulation of the NLRP3 inflammasome in lung diseases. It also describes the crucial roles of mitochondrial autophagy, long noncoding RNA, micro RNA, altered mitochondrial membrane potential, cell membrane receptors, and ion channels in mitochondrial stress and regulation of the NLRP3 inflammasome, in addition to the reduction of mitochondrial stress by nuclear factor erythroid 2-related factor 2 (Nrf2). The effective components of potential drugs for the treatment of lung diseases under this mechanism are also summarized. CONCLUSION This review provides a resource for the discovery of new therapeutic mechanisms and suggests ideas for the development of new therapeutic drugs, thus promoting the rapid treatment of lung diseases.
Collapse
Affiliation(s)
- Yonghu Chen
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China
| | - Yuqi Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ning Li
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhe Jiang
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| | - Xuezheng Li
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| |
Collapse
|
19
|
Rutin ameliorates gout via reducing XOD activity, inhibiting ROS production and NLRP3 inflammasome activation in quail. Biomed Pharmacother 2023; 158:114175. [PMID: 36587556 DOI: 10.1016/j.biopha.2022.114175] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Gout is a metabolic disease affected by monosodium urate (MSU) deposition, which is directly related to hyperuricemia. Recent reports on the prevalence and incidence of gout have been widely circulated worldwide. Currently, the anti-gout drugs in clinical practice are mainly small-molecule synthetic drugs, and the effectiveness and safety are limited. Reducing uric acid and inhibiting inflammation are the focused areas of drug research and development on gout. Rutin, a natural flavonoid, has been reported to alleviate inflammation in various diseases. However, whether rutin exerts protective effects on gout remains to be elucidated. This study used quails without urate oxidase as experimental animals to induce endogenous gout models through a high purine diet. We confirmed that quail in the model group developed gout symptoms at 30 days of the experiment. And the targets of uric acid metabolism, oxidative stress level, and NLRP3 inflammasome were dysregulated in quails. Rutin treatment improves gout and reduces inflammatory expression in quail. We further confirmed that rutin treatment reduced XOD activity and uric acid levels in quail. And rutin inhibited ROS production, restored oxidative stress balance, inhibited NLRP3 inflammasome activation, and exerted anti-inflammatory effects. We extracted and identified the fibroblast-like synoviocytes (FLS) for the first time. The results showed that rutin could reduce ROS production and NLRP3 inflammasome activation of FLS after uric acid stimulation. In conclusion, our findings underscore that rutin may be a gout protective agent by reducing XOD activity, inhibiting ROS production and NLRP3 inflammasome activation. Meanwhile, this study also provides an available animal model for the research drugs of gout.
Collapse
|
20
|
Liu P, Ma G, Wang Y, Wang L, Li P. Therapeutic effects of traditional Chinese medicine on gouty nephropathy: Based on NF-κB signalingpathways. Biomed Pharmacother 2023; 158:114199. [PMID: 36916428 DOI: 10.1016/j.biopha.2022.114199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
As the final product of purine metabolism, excess serum uric acid (SUA) aggravates the process of some metabolic diseases. SUA causes renal tubule damage, interstitial fibrosis, and glomerular hardening, leading to gouty nephropathy (GN). A growing number of investigations have shown that NF-κB mediated inflammation and oxidative stress have been directly involved in the pathogenesis of GN. Traditional Chinese medicine's treatment methods of GN have amassed a wealth of treatment experience. In this review, we first describe the mechanism of NF-κB signaling pathways in GN. Subsequently, we highlight traditional Chinese medicine that can treat GN through NF-κB pathways. Finally, commenting on promising candidate targets of herbal medicine for GN treatment via suppressing NF-κB signaling pathways was summarized.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Station East 5, Shunyi District, Beijing 101300, China
| | - Guijie Ma
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yang Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
21
|
Islam W, Tsutsuki H, Ono K, Harada A, Shinozaki K, Niidome T, Fang J, Sawa T. Structural Determination of the Nanocomplex of Borate with Styrene-Maleic Acid Copolymer-Conjugated Glucosamine Used as a Multifunctional Anticancer Drug. ACS APPLIED BIO MATERIALS 2022; 5:5953-5964. [PMID: 36480740 DOI: 10.1021/acsabm.2c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of effective anticancer drugs is essential for chemotherapy that specifically targets cancer tissues. We recently synthesized a multifunctional water-soluble anticancer polymer drug consisting of styrene-maleic acid copolymer (SMA) conjugated with glucosamine and boric acid (BA) (SGB complex). It demonstrated about 10 times higher tumor-selective accumulation compared with accumulation in normal tissues because of the enhanced permeability and retention effect, and it inhibited tumor growth via glycolysis inhibition, mitochondrial damage, and thermal neutron irradiation. Gaining insight into the anticancer effects of this SGB complex requires a determination of its structure. We therefore investigated the chemical structure of the SGB complex by means of nuclear magnetic resonance, infrared (IR) spectroscopy, and liquid chromatography-mass spectrometry. To establish the chemical structure of the SGB complex, we synthesized a simple model compound─maleic acid-glucosamine (MAG) conjugate─by using a maleic anhydride (MA) monomer unit instead of the SMA polymer. We obtained two MAG-BA complexes (MAGB) with molecular weights of 325 and 343 after the MAG reaction with BA. We confirmed, by using IR spectroscopy, that MAGB formed a stable complex via an amide bond between MA and glucosamine and that BA bound to glucosamine via a diol bond. As a result of this chemical design, identified via analysis of MAGB, the SGB complex can release BA and demonstrate toxicity to cancer cells through inhibition of lactate secretion in mild hypoxia that mimics the tumor microenvironment. For clinical application of the SGB complex, we confirmed that this complex is stable in the presence of serum. These findings confirm that our design of the SGB complex has various advantages in targeting solid cancers and exerting therapeutic effects when combined with neutron irradiation.
Collapse
Affiliation(s)
- Waliul Islam
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan.,Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,BioDynamics Research Foundation, Kumamoto 862-0954, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Ayaka Harada
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Kozo Shinozaki
- BioDynamics Research Foundation, Kumamoto 862-0954, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
22
|
Veronese N, Ecarnot F, Cheleschi S, Fioravanti A, Maggi S. Possible synergic action of non-steroidal anti-inflammatory drugs and glucosamine sulfate for the treatment of knee osteoarthritis: a scoping review. BMC Musculoskelet Disord 2022; 23:1084. [PMID: 36510167 PMCID: PMC9743630 DOI: 10.1186/s12891-022-06046-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several studies have reported that glucosamine sulfate (GS) can improve knee osteoarthritis (OA) symptomatology. In parallel, the disease-modifying effects of non-steroidal anti-inflammatory drugs (NSAIDs) in knee OA have also been investigated. However, limited literature has reported the combined effect of GS and NSAIDs. The aim of this scoping review is to describe the scope and volume of the literature investigating the potential benefits and synergistic effect of a combination of GS and NSAIDs in patients with knee OA. METHODS PubMed and Embase were searched for studies published from inception through April 2022, evaluating the effects of the combination of GS and NSAIDs in OA patients, versus either treatment alone. Data are reported narratively. RESULTS Five studies were included in this review; 4 were randomized control trials and one was a prospective observational study. The duration of combination treatment was 6 to 12 weeks. The combination was compared to celecoxib in 2 studies, meloxicam in 1, etoricoxib in 1, and a conventional NSAID in 1 (ibuprofen or piroxicam). All 5 studies reported that in patients with knee OA, the combination of GS plus NSAID yielded a significantly greater benefit than single-agent therapy, in terms of outcomes including pain reduction, function, joint stiffness, and markers of inflammatory activity and cartilage degradation. CONCLUSION The 5 studies included in this scoping review all report a significantly greater clinical benefit with a combination of GS plus NSAID compared to either treatment alone. The evidence supports efficacy in reducing pain, improving function, and possibly regulating joint damage. However, further randomized trials with larger sample sizes are warranted to confirm these findings.
Collapse
Affiliation(s)
- Nicola Veronese
- Department of Internal Medicine, Geriatrics Section, University of Palermo, Palermo, Italy
| | - Fiona Ecarnot
- Research Unit EA3920, University of Franche-Comté, 25000, Besançon, France.
- Department of Cardiology, University Hospital Besancon, 3 Boulevard Fleming, 25000, Besancon, France.
| | - Sara Cheleschi
- Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100, Siena, Italy
| | - Antonella Fioravanti
- Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100, Siena, Italy
| | - Stefania Maggi
- National Research Council, Neuroscience Institute, Aging Branch, Padua, Italy
| |
Collapse
|
23
|
Wu H, Wang Y, Ren Z, Li Y, Huang J, Lin Z, Zhang B. Overnutrition-induced gout: An immune response to NLRP3 inflammasome dysregulation by XOD activity increased in quail. Front Immunol 2022; 13:1074867. [PMID: 36569836 PMCID: PMC9771704 DOI: 10.3389/fimmu.2022.1074867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background Gout is a progressive metabolic disease closely related to hyperuricemia and urate deposition, with an increasing prevalence and incidence across the globe. Recent studies have shown that the pathological process of gout includes two stages: asymptomatic hyperuricemia and MSU crystal deposition. However, the immune response during the development of hyperuricemia to gouty arthritis is not fully elucidated. Methods Thus, an overnutrition-induced whole-course gout model was established to clarify the immune response and pathological changes in the development from hyperuricemia to gouty arthritis. The quails without urate oxidase were used as experimental animals. And we confirmed that uric acid metabolic targets were changed when quails were in the asymptomatic hyperuricemia stage. Results When the quail showed gout symptoms, the NLRP3 inflammasome was activated, and the expressions of IL-1β, TNF-α, IL-6, IL-8, and IL-18 were significantly increased. The relationship between the uric acid metabolism target and the NLRP3 inflammasome may be the critical immune response between hyperuricemia and gouty arthritis. Our data showed that, in the process of gout disease, the expression of xanthine oxidase (XOD) has been increasing, which increases the level of uric acid, disrupts the balance of oxidative stress, generates a large amount of ROS, activates the NLRP3 inflammasome, and release IL-1β. Treatment with the XOD inhibitor can reduce uric acid, restore the body's degree of peroxidative damage and antioxidant capacity, and inhibit NLRP3 inflammasome and IL-1β. In vitro, we extracted and identified primary fibroblast-like synoviocytes (FLS) from quail for the first time. Stimulating FLS with uric acid also caused ROS release and NLRP3 inflammasome activation. However, treatment with an XOD inhibitor prevented all these responses in FLS. Conclusion Our results indicate that the immune response between the uric acid metabolism target XOD and NLRP3 inflammasomes plays a crucial role in developing hyperuricemia to gouty arthritis, and inhibition of both XOD and NLRP3 inflammasomes may be an effective treatment for avoiding the development of asymptomatic hyperuricemia to MSU crystal deposition. Meanwhile, this study also provides an advantageous animal model for pathological mechanisms and research and development drugs for gout.
Collapse
Affiliation(s)
- Hao Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixin Ren
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yaolei Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjian Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhijian Lin
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Bing Zhang,
| |
Collapse
|
24
|
Antinociceptive effect of N-acetyl glucosamine in a rat model of neuropathic pain. Acta Neuropsychiatr 2022; 34:260-268. [PMID: 35109948 DOI: 10.1017/neu.2022.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE This study was aimed at evaluating the efficacy of glucosamine and potential mechanisms of actions in a neuropathic pain model in rats. METHODS Glucosamine (500, 1000 and 2000 mg/kg) was administered via gavage route, 1 day before the chronic constriction injury (CCI) of sciatic nerve and daily for 14 days (prophylactic regimen), or from days 5 to 14 post-injury (therapeutic regimen), as the indicators of neuropathic pain, mechanical allodynia, cold allodynia and thermal hyperalgesia were assessed on days 0, 3, 5, 7, 10 and 14 after ligation. Inducible nitric oxide synthase (iNOS) and tumour necrosis factor alpha (TNF-α) gene expressions were measured by real-time polymerase chain reaction. TNF-α protein content was measured using the enzyme-linked immunosorbent assay method. RESULTS Three days after nerve injury, the threshold of pain was declined among animals subjected to neuropathic pain. Mechanical and cold allodynia, as well as thermal hyperalgesia were attenuated by glucosamine (500, 1000, 2000 mg/kg) in the prophylactic regimen. However, existing pain was not decreased by this drug. Increased mRNA expression of iNOS and TNF-α was significantly reduced in the spinal cord of CCI animals by glucosamine (500, 1000, 2000 mg/kg) in the prophylactic regimen. The overall expression of spinal TNF-α was increased by CCI, but this increase was reduced in animals receiving glucosamine prophylactic treatment. CONCLUSION Findings suggest that glucosamine as a safe supplement may be a useful candidate in preventing neuropathic pain following nerve injury. Antioxidant and anti-inflammatory effects may be at least in part responsible for the antinociceptive effects of this drug.
Collapse
|
25
|
Liu M, Ye Z, Zhang Y, Yang S, Wu Q, Zhou C, He P, Zhang Y, Gan X, Qin X. Associations of habitual glucosamine supplementation with incident gout: a large population based cohort study. Biol Sex Differ 2022; 13:52. [PMID: 36175979 PMCID: PMC9524004 DOI: 10.1186/s13293-022-00461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES The association between habitual glucosamine use and incident gout has not been examined in previous studies. We aimed to evaluate the association of habitual use of glucosamine with the risk of gout in general population. METHODS A total of 436,594 participants (55.4% female) without prior gout at baseline who completed a questionnaire on supplementation use, which included glucosamine, in the UK Biobank were enrolled. Incident gout was recorded from self-report, death register, primary care, and hospital admission data. RESULTS At baseline, 53,433 (22.1%) females and 30,685 (15.8%) males reported habitual glucosamine use. During a median follow-up period of 12.1 years, 1718 (0.7%) females and 5685 (2.9%) males developed gout. After multivariable adjustment for major risk factors, glucosamine use was associated with a significantly lower risk of incident gout in females (hazard ratio [HR], 0.81, 95% confidence interval [CI], 0.71-0.92), but not in males (HR, 1.05, 95% CI, 0.97-1.13), compared with non-use (P-interaction < 0.001). Among females, the inverse association between glucosamine use and gout was stronger in participants with diuretics use (HR, 0.64, 95% CI, 0.50-0.81) than those without diuretics use (HR, 0.89, 95% CI, 0.77-1.03) (P-interaction = 0.015). Moreover, gout genetic risk scores did not significantly modify the association between glucosamine use and the risk of incident gout in males (P-interaction = 0.548) or females (P-interaction = 0.183). CONCLUSIONS Habitual glucosamine use to relieve osteoarthritis pain was related to lower risk of gout in females, but not in males.
Collapse
Affiliation(s)
- Mengyi Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Ziliang Ye
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Yanjun Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Sisi Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Qimeng Wu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Chun Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Panpan He
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Yuanyuan Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Xiaoqin Gan
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China.
| |
Collapse
|
26
|
Golshayan NS, Karbasi S, Masaeli E, Bahremandi-Toloue E, Nasr-Esfahani MH, Rafienia M. Evaluation of the effects of glucosamine sulfate on poly(3- hydroxybutyrate) -chitosan/carbon nanotubes electrospun scaffold for cartilage tissue engineering applications. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2046086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Negin Sadat Golshayan
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Elahe Masaeli
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elahe Bahremandi-Toloue
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Rafienia
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
27
|
Lin WY, Li LH, Hsiao YY, Wong WT, Chiu HW, Hsu HT, Peng YJ, Ho CL, Chernikov OV, Cheng SM, Yang SP, Hua KF. Repositioning of the Angiotensin II Receptor Antagonist Candesartan as an Anti-Inflammatory Agent With NLRP3 Inflammasome Inhibitory Activity. Front Immunol 2022; 13:870627. [PMID: 35669789 PMCID: PMC9163344 DOI: 10.3389/fimmu.2022.870627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Aberrant activation of the NLRP3 inflammasome promotes the pathogenesis of many inflammatory diseases. The development of the NLRP3 inflammasome inhibitors from existing drugs for new therapeutic purposes is becoming more important. Candesartan is an angiotensin II receptor antagonist widely used as a blood pressure-lowering drug; however, the inhibitory potential of candesartan on the NLRP3 inflammasome has not yet been investigated. We demonstrated that candesartan significantly inhibited the NLRP3 inflammasome and pyroptosis in macrophages. Mechanistic analysis revealed that candesartan inhibited the expression of NLRP3 and proIL-1β by suppressing NF-κB activation and reducing the phosphorylation of ERK1/2 and JNK1/2. Candesartan reduced mitochondrial damage and inhibited the NLRP3 inflammasome assembly by suppressing NLRP3 binding to PKR, NEK7 and ASC. In addition, candesartan inhibited IL-1β secretion partially through autophagy induction. Furthermore, oral administration of candesartan reduced peritoneal neutrophil influx, NLRP3 and ASC expression in peritoneal cells, and lavage fluid concentrations of active caspase-1, IL-1β, IL-6 and MCP-1 in uric acid crystal-injected mice. These results indicated that candesartan has board anti-inflammatory effects and has the potential to be repositioned to ameliorate inflammatory diseases or NLRP3-associated complications.
Collapse
Affiliation(s)
- Wen-Yu Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Yun Hsiao
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ting Wong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Hsiao-Wen Chiu
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Hsien-Ta Hsu
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Bu ddhist Tzu Chi University, Hualien, Taiwan
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Oleg V. Chernikov
- G.B. Elyakov Pacific Institute, Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences (FEB RAS), Vladivostok, Russia
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ping Yang
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- *Correspondence: Kuo-Feng Hua,
| |
Collapse
|
28
|
Antiinflammation Derived Suzuki-Coupled Fenbufens as COX-2 Inhibitors: Minilibrary Construction and Bioassay. Molecules 2022; 27:molecules27092850. [PMID: 35566202 PMCID: PMC9105197 DOI: 10.3390/molecules27092850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
A small fenbufen library comprising 18 compounds was prepared via Suzuki Miyara coupling. The five-step preparations deliver 9–17% biphenyl compounds in total yield. These fenbufen analogs exert insignificant activity against the IL-1 release as well as inhibiting cyclooxygenase 2 considerably. Both the para-amino and para-hydroxy mono substituents display the most substantial COX-2 inhibition, particularly the latter one showing a comparable activity as celecoxib. The most COX-2 selective and bioactive disubstituted compound encompasses one electron-withdrawing methyl and one electron-donating fluoro groups in one arene. COX-2 is selective but not COX-2 to bioactive compounds that contain both two electron-withdrawing groups; disubstituted analogs with both resonance-formable electron-donating dihydroxy groups display high COX-2 activity but inferior COX-2 selectivity. In silico simulation and modeling for three COX-2 active—p-fluoro, p-hydroxy and p-amino—fenbufens show a preferable docking to COX-2 than COX-1. The most stabilization by the p-hydroxy fenbufen with COX-2 predicted by theoretical simulation is consistent with its prominent COX-2 inhibition resulting from experiments.
Collapse
|
29
|
Wang M, Lin X, Yang X, Yang Y. Research progress on related mechanisms of uric acid activating NLRP3 inflammasome in chronic kidney disease. Ren Fail 2022; 44:615-624. [PMID: 35382689 PMCID: PMC9004527 DOI: 10.1080/0886022x.2022.2036620] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Hyperuricemia is an independent risk factor for the progression of chronic kidney disease. High levels of uric acid can lead to a series of pathological conditions, such as gout, urinary stones, inflammation, and uric acid nephropathy. There is a close relationship between uric acid and the NLRP3 inflammasome. NLRP3 inflammasome activation can cause cell damage and even death through endoplasmic reticulum stress, lysosome destruction, mitochondrial dysfunction, and the interaction between the Golgi apparatus and extracellular vesicles. In addition, the NLRP3 inflammasome acts as a molecular platform, triggering the activation of caspase-1 and the lysis of IL-1β, IL-18 and Gasdermin D (GSDMD) through different molecular mechanisms. Cleaved NT-GSDMD forms pores in the cell membrane and triggers pyrophosphorylation, thereby inducing cell death and releasing many intracellular proinflammatory molecules. In recent years, studies have found that hyperuricemia or uric acid crystals can activate NLRP3 inflammasomes, and the activation of NLRP3 inflammasomes plays an important role in kidney disease. This article reviews the possible pathophysiological mechanisms by which uric acid activates inflammasomes and induces kidney damage at the cellular and molecular levels.
Collapse
Affiliation(s)
- Miao Wang
- Department of Nephrology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xin Lin
- Department of Nephrology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiaoming Yang
- Department of Nephrology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yanlang Yang
- Department of Nephrology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
30
|
Olaseinde OF, Owoyele BV. Chondroitin and glucosamine sulphate reduced proinflammatory molecules in the DRG and improved axonal function of injured sciatic nerve of rats. Sci Rep 2022; 12:3196. [PMID: 35210446 PMCID: PMC8873476 DOI: 10.1038/s41598-022-06554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
Neuropathic pain (NP) is an abnormality resulting from lesion or damage to parts of the somatosensory nervous system. It is linked to defective quality of life and often poorly managed. Due to the limited number of approved drugs, limited efficacy and side effects associated with the approved drugs, drugs or drug combinations with great efficacy and very minimal or no side effects will be of great advantage in managing NP. This study aimed at investigating the synergistic antinociceptive effects of the combination of glucosamine sulphate (GS) (240 mg/kg) and chondroitin sulphate (CS) (900 mg/kg) in chronic constriction injury (CCI)-induced neuropathy in rats. Forty-two Wistar rats were randomly distributed into seven groups (n = 6). Sciatic nerve was ligated with four loose ligatures to induce NP. Effects of drugs were examined on stimulus and non-stimulus evoked potentials, expression of dorsal root ganglia (DRG) pain modulators and structural architecture of DRG. Oral administration of GS and CS for 21 days reduced hyperalgesia, allodynia, sciatic nerve functional aberration and DRG pain modulators. Histopathology and immunohistochemistry revealed restoration of structural integrity of DRG. Our result showed that the combination of GS and CS produced antinociceptive effects by attenuating hyperalgesia, allodynia and downregulation of NP mediators. GS and CS additionally produced synergistic analgesic effect over its individual components.
Collapse
Affiliation(s)
- Olutayo Folajimi Olaseinde
- Neuroscience and Inflammation Unit, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara, Nigeria.
| | - Bamidele Victor Owoyele
- Neuroscience and Inflammation Unit, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara, Nigeria.
| |
Collapse
|
31
|
Nutraceutical Approach to Chronic Osteoarthritis: From Molecular Research to Clinical Evidence. Int J Mol Sci 2021; 22:ijms222312920. [PMID: 34884724 PMCID: PMC8658017 DOI: 10.3390/ijms222312920] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/30/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative inflammatory condition of the joint cartilage that currently affects approximately 58 million adults in the world. It is characterized by pain, stiffness, and a reduced range of motion with regard to the arthritic joints. These symptoms can cause in the long term a greater risk of overweight/obesity, diabetes mellitus, and falls and fractures. Although the current guidelines for the treatment of OA suggest, as the gold standard for this condition, pharmacological treatment characterized by non-steroidal anti-inflammatory drugs (NSAID), opioids, and cyclooxygenase (COX)-2-specific drugs, a great interest has been applied to nutraceutical supplements, which include a heterogeneous class of molecules with great potential to reduce inflammation, oxidative stress, pain, and joint stiffness and improve cartilage formation. The purpose of this review is to describe the potential application of nutraceuticals in OA, highlighting its molecular mechanisms of actions and data of efficacy and safety (when available).
Collapse
|
32
|
Yang SR, Hung SC, Chu LJ, Hua KF, Wei CW, Tsai IL, Kao CC, Sung CC, Chu P, Wu CY, Chen A, Wu ATH, Liu FC, Huang HS, Ka SM. NSC828779 Alleviates Renal Tubulointerstitial Lesions Involving Interleukin-36 Signaling in Mice. Cells 2021; 10:3060. [PMID: 34831283 PMCID: PMC8623783 DOI: 10.3390/cells10113060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Renal tubulointerstitial lesions (TILs), a common pathologic hallmark of chronic kidney disease that evolves to end-stage renal disease, is characterized by progressive inflammation and pronounced fibrosis of the kidney. However, current therapeutic approaches to treat these lesions remain largely ineffectual. Previously, we demonstrated that elevated IL-36α levels in human renal tissue and urine are implicated in impaired renal function, and IL-36 signaling enhances activation of NLRP3 inflammasome in a mouse model of TILs. Recently, we synthesized NSC828779, a salicylanilide derivative (protected by U.S. patents with US 8975255 B2 and US 9162993 B2), which inhibits activation of NF-κB signaling with high immunomodulatory potency and low IC50, and we hypothesized that it would be a potential drug candidate for renal TILs. The current study validated the therapeutic effects of NSC828779 on TILs using a mouse model of unilateral ureteral obstruction (UUO) and relevant cell models, including renal tubular epithelial cells under mechanically induced constant pressure. Treatment with NSC828779 improved renal lesions, as demonstrated by dramatically reduced severity of renal inflammation and fibrosis and decreased urinary cytokine levels in UUO mice. This small molecule specifically inhibits the IL-36α/NLRP3 inflammasome pathway. Based on these results, the beneficial outcome represents synergistic suppression of both the IL-36α-activated MAPK/NLRP3 inflammasome and STAT3- and Smad2/3-dependent fibrogenic signaling. NSC828779 appears justified as a new drug candidate to treat renal progressive inflammation and fibrosis.
Collapse
Affiliation(s)
- Shin-Ruen Yang
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (S.-R.Y.); (C.-Y.W.); (A.C.)
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Szu-Chun Hung
- Division of Nephrology, Taipei Tzu Chi Hospital, Taipei 23142, Taiwan;
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan 33302, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260007, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
| | - Chyou-Wei Wei
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433304, Taiwan;
| | - I-Lin Tsai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chih-Chin Kao
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Chien Sung
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (C.-C.S.); (P.C.)
| | - Pauling Chu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (C.-C.S.); (P.C.)
| | - Chung-Yao Wu
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (S.-R.Y.); (C.-Y.W.); (A.C.)
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (S.-R.Y.); (C.-Y.W.); (A.C.)
| | - Alexander T. H. Wu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Hsu-Shan Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11301, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
33
|
Rushdi MI, Abdel-Rahman IAM, Saber H, Attia EZ, Abdelraheem WM, Madkour HA, Abdelmohsen UR. The genus Turbinaria: chemical and pharmacological diversity. Nat Prod Res 2021; 35:4560-4578. [PMID: 32091241 DOI: 10.1080/14786419.2020.1731741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/19/2020] [Accepted: 02/09/2020] [Indexed: 12/22/2022]
Abstract
The Genus Turbinaria is still chemically and pharmacologically underexplored. These brown algae belong to the family Sargassaceae. Therapeutic potentials of pure compounds isolated from the Genus Turbinaria are extraordinarily promising as antiproliferative, antipyretic, anti-inflammatory immunostimulatory, anti-diabetic, anti-obesity, antiviral, antimicrobial, cardioprotective, hepatoprotective and hypolipidemic. Those activities are represented by diverse classes of compounds including sterols, amino acids, fatty acids, alcohols, halocarbons, hydrocarbons, carbohydrates, esters and cyclic tetrapyrrole compounds. This review focuses on the Genus Turbinaria during the period 1972 to 2019.
Collapse
Affiliation(s)
- Mohammed I Rushdi
- Faculty of Pharmacy, Department of Pharmacognosy, South Valley University, Qena, Egypt
| | - Iman A M Abdel-Rahman
- Faculty of Pharmacy, Department of Pharmacognosy, South Valley University, Qena, Egypt
| | - Hani Saber
- Faculty of Science, Department of Botany and Microbiology, South Valley University, Qena, Egypt
| | - Eman Zekry Attia
- Faculty of Pharmacy, Department of Pharmacognosy, Minia University, Minia, Egypt
| | - Wedad M Abdelraheem
- Faculty of Medicine, Department of Medical Microbiology and Immunology, Minia University, Minia, Egypt
| | - Hashem A Madkour
- Department of Marine and Environmental Geology, National Institute of Oceanography and Fisheries, Hurghada, Egypt
| | - Usama Ramadan Abdelmohsen
- Faculty of Pharmacy, Department of Pharmacognosy, Minia University, Minia, Egypt
- Faculty of Pharmacy, Department of Pharmacognosy, Deraya University, New Minia City, Egypt
| |
Collapse
|
34
|
Liu R, Liu Y, Liu C, Gao A, Wang L, Tang H, Wu Q, Wang X, Tian D, Qi Z, Shen Y. NEK7-Mediated Activation of NLRP3 Inflammasome Is Coordinated by Potassium Efflux/Syk/JNK Signaling During Staphylococcus aureus Infection. Front Immunol 2021; 12:747370. [PMID: 34603335 PMCID: PMC8481599 DOI: 10.3389/fimmu.2021.747370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/30/2021] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a foodborne pathogen that causes severe diseases, such as endocarditis, sepsis, and bacteremia. As an important component of innate immune system, the NLR family pyrin domain-containing 3 (NLRP3) inflammasome plays a critical role in defense against pathogen infection. However, the cellular mechanism of NLRP3 inflammasome activation during S. aureus infection remains unknown. In the present study, we found that spleen tyrosine kinase (Syk) and c-Jun N-terminal kinase (JNK) were rapidly phosphorylated during S. aureus infection. Moreover, a Syk/JNK inhibitor and Syk/JNK siRNA not only reduced NLRP3 inflammasome-associated molecule expression at the protein and mRNA levels, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) speck formation, and interleukin-1β (IL-1β), and IL-18 release but also rescued the decreased NIMA-related kinase 7 (NEK7) expression level following suppression of the NEK7-NLRP3 interaction in macrophages. Interestingly, Syk/JNK phosphorylation levels and NLRP3 inflammasome-associated molecule expression were decreased by blockade of K+ efflux. Furthermore, activation of the NLRP3 inflammasome and a lower NEK7 protein level were found in vivo upon S. aureus infection. Taken together, our data indicated that S. aureus infection induces a K+ efflux/Syk/JNK/NEK7-NLRP3 signaling pathway and the subsequent activation of the NLRP3 inflammasome for the release of proinflammatory cytokines. This study expands our understanding of the basic molecular mechanism regulating inflammation and provides potential value for anti-infective drug development against S. aureus infection.
Collapse
Affiliation(s)
- Ruiqing Liu
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Yashan Liu
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Chang Liu
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Aijiao Gao
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Lin Wang
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Huixin Tang
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Qiang Wu
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| | - Xia Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases Of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Derun Tian
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Yanna Shen
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| |
Collapse
|
35
|
Li D, Wang L, Ou J, Wang C, Zhou J, Lu L, Wu Y, Gao J. Reactive oxygen species induced by uric acid promote NRK‑52E cell apoptosis through the NEK7‑NLRP3 signaling pathway. Mol Med Rep 2021; 24:729. [PMID: 34414459 PMCID: PMC8383041 DOI: 10.3892/mmr.2021.12368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/29/2021] [Indexed: 01/07/2023] Open
Abstract
Increasing uric acid (UA) could induce renal tubular epithelial cell (NRK‑52E) injury. However, the specific mechanism by which UA induces renal tubular epithelial cell injury remains unknown. It was hypothesized that UA induces renal tubular epithelial cell injury through reactive oxygen species (ROS) and the Never in mitosis gene A (NIMA)‑related kinase 7 (NEK7)/NLR family pyrin domain containing 3 (NLRP3) signaling pathway. TUNEL assay and flow cytometry were applied to measure apoptosis, and the results of the present study showed that UA treatment induced apoptosis of NRK‑52E cells in a concentration‑dependent manner. Western blotting was performed to determine the expression levels of cleaved caspase‑3, Bax and Bcl‑xl, it was found that levels were significantly increased after UA treatment in NRK‑52E cells. ROS and apoptosis were predominantly induced in NRK‑52E cells and there was an association between ROS and apoptosis. Enhanced expression of NEK7, NLRP3, apoptosis‑associated speck‑like and caspase‑1 were observed in NRK‑52E cells treated with UA. The ROS inhibitor, N‑acetyl‑l‑cysteine, exerted a protective effect on the UA‑induced apoptosis of tubular epithelial cells by reducing excess ROS production, which significantly inhibited NEK7 and NLRP3 inflammasome activation. These results indicated that UA activates ROS and induces apoptosis of NRK‑52E cells. The mechanism might be related to the regulation of the NEK7/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Dongdong Li
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, P.R. China
| | - Luobing Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, P.R. China
| | - Jiaoying Ou
- Department of Internal Medicine, Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Chuanxu Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, P.R. China
| | - Jiabao Zhou
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, P.R. China
| | - Lili Lu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, P.R. China
| | - Yanshneg Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, P.R. China
| | - Jiandong Gao
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
36
|
Yang SR, Hua KF, Yang CY, Chen A, Weng JC, Tsai YL, Wan CJ, Wu CY, Lee CC, Chan JF, Hsieh CY, Hsu YJ, Wu CC, Mukhopadhyay D, Huang HS, Liu FC, Ka SM. Cf-02, a novel benzamide-linked small molecule, blunts NF-κB activation and NLRP3 inflammasome assembly and improves acute onset of accelerated and severe lupus nephritis in mice. FASEB J 2021; 35:e21785. [PMID: 34314075 PMCID: PMC10083056 DOI: 10.1096/fj.202100047r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
In the present study, acute onset of severe lupus nephritis was successfully treated in mice using a new, benzamide-linked, small molecule that targets immune modulation and the NLRP3 inflammasome. Specifically, 6-(2,4-difluorophenyl)-3-(3-(trifluoromethyl)phenyl)-2H-benzo[e][1,3]oxazine-2,4(3H)-dione (Cf-02) (a) reduced serum levels of IgG anti-dsDNA, IL-1β, IL-6, and TNF-α, (b) inhibited activation of dendritic cells and differentially regulated T cell functions, and (c) suppressed the NF-κB/NLRP3 inflammasome axis, targeting priming and activating signals of the inflammasome. Moreover, treatment with Cf-02 significantly inhibited secretion of IL-1β in lipopolysaccharide-stimulated macrophages, but this effect was abolished by autophagy induction. These results recommend Cf-02 as a promising drug candidate for the serious renal conditions associated with systemic lupus erythematosus. Future investigations should examine whether Cf-02 may also be therapeutic in other types of chronic kidney disease involving NLRP3 inflammasome-driven signaling.
Collapse
Affiliation(s)
- Shin-Ruen Yang
- Department of Medicine, Graduate Institute of Aerospace and Undersea Medicine, Academy of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jui-Chun Weng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Jun Wan
- Department of Medicine, Graduate Institute of Aerospace and Undersea Medicine, Academy of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Yao Wu
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Chung Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jia-Feng Chan
- Division of Nephrology, Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Chih-Yu Hsieh
- Division of Nephrology, Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
- College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | - Hsu-Shan Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Cheng Liu
- Department of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
37
|
Galozzi P, Bindoli S, Luisetto R, Sfriso P, Ramonda R, Scanu A, Oliviero F. Regulation of crystal induced inflammation: current understandings and clinical implications. Expert Rev Clin Immunol 2021; 17:773-787. [PMID: 34053376 DOI: 10.1080/1744666x.2021.1937129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Accumulation of abnormal crystals in the body, derived from endogenous or exogenous materials can drive a wide spectrum of inflammatory disease states. It is well established that intra-articular deposition of monosodium urate (MSU) and calcium pyrophoshate (CPP) crystals contributes to joint destruction through pro-inflammatory processes.Areas covered: This review will focus on current understanding and recent novelty about the mechanisms and the clinical implications of the inflammation induced by MSU and CPP crystals.Expert opinion: Advances in molecular biology reveal that at the base of the inflammatory cascade, stimulated by MSU or CPP crystals, there are many complex cellular mechanisms mainly involving the NLRP3 inflammasome, the hallmark of autoinflammatory syndromes. The extensive studies carried out through in vitro and in vivo models along with a better clinical definition of the disease has led to an optimized use of existing drugs and the introduction of novel therapeutic strategies. In particular, the identification of IL-1 as the most important target in gout and pseudogout has made it possible to expand the pharmacological indications of anti-IL-1 biological drugs, opening new therapeutic perspectives for patients.
Collapse
Affiliation(s)
- Paola Galozzi
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Sara Bindoli
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology-DISCOG, University of Padova, Padova, Italy
| | - Paolo Sfriso
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Anna Scanu
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| |
Collapse
|
38
|
Yuan X, Zheng J, Ren L, Jiao S, Feng C, Du Y, Liu H. Glucosamine Ameliorates Symptoms of High-Fat Diet-Fed Mice by Reversing Imbalanced Gut Microbiota. Front Pharmacol 2021; 12:694107. [PMID: 34149435 PMCID: PMC8209492 DOI: 10.3389/fphar.2021.694107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
Glucosamine (GlcN) is used as a supplement for arthritis and joint pain and has been proved to have effects on inflammation, cancer, and cardiovascular diseases. However, there are limited studies on the regulatory mechanism of GlcN against glucose and lipid metabolism disorder. In this study, we treated high-fat diet (HFD)-induced diabetic mice with GlcN (1 mg/ml, in drinking water) for five months. The results show that GlcN significantly reduced the fasting blood glucose of HFD-fed mice and improved glucose tolerance. The feces of intestinal contents in mice were analyzed using 16s rDNA sequencing. It was indicated that GlcN reversed the imbalanced gut microbiota in HFD-fed mice. Based on the PICRUSt assay, the signaling pathways of glucolipid metabolism and biosynthesis were changed in mice with HFD feeding. By quantitative real-time PCR (qPCR) and hematoxylin and eosin (H&E) staining, it was demonstrated that GlcN not only inhibited the inflammatory responses of colon and white adipose tissues, but also improved the intestinal barrier damage of HFD-fed mice. Finally, the correlation analysis suggests the most significantly changed intestinal bacteria were positively or negatively related to the occurrence of inflammation in the colon and fat tissues of HFD-fed mice. In summary, our studies provide a theoretical basis for the potential application of GlcN to glucolipid metabolism disorder through the regulation of gut microbiota.
Collapse
Affiliation(s)
- Xubing Yuan
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,Institute of Process Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Junping Zheng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,Institute of Process Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Lishi Ren
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Cui Feng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hongtao Liu
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Chang YW, Hung LC, Chen YC, Wang WH, Lin CY, Tzeng HH, Suen JL, Chen YH. Insulin Reduces Inflammation by Regulating the Activation of the NLRP3 Inflammasome. Front Immunol 2021; 11:587229. [PMID: 33679687 PMCID: PMC7933514 DOI: 10.3389/fimmu.2020.587229] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is the platform for IL-1β maturation, aimed at mediating a rapid immune response against danger signals which must be tightly regulated. Insulin is well known as the critical hormone in the maintenance of glucose in physiologic response. Previous studies have proved insulin has the anti-inflammatory effect but the molecular mechanism of immunomodulation provided by insulin is not clear so far. Here we investigated whether insulin reduces inflammation by regulating the NLRP3 inflammasome. In the present study, we used LPS and ATP to induce the intracellular formation of the NLRP3 inflammasome. Insulin inhibited the secretion of IL-1β by preventing the assembly of the ASC in THP-1 cells and human CD14+ monocyte-derived macrophages. The phosphorylation status of Syk, p38 mitogen−activated protein kinase (MAPK) and ASC were altered by insulin. These effects were attenuated in THP-1 cells transfected with small interfering RNA targeting insulin receptors. In vivo, administration of glucose–insulin–potassium reduced serum IL-1β level, intestinal ASC speck formation, local macrophage infiltration and alleviated intestinal injury in mice exposed to LPS. Insulin may play an immunomodulatory role in anti-inflammation by regulating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yu-Wei Chang
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Laboratory, Taitung Hospital, Ministry of Health and Welfare, Taitung, Taiwan
| | - Ling-Chien Hung
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Research Center of Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Cheng Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Research Center of Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Research Center of Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Yu Lin
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Research Center of Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Han Tzeng
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jau-Ling Suen
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Research Center of Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Medical Science and Technology, National Sun-Yet University, Kaohsiung, Taiwan
| |
Collapse
|
40
|
Yang SR, Hua KF, Takahata A, Wu CY, Hsieh CY, Chiu HW, Chen CH, Mukhopadhyay D, Suzuki Y, Ka SM, Huang HS, Chen A. LCC18, a benzamide-linked small molecule, ameliorates IgA nephropathy in mice. J Pathol 2021; 253:427-441. [PMID: 33373038 DOI: 10.1002/path.5609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
IgA nephropathy (IgAN), an immune complex-mediated process and the most common primary glomerulonephritis, can progress to end-stage renal disease in up to 40% of patients. Accordingly, a therapeutic strategy targeting a specific molecular pathway is urgently warranted. Aided by structure characterisation and target identification, we predicted that a novel ring-fused 6-(2,4-difluorophenyl)-3-(3-(trifluoromethyl)phenyl)-2H-benzo[e][1,3]oxazine-2,4(3H)-dione (LCC18) targets the NLRP3 inflammasome, which participates in IgAN pathogenesis. We further developed biomarkers for the disease. We used two complementary IgAN models in C57BL/6 mice, involving TEPC-15 hybridoma-derived IgA, and in gddY mice. Moreover, we created specific cell models to validate therapeutic effects of LCC18 on IgAN and to explain its underlying mechanisms. IgAN mice benefited significantly from treatment with LCC18, showing dramatically improved renal function, including greatly reduced proteinuria and renal pathology. Mechanistic studies showed that the mode of action specifically involved: (1) blocking of the MAPKs/COX-2 axis-mediated priming of the NLRP3 inflammasome; (2) inhibition of ASC oligomerisation and NLRP3 inflammasome assembly by inhibiting NLRP3 binding to PKR, NEK7 and ASC; and (3) activation of autophagy. LCC18 exerts therapeutic effects on murine IgAN by differentially regulating NLRP3 inflammasome activation and autophagy induction, suggesting this new compound as a promising drug candidate to treat IgAN. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shin-Ruen Yang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Akiko Takahata
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Chung-Yao Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yu Hsieh
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Wen Chiu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Shan Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Ann Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
41
|
Sun Z, Gong W, Zhang Y, Jia Z. Physiological and Pathological Roles of Mammalian NEK7. Front Physiol 2020; 11:606996. [PMID: 33364979 PMCID: PMC7750478 DOI: 10.3389/fphys.2020.606996] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
NEK7 is the smallest NIMA-related kinase (NEK) in mammals. The pathological and physiological roles of NEK7 have been widely reported in many studies. To date, the major function of NEK7 has been well documented in mitosis and NLRP3 inflammasome activation, but the detailed mechanisms of its regulation remain unclear. This review summarizes current advances in NEK7 research involving mitotic regulation, NLRP3 inflammasome activation, related diseases and potential inhibitors, which may provide new insights into the understanding and therapy of the diseases associated with NEK7, as well as the subsequent studies in the future.
Collapse
Affiliation(s)
- Zhenzhen Sun
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Wei Gong
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Islam W, Matsumoto Y, Fang J, Harada A, Niidome T, Ono K, Tsutsuki H, Sawa T, Imamura T, Sakurai K, Fukumitsu N, Yamamoto H, Maeda H. Polymer-conjugated glucosamine complexed with boric acid shows tumor-selective accumulation and simultaneous inhibition of glycolysis. Biomaterials 2020; 269:120631. [PMID: 33450582 DOI: 10.1016/j.biomaterials.2020.120631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/04/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022]
Abstract
We synthesized unique water-soluble synthetic-polymer, styrene-maleic acid copolymer (SMA) conjugated glucosamine (SG); which formed a stable complex with boric acid (BA). This complex had a mean particle size of 15 nm by light scattering, and single peak in gel permeation chromatography. The particles were taken up by tumor cells five times faster than free BA in vitro and liberated BA at acidic tumor pH (5-7). Liberated BA inhibited glycolysis and resulted in tumor suppression in vivo. Intravenously injected SGB-complex did bind with albumin, and plasma half-life was about 8 h in mice, and accumulated to tumor tissues about 10 times more than in normal organs. IC50 of SGB-complex for HeLa cells under pO2 of 6-9% was about 20 μg/ml (free BA equivalent), 150 times more potent than free BA. Neutron irradiation of human oral cancer cells with SGB-complex resulted in 16 times greater cell-killing than that without SGB-complex. In vivo antitumor effect was evaluated after neutron irradiation only once in SCC VII tumor bearing mice and significant tumor suppression was confirmed. These results indicate that SGB-complex is a unique multifunctional anticancer agent with much more potent activity under low pO2 conditions as in large advanced cancers.
Collapse
Affiliation(s)
- Waliul Islam
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; BioDynamics Research Foundation, Kumamoto, 862-0954, Japan
| | - Yoshitaka Matsumoto
- Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan and Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Japan
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Ayaka Harada
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahisa Imamura
- Department of Nutritional Science, Shokei University and Department of Molecular Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, Kitakyushu, Japan
| | | | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan and Department of Molecular Pathology, Division of Health Sciences, And Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Maeda
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan and Department of Molecular Pathology, Division of Health Sciences, And Graduate School of Medicine, Osaka University, Osaka, Japan; BioDynamics Research Foundation, Kumamoto, 862-0954, Japan; Tohoku University, Sendai, Japan.
| |
Collapse
|
43
|
McCarty MF, Iloki Assanga SB, Lewis Luján L, O’Keefe JH, DiNicolantonio JJ. Nutraceutical Strategies for Suppressing NLRP3 Inflammasome Activation: Pertinence to the Management of COVID-19 and Beyond. Nutrients 2020; 13:E47. [PMID: 33375692 PMCID: PMC7823562 DOI: 10.3390/nu13010047] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 02/03/2023] Open
Abstract
Inflammasomes are intracellular protein complexes that form in response to a variety of stress signals and that serve to catalyze the proteolytic conversion of pro-interleukin-1β and pro-interleukin-18 to active interleukin-1β and interleukin-18, central mediators of the inflammatory response; inflammasomes can also promote a type of cell death known as pyroptosis. The NLRP3 inflammasome has received the most study and plays an important pathogenic role in a vast range of pathologies associated with inflammation-including atherosclerosis, myocardial infarction, the complications of diabetes, neurological and autoimmune disorders, dry macular degeneration, gout, and the cytokine storm phase of COVID-19. A consideration of the molecular biology underlying inflammasome priming and activation enables the prediction that a range of nutraceuticals may have clinical potential for suppressing inflammasome activity-antioxidants including phycocyanobilin, phase 2 inducers, melatonin, and N-acetylcysteine, the AMPK activator berberine, glucosamine, zinc, and various nutraceuticals that support generation of hydrogen sulfide. Complex nutraceuticals or functional foods featuring a number of these agents may find utility in the prevention and control of a wide range of medical disorders.
Collapse
Affiliation(s)
| | - Simon Bernard Iloki Assanga
- Department of Research and Postgraduate in Food, University of Sonora, Centro 83000, Mexico; (S.B.I.A.); (L.L.L.)
| | - Lidianys Lewis Luján
- Department of Research and Postgraduate in Food, University of Sonora, Centro 83000, Mexico; (S.B.I.A.); (L.L.L.)
| | | | | |
Collapse
|
44
|
Gan W, Li X, Cui Y, Xiao T, Liu R, Wang M, Wei Y, Cui M, Ren S, Helian K, Ning W, Zhou H, Yang C. Pinocembrin relieves lipopolysaccharide and bleomycin induced lung inflammation via inhibiting TLR4-NF-κB-NLRP3 inflammasome signaling pathway. Int Immunopharmacol 2020; 90:107230. [PMID: 33290968 DOI: 10.1016/j.intimp.2020.107230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is a defense response of the body to stimuli. Lung injury caused by external stimuli can stimulate inflammatory cells to accumulate at the site of injury and secrete cytokines. Pinocembrin is a flavonoid with anti-inflammatory effects. Based on previous studies, we further explored the anti-inflammatory mechanisms of pinocembrin in vitro and in vivo. In vitro studies indicated that pinocembrin inhibited lipopolysaccharide (LPS)-stimulated inflammatory response in macrophages. In vivo studies also showed that pinocembrin could reduce LPS and bleomycin (BLM) induced lung inflammatory response in mice. Further mechanistic studies indicated that pinocembrin could regulate the TLR4-NF-κB signaling pathway and suppressed the activation and assembly of NLRP3 inflammasomes. In summary, pinocembrin could relieve pulmonary inflammatory response induced by LPS and BLM mainly via inhibiting TLR4-NF-κB-NLRP3 inflammasome axis. These results contribute to the understanding of the anti-inflammatory mechanisms of pinocembrin and serve as reference for future research on pinocembrin.
Collapse
Affiliation(s)
- Wenhua Gan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Yunyao Cui
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Ting Xiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Ming Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Yiying Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Mengqi Cui
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Shanfa Ren
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Kaiyue Helian
- College of Health and Medicine and College of Science, Australian National University, Canberra, ACT, Australia
| | - Wen Ning
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China; Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin 300457, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China; Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin 300457, China.
| |
Collapse
|
45
|
Yang SR, Hsu WH, Wu CY, Shang HS, Liu FC, Chen A, Hua KF, Ka SM. Accelerated, severe lupus nephritis benefits from treatment with honokiol by immunoregulation and differentially regulating NF-κB/NLRP3 inflammasome and sirtuin 1/autophagy axis. FASEB J 2020; 34:13284-13299. [PMID: 32813287 DOI: 10.1096/fj.202001326r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Using honokiol (HNK), a major anti-inflammatory bioactive compound in Magnolia officinalis, we show a potent therapeutic outcome against an accelerated, severe form of lupus nephritis (ASLN). The latter may follow infectious insults that act as environmental triggers in the patients. In the current study, an ASLN model in NZB/W F1 mice was treated with HNK by daily gavage after onset of the disease. We show that HNK ameliorated the ASLN by improving renal function, albuminuria, and renal pathology, especially reducing cellular crescents, neutrophil influx, fibrinoid necrosis in glomeruli, and glomerulonephritis activity scores. Meanwhile, HNK differentially regulated T cell functions, reduced serum anti-dsDNA autoantibodies, and inhibited NLRP3 inflammasome activation in the mice. The latter involved: (a) suppressed production of reactive oxygen species and NF-κB activation-mediated priming signal of the inflammasome, (b) reduced mitochondrial damage, and (c) enhanced sirtuin 1 (SIRT1)/autophagy axis activation. In conclusion, HNK represents a new drug candidate for acute, severe episodes of LN capable of alleviating renal lesions in ASLN mice by negatively regulating T cell functions and by enhancing SIRT1/autophagy axis-lessened NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Shin-Ruen Yang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Han Hsu
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Yao Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
46
|
Dias IHK, Milic I, Heiss C, Ademowo OS, Polidori MC, Devitt A, Griffiths HR. Inflammation, Lipid (Per)oxidation, and Redox Regulation. Antioxid Redox Signal 2020; 33:166-190. [PMID: 31989835 DOI: 10.1089/ars.2020.8022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Inflammation increases during the aging process. It is linked to mitochondrial dysfunction and increased reactive oxygen species (ROS) production. Mitochondrial macromolecules are critical targets of oxidative damage; they contribute to respiratory uncoupling with increased ROS production, redox stress, and a cycle of senescence, cytokine production, and impaired oxidative phosphorylation. Targeting the formation or accumulation of oxidized biomolecules, particularly oxidized lipids, in immune cells and mitochondria could be beneficial for age-related inflammation and comorbidities. Recent Advances: Inflammation is central to age-related decline in health and exhibits a complex relationship with mitochondrial redox state and metabolic function. Improvements in mass spectrometric methods have led to the identification of families of oxidized phospholipids (OxPLs), cholesterols, and fatty acids that increase during inflammation and which modulate nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPARγ), activator protein 1 (AP1), and NF-κB redox-sensitive transcription factor activity. Critical Issues: The kinetic and spatial resolution of the modified lipidome has profound and sometimes opposing effects on inflammation, promoting initiation at high concentration and resolution at low concentration of OxPLs. Future Directions: There is an emerging opportunity to prevent or delay age-related inflammation and vascular comorbidity through a resolving (oxy)lipidome that is dependent on improving mitochondrial quality control and restoring redox homeostasis.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom
| | - Ivana Milic
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Christian Heiss
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Opeyemi S Ademowo
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Maria Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Cologne Center for Molecular Medicine Cologne, and CECAD, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Andrew Devitt
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Helen R Griffiths
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
47
|
Hsieh CY, Li LH, Lam Y, Fang Z, Gan CH, Rao YK, Chiu HW, Wong WT, Ju TC, Chen FH, Chernikov OV, Liu ML, Hsu CH, Hua KF. Synthetic 4-Hydroxy Auxarconjugatin B, a Novel Autophagy Inducer, Attenuates Gouty Inflammation by Inhibiting the NLRP3 Inflammasome. Cells 2020; 9:cells9020279. [PMID: 31979265 PMCID: PMC7072356 DOI: 10.3390/cells9020279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/29/2022] Open
Abstract
Gouty arthritis results from the generation of uric acid crystals within the joints. These uric acid crystals activate the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, which is involved in chronic inflammatory diseases, including gouty arthritis. This study identified the polyenylpyrrole derivative 4-hydroxy auxarconjugatin B (4-HAB), a novel autophagy inducer, which attenuated uric acid crystals-mediated activation of the NLRP3 inflammasome in vitro and in vivo. 4-HAB dose-dependently reduced the release of interleukin (IL)-1β, IL-18, active caspase-1 and apoptosis-associated speck-like protein (ASC) in uric acid crystals-activated macrophages. In a mechanistic study, 4-HAB was shown to inhibit uric acid crystals-induced mitochondrial damage, lysosomal rupture and ASC oligomerization. Additionally, 4-HAB inhibited the NLRP3 inflammasome through Sirt1-dependent autophagy induction. Furthermore, the anti-inflammatory properties of 4-HAB were confirmed in a mouse model of uric acid crystals-mediated peritonitis by the reduced levels of neutrophil influx, IL-1β, active caspase-1, IL-6 and MCP-1 in lavage fluids. In conclusion, 4-HAB attenuates gouty inflammation, in part by attenuating activation of the NLRP3 inflammasome through the Sirt1/autophagy induction pathway.
Collapse
Affiliation(s)
- Chih-Yu Hsieh
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan; (C.-Y.H.); (Y.K.R.); (H.-W.C.); (W.-T.W.)
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei 10844, Taiwan;
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11483, Taiwan
| | - Yulin Lam
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; (Y.L.); (Z.F.); (C.H.G.)
| | - Zhanxiong Fang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; (Y.L.); (Z.F.); (C.H.G.)
| | - Chin Heng Gan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; (Y.L.); (Z.F.); (C.H.G.)
| | - Yerra Koteswara Rao
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan; (C.-Y.H.); (Y.K.R.); (H.-W.C.); (W.-T.W.)
| | - Hsiao-Wen Chiu
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan; (C.-Y.H.); (Y.K.R.); (H.-W.C.); (W.-T.W.)
| | - Wei-Ting Wong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan; (C.-Y.H.); (Y.K.R.); (H.-W.C.); (W.-T.W.)
| | - Tz-Chuen Ju
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan;
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Oleg V. Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok 690022, Russia;
| | - May-Lan Liu
- Department of Nutritional Science, Toko University, Chiayi 61363, Taiwan;
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Department of Chinese Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei 10844, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan; (C.-Y.H.); (Y.K.R.); (H.-W.C.); (W.-T.W.)
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11483, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-3931-7630
| |
Collapse
|
48
|
Jiang C, Shi R, Chen B, Yan X, Tang G. Casticin elicits inflammasome-induced pyroptosis through activating PKR/JNK/NF-κB signal in 5-8F cells. Biomed Pharmacother 2020; 123:109576. [PMID: 31951974 DOI: 10.1016/j.biopha.2019.109576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 01/13/2023] Open
Abstract
Casticin is one of the effective ingredients of fructus viticis. Most studies have shown that casticin has a strong anti-proliferation activity against various tumor cells. However, its anti-tumor effect and molecular mechanism in nasopharyngeal carcinoma remain unclear. In this study, we demonstrated that the casticin selectively inhibited the proliferation of 5-8F cells in vitro. Further analysis revealed that casticin treatment significantly increased sub-G2 phase and incited pyroptotic process. Moreover, we demonstrated that PKR participated in in regulating the process of GSDMD-dependent pyroptotic tumor cell death. PKR knockdown alleviated the activation of JNK pathway and the expression of its downstream proteins, including cleaved caspase-1, GSDMD-N, interleukin-1β. These findings indicate that PKR/JNK/NF-κB signal is essential for casticin-induced caspase-1 inflammasome formation and inflammatory cytokines release in 5-8F cell.
Collapse
Affiliation(s)
- Chenyan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China
| | - Runjie Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China
| | - Bin Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China
| | - Xiaojun Yan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China
| | - Guoyao Tang
- Department of Oral Mucosa, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China.
| |
Collapse
|
49
|
Multifaceted Protective Role of Glucosamine against Osteoarthritis: Review of Its Molecular Mechanisms. Sci Pharm 2019. [DOI: 10.3390/scipharm87040034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a joint disease resulting from cartilage degeneration and causing joint pain and stiffness. Glucosamine exerts chondroprotective effects and effectively reduces OA pain and stiffness. This review aims to summarise the mechanism of glucosamine in protecting joint health and preventing OA by conducting a literature search on original articles. Current evidence has revealed that glucosamine exhibits anti-inflammatory effects by reducing the levels of pro-inflammatory factors (such as tumour necrosis factor-alpha, interleukin-1, and interleukin-6) and enhancing the synthesis of proteoglycans that retard cartilage degradation and improve joint function. Additionally, glucosamine improves cellular redox status, reduces OA-mediated oxidative damages, scavenges free radicals, upregulates antioxidant proteins and enzyme levels, inhibits the production of reactive oxygen species, and induces autophagy to delay OA pathogenesis. In conclusion, glucosamine prevents OA and maintains joint health by reducing inflammation, improving the redox status, and inducing autophagy in joints. Further studies are warranted to determine the synergistic effect of glucosamine with other anti-inflammatory and/or antioxidative agents on joint health in humans.
Collapse
|
50
|
Tavernaro I, Rodrigo AM, Kandziora M, Kuntz S, Dernedde J, Trautwein C, Tacke F, Blas‐Garcia A, Bartneck M. Modulating Myeloid Immune Cell Migration Using Multivalently Presented Monosaccharide Ligands for Advanced Immunotherapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Isabella Tavernaro
- Institute of Inorganic and Analytical Chemistry Justus‐Liebig‐University Giessen Heinrich‐Buff‐Ring 17 35392 Giessen Germany
| | - Alberto Marti Rodrigo
- Dpto.Farmacología Facultad de Medicina Avda Blasco Ibañez n.15‐17 46010 Valencia Spain
| | - Maja Kandziora
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Sabine Kuntz
- Institute of Nutritional Sciences Justus‐Liebig‐University Giessen Wilhelmstraße 20 35392 Giessen Germany
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité‐Universitätsmedizin Berlin Augustenburger Platz 1 13353 Berlin Germany
| | | | - Frank Tacke
- Department of Hepatology & Gastroenterology Charité‐Universitätsmedizin Berlin Augustenburger Platz 1 13353 Berlin Germany
| | - Ana Blas‐Garcia
- Dpto.Farmacología Facultad de Medicina Avda Blasco Ibañez n.15‐17 46010 Valencia Spain
| | | |
Collapse
|