1
|
Sari AIP, Copeland K, Nuwongsri P, Pipatsakulroj W, Jinawath A, Israsena N, Lertsittichai P, Chirappapha P, Shiao MS, Jinawath N. RNAscope Multiplex FISH Signal Assessment in FFPE and Fresh Frozen Tissues: The Effect of Archival Duration on RNA Expression. J Histochem Cytochem 2025; 73:9-28. [PMID: 39844680 PMCID: PMC11755420 DOI: 10.1369/00221554241311971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Formalin-fixed paraffin-embedded tissue (FFPET), which is the most widely used pathology archive, usually has low-quality DNA and RNA due to extensive nucleic acid crosslinking. RNA fluorescence in situ hybridization (RNA-FISH) has been increasingly utilized in research and clinical settings to diagnose disease pathology. In this study, the effect of RNA degradation over archival time on RNA-FISH signals in FFPET and fresh frozen tissue (FFT) was systematically assessed. RNAscope multiplex fluorescent assay with the four house-keeping-gene (HKG) probes UBC, PPIB, POLR2A, and HPRT1 was performed on 62 archived breast cancer samples (30 FFPETs and 32 FFTs). As expected, the number of RNAscope signals in FFPETs is lower than in FFTs in an archival duration-dependent fashion. The RNA degradation in FFPETs is most pronounced in high-expressor HKGs, UBC and PPIB, than in low-to-moderate expressors POLR2A and HPRT1 (p<0.0001). Analysis of RNA expression over time showed that PPIB, which has the highest signal, was the most degraded in both adjusted transcript and H-score quantification methods (R2 = 0.35 and R2 = 0.33, respectively). This proves that although the RNAscope probes are designed to detect fragmented RNA, performing a sample quality check using HKGs is strongly recommended to ensure accurate results.
Collapse
Affiliation(s)
- Ariestya Indah Permata Sari
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Genetics, Faculty of Medicine, Swadaya Gunung Jati University, Cirebon, Indonesia
| | | | - Pattarin Nuwongsri
- Excellence Center for Stem Cell and Cell Therapy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Wiriya Pipatsakulroj
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Artit Jinawath
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nipan Israsena
- Excellence Center for Stem Cell and Cell Therapy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Panuwat Lertsittichai
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prakasit Chirappapha
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Meng-Shin Shiao
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Samut Prakan, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Tiwari P, Davoudian PA, Kapri D, Vuruputuri RM, Karaba LA, Sharma M, Zanni G, Balakrishnan A, Chaudhari PR, Pradhan A, Suryavanshi S, Bath KG, Ansorge MS, Fernandez-Ruiz A, Kwan AC, Vaidya VA. Ventral hippocampal parvalbumin interneurons gate the acute anxiolytic action of the serotonergic psychedelic DOI. Neuron 2024; 112:3697-3714.e6. [PMID: 39321791 PMCID: PMC11581910 DOI: 10.1016/j.neuron.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/08/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024]
Abstract
There has been a recent renewal of interest in the therapeutic potential of serotonergic psychedelics. Here, we uncover the essential role of ventral hippocampus (vHpc) GABAergic interneurons in the anxiolytic effect evoked by the serotonergic psychedelic 2,5-dimethoxy-4-iodoamphetamine (DOI). Integrating anatomical, pharmacological, and genetic approaches, we show that 5-HT2A receptors in the CA1/subiculum (CA1/sub) region of the vHpc are required for the anxiolytic action of DOI. In vivo electrophysiology and opto-tagging experiments indicate that DOI enhances the firing rate of hippocampal fast-spiking parvalbumin (PV)-positive interneurons, most of which express the 5-HT2A receptors. Restoration of 5-HT2A receptors in PV-positive interneurons in a loss-of-function background reinstated the anxiolytic responses evoked by DOI in the vHpc CA1/sub region. Collectively, our results localize the acute anxiolytic action of a serotonergic psychedelic to 5-HT2A receptors in the ventral hippocampus and specifically identify PV-positive fast-spiking cells as a cellular trigger for the psychedelic-induced relief of anxiety-like behavior.
Collapse
Affiliation(s)
- Praachi Tiwari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| | - Pasha A Davoudian
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Darshana Kapri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | - Lindsay A Karaba
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Mukund Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Giulia Zanni
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Angarika Balakrishnan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Pratik R Chaudhari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Amartya Pradhan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Shital Suryavanshi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Kevin G Bath
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Mark S Ansorge
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | | | - Alex C Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| |
Collapse
|
3
|
Hough RF, Alvira CM, Bastarache JA, Erzurum SC, Kuebler WM, Schmidt EP, Shimoda LA, Abman SH, Alvarez DF, Belvitch P, Bhattacharya J, Birukov KG, Chan SY, Cornfield DN, Dudek SM, Garcia JGN, Harrington EO, Hsia CCW, Islam MN, Jonigk DD, Kalinichenko VV, Kolb TM, Lee JY, Mammoto A, Mehta D, Rounds S, Schupp JC, Shaver CM, Suresh K, Tambe DT, Ventetuolo CE, Yoder MC, Stevens T, Damarla M. Studying the Pulmonary Endothelium in Health and Disease: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2024; 71:388-406. [PMID: 39189891 PMCID: PMC11450313 DOI: 10.1165/rcmb.2024-0330st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Lung endothelium resides at the interface between the circulation and the underlying tissue, where it senses biochemical and mechanical properties of both the blood as it flows through the vascular circuit and the vessel wall. The endothelium performs the bidirectional signaling between the blood and tissue compartments that is necessary to maintain homeostasis while physically separating both, facilitating a tightly regulated exchange of water, solutes, cells, and signals. Disruption in endothelial function contributes to vascular disease, which can manifest in discrete vascular locations along the artery-to-capillary-to-vein axis. Although our understanding of mechanisms that contribute to endothelial cell injury and repair in acute and chronic vascular disease have advanced, pathophysiological mechanisms that underlie site-specific vascular disease remain incompletely understood. In an effort to improve the translatability of mechanistic studies of the endothelium, the American Thoracic Society convened a workshop to optimize rigor, reproducibility, and translation of discovery to advance our understanding of endothelial cell function in health and disease.
Collapse
|
4
|
Fortier M, Cauhapé M, Buono S, Becker J, Menuet A, Branchu J, Ricca I, Mero S, Dorgham K, El Hachimi KH, Dobrenis K, Colsch B, Samaroo D, Devaux M, Durr A, Stevanin G, Santorelli FM, Colombo S, Cowling B, Darios F. Decreasing ganglioside synthesis delays motor and cognitive symptom onset in Spg11 knockout mice. Neurobiol Dis 2024; 199:106564. [PMID: 38876323 DOI: 10.1016/j.nbd.2024.106564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
Biallelic variants in the SPG11 gene account for the most common form of autosomal recessive hereditary spastic paraplegia characterized by motor and cognitive impairment, with currently no therapeutic option. We previously observed in a Spg11 knockout mouse that neurodegeneration is associated with accumulation of gangliosides in lysosomes. To test whether a substrate reduction therapy could be a therapeutic option, we downregulated the key enzyme involved in ganglioside biosynthesis using an AAV-PHP.eB viral vector expressing a miRNA targeting St3gal5. Downregulation of St3gal5 in Spg11 knockout mice prevented the accumulation of gangliosides, delayed the onset of motor and cognitive symptoms, and prevented the upregulation of serum levels of neurofilament light chain, a biomarker widely used in neurodegenerative diseases. Importantly, similar results were observed when Spg11 knockout mice were administrated venglustat, a pharmacological inhibitor of glucosylceramide synthase expected to decrease ganglioside synthesis. Downregulation of St3gal5 or venglustat administration in Spg11 knockout mice strongly decreased the formation of axonal spheroids, previously associated with impaired trafficking. Venglustat had similar effect on cultured human SPG11 neurons. In conclusion, this work identifies the first disease-modifying therapeutic strategy in SPG11, and provides data supporting its relevance for therapeutic testing in SPG11 patients.
Collapse
Affiliation(s)
- Manon Fortier
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Margaux Cauhapé
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Suzie Buono
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Julien Becker
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Alexia Menuet
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Julien Branchu
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Ivana Ricca
- Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Serena Mero
- Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Karim Dorgham
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), Paris, France
| | - Khalid-Hamid El Hachimi
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; EPHE, PSL Research University, Paris, France
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benoit Colsch
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France
| | - Dominic Samaroo
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Morgan Devaux
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; EPHE, PSL Research University, Paris, France; University of Bordeaux, CNRS, INCIA, UMR 5287, NRGen Team, Bordeaux, France
| | | | - Sophie Colombo
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Belinda Cowling
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Frédéric Darios
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| |
Collapse
|
5
|
Chen G, Lai S, Jiang S, Li F, Sun K, Wu X, Zhou K, Liu Y, Deng X, Chen Z, Xu F, Xu Y, Wang K, Cao G, Xu F, Bi GQ, Zhu Y. Cellular and circuit architecture of the lateral septum for reward processing. Neuron 2024; 112:2783-2798.e9. [PMID: 38959892 DOI: 10.1016/j.neuron.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
The lateral septum (LS) is composed of heterogeneous cell types that are important for various motivated behaviors. However, the transcriptional profiles, spatial arrangement, function, and connectivity of these cell types have not been systematically studied. Using single-nucleus RNA sequencing, we delineated diverse genetically defined cell types in the LS that play distinct roles in reward processing. Notably, we found that estrogen receptor 1 (Esr1)-expressing neurons in the ventral LS (LSEsr1) are key drivers of reward seeking via projections to the ventral tegmental area, and these neurons play an essential role in methamphetamine (METH) reward and METH-seeking behavior. Extended exposure to METH increases the excitability of LSEsr1 neurons by upregulating hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, thereby contributing to METH-induced locomotor sensitization. These insights not only elucidate the intricate molecular, circuit, and functional architecture of the septal region in reward processing but also reveal a neural pathway critical for METH reward and behavioral sensitization.
Collapse
Affiliation(s)
- Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shishi Lai
- Yunnan University School of Medicine, Yunnan University, Kunming 650091, China; Southwest United Graduate School, Kunming 650092, China
| | - Shaolei Jiang
- University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fengling Li
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kaige Sun
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shandong Normal University, Jinan 250014, China
| | - Xiaocong Wu
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Kuikui Zhou
- University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Yutong Liu
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaofei Deng
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zijun Chen
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fang Xu
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Xu
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming 650091, China
| | - Kunhua Wang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming 650091, China
| | - Gang Cao
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fuqiang Xu
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guo-Qiang Bi
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
6
|
Rexrode LE, Hartley J, Showmaker KC, Challagundla L, Vandewege MW, Martin BE, Blair E, Bollavarapu R, Antonyraj RB, Hilton K, Gardiner A, Valeri J, Gisabella B, Garrett MR, Theoharides TC, Pantazopoulos H. Molecular profiling of the hippocampus of children with autism spectrum disorder. Mol Psychiatry 2024; 29:1968-1979. [PMID: 38355786 PMCID: PMC11408253 DOI: 10.1038/s41380-024-02441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Several lines of evidence point to a key role of the hippocampus in Autism Spectrum Disorders (ASD). Altered hippocampal volume and deficits in memory for person and emotion related stimuli have been reported, along with enhanced ability for declarative memories. Mouse models have demonstrated a critical role of the hippocampus in social memory dysfunction, associated with ASD, together with decreased synaptic plasticity. Chondroitin sulfate proteoglycans (CSPGs), a family of extracellular matrix molecules, represent a potential key link between neurodevelopment, synaptic plasticity, and immune system signaling. There is a lack of information regarding the molecular pathology of the hippocampus in ASD. We conducted RNAseq profiling on postmortem human brain samples containing the hippocampus from male children with ASD (n = 7) and normal male children (3-14 yrs old), (n = 6) from the NIH NeuroBioBank. Gene expression profiling analysis implicated molecular pathways involved in extracellular matrix organization, neurodevelopment, synaptic regulation, and immune system signaling. qRT-PCR and Western blotting were used to confirm several of the top markers identified. The CSPG protein BCAN was examined with multiplex immunofluorescence to analyze cell-type specific expression of BCAN and astrocyte morphology. We observed decreased expression of synaptic proteins PSD95 (p < 0.02) and SYN1 (p < 0.02), increased expression of the extracellular matrix (ECM) protease MMP9 (p < 0.03), and decreased expression of MEF2C (p < 0.03). We also observed increased BCAN expression with astrocytes in children with ASD, together with altered astrocyte morphology. Our results point to alterations in immune system signaling, glia cell differentiation, and synaptic signaling in the hippocampus of children with ASD, together with alterations in extracellular matrix molecules. Furthermore, our results demonstrate altered expression of genes implicated in genetic studies of ASD including SYN1 and MEF2C.
Collapse
Affiliation(s)
- Lindsay E Rexrode
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
| | - Joshua Hartley
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
| | | | - Lavanya Challagundla
- Department of Cell and Molecular Biology, University of Mississippi Medical School, Jackson, MS, USA
| | | | - Brigitte E Martin
- Department of Cell and Molecular Biology, University of Mississippi Medical School, Jackson, MS, USA
| | - Estelle Blair
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
| | - Ratna Bollavarapu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
| | - Rhenius B Antonyraj
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
| | - Keauna Hilton
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
| | - Alex Gardiner
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
| | - Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical School, Jackson, MS, USA
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical School, Jackson, MS, USA
| | - Michael R Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical School, Jackson, MS, USA
| | - Theoharis C Theoharides
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA.
- Program in Neuroscience, University of Mississippi Medical School, Jackson, MS, USA.
| |
Collapse
|
7
|
Nargan K, Glasgow JN, Nadeem S, Naidoo T, Wells G, Hunter RL, Hutton A, Lumamba K, Msimang M, Benson PV, Steyn AJC. Spatial distribution of Mycobacterium tuberculosis mRNA and secreted antigens in acid-fast negative human antemortem and resected tissue. EBioMedicine 2024; 105:105196. [PMID: 38880068 PMCID: PMC11233921 DOI: 10.1016/j.ebiom.2024.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND The ability to detect evidence of Mycobacterium tuberculosis (Mtb) infection within human tissues is critical to the study of Mtb physiology, tropism, and spatial distribution within TB lesions. The capacity of the widely-used Ziehl-Neelsen (ZN) staining method for identifying Mtb acid-fast bacilli (AFB) in tissue is highly variable, which can limit detection of Mtb bacilli for research and diagnostic purposes. Here, we sought to circumvent these limitations via detection of Mtb mRNA and secreted antigens in human tuberculous tissue. METHODS We adapted RNAscope, an RNA in situ hybridisation (RISH) technique, to detect Mtb mRNA in ante- and postmortem human TB tissues and developed a dual ZN/immunohistochemistry staining approach to identify AFB and bacilli producing antigen 85B (Ag85B). FINDINGS We identified Mtb mRNA within intact and disintegrating bacilli as well as extrabacillary mRNA. Mtb mRNA was distributed zonally within necrotic and non-necrotic granulomas. We also found Mtb mRNA within, and adjacent to, necrotic granulomas in ZN-negative lung tissue and in Ag85B-positive bronchiolar epithelium. Intriguingly, we observed accumulation of Mtb mRNA and Ag85B in the cytoplasm of host cells. Notably, many AFB were negative for Ag85B staining. Mtb mRNA was observed in ZN-negative antemortem lymph node biopsies. INTERPRETATION RNAscope and dual ZN/immunohistochemistry staining are well-suited for identifying subsets of intact Mtb and/or bacillary remnants in human tissue. RNAscope can identify Mtb mRNA in ZN-negative tissues from patients with TB and may have diagnostic potential in complex TB cases. FUNDING Wellcome Leap Delta Tissue Program, Wellcome Strategic Core Award, the National Institutes of Health (NIH, USA), the Mary Heersink Institute for Global Health at UAB, the UAB Heersink School of Medicine.
Collapse
Affiliation(s)
- Kievershen Nargan
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Threnesan Naidoo
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Forensic and Legal Medicine, Walter Sisulu University, Mthatha, South Africa
| | - Gordon Wells
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Anneka Hutton
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kapongo Lumamba
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Mpumelelo Msimang
- Department of Anatomical Pathology, National Health Laboratory Service, IALCH, Durban, South Africa
| | - Paul V Benson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrie J C Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Li Y, Xu C, Xie X, Shi P, Wang J, Ding Y. Temporal and spatial expression analysis of periostin in mice periodontitis model. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2024; 42:286-295. [PMID: 39049647 PMCID: PMC11190857 DOI: 10.7518/hxkq.2024.2023336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Indexed: 07/27/2024]
Abstract
OBJECTIVES This study aimed to investigate the temporal and spatial changes in the expression of periostin during periodontal inflammation in mice. METHODS A periodontitis model was constructed using silk thread ligation. Mice were randomly divided into five groups including control group, 4-day ligation group, 7-day ligation group, 14-day ligation group, and self-healing group (thread removal for 14 days after 14-day ligation). Micro-CT and histological staining were performed to characterize the dynamic changes in the mouse periodontal tissue in each group. RNAscope and immunohistochemical staining were used to analyze the pattern of changes in periostin at various stages of periodontitis. The cell experiment was divided into three groups: control group, lipopolysaccharide (LPS) stimulation group (treated with LPS for 12 h), and LPS stimulation removal group (treated with LPS for 3 h followed by incubation with medium for 9 h). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of periostin, transforming growth factor-β1 (TGF-β1), and matrix metalloproteinase 2 (MMP2). RESULTS Significant alveolar bone resorption was observed 7 days after ligation. With increasing duration of ligation, the damage to the mouse periodontal tissue was aggravated, which manifested as increased osteoclasts, widening of the periodontal membrane space, and decreased alveolar bone height. Some degree of periodontal tissue repair was observed in the self-healing group. Periostin expression decreased at 4 and 7 days compared with the control group and increased at 14 days compared with 4 and 7 days. A significant recovery was found in the self-healing group. The qRT-PCR results showed that the expression of periostin and TGF-β1 in the LPS stimulation group decreased compared with that in the control group but significantly recovered in the LPS removal group. CONCLUSIONS Periostin expression in the PDL of mice showed a downward and upward trend with inflammation progression. The significant recovery of periostin expression after removing inflammatory stimuli may be related to TGF-β1, which is crucial to maintain the integrity of the PDL.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chunmei Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peilei Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Guo X, Keenan BT, Reiner BC, Lian J, Pack AI. Single-nucleus RNA-seq identifies one galanin neuronal subtype in mouse preoptic hypothalamus activated during recovery from sleep deprivation. Cell Rep 2024; 43:114192. [PMID: 38703367 PMCID: PMC11197849 DOI: 10.1016/j.celrep.2024.114192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/13/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
The preoptic area of the hypothalamus (POA) is essential for sleep regulation. However, the cellular makeup of the POA is heterogeneous, and the molecular identities of the sleep-promoting cells remain elusive. To address this question, this study compares mice during recovery sleep following sleep deprivation to mice allowed extended sleep. Single-nucleus RNA sequencing (single-nucleus RNA-seq) identifies one galanin inhibitory neuronal subtype that shows upregulation of rapid and delayed activity-regulated genes during recovery sleep. This cell type expresses higher levels of growth hormone receptor and lower levels of estrogen receptor compared to other galanin subtypes. single-nucleus RNA-seq also reveals cell-type-specific upregulation of purinergic receptor (P2ry14) and serotonin receptor (Htr2a) during recovery sleep in this neuronal subtype, suggesting possible mechanisms for sleep regulation. Studies with RNAscope validate the single-nucleus RNA-seq findings. Thus, the combined use of single-nucleus RNA-seq and activity-regulated genes identifies a neuronal subtype functionally involved in sleep regulation.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Circadian Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brendan T Keenan
- Circadian Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie Lian
- Circadian Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allan I Pack
- Circadian Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Sun W, Wu H, Peng Y, Zheng X, Li J, Zeng D, Tang P, Zhao M, Feng H, Li H, Liang Y, Su J, Chen X, Hökfelt T, He J. Heterosynaptic plasticity of the visuo-auditory projection requires cholecystokinin released from entorhinal cortex afferents. eLife 2024; 13:e83356. [PMID: 38436304 PMCID: PMC10954309 DOI: 10.7554/elife.83356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/03/2024] [Indexed: 03/05/2024] Open
Abstract
The entorhinal cortex is involved in establishing enduring visuo-auditory associative memory in the neocortex. Here we explored the mechanisms underlying this synaptic plasticity related to projections from the visual and entorhinal cortices to the auditory cortex in mice using optogenetics of dual pathways. High-frequency laser stimulation (HFS laser) of the visuo-auditory projection did not induce long-term potentiation. However, after pairing with sound stimulus, the visuo-auditory inputs were potentiated following either infusion of cholecystokinin (CCK) or HFS laser of the entorhino-auditory CCK-expressing projection. Combining retrograde tracing and RNAscope in situ hybridization, we show that Cck expression is higher in entorhinal cortex neurons projecting to the auditory cortex than in those originating from the visual cortex. In the presence of CCK, potentiation in the neocortex occurred when the presynaptic input arrived 200 ms before postsynaptic firing, even after just five trials of pairing. Behaviorally, inactivation of the CCK+ projection from the entorhinal cortex to the auditory cortex blocked the formation of visuo-auditory associative memory. Our results indicate that neocortical visuo-auditory association is formed through heterosynaptic plasticity, which depends on release of CCK in the neocortex mostly from entorhinal afferents.
Collapse
Affiliation(s)
- Wenjian Sun
- Department of Neuroscience, City University of Hong KongHong KongChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong KongChina
| | - Haohao Wu
- Department of Neuroscience, Karolinska InstitutetStockholmSweden
| | - Yujie Peng
- Department of Neuroscience, City University of Hong KongHong KongChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong KongChina
| | - Xuejiao Zheng
- Department of Neuroscience, City University of Hong KongHong KongChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong KongChina
| | - Jing Li
- Department of Neuroscience, City University of Hong KongHong KongChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong KongChina
| | - Dingxuan Zeng
- Department of Neuroscience, City University of Hong KongHong KongChina
| | - Peng Tang
- Department of Neuroscience, City University of Hong KongHong KongChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong KongChina
| | - Ming Zhao
- Department of Neuroscience, Karolinska InstitutetStockholmSweden
| | - Hemin Feng
- Department of Neuroscience, City University of Hong KongHong KongChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong KongChina
| | - Hao Li
- Department of Neuroscience, City University of Hong KongHong KongChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong KongChina
| | - Ye Liang
- Department of Neuroscience, City University of Hong KongHong KongChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong KongChina
| | - Junfeng Su
- Department of Neuroscience, City University of Hong KongHong KongChina
| | - Xi Chen
- Department of Neuroscience, City University of Hong KongHong KongChina
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska InstitutetStockholmSweden
- Institute of Advanced Study, City University of Hong KongHong KongChina
| | - Jufang He
- Department of Neuroscience, City University of Hong KongHong KongChina
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
11
|
Gadila SKG, Embers ME. Direct Detection of Borrelia Species in Tissues. Methods Mol Biol 2024; 2742:19-35. [PMID: 38165612 DOI: 10.1007/978-1-0716-3561-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Among the controversies in Lyme disease is the potential for Borrelia spirochetes to persist after guideline-directed antimicrobial therapy. Direct detection of the spirochetes has been essential to explore this phenomenon, given that the infection is often occult and infrequently observed in blood and other body fluids. In addition, the role of spirochetal infection has been examined in the etiology of neurodegenerative diseases through detection in affected tissues. In this chapter, we describe methodology to specifically identify Borrelia DNA, RNA, and intact organism (via protein) in tissue for studies of Lyme Borreliosis.
Collapse
Affiliation(s)
- Shiva Kumar Goud Gadila
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, New Orleans, LA, USA
| | - Monica E Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, New Orleans, LA, USA.
| |
Collapse
|
12
|
Aresta Branco MSL, Perrino BA, Mutafova-Yambolieva VN. Spatial mapping of ectonucleotidase gene expression in the murine urinary bladder. Front Physiol 2023; 14:1306500. [PMID: 38098806 PMCID: PMC10719621 DOI: 10.3389/fphys.2023.1306500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Purinergic signaling is important for normal bladder function, as it is thought to initiate the voiding reflex and modulate smooth muscle tone. The availability of adenine nucleotides and nucleosides (aka purines) at receptor sites of various cell types in the bladder wall is regulated by ectonucleotidases (ENTDs). ENTDs hydrolyze purines such as adenosine 5'-triphosphate (ATP) and adenosine 5'-diphosphate (ADP) with varying preference for the individual substrate. Therefore, the end effect of extracellular purines may depend significantly on the type of ENTD that is expressed in close proximity to the target cells. ENTDs likely have distinct cellular associations, but the specific locations of individual enzymes in the bladder wall are poorly understood. We used RNAscope™, an RNA in situ hybridization (ISH) technology, to visualize the distribution and measure the levels of gene expression of the main recognized ectonucleotidases in large high-resolution images of murine bladder sections. The relative gene expression of ENTDs was Entpd3 > Alpl >> Enpp1 = Entpd2 >> Enpp3 > Entpd1 (very low to no signal) in the urothelium, Entpd1 ≥ Entpd2 >> Enpp3 > Enpp1 = Alpl ≥ Nt5e (very low to no signal) in the lamina propria, and Entpd1 >> Nt5e = Entpd2 >> Enpp1 > Alpl = Enpp3 in the detrusor. These layer-specific differences might be important in compartmentalized regulation of purine availability and subsequent functions in the bladder wall and may explain reported asymmetries in purine availability in the bladder lumen and suburothelium/lamina propria spaces.
Collapse
|
13
|
Burkert N, Roy S, Häusler M, Wuttke D, Müller S, Wiemer J, Hollmann H, Oldrati M, Ramirez-Franco J, Benkert J, Fauler M, Duda J, Goaillard JM, Pötschke C, Münchmeyer M, Parlato R, Liss B. Deep learning-based image analysis identifies a DAT-negative subpopulation of dopaminergic neurons in the lateral Substantia nigra. Commun Biol 2023; 6:1146. [PMID: 37950046 PMCID: PMC10638391 DOI: 10.1038/s42003-023-05441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Here we present a deep learning-based image analysis platform (DLAP), tailored to autonomously quantify cell numbers, and fluorescence signals within cellular compartments, derived from RNAscope or immunohistochemistry. We utilised DLAP to analyse subtypes of tyrosine hydroxylase (TH)-positive dopaminergic midbrain neurons in mouse and human brain-sections. These neurons modulate complex behaviour, and are differentially affected in Parkinson's and other diseases. DLAP allows the analysis of large cell numbers, and facilitates the identification of small cellular subpopulations. Using DLAP, we identified a small subpopulation of TH-positive neurons (~5%), mainly located in the very lateral Substantia nigra (SN), that was immunofluorescence-negative for the plasmalemmal dopamine transporter (DAT), with ~40% smaller cell bodies. These neurons were negative for aldehyde dehydrogenase 1A1, with a lower co-expression rate for dopamine-D2-autoreceptors, but a ~7-fold higher likelihood of calbindin-d28k co-expression (~70%). These results have important implications, as DAT is crucial for dopamine signalling, and is commonly used as a marker for dopaminergic SN neurons.
Collapse
Affiliation(s)
- Nicole Burkert
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Shoumik Roy
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany.
| | - Max Häusler
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | | | - Sonja Müller
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Johanna Wiemer
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Helene Hollmann
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Marvin Oldrati
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Jorge Ramirez-Franco
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
- INT, Aix Marseille Université, CNRS, Campus Santé Timone, Marseille, France
| | - Julia Benkert
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Johanna Duda
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Jean-Marc Goaillard
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
- INT, Aix Marseille Université, CNRS, Campus Santé Timone, Marseille, France
| | - Christina Pötschke
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Moritz Münchmeyer
- Wolution GmbH & Co. KG, 82152, Munich, Germany
- Department of Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Rosanna Parlato
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167, Mannheim, Germany
| | - Birgit Liss
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany.
- Linacre College & New College, Oxford University, OX1 2JD, Oxford, UK.
| |
Collapse
|
14
|
Nargan K, Naidoo T, Msimang M, Nadeem S, Wells G, Hunter RL, Hutton A, Lumamba K, Glasgow JN, Benson PV, Steyn AJ. Detection of Mycobacterium tuberculosis in human tissue via RNA in situ hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560963. [PMID: 37873458 PMCID: PMC10592959 DOI: 10.1101/2023.10.04.560963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Rationale Accurate TB diagnosis is hampered by the variable efficacy of the widely-used Ziehl-Neelsen (ZN) staining method to identify Mycobacterium tuberculosis ( Mtb ) acid-fast bacilli (AFB). Here, we sought to circumvent this current limitation through direct detection of Mtb mRNA. Objectives To employ RNAscope to determine the spatial distribution of Mtb mRNA within tuberculous human tissue, to appraise ZN-negative tissue from confirmed TB patients, and to provide proof-of-concept of RNAscope as a platform to inform TB diagnosis and Mtb biology. Methods We examined ante- and postmortem human TB tissue using RNAscope to detect Mtb mRNA and a dual ZN/immunohistochemistry staining approach to identify AFB and bacilli producing antigen 85B (Ag85B). Measurements and main results We adapted RNAscope for Mtb and identified intact and disintegrated Mtb bacilli and intra- and extracellular Mtb mRNA. Mtb mRNA was distributed zonally within necrotic and non-necrotic granulomas. We also found Mtb mRNA within, and adjacent to, necrotic granulomas in ZN-negative lung tissue and in Ag85B-positive bronchial epithelium. Intriguingly, we observed accumulation of Mtb mRNA and Ag85B in the cytoplasm of host cells. Notably, many AFB were negative for Ag85B staining. Mtb mRNA was observed in ZN-negative antemortem lymph node biopsies. Conclusions RNAscope has diagnostic potential and can guide therapeutic intervention as it detects Mtb mRNA and morphology in ZN-negative tissues from TB patients, and Mtb mRNA in ZN-negative antemortem biopsies, respectively. Lastly, our data provide evidence that at least two phenotypically distinct populations of Mtb bacilli exist in vivo .
Collapse
|
15
|
Yang SH, Yang E, Lee J, Kim JY, Yoo H, Park HS, Jung JT, Lee D, Chun S, Jo YS, Pyeon GH, Park JY, Lee HW, Kim H. Neural mechanism of acute stress regulation by trace aminergic signalling in the lateral habenula in male mice. Nat Commun 2023; 14:2435. [PMID: 37105975 PMCID: PMC10140019 DOI: 10.1038/s41467-023-38180-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Stress management is necessary for vertebrate survival. Chronic stress drives depression by excitation of the lateral habenula (LHb), which silences dopaminergic neurons in the ventral tegmental area (VTA) via GABAergic neuronal projection from the rostromedial tegmental nucleus (RMTg). However, the effect of acute stress on this LHb-RMTg-VTA pathway is not clearly understood. Here, we used fluorescent in situ hybridisation and in vivo electrophysiology in mice to show that LHb aromatic L-amino acid decarboxylase-expressing neurons (D-neurons) are activated by acute stressors and suppress RMTg GABAergic neurons via trace aminergic signalling, thus activating VTA dopaminergic neurons. We show that the LHb regulates RMTg GABAergic neurons biphasically under acute stress. This study, carried out on male mice, has elucidated a molecular mechanism in the efferent LHb-RMTg-VTA pathway whereby trace aminergic signalling enables the brain to manage acute stress by preventing the hypoactivity of VTA dopaminergic neurons.
Collapse
Affiliation(s)
- Soo Hyun Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Jaekwang Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Jin Yong Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Hyeijung Yoo
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Hyung Sun Park
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Jin Taek Jung
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Dongmin Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Sungkun Chun
- Department of Physiology, Jeonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Yong Sang Jo
- School of Psychology, Korea University, Seoul, 02841, South Korea
| | - Gyeong Hee Pyeon
- School of Psychology, Korea University, Seoul, 02841, South Korea
| | - Jae-Yong Park
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Hyun Woo Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea.
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
16
|
Velazquez-Sanchez C, Muresan L, Marti-Prats L, Belin D. The development of compulsive coping behaviour is associated with a downregulation of Arc in a Locus Coeruleus neuronal ensemble. Neuropsychopharmacology 2023; 48:653-663. [PMID: 36635597 PMCID: PMC9938202 DOI: 10.1038/s41386-022-01522-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/14/2023]
Abstract
Some compulsive disorders have been considered to stem from the loss of control over coping strategies, such as displacement. However, the cellular mechanisms involved in the acquisition of coping behaviours and their subsequent compulsive manifestation in vulnerable individuals have not been elucidated. Considering the role of the locus coeruleus (LC) noradrenaline-dependent system in stress and related excessive behaviours, we hypothesised that neuroplastic changes in the LC may be associated with the acquisition of an adjunctive polydipsic water drinking, a prototypical displacement behaviour, and the ensuing development of compulsion in vulnerable individuals. Thus, male Sprague Dawley rats were characterised for their tendency, or not, to develop compulsive polydipsic drinking in a schedule-induced polydipsia (SIP) procedure before their fresh brains were harvested. A new quantification tool for RNAscope assays revealed that the development of compulsive adjunctive behaviour was associated with a low mRNA copy number of the plasticity marker Arc in the LC which appeared to be driven by specific adaptations in an ensemble of tyrosine hydroxylase (TH)+, zif268- neurons. This ensemble was specifically engaged by the expression of compulsive adjunctive behaviour, not by stress, because its functional recruitment was not observed in individuals that no longer had access to the water bottle before sacrifice, while it consistently correlated with the levels of polydipsic water drinking only when it had become compulsive. Together these findings suggest that downregulation of Arc mRNA levels in a population of a TH+/zif268- LC neurons represents a signature of the tendency to develop compulsive coping behaviours.
Collapse
Affiliation(s)
- Clara Velazquez-Sanchez
- CLIC (Cambridge Laboratory for research on Impulsive/Compulsive disorders), Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, Department of Physiology Development and Neuroscience of the University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Lucia Marti-Prats
- CLIC (Cambridge Laboratory for research on Impulsive/Compulsive disorders), Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - David Belin
- CLIC (Cambridge Laboratory for research on Impulsive/Compulsive disorders), Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.
| |
Collapse
|
17
|
Zhou X, Li A, Mi X, Li Y, Ding Z, An M, Chen Y, Li W, Tao X, Chen X, Li Y. Hyperexcited limbic neurons represent sexual satiety and reduce mating motivation. Science 2023; 379:820-825. [PMID: 36758107 DOI: 10.1126/science.abl4038] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Transient sexual experiences can have long-lasting effects on behavioral decisions, but the neural coding that accounts for this change is unclear. We found that the ejaculation experience selectively activated estrogen receptor 2 (Esr2)-expressing neurons in the bed nucleus of the stria terminalis (BNST)-BNSTEsr2-and led to persistent decreases in firing threshold for days, during which time the mice displayed sexual satiety. Inhibition of hyperexcited BNSTEsr2 elicited fast mating recovery in satiated mice of both sexes. In males, such hyperexcitability reduced mating motivation and was partially mediated by larger HCN (hyperpolarization-activated cyclic nucleotide-gated) currents. Thus, BNSTEsr2 not only encode a specific mating action but also represent a persistent state of sexual satiety, and alterations in a neuronal ion channel contribute to sexual experience-dependent long-term changes to mating drive.
Collapse
Affiliation(s)
- Xiaojuan Zhou
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Ang Li
- Chinese Institute for Brain Research, Beijing 102206, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 102206, China
| | - Xue Mi
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yixuan Li
- Chinese Institute for Brain Research, Beijing 102206, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 102206, China
| | - Zhaoyi Ding
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Min An
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yalan Chen
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Wei Li
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xianming Tao
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xinfeng Chen
- Chinese Institute for Brain Research, Beijing 102206, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 102206, China
| | - Ying Li
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
18
|
Moutinho M, Coronel I, Tsai AP, Di Prisco GV, Pennington T, Atwood BK, Puntambekar SS, Smith DC, Martinez P, Han S, Lee Y, Lasagna-Reeves CA, Lamb BT, Bissel SJ, Nho K, Landreth GE. TREM2 splice isoforms generate soluble TREM2 species that disrupt long-term potentiation. Genome Med 2023; 15:11. [PMID: 36805764 PMCID: PMC9940368 DOI: 10.1186/s13073-023-01160-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND TREM2 is a transmembrane receptor expressed by myeloid cells and acts to regulate their immune response. TREM2 governs the response of microglia to amyloid and tau pathologies in the Alzheimer's disease (AD) brain. TREM2 is also present in a soluble form (sTREM2), and its CSF levels fluctuate as a function of AD progression. Analysis of stroke and AD mouse models revealed that sTREM2 proteins bind to neurons, which suggests sTREM2 may act in a non-cell autonomous manner to influence neuronal function. sTREM2 arises from the proteolytic cleavage of the membrane-associated receptor. However, alternatively spliced TREM2 species lacking a transmembrane domain have been postulated to contribute to the pool of sTREM2. Thus, both the source of sTREM2 species and its actions in the brain remain unclear. METHODS The expression of TREM2 isoforms in the AD brain was assessed through the analysis of the Accelerating Medicines Partnership for Alzheimer's Disease Consortium transcriptomics data, as well as qPCR analysis using post-mortem samples of AD patients and of the AD mouse model 5xFAD. TREM2 cleavage and secretion were studied in vitro using HEK-293T and HMC3 cell lines. Synaptic plasticity, as evaluated by induction of LTP in hippocampal brain slices, was employed as a measure of sTREM2 actions. RESULTS Three distinct TREM2 transcripts, namely ENST00000373113 (TREM2230), which encodes the full-length transmembrane receptor, and the alternatively spliced isoforms ENST00000373122 (TREM2222) and ENST00000338469 (TREM2219), are moderately increased in specific brain regions of patients with AD. We provide experimental evidence that TREM2 alternatively spliced isoforms are translated and secreted as sTREM2. Furthermore, our functional analysis reveals that all sTREM2 species inhibit LTP induction, and this effect is abolished by the GABAA receptor antagonist picrotoxin. CONCLUSIONS TREM2 transcripts can give rise to a heterogeneous pool of sTREM2 which acts to inhibit LTP. These results provide novel insight into the generation, regulation, and function of sTREM2 which fits into the complex biology of TREM2 and its role in human health and disease. Given that sTREM2 levels are linked to AD pathogenesis and progression, our finding that sTREM2 species interfere with LTP furthers our understanding about the role of TREM2 in AD.
Collapse
Affiliation(s)
- Miguel Moutinho
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Israel Coronel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Andy P Tsai
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gonzalo Viana Di Prisco
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Taylor Pennington
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Shweta S Puntambekar
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel C Smith
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pablo Martinez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie J Bissel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gary E Landreth
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
19
|
Lin SJH, Helm ET, Gabler NK, Burrough ER. Acute infection with Brachyspira hyodysenteriae affects mucin expression, glycosylation, and fecal MUC5AC. Front Cell Infect Microbiol 2023; 12:1042815. [PMID: 36683692 PMCID: PMC9852840 DOI: 10.3389/fcimb.2022.1042815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/28/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction Infection with strongly β-hemolytic strains of Brachyspira hyodysenteriae leads to swine dysentery (SD), a production-limiting disease that causes mucohemorrhagic diarrhea and typhlocolitis in pigs. This pathogen has strong chemotactic activity toward mucin, and infected pigs often have a disorganized mucus layer and marked de novo expression of MUC5AC, which is not constitutively expressed in the colon. It has been shown that fucose is chemoattractant for B. hyodysenteriae, and a highly fermentable fiber diet can mitigate and delay the onset of SD. Methods We used lectins targeting sialic acids in α-2,6 or α-2,3 linkages, N-acetylglucosamine (GlcNAc), α-linked L-fucose, and an immunohistochemical stain targeting N-glycolylneuraminic acid (NeuGc) to investigate the local expression of these mucin glycans in colonic tissues of pigs with acute SD. We used a commercial enzyme-linked immunosorbent assay (ELISA) to quantify fecal MUC5AC in infected pigs and assess its potential as a diagnostic monitoring tool and RNA in situ hybridization to detect IL-17A in the colonic mucosa. Results Colonic mucin glycosylation during SD has an overall increase in fucose, a spatially different distribution of GlcNAc with more expression within the crypt lumens of the upper colonic mucosa, and decreased expression or a decreased trend of sialic acids in α-2,6 or α-2,3 linkages, and NeuGc compared to the controls. The degree of increased fucosylation was less in the colonic mucosa of pigs with SD and fed the highly fermentable fiber diet. There was a significant increase in MUC5AC in fecal and colonic samples of pigs with SD at the endpoint compared to the controls, but the predictive value for disease progression was limited. Discussion Fucosylation and the impact of dietary fiber may play important roles in the pathogenesis of SD. The lack of predictive value for fecal MUC5AC quantification by ELISA is possibly due to the presence of other non-colonic sources of MUC5AC in the feces. The moderate correlation between IL-17A, neutrophils and MUC5AC confirms its immunoregulatory and mucin stimulatory role. Our study characterizes local alteration of mucin glycosylation in the colonic mucosa of pigs with SD after B. hyodysenteriae infection and may provide insight into host-pathogen interaction.
Collapse
Affiliation(s)
- Susanne Je-Han Lin
- Department of Veterinary Pathology, Iowa State University, Ames, IA, United States
| | - Emma T Helm
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Eric R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
20
|
Microglial Expression of the Wnt Signaling Modulator DKK2 Differs between Human Alzheimer's Disease Brains and Mouse Neurodegeneration Models. eNeuro 2023; 10:ENEURO.0306-22.2022. [PMID: 36599670 PMCID: PMC9836029 DOI: 10.1523/eneuro.0306-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Wnt signaling is crucial for synapse and cognitive function. Indeed, deficient Wnt signaling is causally related to increased expression of DKK1, an endogenous negative Wnt regulator, and synapse loss, both of which likely contribute to cognitive decline in Alzheimer's disease (AD). Increasingly, AD research efforts have probed the neuroinflammatory role of microglia, the resident immune cells of the CNS, which have furthermore been shown to be modulated by Wnt signaling. The DKK1 homolog DKK2 has been previously identified as an activated response and/or disease-associated microglia (DAM/ARM) gene in a mouse model of AD. Here, we performed a detailed analysis of DKK2 in mouse models of neurodegeneration, and in human AD brain. In APP/PS1 and APPNL-G-F AD mouse model brains as well as in SOD1G93A ALS mouse model spinal cords, but not in control littermates, we demonstrated significant microgliosis and microglial Dkk2 mRNA upregulation in a disease-stage-dependent manner. In the AD models, these DAM/ARM Dkk2+ microglia preferentially accumulated close to βAmyloid plaques. Furthermore, recombinant DKK2 treatment of rat hippocampal primary neurons blocked WNT7a-induced dendritic spine and synapse formation, indicative of an anti-synaptic effect similar to that of DKK1. In stark contrast, no such microglial DKK2 upregulation was detected in the postmortem human frontal cortex from individuals diagnosed with AD or pathologic aging. In summary, the difference in microglial expression of the DAM/ARM gene DKK2 between mouse models and human AD brain highlights the increasingly recognized limitations of using mouse models to recapitulate facets of human neurodegenerative disease.
Collapse
|
21
|
Herring CA, Simmons RK, Freytag S, Poppe D, Moffet JJD, Pflueger J, Buckberry S, Vargas-Landin DB, Clément O, Echeverría EG, Sutton GJ, Alvarez-Franco A, Hou R, Pflueger C, McDonald K, Polo JM, Forrest ARR, Nowak AK, Voineagu I, Martelotto L, Lister R. Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Cell 2022; 185:4428-4447.e28. [PMID: 36318921 DOI: 10.1016/j.cell.2022.09.039] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/19/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Human brain development is underpinned by cellular and molecular reconfigurations continuing into the third decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex gene expression and chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative analyses define the dynamic trajectories of each cell type, revealing major gene expression reconfiguration at the prenatal-to-postnatal transition in all cell types followed by continuous reconfiguration into adulthood and identifying regulatory networks guiding cellular developmental programs, states, and functions. We uncover links between expression dynamics and developmental milestones, characterize the diverse timing of when cells acquire adult-like states, and identify molecular convergence from distinct developmental origins. We further reveal cellular dynamics and their regulators implicated in neurological disorders. Finally, using this reference, we benchmark cell identities and maturation states in organoid models. Together, this captures the dynamic regulatory landscape of human cortical development.
Collapse
Affiliation(s)
- Charles A Herring
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Rebecca K Simmons
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Saskia Freytag
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Daniel Poppe
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Joel J D Moffet
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Jahnvi Pflueger
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Sam Buckberry
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Dulce B Vargas-Landin
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Olivier Clément
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Enrique Goñi Echeverría
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Gavin J Sutton
- School of Biotechnology and Biomolecular Sciences, Cellular Genomics Futures Institute, and the RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alba Alvarez-Franco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Christian Pflueger
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Kerrie McDonald
- Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jose M Polo
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Anna K Nowak
- Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, Cellular Genomics Futures Institute, and the RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Luciano Martelotto
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; University of Melbourne Centre for Cancer Research, Victoria Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Ryan Lister
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
22
|
Cheng X, Dai C, Wen Y, Wang X, Bo X, He S, Peng S. NeRD: a multichannel neural network to predict cellular response of drugs by integrating multidimensional data. BMC Med 2022; 20:368. [PMID: 36244991 PMCID: PMC9575288 DOI: 10.1186/s12916-022-02549-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Considering the heterogeneity of tumors, it is a key issue in precision medicine to predict the drug response of each individual. The accumulation of various types of drug informatics and multi-omics data facilitates the development of efficient models for drug response prediction. However, the selection of high-quality data sources and the design of suitable methods remain a challenge. METHODS In this paper, we design NeRD, a multidimensional data integration model based on the PRISM drug response database, to predict the cellular response of drugs. Four feature extractors, including drug structure extractor (DSE), molecular fingerprint extractor (MFE), miRNA expression extractor (mEE), and copy number extractor (CNE), are designed for different types and dimensions of data. A fully connected network is used to fuse all features and make predictions. RESULTS Experimental results demonstrate the effective integration of the global and local structural features of drugs, as well as the features of cell lines from different omics data. For all metrics tested on the PRISM database, NeRD surpassed previous approaches. We also verified that NeRD has strong reliability in the prediction results of new samples. Moreover, unlike other algorithms, when the amount of training data was reduced, NeRD maintained stable performance. CONCLUSIONS NeRD's feature fusion provides a new idea for drug response prediction, which is of great significance for precise cancer treatment.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Chong Dai
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Department of Biotechnology, Beijing Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Yuqi Wen
- Department of Biotechnology, Beijing Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Xiaoqi Wang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Health Service and Transfusion Medicine, Beijing, China.
| | - Song He
- Department of Biotechnology, Beijing Institute of Health Service and Transfusion Medicine, Beijing, China.
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China. .,The State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China.
| |
Collapse
|
23
|
Banovac I, Sedmak D, Esclapez M, Petanjek Z. The Distinct Characteristics of Somatostatin Neurons in the Human Brain. Mol Neurobiol 2022; 59:4953-4965. [PMID: 35665897 DOI: 10.1007/s12035-022-02892-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Abstract
Somatostatin cells are frequently described as a major population of GABAergic neurons in the cerebral cortex. In this study, we performed a comprehensive analysis of their molecular expression, morphological features, and laminar distribution. We provided a detailed description of somatostatin neurons in the human prefrontal cortex, including their proportion in the total neuron population, laminar distribution, neurotransmitter phenotype, as well as their molecular and morphological characteristics using immunofluorescence and RNAscope in situ hybridization. We found that somatostatin neurons comprise around 7% of neocortical neurons in the human Brodmann areas 9 and 14r, without significant difference between the two regions. Somatostatin cells were NeuN positive and synthesized vesicular GABA transporter and glutamate decarboxylase 1 and 2, confirming their neuronal nature and GABAergic phenotype. Somatostatin cells in the upper cortical layers were small, had a high expression of somatostatin mRNA, a relatively low expression of somatostatin peptide, and co-expressed calbindin. In the lower cortical layers, somatostatin cells were larger with complex somato-dendritic morphology, typically showed a lower expression of somatostatin mRNA and a high expression of somatostatin peptide, and co-expressed neuronal nitric oxide synthase (nNOS) and neuropeptide Y (NPY), but not calbindin. Somatostatin neurons in the white matter co-expressed MAP2. Based on their somato-dendritic morphology, cortical somatostatin neurons could be classified into at least five subtypes. The somatostatin neurons of the human prefrontal cortex show remarkable morphological and molecular complexity, which implies that they have equally complex and distinct functions in the human brain.
Collapse
Affiliation(s)
- Ivan Banovac
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, 10000, Zagreb, Croatia.
- Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, 10000, Zagreb, Croatia.
| | - Monique Esclapez
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| | - Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
| |
Collapse
|
24
|
Alzu'bi A, Sankar N, Crosier M, Kerwin J, Clowry GJ. Tyramide signal amplification coupled with multiple immunolabeling and RNAScope in situ hybridization in formaldehyde-fixed paraffin-embedded human fetal brain. J Anat 2022; 241:33-41. [PMID: 35224745 PMCID: PMC9178390 DOI: 10.1111/joa.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022] Open
Abstract
Several strategies have been recently introduced to improve the practicality of multiple immunolabeling and RNA in situ hybridization protocols. Tyramide signal amplification (TSA) is a powerful method used to improve the detection sensitivity of immunohistochemistry. RNAScope is a novel commercially available in situ hybridization assay for the detection of RNA expression. In this work, we describe the use of TSA and RNAScope in situ hybridization as extremely sensitive and specific methods for the evaluation of protein and RNA expression in formaldehyde-fixed paraffin-embedded human fetal brain sections. These two techniques, when properly optimized, were highly compatible with routine formaldehyde-fixed paraffin-embedded tissue that preserves the best morphological characteristics of delicate fetal brain samples, enabling an unparalleled ability to simultaneously visualize the expression of multiple protein and mRNA of genes that are sparsely expressed in the human fetal telencephalon.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
- Department of Basic Medical SciencesYarmouk UniversityIrbidJordan
| | - Niveditha Sankar
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
- Present address:
Department of Biomedical Sciences, School of MedicineUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Moira Crosier
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
- Human Developmental Biology ResourceNewcastle UniversityNewcastle upon TyneUK
| | - Janet Kerwin
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
- Human Developmental Biology ResourceNewcastle UniversityNewcastle upon TyneUK
| | - Gavin J. Clowry
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
25
|
Tobe Y, Uehara T, Nakajima T, Iwaya M, Kobayashi Y, Kinugawa Y, Kuraishi Y, Ota H. LGR5-Expressing Cells in the Healing Process of Post-ESD Ulcers in Gastric Corpus. Dig Dis Sci 2022; 67:2134-2142. [PMID: 34081250 DOI: 10.1007/s10620-021-07059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/11/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND LGR5 is a promising stem cell marker in gastric pylorus, but there are few reports on its expression in human gastric corpus. AIMS To investigate the involvement of LGR5 expression in gastric corpus ulcer regeneration in humans. METHODS LGR5 expression was analyzed in five post-ESD ulcers during the healing process of regenerating epithelial cells of the gastric corpus. LGR5 expression was detected by mRNA in situ hybridization using an RNA scope kit. Immunohistochemistry of MUC6, HIK1083, and pepsinogen 1 (PG1) was performed to identify cell differentiation. RESULTS We defined MUC6+/HIK1083-/PG1-, MUC6+/HIK1083+/PG1-, MUC6+/HIK1083+/PG1+, MUC6+/HIK1083-/PG1+, and MUC6-/HIK1083-/PG1+cells as pseudopyloric mucosa (PPM) phase 1 (PPM1), PPM phase 2 (PPM2), PPM phase 3 (PPM3), immature chief cells (ICC), and mature chief cells (MCC) in order from the ulcer center, respectively. In the regenerated mucosa around post-ESD ulcers, LGR5 expression was observed throughout the gland in PPM1-PPM3, but it was limited to the bottom of the gland in ICC and MCC. Furthermore, LGR5 expression was not identified in the normal gastric corpus. The H-score of PPM2 was significantly higher than that of PPM3 (P = 0.0313). The H-score of PPM3 was significantly higher than that of ICC (P = 0.0313). The LGR5 H-score was higher at the immature stage, which decreased gradually with progression of the differentiation stage. CONCLUSIONS LGR5 expression appears to contribute to mucosal regeneration in the human gastric corpus. The application of LGR5 expression analysis to mucosal regeneration and fundic gland-type gastric tumors is expected.
Collapse
Affiliation(s)
- Yosuke Tobe
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Mai Iwaya
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yukihiro Kobayashi
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yasuhiro Kinugawa
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yasuhiro Kuraishi
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroyoshi Ota
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.,Department of Biomedical Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
26
|
Epigenetic repression of Wnt receptors in AD: a role for Sirtuin2-induced H4K16ac deacetylation of Frizzled1 and Frizzled7 promoters. Mol Psychiatry 2022; 27:3024-3033. [PMID: 35296808 PMCID: PMC9205772 DOI: 10.1038/s41380-022-01492-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Growing evidence supports a role for deficient Wnt signalling in Alzheimer's disease (AD). First, the Wnt antagonist DKK1 is elevated in AD brains and is required for amyloid-β-induced synapse loss. Second, LRP6 Wnt co-receptor is required for synapse integrity and three variants of this receptor are linked to late-onset AD. However, the expression/role of other Wnt signalling components remain poorly explored in AD. Wnt receptors Frizzled1 (Fzd1), Fzd5, Fzd7 and Fzd9 are of interest due to their role in synapse formation/plasticity. Our analyses showed reduced FZD1 and FZD7 mRNA levels in the hippocampus of human early AD stages and in the hAPPNLGF/NLGF mouse model. This transcriptional downregulation was accompanied by reduced levels of the pro-transcriptional histone mark H4K16ac and a concomitant increase of its deacetylase Sirt2 at Fzd1 and Fzd7 promoters in AD. In vitro and in vivo inhibition of Sirt2 rescued Fzd1 and Fzd7 mRNA expression and H4K16ac levels at their promoters. In addition, we showed that Sirt2 recruitment to Fzd1 and Fzd7 promoters is dependent on FoxO1 activity in AD, thus acting as a co-repressor. Finally, we found reduced levels of SIRT2 inhibitory phosphorylation in nuclear samples from human early AD stages with a concomitant increase in the SIRT2 phosphatase PP2C. This results in hyperactive nuclear Sirt2 and favours Fzd1 and Fzd7 repression in AD. Collectively, our findings define a novel role for nuclear hyperactivated SIRT2 in repressing Fzd1 and Fzd7 expression via H4K16ac deacetylation in AD. We propose SIRT2 as an attractive target to ameliorate AD pathology.
Collapse
|
27
|
Zhang S, Zeng J, Zhou Y, Gao R, Rice S, Guo X, Liu Y, Feng P, Zhao Z. Simultaneous Detection of Herpes Simplex Virus Type 1 Latent and Lytic Transcripts in Brain Tissue. ASN Neuro 2022; 14:17590914211053505. [PMID: 35164537 PMCID: PMC9171132 DOI: 10.1177/17590914211053505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022] Open
Abstract
Neurotrophic herpes simplex virus type 1 (HSV-1) establishes lifelong latent infection in humans. Accumulating studies indicate that HSV-1, a risk factor of neurodegenerative diseases, exacerbates the sporadic Alzheimer's disease (AD). The analysis of viral genetic materials via genomic sequencing and quantitative PCR (qPCR) is the current approach used for the detection of HSV-1; however, this approach is limited because of its difficulty in detecting both latent and lytic phases of the HSV-1 life cycle in infected hosts. RNAscope, a novel in situ RNA hybridization assay, enables visualized detection of multiple RNA targets on tissue sections. Here, we developed a fluorescent multiplex RNAscope assay in combination with immunofluorescence to detect neuronal HSV-1 transcripts in various types of mouse brain samples and human brain tissues. Specifically, the RNA probes were designed to separately recognize two transcripts in the same brain section: (1) the HSV-1 latency-associated transcript (LAT) and (2) the lytic-associated transcript, the tegument protein gene of the unique long region 37 (UL37). As a result, both LAT and UL37 signals were detectable in neurons in the hippocampus and trigeminal ganglia (TG). The quantifications of HSV-1 transcripts in the TG and CNS neurons are correlated with the viral loads during lytic and latent infection. Collectively, the development of combinational detection of neuronal HSV-1 transcripts in mouse brains can serve as a valuable tool to visualize HSV-1 infection phases in various types of samples from AD patients and facilitate our understanding of the infectious origin of neurodegeneration and dementia.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jianxiong Zeng
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yuzheng Zhou
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Ruoyun Gao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Stephanie Rice
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Xinying Guo
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yongzhen Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Zhen Zhao
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Foster SL, Galaj E, Karne SL, Ferré S, Weinshenker D. Cell-type specific expression and behavioral impact of galanin and GalR1 in the locus coeruleus during opioid withdrawal. Addict Biol 2021; 26:e13037. [PMID: 33768673 PMCID: PMC8376771 DOI: 10.1111/adb.13037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
The neuropeptide galanin is reported to attenuate opioid withdrawal symptoms, potentially by reducing neuronal hyperactivity in the noradrenergic locus coeruleus (LC) via galanin receptor 1 (GalR1). We evaluated this mechanism by using RNAscope in situ hybridization to characterize GalR1 mRNA distribution in the dorsal pons and to compare galanin and GalR1 mRNA expression in tyrosine hydroxylase-positive (TH+) LC cells at baseline and following chronic morphine or precipitated withdrawal. We then used genetically altered mouse lines and pharmacology to test whether noradrenergic galanin (NE-Gal) modulates withdrawal symptoms. RNAscope revealed that, while GalR1 signal was evident in the dorsal pons, 80.7% of the signal was attributable to TH- neurons outside the LC. Galanin and TH mRNA were abundant in LC cells at baseline and were further increased by withdrawal, whereas low basal GalR1 mRNA expression was unaltered by chronic morphine or withdrawal. Naloxone-precipitated withdrawal symptoms in mice lacking NE-Gal (GalcKO-Dbh ) were largely similar to WT littermates, indicating that loss of NE-Gal does not exacerbate withdrawal. Complementary experiments using NE-Gal overexpressor mice (NE-Gal OX) and systemic administration of the galanin receptor agonist galnon revealed that increasing galanin signaling also failed to alter behavioral withdrawal, while suppressing noradrenergic transmission with the alpha-2 adrenergic receptor agonist clonidine attenuated multiple symptoms. These results indicate that galanin does not acutely attenuate precipitated opioid withdrawal via an LC-specific mechanism, which has important implications for the general role of galanin in regulation of somatic and affective opioid responses and LC activity.
Collapse
Affiliation(s)
- Stephanie L. Foster
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ewa Galaj
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland, USA
| | - Saumya L. Karne
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA,Correspondence: David Weinshenker, PhD, Department of Human Genetics, 615 Michael St, Whitehead 301, Atlanta, GA 30322, , Fax: (404) 727-3949
| |
Collapse
|
29
|
Musser ML, Viall AK, Phillips RL, Fasina O, Johannes CM. Prostaglandin EP4 receptor mRNA expression in canine lymphoma. Vet Comp Oncol 2021; 20:127-133. [PMID: 34250711 DOI: 10.1111/vco.12753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 11/28/2022]
Abstract
Canine lymphoma (LSA) is a diverse, aggressive malignancy initiated by a variety of factors. Understanding those factors could help identify potential treatment options. Chronic inflammation drives lymphoma in human medicine and is suspected to play a role in veterinary medicine. The exact mechanisms, however, have not been elucidated. Upregulation of the cyclooxygenase enzymes, and subsequently prostaglandins, potentially play a stimulatory role. Prostaglandins work through one of four EP receptors (EP1-EP4) and the effects mediated through EP4R specifically are thought to be the primary drivers of cancer development. In human T-cell LSA, overexpression of EP4R has been found and appears to protect LSA cells from apoptosis. The role of EP4R in human B-cell LSA is more nuanced. This study aims to evaluate the mRNA expression of the EP4R gene (ptger4) in canine B-cell and T-cell LSA. Archived canine lymph nodes with histologically confirmed B-cell and T-cell LSA, and reactive lymph nodes, were evaluated for EP4R mRNA expression using a novel RNA in situ hybridization technique (RNAscope). Quantification of RNAscope signals was completed with an advanced digital pathology image analysis system (HALO). Results were reported as copy number, H-score, and percent tumour cell expression of EP4R mRNA. All reactive, B-cell LSA, and T-cell LSA lymph nodes expressed EP4R mRNA. The mRNA copy number, H-score, and percent tumour cell expression of EP4R were higher in B-cell (p < .003) and T-cell (p < .001) LSA samples compared to reactive lymph node samples. There were no differences between B-cell LSA and T-cell LSA.
Collapse
Affiliation(s)
- Margaret L Musser
- Department of Veterinary Clinical Sciences, Iowa State University, College of Veterinary Medicine, Ames, Iowa, USA
| | - Austin K Viall
- Department of Veterinary Pathology, Iowa State University, College of Veterinary Medicine, Ames, Iowa, USA
| | - Rachel L Phillips
- Department of Veterinary Pathology, Iowa State University, College of Veterinary Medicine, Ames, Iowa, USA
| | - Olufemi Fasina
- Department of Veterinary Pathology, Iowa State University, College of Veterinary Medicine, Ames, Iowa, USA
| | - Chad M Johannes
- Department of Veterinary Clinical Sciences, Iowa State University, College of Veterinary Medicine, Ames, Iowa, USA
| |
Collapse
|
30
|
Takahashi Y, Maynard KR, Tippani M, Jaffe AE, Martinowich K, Kleinman JE, Weinberger DR, Hyde TM. Single molecule in situ hybridization reveals distinct localizations of schizophrenia risk-related transcripts SNX19 and AS3MT in human brain. Mol Psychiatry 2021; 26:3536-3547. [PMID: 33649454 DOI: 10.1038/s41380-021-01046-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 11/09/2022]
Abstract
Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) associated with schizophrenia risk. Integration of RNA-sequencing data from postmortem human brains with these risk SNPs identified transcripts associated with increased schizophrenia susceptibility, including a class of exon 9-spliced isoforms of Sorting nexin-19 (SNX19d9) and an isoform of Arsenic methyltransferase (AS3MT) splicing out exons 2 and 3 (AS3MTd2d3). However, the biological function of these transcript variants is unclear. Defining the cell types where these risk transcripts are dominantly expressed is an important step to understand function, in prioritizing specific cell types and/or neural pathways in subsequent studies. To identify the cell type-specific localization of SNX19 and AS3MT in the human dorsolateral prefrontal cortex (DLPFC), we used single-molecule in situ hybridization techniques combined with automated quantification and machine learning approaches to analyze 10 postmortem brains of neurotypical individuals. These analyses revealed that both pan-SNX19 and pan-AS3MT were more highly expressed in neurons than non-neurons in layers II/III and VI of DLPFC. Furthermore, pan-SNX19 was preferentially expressed in glutamatergic neurons, while pan-AS3MT was preferentially expressed in GABAergic neurons. Finally, we utilized duplex BaseScope technology, to delineate the localization of SNX19d9 and AS3MTd2d3 splice variants, revealing consistent trends in spatial gene expression among pan-transcripts and schizophrenia risk-related transcript variants. These findings demonstrate that schizophrenia risk transcripts have distinct localization patterns in the healthy human brains, and suggest that SNX19 transcripts might disrupt the normal function of glutamatergic neurons, while AS3MT may lead to disturbances in the GABAergic system in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Yoichiro Takahashi
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Jiang M, Fang Y, Li Y, Huang H, Wei Z, Gao X, Sung HK, Hu J, Qiang L, Ruan J, Chen Q, Jiang D, Whitsett JA, Ai X, Que J. VEGF receptor 2 (KDR) protects airways from mucus metaplasia through a Sox9-dependent pathway. Dev Cell 2021; 56:1646-1660.e5. [PMID: 34010630 DOI: 10.1016/j.devcel.2021.04.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023]
Abstract
Mucus-secreting goblet cells are the dominant cell type in pulmonary diseases, e.g., asthma and cystic fibrosis (CF), leading to pathologic mucus metaplasia and airway obstruction. Cytokines including IL-13 are the major players in the transdifferentiation of club cells into goblet cells. Unexpectedly, we have uncovered a previously undescribed pathway promoting mucous metaplasia that involves VEGFa and its receptor KDR. Single-cell RNA sequencing analysis coupled with genetic mouse modeling demonstrates that loss of epithelial VEGFa, KDR, or MEK/ERK kinase promotes excessive club-to-goblet transdifferentiation during development and regeneration. Sox9 is required for goblet cell differentiation following Kdr inhibition in both mouse and human club cells. Significantly, airway mucous metaplasia in asthmatic and CF patients is also associated with reduced KDR signaling and increased SOX9 expression. Together, these findings reveal an unexpected role for VEGFa/KDR signaling in the defense against mucous metaplasia, offering a potential therapeutic target for this common airway pathology.
Collapse
Affiliation(s)
- Ming Jiang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, P.R. China; Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Yinshan Fang
- Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Yu Li
- Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA; Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin 300350, P.R. China
| | - Huachao Huang
- Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Zichen Wei
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, P.R. China
| | - Xia Gao
- Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Hoon-Ki Sung
- Translation Medicine Program, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jim Hu
- Translation Medicine Program, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Li Qiang
- Department of Pathology and Cell Biology, Naomi Berrie Diabetes Center, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA
| | - Jian Ruan
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang, P.R. China
| | - Qixuan Chen
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Dianhua Jiang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, 90048 CA, USA
| | - Jeffrey A Whitsett
- Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Xingbin Ai
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Jianwen Que
- Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, NY 10032, USA.
| |
Collapse
|
32
|
Lin SJH, Arruda B, Burrough E. Alteration of Colonic Mucin Composition and Cytokine Expression in Acute Swine Dysentery. Vet Pathol 2021; 58:531-541. [PMID: 33686884 DOI: 10.1177/0300985821996657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Swine dysentery (SD) is an enteric disease associated with strongly β-hemolytic Brachyspira spp. that cause mucohemorrhagic diarrhea primarily in grower-finisher pigs. We characterized alteration of colonic mucin composition and local cytokine expression in the colon of pigs with acute SD after B. hyodysenteriae (Bhyo) infection and fed either a diet containing 30% distillers dried grains with solubles (DDGS) or a control diet. Colonic tissue samples from 9 noninoculated pigs (Control, N = 4; DDGS, N = 5) and 10 inoculated pigs experiencing acute SD (Bhyo, N = 4; Bhyo-DDGS, N = 6) were evaluated. At the apex of the spiral colon, histochemical staining with high-iron diamine-Alcian blue revealed increased sialomucin (P = .008) and decreased sulfomucin (P = .027) in Bhyo pigs relative to controls, with a dietary effect for sulfomucin. Noninoculated pigs fed DDGS had greater expression of sulfomucin (P = .002) compared to pigs fed the control diet. Immunohistochemically, there was de novo expression of mucin 5AC (MUC5AC) in the Bhyo group while mucin 2 (MUC2) expression was not significantly different between groups. RNA in situ hybridization to detect the pro-inflammatory cytokine IL-1β often showed increased expression in the Bhyo group although without statistical significance, and this was not correlated with MUC5AC or MUC2 expression, suggesting IL-1β is not a major regulator of their secretion in acute SD. Expression of the anti-inflammatory cytokine TGF-β1 was significantly suppressed in the Bhyo group compared to controls (P = .005). This study reveals mucin and cytokine alterations in the colon of pigs with experimentally induced SD and related dietary effects of DDGS.
Collapse
|
33
|
Yang H, Wang L, Turajane K, Wang L, Yang W. A method for colocalizing lineage tracing reporter and RNAscope signals on skeletal tissue section. RNA (NEW YORK, N.Y.) 2020; 27:rna.077958.120. [PMID: 33277438 PMCID: PMC7901837 DOI: 10.1261/rna.077958.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023]
Abstract
Fluorescent reporters have been widely used in modern biology as a powerful tool in cell lineage tracing during development and in studying the pathogenesis of diseases. RNAscope is a recently developed RNA in situ hybridization method with high specificity and sensitivity. Combined application of these two techniques on skeletal tissue is difficult and has not been done before; the reporter fluorophores in the tissue specimen bleach quickly and mRNAs degrade rapidly due to the decalcification process typically used in processing skeletal samples. Therefore, we developed a method that can simultaneously detect and colocalize both the fluorescent lineage tracing reporter signal and the RNAscope signal in the same skeletal section without compromising the fidelity, sensitivity, and specificity of lineage tracing and RNAscope. This was achieved by cryosectioning bone and cartilage tissue without decalcification, thus allowing the fluorescent reporter signal and RNA in the sections to be well-preserved so that RNAscope can be carried out in situ, and these two signals can be colocalized. Our method of colocalization has versatile applications, e.g., determination of gene knockout efficacy at the mRNA level in a specific cell lineage in situ, detection of alterations in target gene transcripts in reporter-positive cells caused by a specific gene mutation, studies of the disease pathology by examining the transcript-level expression of genes of interest in the cell lineage in vivo.
Collapse
|
34
|
Merkley CM, Renwick AN, Shuping SL, Harlow K, Sommer JR, Nestor CC. Undernutrition reduces kisspeptin and neurokinin B expression in castrated male sheep. REPRODUCTION AND FERTILITY 2020; 1:1-13. [PMID: 35128420 PMCID: PMC8812452 DOI: 10.1530/raf-20-0025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/01/2020] [Indexed: 11/09/2022] Open
Abstract
Undernutrition impairs reproductive success through suppression of gonadotropin-releasing hormone (GnRH), and subsequently luteinizing hormone (LH), secretion. Given that kisspeptin and neurokinin B (NKB) neurons in the arcuate nucleus (ARC) of the hypothalamus are thought to play key stimulatory roles in the generation of GnRH/LH pulses, we hypothesized that feed restriction would reduce the ARC mRNA abundance and protein expression of kisspeptin and NKB in young, male sheep. Fourteen wethers (castrated male sheep five months of age) were either fed to maintain (FM; n = 6) pre-study body weight or feed-restricted (FR; n = 8) to lose 20% of pre-study body weight over 13 weeks. Throughout the study, weekly blood samples were collected and assessed for LH concentration using RIA. At Week 13 of the experiment, animals were killed, heads were perfused with 4% paraformaldehyde, and brain tissue containing the hypothalamus was collected, sectioned, and processed for detection of mRNA (RNAscope) and protein (immunohistochemistry) for kisspeptin and NKB. Mean LH was significantly lower and LH inter-pulse interval was significantly higher in FR wethers compared to FM wethers at the end of the experiment (Week 13). RNAscope analysis revealed significantly fewer cells expressing mRNA for kisspeptin and NKB in FR wethers compared to FM controls, and immunohistochemical analysis revealed significantly fewer immunopositive kisspeptin and NKB cells in FR wethers compared to FM wethers. Taken together, this data supports the idea that long-term feed restriction regulates GnRH/LH secretion through central suppression of kisspeptin and NKB in male sheep. LAY SUMMARY While undernutrition is known to impair reproduction at the level of the brain, the components responsible for this in the brain remain to be fully understood. Using male sheep we examined the effect of undernutrition on two stimulatory molecules in the brain critical for reproduction: kisspeptin and neurokinin B. Feed restriction for several weeks resulted in decreased luteinizing hormone in the blood indicating reproductive function was suppressed. In addition, undernutrition also reduced both kisspeptin and neurokinin B levels within a region of the brain involved in reproduction, the hypothalamus. Given that they have stimulatory roles in reproduction, we believe that undernutrition acts in the brain to reduce kisspeptin and neurokinin B levels leading to the reduction in luteinizing hormone secretion. In summary, long-term undernutrition inhibits reproductive function in sheep through suppression of kisspeptin and neurokinin B within the brain.
Collapse
Affiliation(s)
- Christina M Merkley
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Allison N Renwick
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Sydney L Shuping
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - KaLynn Harlow
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Jeffrey R Sommer
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Casey C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
35
|
Maynard KR, Tippani M, Takahashi Y, Phan BN, Hyde TM, Jaffe AE, Martinowich K. dotdotdot: an automated approach to quantify multiplex single molecule fluorescent in situ hybridization (smFISH) images in complex tissues. Nucleic Acids Res 2020; 48:e66. [PMID: 32383753 PMCID: PMC7293004 DOI: 10.1093/nar/gkaa312] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
Multiplex single-molecule fluorescent in situ hybridization (smFISH) is a powerful method for validating RNA sequencing and emerging spatial transcriptomic data, but quantification remains a computational challenge. We present a framework for generating and analyzing smFISH data in complex tissues while overcoming autofluorescence and increasing multiplexing capacity. We developed dotdotdot (https://github.com/LieberInstitute/dotdotdot) as a corresponding software package to quantify RNA transcripts in single nuclei and perform differential expression analysis. We first demonstrate robustness of our platform in single mouse neurons by quantifying differential expression of activity-regulated genes. We then quantify spatial gene expression in human dorsolateral prefrontal cortex (DLPFC) using spectral imaging and dotdotdot to mask lipofuscin autofluorescence. We lastly apply machine learning to predict cell types and perform downstream cell type-specific expression analysis. In summary, we provide experimental workflows, imaging acquisition and analytic strategies for quantification and biological interpretation of smFISH data in complex tissues.
Collapse
Affiliation(s)
- Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Yoichiro Takahashi
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - BaDoi N Phan
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
36
|
Lucassen PJ, Fitzsimons CP, Salta E, Maletic-Savatic M. Adult neurogenesis, human after all (again): Classic, optimized, and future approaches. Behav Brain Res 2020; 381:112458. [DOI: 10.1016/j.bbr.2019.112458] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/29/2019] [Accepted: 12/28/2019] [Indexed: 02/08/2023]
|