1
|
Shaban S, Patel M, Ahmad A. Anti-virulence and anti-efflux pump activity of synthetic defensins and histatin in Candida auris. Microb Pathog 2025; 205:107644. [PMID: 40306590 DOI: 10.1016/j.micpath.2025.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 04/17/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
Novel antifungal therapies are needed to combat multidrug-resistant Candida auris, a pathogen with significant virulence and efflux pump activity. Building on our previous work demonstrating the fungicidal activity of selected antimicrobial peptides (AMPs) towards C. auris, this study investigates their effects against virulence factors and efflux pump. We evaluated the impact of human β-Defensin-3 (hBD-3), Human neutrophil peptide-1 (HNP-1) and human salivary histatin 5 (His 5) on C. auris virulence and resistance, using two clinical isolates. Their effect on adhesion and proteinase activity was studied using adherence assay and BSA plates, respectively. Their impact on biofilm formation and mature biofilm was studied using the MTT reduction test and further visualized using Confocal laser scanning microscope. Intracellular accumulation and external efflux of rhodamine-6-G was studied to establish their action on efflux pump activity. In addition, their effect on the expression of related genes was studied using RT-qPCR. At sub-minimum inhibitory concentrations (sub-MICs) and minimum inhibitory concentrations (MICs), all three test AMPs significantly reduced both adherence and proteinase activity. All the test peptides substantially inhibited the metabolic activity and decreased the density of growing and mature biofilms. Moreover, the tested peptides effectively obstructed efflux pumps and downregulated the genes linked to virulence and efflux pumps, including CDR1, CDR2, MDR1, SAP3, SNQ2, PGA26, PGA7 and PGA52. Finally, the safety of these peptides was verified by a haemolytic test. The finding of this study demonstrated the anti-virulence and anti-efflux pump properties of the tested AMPs. Therefore, these peptides can be a potentially effective alternative for managing infections caused by C. auris.
Collapse
Affiliation(s)
- Siham Shaban
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Mrudula Patel
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa; Division of Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa.
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| |
Collapse
|
2
|
Shah M, Zia M, Ahmad I, Umer Khan M, Ejaz H, Alam M, Aziz S, Nishan U, Dib H, Ullah R, Ojha SC. Computational analysis of Ayurvedic metabolites for potential treatment of drug-resistant Candida auris. Front Cell Infect Microbiol 2025; 15:1537872. [PMID: 40207054 PMCID: PMC11979702 DOI: 10.3389/fcimb.2025.1537872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/11/2025] [Indexed: 04/11/2025] Open
Abstract
This study explored the effectiveness of secondary metabolites of referred traditional Ayurvedic plants in treating fungal infections, particularly targeting Candida auris. Recognized as a global health threat, this fungus is notorious for its resistance to several antifungal treatments. The inhibition of lanosterol 14α-demethylase causes the depletion of ergosterol, ultimately resulting in the inhibition of fungal cell growth. A total of 469 metabolites, including alkaloids, flavonoids, and tannins from Ayurvedic plants, were screened against CYP51 (PDB ID: 4UYL) using molecular docking. Key active site residues, namely HIS461, CYS463, and TYR122, were targeted to inhibit the ergosterol synthesis, with VNI employed to benchmark the findings. Shortlisted metabolites underwent physicochemical analysis, ADMET analyses, and the principles of medicinal chemistry, which were confirmed through pharmacokinetic simulations. Further, this study investigated the molecular dynamics (MD) of co-crystalized VNI, trans-p-coumaric acid, and MCPHB [(r)-n-(1'-methoxycarbonyl-2'-phenylethyl)-4-hydroxybenzamide] to evaluate RMSD, RMSF, Rg, SASA, cross-correlation of residue motions, PCA, and free energy decomposition. The top compounds demonstrated favorable drug-like criteria. They exhibited good absorption potential with high gastrointestinal uptake. Distribution and metabolism were manageable with low risks of drug-drug interactions. Excretion profiles indicated proper clearance, and toxicity assessments showed low potential for cardiovascular issues. The results showed stable interactions for trans-p-coumaric acid and MCPHB, suggesting that all the ligands maintain stable binding interactions with the protein, which preserves structural integrity across all systems. This comprehensive approach suggests that these natural metabolites from Ayurvedic medicine could potentially serve as primary agents against fungal diseases, pending further validation through controlled in vitro and in vivo clinical trials.
Collapse
Affiliation(s)
- Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Mahnoor Zia
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Iqra Ahmad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Maqsood Alam
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Shahid Aziz
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Kong ASY, Lim SHE, Cheng WH, Yuswan MH, Tan NP, Lai KS. Harnessing Monoterpenes and Monoterpenoids as Weapons against Antimicrobial Resistance. Pol J Microbiol 2025; 74:1-18. [PMID: 40052212 PMCID: PMC11949389 DOI: 10.33073/pjm-2025-010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/16/2024] [Indexed: 03/28/2025] Open
Abstract
Antimicrobial resistance (AMR) poses a formidable challenge in global healthcare, driving the exploration of natural products for novel antimicrobials. Among these, essential oils (EOs) derived from medicinal plants are rich sources of diverse bioactive compounds. Monoterpenes and monoterpenoids, critical constituents of EOs, have emerged as promising agents in combating multidrugresistant (MDR) pathogens. This review analyzed recent literature on the efficacy of monoterpenes against AMR, highlighting their broad-spectrum activity and potential as alternative therapeutic options for MDR infections. Mechanistic insights reveal their ability to disrupt cell membranes, inhibit biofilm formation, and modulate gene expression linked to virulence and resistance, thereby reducing microbial viability through alterations in membrane potential, enzymatic activity, and genetic regulation. Synergistic interactions between monoterpenes and conventional antibiotics are also elucidated. Innovative approaches in monoterpene research are explored, although challenges such as resistance, limited solubility, volatility, and potential toxicity are acknowledged, emphasizing the need for advanced formulation strategies and interdisciplinary research. The synergy observed with conventional antibiotics, coupled with their ability to target specific microbial resistance mechanisms, underscores the potential of monoterpenes in combating antibioticresistant infections. Future investigations should prioritize optimizing monoterpenes' therapeutic properties and assessing their safety profiles to fully exploit their potential in addressing AMR.
Collapse
Affiliation(s)
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Mohd Hafis Yuswan
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ngai-Paing Tan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Semenya MD, Aladejana AE, Ndlovu SI. Characterization of susceptibility patterns and adaptability of the newly emerged Candida auris. Int Microbiol 2025; 28:575-587. [PMID: 39107585 PMCID: PMC11906518 DOI: 10.1007/s10123-024-00563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 03/14/2025]
Abstract
The emergence of Candida auris has caused a major concern in the public health worldwide. This novel fungus is characterized by its multidrug resistance profile, ability to thrive in harsh and stressful conditions, as well as high temperatures and salt concentrations, persistence on hospital surfaces, causing nosocomial infections and outbreaks, and unique fitness properties. Here, we study the antifungal susceptibility patterns, thermotolerance, and halotolerance of 15 putative C. auris clinical isolates from Inkosi Albert Academic Hospital, Durban, South Africa. Five of the C. auris isolates showed resistance to all three antifungals (fluconazole, amphotericin B, and micafungin) and were selected for characterization of their adaptability mechanisms. Four of the tested multidrug-resistant C. auris isolates (C. auris strain F25, C. auris strain F276, C. auris F283, and C. auris M153) showed good growth when exposed to high temperature (42 °C) and salinity (10% NaCl) conditions whereas one isolate (C. auris F65) showed moderate growth under these conditions. Candida parapsilosis showed poor growth whereas C. albicans no growth under these conditions. The five C. auris strains were positive for all the adaptive features.
Collapse
Affiliation(s)
- Matlou D Semenya
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, 2028, South Africa
| | - Adebowale E Aladejana
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, 2028, South Africa
| | - Sizwe I Ndlovu
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, 2028, South Africa.
| |
Collapse
|
5
|
Gavandi TC, Basrani ST, Chougule SA, Patil SB, Nille OS, Kolekar GB, Yankanchi SR, Karuppayil SM, Jadhav AK. Vidarabine as a novel antifungal agent against Candida albicans: insights on mechanism of action. Int Microbiol 2025; 28:589-602. [PMID: 39126447 DOI: 10.1007/s10123-024-00565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/11/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Around 1.5 million mortality cases due to fungal infection are reported annually, posing a massive threat to global health. However, the effectiveness of current antifungal therapies in the treatment of invasive fungal infections is limited. Repurposing existing antifungal drugs is an advisable alternative approach for enhancing their effectiveness. This study evaluated the antifungal efficacy of the antiviral drug vidarabine against Candida albicans ATCC 90028. Antifungal susceptibility testing was performed by microbroth dilution assay and further processed to find the minimum fungicidal concentration. Investigation on probable mode of vidarabine action against C. albicans was assessed by using the ergosterol reduction assay, reactive oxygen species (ROS) accumulation, nuclear condensation, and apoptosis assay. Results revealed that C. albicans was susceptible to vidarabine action and exhibited minimum inhibitory concentration at 150 µg/ml. At a concentration of 300 µg/ml, vidarabine had fungicidal activity against C. albicans. 300 µg/ml vidarabine-treated C. albicans cells demonstrated 91% reduced ergosterol content. Annexin/FITC/PI assay showed that vidarabine (150 µg/ml) had increased late apoptotic cells up to 31%. As per the fractional inhibitory concentration index, vidarabine had synergistic activity with fluconazole and caspofungin against this fungus. The mechanism underlying fungicidal action of vidarabine was evaluated at the intracellular level, and probably because of increased nuclear condensation, enhanced ROS generation, and cell cycle arrest. In conclusion, this data is the first to report that vidarabine has potential to be used as a repurposed antifungal agent alone or in combination with standard antifungal drugs, and could be a quick and safe addition to existing therapies for treating fungal infections.
Collapse
Affiliation(s)
- Tanjila C Gavandi
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416-003, Maharashtra, India
| | - Sargun T Basrani
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416-003, Maharashtra, India
| | - Sayali A Chougule
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416-003, Maharashtra, India
| | - Shivani B Patil
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416-003, Maharashtra, India
| | - Omkar S Nille
- Department of Chemistry, Shivaji University, Kolhapur, 416-004, Maharashtra, India
| | - Govind B Kolekar
- Department of Chemistry, Shivaji University, Kolhapur, 416-004, Maharashtra, India
| | | | - S Mohan Karuppayil
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416-003, Maharashtra, India.
| | - Ashwini K Jadhav
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416-003, Maharashtra, India.
| |
Collapse
|
6
|
Ahmed SH, El-Kholy IMA, El-Mehalawy AA, Mahmoud EM, Elkady NA. Molecular characterization of some multidrug resistant Candida Auris in egypt. Sci Rep 2025; 15:4917. [PMID: 39929931 PMCID: PMC11811120 DOI: 10.1038/s41598-025-88656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Candida auris is an emerging multidrug-resistant yeast that causes healthcare-associated and deep-seated infections. Notably, the emergence of this yeast is alarming as it exhibits resistance to azoles, echinocandins, and amphotericin B, which may lead to clinical treatment failure in patients. This study aims to identify and characterize the genetic determinants of antifungal resistance in C. auris among some local clinical isolates to contribute for understanding the molecular epidemiology of C. auris in Egypt. Four test strains were identified based on the ribosomal internal transcribed spacer (ITS) region sequence and phylogenetic analysis. Antifungal susceptibility was determined using the VITEK 2 system. Molecular analysis of ERG11, ERG3, FKS1, and FKS2 was used to identify mutations associated with antifungal resistance. The four test strains were identified as C. auris. Evolutionary analysis was conducted, and sequences of ITS regions were submitted to GenBank. The mutations Y132F in ERG11 and F635Y in FKS2 were identified, which are known to confer resistance to azoles and echinocandins, respectively. The emergence of C. auris in Egypt represents a public health concern. Hospitals should implement strict infection control measures to prevent its spread. Effective treatment guidelines and ongoing monitoring of antifungal resistance are essential to combat this emerging pathogen.
Collapse
Affiliation(s)
- Sara H Ahmed
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Iman M A El-Kholy
- Clinical Pathology Department, Ain Shams University Specialized Hospital, Ain Shams University, Cairo, Egypt
| | - Adel A El-Mehalawy
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Eman M Mahmoud
- Microbiology Department, Abou Al-Azayem Hospital, Cairo, Egypt
| | - Nadia A Elkady
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
7
|
Ramos LS, Barbosa PF, Lorentino CM, Lima JC, Braga AL, Lima RV, Giovanini L, Casemiro AL, Siqueira NL, Costa SC, Rodrigues CF, Roudbary M, Branquinha MH, Santos AL. The multidrug-resistant Candida auris, Candida haemulonii complex and phylogenetic related species: Insights into antifungal resistance mechanisms. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100354. [PMID: 39995443 PMCID: PMC11847750 DOI: 10.1016/j.crmicr.2025.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
The rise of multidrug-resistant (MDR) fungal pathogens poses a serious global threat to human health. Of particular concern are Candida auris, the Candida haemulonii complex (which includes C. haemulonii sensu stricto, C. duobushaemulonii and C. haemulonii var. vulnera), and phylogenetically related species, including C. pseudohaemulonii and C. vulturna. These emerging, widespread, and opportunistic pathogens have drawn significant attention due to their reduced susceptibility to commonly used antifungal agents, particularly azoles and polyenes, and, in some cases, therapy-induced resistance to echinocandins. Notably, C. auris is classified in the critical priority group on the World Health Organization's fungal priority pathogens list, which highlights fungal species capable of causing systemic infections with significant mortality and morbidity risks as well as the challenges posed by their MDR profiles, limited treatment and management options. The mechanisms underlying antifungal resistance within these emerging fungal species is still being explored, but some advances have been achieved in the past few years. In this review, we compile current literature on the distribution of susceptible and resistant clinical strains of C. auris, C. haemulonii complex, C. pseudohaemulonii and C. vulturna across various antifungal classes, including azoles (fluconazole, voriconazole, itraconazole), polyenes (amphotericin B), echinocandins (caspofungin, micafungin, anidulafungin), and pyrimidine analogues (flucytosine). We also outline the main antifungal resistance mechanisms identified in planktonic cells of these yeast species. Finally, we explore the impact of biofilm formation, a classical virulence attribute of fungi, on antifungal resistance, highlighting the resistance mechanisms associated with this complex microbial structure that have been uncovered to date.
Collapse
Affiliation(s)
- Lívia S. Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Pedro F. Barbosa
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Carolline M.A. Lorentino
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Joice C. Lima
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Antonio L. Braga
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Raquel V. Lima
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Lucas Giovanini
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Ana Lúcia Casemiro
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Nahyara L.M. Siqueira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Stefanie C. Costa
- Laboratório de Resistência Bacteriana, Departamento de Patologia, Universidade Federal do Espírito Santo (UFES), Vitória, Brasil
| | - Célia F. Rodrigues
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Maryam Roudbary
- Sydney Infectious Diseases Institute, University of Sydney, Australia
- Westmead Hospital, NSW Health, Sydney, Australia
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brasil
| | - André L.S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brasil
| |
Collapse
|
8
|
Oganesyan E, Klimenteva V, Vybornova I, Venchakova V, Parshikova E, Kovyrshin S, Orlova O, Kruglov A, Gordeeva S, Vasilyeva N, Taraskina A. Population Structure Based on Microsatellite Length Polymorphism, Antifungal Susceptibility Profile, and Enzymatic Activity of Candida auris Clinical Isolates in Russia. J Fungi (Basel) 2025; 11:35. [PMID: 39852454 PMCID: PMC11766443 DOI: 10.3390/jof11010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/21/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen causing nosocomial transmission and invasive infections with high mortality. This study aimed to investigate the genetic relationships, enzymatic activities, and drug-resistance profiles of C. auris isolates to evaluate the population and epidemiological diversity of candidiasis in Russia. A total of 112 clinical isolates of C. auris were analyzed from May 2017 to March 2023 in 18 hospitals across Saint Petersburg, the Leningrad Region, and Moscow. Species identification was confirmed by ITS sequencing, and genotyping was performed using 12 short tandem repeat (STR) markers. Antifungal susceptibility was tested using Sensititre™ YeastOne™ plates, and hydrolytic enzyme production was measured by the plate method. ITS sequencing confirmed that all isolates belonged to a single ITS cluster (clades I and III). Fifteen distinct STR genotypes were identified, with genotype I being dominant (n = 53). The most variable of the analyzed markers turned out to be M3-Ia, which was represented in the Russian population by eight different variants. Fluconazole resistance was found in 111 isolates, 17% were resistant to amphotericin B, and 3.6% to 5-flucytosine. Phospholipase activity was strong in most strains, especially in urine isolates (p = 0.014). Conclusion: The predominance of STR genotype I and its variability at the M3-Ia locus suggest its association with nosocomial outbreaks and transmissibility in Russia.
Collapse
Affiliation(s)
- Ellina Oganesyan
- Kashkin Research Institute of Medical Mycology, North-Western State Medical University Named after I.I. Mechnikov, 191015 Saint Petersburg, Russia; (V.K.); (I.V.); (S.K.); (N.V.); (A.T.)
- Department of Medical Microbiology, North-Western State Medical University Named after I.I. Mechnikov, 191015 Saint Petersburg, Russia; (V.V.); (E.P.)
| | - Victoria Klimenteva
- Kashkin Research Institute of Medical Mycology, North-Western State Medical University Named after I.I. Mechnikov, 191015 Saint Petersburg, Russia; (V.K.); (I.V.); (S.K.); (N.V.); (A.T.)
| | - Irina Vybornova
- Kashkin Research Institute of Medical Mycology, North-Western State Medical University Named after I.I. Mechnikov, 191015 Saint Petersburg, Russia; (V.K.); (I.V.); (S.K.); (N.V.); (A.T.)
| | - Valentina Venchakova
- Department of Medical Microbiology, North-Western State Medical University Named after I.I. Mechnikov, 191015 Saint Petersburg, Russia; (V.V.); (E.P.)
| | - Ekaterina Parshikova
- Department of Medical Microbiology, North-Western State Medical University Named after I.I. Mechnikov, 191015 Saint Petersburg, Russia; (V.V.); (E.P.)
| | - Sergey Kovyrshin
- Kashkin Research Institute of Medical Mycology, North-Western State Medical University Named after I.I. Mechnikov, 191015 Saint Petersburg, Russia; (V.K.); (I.V.); (S.K.); (N.V.); (A.T.)
- Department of Medical Microbiology, North-Western State Medical University Named after I.I. Mechnikov, 191015 Saint Petersburg, Russia; (V.V.); (E.P.)
| | - Olga Orlova
- Moscow L.A. Vorokhobov Municipal Clinical Hospital № 67, 123423 Moscow, Russia;
| | | | - Svetlana Gordeeva
- Clinical Infectious Diseases Hospital Named after S.P. Botkin, 195067 Saint Petersburg, Russia;
| | - Natalya Vasilyeva
- Kashkin Research Institute of Medical Mycology, North-Western State Medical University Named after I.I. Mechnikov, 191015 Saint Petersburg, Russia; (V.K.); (I.V.); (S.K.); (N.V.); (A.T.)
- Department of Medical Microbiology, North-Western State Medical University Named after I.I. Mechnikov, 191015 Saint Petersburg, Russia; (V.V.); (E.P.)
| | - Anastasiya Taraskina
- Kashkin Research Institute of Medical Mycology, North-Western State Medical University Named after I.I. Mechnikov, 191015 Saint Petersburg, Russia; (V.K.); (I.V.); (S.K.); (N.V.); (A.T.)
| |
Collapse
|
9
|
da Silva LJ, Rodrigues DS, de Farias Cabral VP, da Silva CR, Sá LGDAV, de Andrade-Neto JB, Barbosa AD, Flaresso AA, Rocha SNCD, Cavalcanti BC, Moraes MOD, Rios MEF, Pampolha Filho IS, Júnior HVN. Unveiling novel insights: geraniol's enhanced anti-candida efficacy and mechanistic innovations against multidrug-resistant candida strains. Braz J Microbiol 2024; 55:3721-3731. [PMID: 39297913 PMCID: PMC11711867 DOI: 10.1007/s42770-024-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/15/2024] [Indexed: 09/21/2024] Open
Abstract
OBJECTIVES This study addressed the need for new treatments for severe Candida infections, especially resistant strains. It evaluated the antifungal potential of geraniol alone and with fluconazole against various Candida spp., including resistant strains, and investigated geraniol's mechanism of action using flow cytometry. METHODS The research assessed the inhibitory effects of geraniol on the growth of various Candida species at concentrations ranging from 110 to 883 µg/ml. The study also explored the potential synergistic effects when geraniol was combined with fluconazole. The mechanism of action was investigated through flow cytometry, with a particular emphasis on key enzymes associated with plasma membrane synthesis, membrane permeability changes, mitochondrial membrane depolarization, reactive oxygen species (ROS) induction, and genotoxicity. RESULTS Geraniol demonstrated significant antifungal activity against different Candida species, inhibiting growth at concentrations within the range of 110 to 883 µg/ml. The mechanism of action appeared to be multifactorial. Geraniol was associated with the inhibition of crucial enzymes involved in plasma membrane synthesis, increased membrane permeability, induction of mitochondrial membrane depolarization, elevated ROS levels, and the presence of genotoxicity. These effects collectively contributed to cell apoptosis. CONCLUSIONS Geraniol, alone and in combination with fluconazole, shows promise as a potential therapeutic option for Candida spp. INFECTIONS Its diverse mechanism of action, impacting crucial cellular processes, highlights its potential as an effective antifungal agent. Further research into geraniol's therapeutic applications may aid in developing innovative strategies to address Candida infections, especially those resistant to current therapies.
Collapse
Affiliation(s)
- Lisandra Juvêncio da Silva
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - João Batista de Andrade-Neto
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Amanda Dias Barbosa
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Bruno Coelho Cavalcanti
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria Erivanda França Rios
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
10
|
Sidrim JJC, Martins DV, da Rocha MG, Araújo GDS, Cordeiro RDA, Guedes GMDM, Pereira-Neto WDA, Castelo-Branco DDSCM, Rocha MFG. Geraniol inhibits both planktonic cells and biofilms of the Candida parapsilosis species complex: Highlight for the improved efficacy of amphotericin B, caspofungin and fluconazole plus Geraniol. Med Mycol 2024; 62:myae105. [PMID: 39474890 DOI: 10.1093/mmy/myae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/05/2024] [Accepted: 10/28/2024] [Indexed: 11/13/2024] Open
Abstract
The Candida parapsilosis species complex poses a recognized threat to the nosocomial environment. In the scenario of the global rise of resistant strains to antifungals, geraniol, a terpene isolated from different essential oils, has shown promising antimicrobial activity. We evaluated: (1) the effects of geraniol against the C. parapsilosis species complex, in planktonic and biofilm forms; (2) the strains' susceptibility to clinical antifungals and (3) the geraniol interaction with antifungals. Eighteen isolates were subjected to in vitro susceptibility testing by the broth microdilution protocol, using geraniol, amphotericin B, caspofungin, itraconazole and fluconazole to determine the minimum inhibitory concentration (MIC) and subsequently, we measured the fungicidal activity. Geraniol was tested against biofilms by the measurement of the metabolic activity and biomass. Pharmacological interactions were performed by the checkerboard method. Geraniol's MIC range was between 256 and 512 µg/ml. MIC range for clinical antifungals was ≤ 0.031-4 µg/ml. Geraniol also showed antibiofilm activity with average reductions of metabolic activity (38.33%) and biomass (30.69%), at MIC concentration. Furthermore, geraniol showed synergistic/additive effects with antifungals. Briefly, geraniol inhibits both planktonic cells and biofilms of the C. parapsilosis species complex and besides it improves the efficacy of amphotericin B, caspofungin and fluconazole.
Collapse
Affiliation(s)
- José Júlio Costa Sidrim
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará 60430-160, Brazil
| | - Daniel Vieira Martins
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará 60430-160, Brazil
| | - Maria Gleiciane da Rocha
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará 60430-160, Brazil
| | - Géssica Dos Santos Araújo
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Fortaleza, Ceará 60714-903, Brazil
| | - Rossana de Aguiar Cordeiro
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará 60430-160, Brazil
| | - Glaucia Morgana de Melo Guedes
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará 60430-160, Brazil
| | | | | | - Marcos Fábio Gadelha Rocha
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará 60430-160, Brazil
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Fortaleza, Ceará 60714-903, Brazil
| |
Collapse
|
11
|
Khodavandi P, Soogh MM, Alizadeh F, Khodavandi A, Nouripour-Sisakht S. Menthol as an effective inhibitor of quorum sensing and biofilm formation in Candida albicans and Candida glabrata by targeting the transcriptional repressor TUP1. Mol Biol Rep 2024; 51:1114. [PMID: 39485542 DOI: 10.1007/s11033-024-10054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Menthol, a natural quorum sensing molecule, is derived from the Mentha species. Combating pathogenicity by inactivating quorum sensing is an emerging approach. Therefore, our objective was to investigate anti-quorum sensing and anti-biofilm potentials of menthol in Candida albicans and Candida glabrata. METHODS The antifungal properties of menthol were evaluated using a broth microdilution assay and a time-kill assay, and its effects on quorum sensing-mediated virulence factors, cellular reactive oxygen species (ROS), and biofilm formation were tested by evaluating TUP1 expression levels in both C. albicans and C. glabrata. RESULTS Quorum sensing-mediated virulence factors and biofilm formation were inhibited by menthol in both C. albicans and C. glabrata. Furthermore, coinciding with elevated ROS levels, mRNAs of the quorum sensing-related gene TUP1 were upregulated in both C. albicans and C. glabrata. CONCLUSIONS This study highlights the anti-quorum sensing potential of menthol through the inhibition of quorum sensing-mediated virulence factors, ROS generation, and biofilm development by targeting TUP1, which could have potential in the treatment of Candida infections.
Collapse
Affiliation(s)
| | - Maryam Miri Soogh
- Department of Microbiology, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| | - Fahimeh Alizadeh
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| | - Alireza Khodavandi
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| | | |
Collapse
|
12
|
Contreras-Martínez OI, Angulo-Ortíz A, Santafé Patiño G, Sierra Martinez J, Berrio Soto R, de Almeida Rodolpho JM, de Godoy KF, de Freitas Aníbal F, de Lima Fragelli BD. Synergistic Antifungal Effect and In Vivo Toxicity of a Monoterpene Isoespintanol Obtained from Oxandra xylopioides Diels. Molecules 2024; 29:4417. [PMID: 39339412 PMCID: PMC11433975 DOI: 10.3390/molecules29184417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Candida sp. infections are a threat to global health, with high morbidity and mortality rates due to drug resistance, especially in immunocompromised people. For this reason, the search for new alternatives is urgent, and in recent years, a combined therapy with natural compounds has been proposed. Considering the biological potential of isoespintanol (ISO) and continuing its study, the objective of this research was to assess the effect of ISO in combination with the antifungals fluconazole (FLZ), amphotericin B (AFB) and caspofungin (CASP) against clinical isolates of C. tropicalis and to evaluate the cytotoxic effect of this compound in the acute phase (days 0 and 14) and chronic phase (days 0, 14, 28, 42, 56, 70 and 84) in female mice (Mus musculus) of the Balb/c lineage. The results show that ISO can potentiate the effect of FLZ, AFB and CASP, showing synergism with these antifungals. An evaluation of the mice via direct observation showed no behavioral changes or variations in weight during treatment; furthermore, an analysis of the cytokines IFN-γ and TNF in plasma, peritoneal cavity lavage (PCL) and bronchoalveolar lavage (BAL) indicated that there was no inflammation process. In addition, histopathological studies of the lungs, liver and kidneys showed no signs of toxicity caused by ISO. This was consistent with an analysis of oxaloacetic transaminases (GOT) and pyruvic transaminases (GPT), which remained in the standard range. These findings indicate that ISO does not have a cytotoxic effect at the doses evaluated, placing it as a monoterpene of interest in the search for compounds with pharmacological potential.
Collapse
Affiliation(s)
| | - Alberto Angulo-Ortíz
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| | - Gilmar Santafé Patiño
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| | - Jesus Sierra Martinez
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Ricardo Berrio Soto
- Biology Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| | - Joice Margareth de Almeida Rodolpho
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Krissia Franco de Godoy
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Fernanda de Freitas Aníbal
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Bruna Dias de Lima Fragelli
- Functional Materials Development Center, Interdisciplinary Laboratory of Electrochemistry and Ceramics, Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
13
|
Sharifzadeh A, Fasaei BN, Asadi S, Fatemi N, Houshmandzad M, Ghaffari MH. Evaluation of antifungal and apoptotic effects of linalool, citral, and carvacrol separately and in combination with nystatin against clinical isolates of Pichia kudriavzevii. BMC Microbiol 2024; 24:333. [PMID: 39251899 PMCID: PMC11386228 DOI: 10.1186/s12866-024-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Pichia kudriavzevii (formerly Candida krusei) poses a significant threat to immunocompromised patients due to its inherent resistance to various antifungal drugs. This study explored the anticandidal potential of citral, linalool, and carvacrol in combination with nystatin against P. kudriavzevii strains.Using the microdilution method following CLSI guidelines, Minimum Inhibitory Concentrations (MICs) and fungicidal concentrations (MFCs) were determined. Citral exhibited MIC values ranging from 50 to 100 µg/ml, averaging 70.24 ± 16.99 µg/ml, while carvacrol had MIC values of 50 to 100 µg/ml, averaging 86.90 ± 16.99 µg/ml. Linalool demonstrated weaker antifungal activity, with MIC values between 100 and 200 µg/ml, averaging 150 ± 38.73 µg/ml. The study assessed the synergistic effectsof these phenols with nystatin through fractional inhibitory concentration indices (FICIS). In addition, flow cytometry was employed to assess apoptosis induction in P. kudriavzevii cells.Carvacrol displayed a remarkable synergistic effect in combination with nystatin against all 21 isolates tested. Conversely, linalool showed synergy in 17 isolates, while citral exhibited synergy in only 2 isolates. These findings highlight distinct patterns of synergy between the different compounds and nystatin against P. kudriavzevii. Also, Carvacrol emerged as the most potent inducer of apoptosis across all P. kudriavzevii strains, followed by citral and linalool. This suggests that carvacrol not only possesses a stronger antifungal effect but also has a more pronounced ability to trigger programmed cell death in P. kudriavzevii. In conclusion, the study supports the potential of carvacrol, citral and linalool, as anticandidal agents, suggesting their supplementation with nystatin for treating P. kudriavzevii infections.
Collapse
Affiliation(s)
- Aghil Sharifzadeh
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Bahar Nayeri Fasaei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sepideh Asadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Narges Fatemi
- DVM, Student of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Houshmandzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Hosein Ghaffari
- DVM, Student of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Ismail SHH, Hamdy R, Altaie AM, Fayed B, Dakalbab S, El-Awady R, Soliman SSM. Decoding host cell interaction- and fluconazole-induced metabolic alterations and drug resistance in Candida auris. Mycologia 2024; 116:673-693. [PMID: 39024116 DOI: 10.1080/00275514.2024.2363730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Candida auris is an emerging drug-resistant pathogen associated with high mortality rates. This study aimed to explore the metabolic alterations and associated pathogenesis and drug resistance in fluconazole-treated Candida auris-host cell interaction. Compared with controls, secreted metabolites from fluconazole-treated C. auris and fluconazole-treated C. auris-host cell co-culture demonstrated notable anti-Candida activity. Fluconazole caused significant reductions in C. auris cell numbers and aggregated phenotype. Metabolites produced by C. auris with potential fungal colonization, invasion, and host immune evasion effects were identified. Metabolites known to enhance biofilm formation produced during C. auris-host cell interaction were inhibited by fluconazole. Fluconazole enhanced the production of metabolites with biofilm inhibition activity, including behenyl alcohol and decanoic acid. Metabolites with potential Candida growth inhibition activity such as 2-palmitoyl glycerol, 1-tetradecanol, and 1-nonadecene were activated by fluconazole. Different patterns of proinflammatory cytokine expression presented due to fluconazole concentration and host cell type (fibroblasts versus macrophages). This highlights the immune response's complexity, emphasizing the necessity for additional research to comprehend cell-type-specific responses to antifungal therapies. Both host cell interaction and fluconazole treatment increased the expression of CDR1 and ERG11 genes, both associated with drug resistance. This study provides insights into pathogenesis in C. auris due to host cell interaction and fluconazole treatment. Understanding these interactions is crucial for enhancing fluconazole sensitivity and effectively combating C. auris.
Collapse
Affiliation(s)
- Samah H H Ismail
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Zagazig, Egypt
| | - Alaa M Altaie
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Department of Chemistry of Natural and Microbial Product, National Research Centre, P.O. Box 12622, Cairo, Egypt
| | - Salam Dakalbab
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
15
|
Prado GM, Prado JCS, Aguiar FLLDE, Barbosa FCB, Vale JPCDO, Martins MR, Arantes SM, Sousa NVDE, Lima DM, Marinho ES, Marinho MM, Fontenelle ROS. Antifungal, molecular docking and cytotoxic effect of the essential oil of Cymbopogon citratus (DC) Stapf. and Cymbopogon nardus (L.) Rendle against Candida albicans. AN ACAD BRAS CIENC 2024; 96:e20230309. [PMID: 39166649 DOI: 10.1590/0001-3765202420230309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/27/2023] [Indexed: 08/23/2024] Open
Abstract
Brazil is renowned for its extensive plant biodiversity, with emphasis on Cymbopogon, C. citratus and C. nardus, with broad antimicrobial potential. Candidemias caused by Candida albicans are highly prevalent in immunosuppressed individuals and are associated with infections by biofilms on medical devices. The aim of this study was to evaluate the antimicrobial potential of essential oils C. citratus and C. nardus against C. albicans in planktonic and biofilm forms. Essential oils were obtained by hydrodistillation and chemical composition evaluated by GC-FID and GC-MS. The minimum inhibitory concentration was determined by the broth microdilution method and the synergy effect of essential oils and amphotericin B were evaluated by the checkerboard test. Biofilm activity was determined by the XTT assay. Cytotoxicity assays performed with VERO cells and molecular docking were performed to predict the effect of oil interaction on the SAP-5 enzyme site. The results showed activity of essential oils against planktonic cells and biofilm of C. albicans. Furthermore, the oils had a synergistic effect, and low cytotoxicity. Molecular docking showed interaction between Cadinene, Caryophyllen oxide, Germacrene D with SAP-5. The results indicate that Cymbopogon spp. studied are anti-Candida, with potential for further application in therapy against infections caused by C. albicans.
Collapse
Affiliation(s)
- Guilherme M Prado
- Universidade Federal do Ceará, Av. Cmte. Maurocélio Rocha Pontes, 100, Jocely Dantas de Andrade Torres, 62042-250 Sobral, CE, Brazil
| | - Júlio César S Prado
- Universidade Federal do Ceará, Av. Cmte. Maurocélio Rocha Pontes, 100, Jocely Dantas de Andrade Torres, 62042-250 Sobral, CE, Brazil
| | - Francisca Lidiane L DE Aguiar
- Universidade Estadual Vale do Acaraú, Centro de Ciências Agrárias e Biológicas, Av. Padre Francisco Sadoc de Araujo, 850, Alto da Brasilia, 62010-295 Sobral, CE, Brazil
| | - Francisco Cesar B Barbosa
- Universidade Federal do Ceará, Av. Cmte. Maurocélio Rocha Pontes, 100, Jocely Dantas de Andrade Torres, 62042-250 Sobral, CE, Brazil
| | - Jean P C DO Vale
- Universidade Estadual Vale do Acaraú, Centro de Ciências Exatas e Tecnologia, Av. Padre Francisco Sadoc de Araujo, 850, Alto da Brasilia, 62010-295 Sobral, CE, Brazil
| | - Maria Rosário Martins
- Departmento de Ciências Médicas e da Saúde, Universidade de Evora, Colégio Luís António Verney, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
- HERCULES Laboratory, Instituto de Investigação e Formação Avançada (IIFA), Universidade de Evora, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809, Evora, Portugal
| | - Silva Macedo Arantes
- HERCULES Laboratory, Instituto de Investigação e Formação Avançada (IIFA), Universidade de Evora, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809, Evora, Portugal
| | - Natália V DE Sousa
- Programa em Ciências Médicas, Universidade de Fortaleza, Centro de Ciências da Saúde, Av. da Universidade, 2853, Benfica, 60020-181 Fortaleza, CE, CEP, Brazil
| | - Danielle M Lima
- Programa em Ciências Médicas, Universidade de Fortaleza, Centro de Ciências da Saúde, Av. da Universidade, 2853, Benfica, 60020-181 Fortaleza, CE, CEP, Brazil
| | - Emmanuel S Marinho
- Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará/UECE, Av. Dr. Silas Munguba, 1700, 60714-903 Fortaleza, CE, Brazil
| | - Márcia M Marinho
- Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará/UECE, Av. Dr. Silas Munguba, 1700, 60714-903 Fortaleza, CE, Brazil
| | - Raquel O S Fontenelle
- Universidade Estadual Vale do Acaraú, Centro de Ciências Agrárias e Biológicas, Av. Padre Francisco Sadoc de Araujo, 850, Alto da Brasilia, 62010-295 Sobral, CE, Brazil
| |
Collapse
|
16
|
Cavallo L, Menotti F, Roana J, Costa C, Longo F, Pagano C, Curtoni A, Bondi A, Banche G, Allizond V, Mandras N. Synergistic Effect of Essential Oils and Antifungal Agents in Fighting Resistant Clinical Isolates of Candida auris. Pharmaceutics 2024; 16:957. [PMID: 39065654 PMCID: PMC11279409 DOI: 10.3390/pharmaceutics16070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Recently, a large number of nosocomial infections have been caused by an emerging pathogen that is rising as a worldwide issue in human health: Candida auris. This yeast is considered resistant to antifungals of the first-line therapies, and consequently it is related to morbidity and mortality. Therefore, the aim of this research was to determine the in vitro anti-C. auris activity against twenty-three resistant clinical strains of different essential oils (EOs), pure or in combination with traditional antifungal agents, mainly caspofungin, fluconazole, micafungin and 5-flucytosine. Broth dilution assay was performed to evaluate the fungistatic and fungicidal effectiveness of fifteen EOs towards all the C. auris isolates. The data demonstrated that EOs were able to prevent C. auris growth, with MIC values ranging from 0.03 to 1% for the efficacious EOs (thyme, cinnamon, geranium, clove bud, lemongrass and mentha of Pancalieri), whereas the MICs were >1% for the ineffective ones. Thereafter, the six most effective EOs were used to perform the checkerboard experiments by assaying simultaneously the activity of EOs and traditional antifungals towards two selected strains. The most promising synergic combinations towards C. auris, depending on the isolate, were those with micafungin and geranium, thyme, cinnamon, lemongrass or clove bud EOs, with fluconazole and mentha of Pancalieri EO, and with 5-flucytosine and mentha of Pancalieri EO. These EOs and their combinations with antifungal drugs may provide a useful therapeutic alternative that could reduce the dose of the individual components, limiting the overall side effects. These associations might be a prospective option for the future treatment of infections, thus helping to overcome the challenging issue of resistance in C. auris.
Collapse
Affiliation(s)
- Lorenza Cavallo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Francesca Menotti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Janira Roana
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Cristina Costa
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
- Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Fabio Longo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Claudia Pagano
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Antonio Curtoni
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
- Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Alessandro Bondi
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
- Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (L.C.); (F.M.); (J.R.); (C.C.); (F.L.); (C.P.); (A.C.); (A.B.); (V.A.); (N.M.)
| |
Collapse
|
17
|
Li C, Wang J, Li H, Wang Y, Wu H, Wei W, Wu D, Shao J, Wang T, Wang C. Suppressing the virulence factors of Candida auris with baicalein through multifaceted mechanisms. Arch Microbiol 2024; 206:349. [PMID: 38992278 DOI: 10.1007/s00203-024-04038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 07/13/2024]
Abstract
Candida auris, a rapidly spreading multi-drug-resistant fungus, is causing lethal infections under certain conditions globally. Baicalin (BE), an active ingredient extracted from the dried root of Scutellaria baicalensis Georgi, exhibits antifungal activity. However, studies have shown the distinctive advantages of Traditional Chinese medicine in combating fungal infections, while the effect of BE, an active ingredient extracted from the dried roots of Scutellaria baicalensis Georgi, on C. auris, remains unknown. Therefore, this study aims to evaluate the potential of BE as an antifungal agent against the emerging multidrug-resistant C. auris. Various assays and models, including microbroth dilution, time growth curve analysis, spot assays, adhesion tests, flocculation test, cell surface hydrophobicity assay, hydrolase activity assays, XTT assay, violet crystal assay, scanning electron microscope (SEM), confocal laser scanning microscope (CLSM), flow cytometry, Live/dead fluorescent staining, reactive oxygen species (ROS), cell wall assay, aggregation assay, porcine skin model, Galleria mellonella larvae (G. mellonella larvae) infection model, and reverse transcription-quantitative polymerase chain reaction (RT-PCR) were utilized to investigate how baicalein suppresses C. auris through possible multifaceted mechanisms. The findings indicate that BE strongly inhibited C. auris growth, adhesion, and biofilm formation. It also effectively reduced drug resistance and aggregation by disrupting the cell membrane and cell wall while reducing colonization and invasion of the host. Transcriptome analysis showed significant modulation in gene expression related to different virulence factors post-BE treatment. In conclusion, BE exhibits significant effectiveness against C. auris, suggesting its potential as a viable treatment option due to its multifaceted suppression mechanisms.
Collapse
Affiliation(s)
- Can Li
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Wang
- Anhui Provincial Institute for Food and Drug Control, Hefei, China
| | - Hao Li
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yemei Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hui Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wenfan Wei
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Tianming Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
18
|
Fernandes LDS, Ogasawara LS, Medina-Alarcón KP, dos Santos KS, de Matos Silva S, de Assis LR, Regasini LO, de Oliveira AG, Mendes Giannini MJS, Scarpa MV, Fusco Almeida AM. Bioprospecting, Synergistic Antifungal and Toxicological Aspects of the Hydroxychalcones and Their Association with Azole Derivates against Candida spp. for Treating Vulvovaginal Candidiasis. Pharmaceutics 2024; 16:843. [PMID: 39065540 PMCID: PMC11279727 DOI: 10.3390/pharmaceutics16070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Vulvovaginal candidiasis (VVC) remains a prevalent fungal disease, characterized by challenges, such as increased fungal resistance, side effects of current treatments, and the rising prevalence of non-albicans Candida spp. naturally more resistant. This study aimed to propose a novel therapeutic approach by investigating the antifungal properties and toxicity of 2-hydroxychalcone (2-HC) and 3'-hydroxychalcone (3'-HC), both alone and in combination with fluconazole (FCZ) and clotrimazole (CTZ). A lipid carrier (LC) was also developed to deliver these molecules. The study evaluated in vitro anti-Candida activity against five Candida species and assessed cytotoxicity in the C33-A cell line. The safety and therapeutic efficacy of in vivo were tested using an alternative animal model, Galleria mellonella. The results showed antifungal activity of 2-HC and 3'-HC, ranging from 7.8 to 31.2 as fungistatic and 15.6 to 125.0 mg/L as fungicide effect, with cell viability above 80% from a concentration of 9.3 mg/L (2-HC). Synergistic and partially synergistic interactions of these chalcones with FCZ and CTZ demonstrated significant improvement in antifungal activity, with MIC values ranging from 0.06 to 62.5 mg/L. Some combinations reduced cytotoxicity, achieving 100% cell viability in many interactions. Additionally, two LCs with suitable properties for intravaginal application were developed. These formulations demonstrated promising therapeutic efficacy and low toxicity in Galleria mellonella assays. These results suggest the potential of this approach in developing new therapies for VVC.
Collapse
Affiliation(s)
- Lígia de Souza Fernandes
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (A.G.d.O.); (M.V.S.)
| | - Letícia Sayuri Ogasawara
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Kaila Petronila Medina-Alarcón
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Kelvin Sousa dos Santos
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Samanta de Matos Silva
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Letícia Ribeiro de Assis
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), St. Quirino de Andrade, 215, São José do Rio Preto 01049-010, SP, Brazil; (L.R.d.A.); (L.O.R.)
| | - Luís Octavio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), St. Quirino de Andrade, 215, São José do Rio Preto 01049-010, SP, Brazil; (L.R.d.A.); (L.O.R.)
| | - Anselmo Gomes de Oliveira
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (A.G.d.O.); (M.V.S.)
| | - Maria José Soares Mendes Giannini
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Maria Virginia Scarpa
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (A.G.d.O.); (M.V.S.)
| | - Ana Marisa Fusco Almeida
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| |
Collapse
|
19
|
Kowalczyk A. Essential Oils against Candida auris-A Promising Approach for Antifungal Activity. Antibiotics (Basel) 2024; 13:568. [PMID: 38927234 PMCID: PMC11200742 DOI: 10.3390/antibiotics13060568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of Candida auris as a multidrug-resistant fungal pathogen represents a significant global health challenge, especially given the growing issue of antifungal drug resistance. This review aims to illuminate the potential of essential oils (EOs), which are volatile plant secretions containing complex mixtures of chemicals, as alternative antifungal agents to combat C. auris, thus combining traditional insights with contemporary scientific findings to address this critical health issue. A systematic literature review was conducted using the PubMed, Scopus, and Web of Science databases from 2019 to 2024, and using the Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol to identify relevant studies on the antifungal efficacy of EOs or their components against C. auris. Of the 90 articles identified, 16 were selected for detailed review. The findings highlight the diverse mechanisms of action of EOs and their components, such as disrupting fungal cell membranes, inducing the production of reactive oxygen species (ROS), and impeding biofilm formation, suggesting that some of them may be as effective as, or better than, traditional antifungal drugs while potentially limiting the development of resistance. However, issues such as variability in the composition of EOs and a paucity of clinical trials have been identified as significant obstacles. In conclusion, EOs and their active ingredients are emerging as viable candidates for creating effective treatments for C. auris, underscoring their importance as alternative or complementary antifungal agents in the face of increasing drug resistance. The call for future research underscores the need for clinical trials and standardization to unlock the full antifungal potential of EOs against C. auris.
Collapse
Affiliation(s)
- Adam Kowalczyk
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wrocław, Poland
| |
Collapse
|
20
|
Singh R, Shukla J, Ali M, Dubey AK. A novel diterpenic derivative produced by Streptomyces chrestomyceticus ADP4 is a potent inhibitor of biofilm and virulence factors in Candida albicans and C. auris. J Appl Microbiol 2024; 135:lxae139. [PMID: 38866718 DOI: 10.1093/jambio/lxae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
AIM Isolation, identification, structural and functional characterization of potent anti-Candida compound with specific antagonistic activities against significant human pathogens, Candida albicans and C. auris. METHODS AND RESULTS The compound (55B3) was purified from the metabolites produced by Streptomyces chrestomyceticus ADP4 by employing column chromatography. The structure of 55B3 was determined from the analyses of spectral data that included LCMS, nuclear magnetic resonance, FTIR, and UV spectroscopies. It was identified as a novel derivative of diterpenic aromatic acid, 3-(dictyotin-11'-oate-15'α, 19'β-olide)-4-(dictyotin-11'-oate-15″α, 19″β-olide)-protocatechoic acid. The compound displayed potent antifungal and anti-biofilm activities against C. albicans ATCC 10231 (Minimum Inhibitory Concentration, MIC90:14.94 ± 0.17 μgmL-1 and MBIC90: 16.03 ± 1.1 μgmL-1) and against C. auris CBS 12372 (MIC90: 21.75 ± 1.5 μgmL-1 and Minimum Biofilm Inhibitory Concentration, MBIC90: 18.38 ± 1.78 μgmL-1). Further, pronounced inhibition of important virulence attributes of Candida spp., e.g. yeast-to-hyphae transition, secretory aspartyl proteinase and phospholipase B by 55B3 was noted at subinhibitory concentrations. A plausible mechanism of anti-Candida action of the compound appeared to be the inhibition of ergosterol biosynthesis, which was inhibited by 64 ± 3% at the MIC90 value. The non-cytotoxic attribute of the compound was noted in the liver cell line (HepG2 cells). CONCLUSION The present work led to the discovery of a novel diterpenic derivative produced by S. chrestomyceticus ADP4. The compound displayed potent anti-Candida activity, particularly against the two most significant human pathogens, C. albicans and C. auris, which underlined its significance as a potential drug candidate for infections involving these pathogens.
Collapse
Affiliation(s)
- Radha Singh
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi 110078, India
| | - Jyoti Shukla
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi 110078, India
| | - Mohd Ali
- Faculty of Pharmacy, Hamdard University, New Delhi 110062, India
| | - Ashok K Dubey
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi 110078, India
| |
Collapse
|
21
|
Ahlawat V, Sura K, Singh B, Dangi M, Chhillar AK. Bioinformatics Approaches in the Development of Antifungal Therapeutics and Vaccines. Curr Genomics 2024; 25:323-333. [PMID: 39323620 PMCID: PMC11420568 DOI: 10.2174/0113892029281602240422052210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/31/2023] [Accepted: 03/11/2024] [Indexed: 09/27/2024] Open
Abstract
Fungal infections are considered a great threat to human life and are associated with high mortality and morbidity, especially in immunocompromised individuals. Fungal pathogens employ various defense mechanisms to evade the host immune system, which causes severe infections. The available repertoire of drugs for the treatment of fungal infections includes azoles, allylamines, polyenes, echinocandins, and antimetabolites. However, the development of multidrug and pandrug resistance to available antimycotic drugs increases the need to develop better treatment approaches. In this new era of -omics, bioinformatics has expanded options for treating fungal infections. This review emphasizes how bioinformatics complements the emerging strategies, including advancements in drug delivery systems, combination therapies, drug repurposing, epitope-based vaccine design, RNA-based therapeutics, and the role of gut-microbiome interactions to combat anti-fungal resistance. In particular, we focused on computational methods that can be useful to obtain potent hits, and that too in a short period.
Collapse
Affiliation(s)
- Vaishali Ahlawat
- Centre for Biotechnology, M.D. University, Rohtak, Haryana, India
- Centre for Bioinformatics, M.D. University, Rohtak, Haryana, India
| | - Kiran Sura
- Centre for Bioinformatics, M.D. University, Rohtak, Haryana, India
| | - Bharat Singh
- Department of Biotechnology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana-133207, India
| | - Mehak Dangi
- Centre for Bioinformatics, M.D. University, Rohtak, Haryana, India
| | | |
Collapse
|
22
|
De Gaetano S, Midiri A, Mancuso G, Avola MG, Biondo C. Candida auris Outbreaks: Current Status and Future Perspectives. Microorganisms 2024; 12:927. [PMID: 38792757 PMCID: PMC11123812 DOI: 10.3390/microorganisms12050927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Candida auris has been identified by the World Health Organization (WHO) as a critical priority pathogen on its latest list of fungi. C. auris infections are reported in the bloodstream and less commonly in the cerebrospinal fluid and abdomen, with mortality rates that range between 30% and 72%. However, no large-scale epidemiology studies have been reported until now. The diagnosis of C. auris infections can be challenging, particularly when employing conventional techniques. This can impede the early detection of outbreaks and the implementation of appropriate control measures. The yeast can easily spread between patients and in healthcare settings through contaminated environments or equipment, where it can survive for extended periods. Therefore, it would be desirable to screen patients for C. auris colonisation. This would allow facilities to identify patients with the disease and take appropriate prevention and control measures. It is frequently unsusceptible to drugs, with varying patterns of resistance observed among clades and geographical regions. This review provides updates on C. auris, including epidemiology, clinical characteristics, genomic analysis, evolution, colonisation, infection, identification, resistance profiles, therapeutic options, prevention, and control.
Collapse
Affiliation(s)
| | | | | | | | - Carmelo Biondo
- Mycology Laboratory, Department of Human Pathology, University of Messina, 98125 Messina, Italy; (S.D.G.); (A.M.); (G.M.); (M.G.A.)
| |
Collapse
|
23
|
Balef SSH, Hosseini SS, Asgari N, Sohrabi A, Mortazavi N. The inhibitory effects of carvacrol, nystatin, and their combination on oral candidiasis isolates. BMC Res Notes 2024; 17:104. [PMID: 38605312 PMCID: PMC11010274 DOI: 10.1186/s13104-024-06767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Candida, a common oral microbiota, can cause opportunistic fungal infections. With rising Candida infections and limited effective antifungals, new treatments are needed. This study investigates carvacrol essential oil's effect on oral candidiasis, alone and with nystatin, compared to nystatin alone. MATERIALS AND METHODS In this study, oral samples were collected from dental clinic patients, especially denture users. The presence of Candida was confirmed and cultured from these samples. Candidiasis was detected by observing Candida colonies. Drug sensitivity was tested on 100 positive samples. The minimum concentration of inhibition and lethality of each isolate was evaluated using nystatin and carvacrol. The results were compared using two-way analysis of variance. Finally, the minimum inhibitory concentration (MIC) of nystatin and carvacrol was calculated individually and in combination. RESULTS The present study found that Candida albicans and non-albicans species were equally prevalent. Carvacrol showed significant biological activity against all Candida species, with an average MTT of 50.01%. The average MIC value of carvacrol was 24.96 µg/ml, indicating its potential to inhibit Candida growth. The mean Minimum Fungicidal Concentration (MFC) value of carvacrol was 23.48 µg/ml, suggesting its effectiveness in killing the fungi. CONCLUSION The study's findings reveal that the MIC of carvacrol was significantly lower than that of nystatin and the combination of nystatin and carvacrol. This suggests that carvacrol holds potential as an effective herbal remedy for candidiasis.
Collapse
Affiliation(s)
| | - Seyed Sedigheh Hosseini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Mycology and Parasitology, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Negar Asgari
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahmad Sohrabi
- Radinmehr Veterinary Laboratory, Radin Makian Azma Mehr Ltd, Gorgan, Iran
| | - Nazanin Mortazavi
- Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Golestan University of Medical Sciences, Gorgan, PO Box 4916953363, Iran.
| |
Collapse
|
24
|
Marena GD, Carvalho GC, Ruiz-Gaitán A, Onisto GS, Bugalho BCM, Genezini LMV, Santos MOD, Blanco AL, Chorilli M, Bauab TM. Potential Activity of Micafungin and Amphotericin B Co-Encapsulated in Nanoemulsion against Systemic Candida auris Infection in a Mice Model. J Fungi (Basel) 2024; 10:253. [PMID: 38667924 PMCID: PMC11051191 DOI: 10.3390/jof10040253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The Candida auris species is a multidrug-resistant yeast capable of causing systemic and lethal infections. Its virulence and increase in outbreaks are a global concern, especially in hospitals where outbreaks are more recurrent. In many cases, monotherapy is not effective, and drug combinations are opted for. However, resistance to antifungals has increased over the years. In view of this, nanoemulsions (NEs) may represent a nanotechnology strategy in the development of new therapeutic alternatives. Therefore, this study developed a co-encapsulated nanoemulsion with amphotericin B (AmB) and micafungin (MICA) (NEMA) for the control of infections caused by C. auris. NEs were developed in previous studies. Briefly, the NEs were composed of a mixture of 10% sunflower oil and cholesterol as the oil phase (5:1), 10% Polyoxyethylene (20) cetyl ether (Brij® 58) and soy phosphatidylcholine as surfactant/co-surfactant (2:1), and 80% PBS as the aqueous phase. The in vivo assay used BALB/c mice weighing between 25 and 28 g that were immunosuppressed (CEUA/FCF/CAr n° 29/2021) and infected with Candida auris CDC B11903. The in vivo results show the surprising potentiate of the antifungal activity of the co-encapsulated drugs in NE, preventing yeast from causing infection in the lung and thymus. Biochemical assays showed a higher concentration of liver and kidney enzymes under treatment with AmB and MICAmB. In conclusion, this combination of drugs to combat the infection caused by C. auris can be considered an efficient therapeutic option, and nanoemulsions contribute to therapeutic potentiate, proving to be a promising new alternative.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (G.D.M.); (G.C.C.); (G.S.O.); (B.C.M.B.); (L.M.V.G.); (M.O.D.S.); (A.L.B.)
- Department of Drug and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Gabriela Corrêa Carvalho
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (G.D.M.); (G.C.C.); (G.S.O.); (B.C.M.B.); (L.M.V.G.); (M.O.D.S.); (A.L.B.)
- Department of Drug and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Alba Ruiz-Gaitán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Giovana Scaramal Onisto
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (G.D.M.); (G.C.C.); (G.S.O.); (B.C.M.B.); (L.M.V.G.); (M.O.D.S.); (A.L.B.)
| | - Beatriz Chiari Manzini Bugalho
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (G.D.M.); (G.C.C.); (G.S.O.); (B.C.M.B.); (L.M.V.G.); (M.O.D.S.); (A.L.B.)
| | - Letícia Maria Valente Genezini
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (G.D.M.); (G.C.C.); (G.S.O.); (B.C.M.B.); (L.M.V.G.); (M.O.D.S.); (A.L.B.)
| | - Maíra Oliveira Dos Santos
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (G.D.M.); (G.C.C.); (G.S.O.); (B.C.M.B.); (L.M.V.G.); (M.O.D.S.); (A.L.B.)
| | - Ana Lígia Blanco
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (G.D.M.); (G.C.C.); (G.S.O.); (B.C.M.B.); (L.M.V.G.); (M.O.D.S.); (A.L.B.)
| | - Marlus Chorilli
- Department of Drug and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Tais Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (G.D.M.); (G.C.C.); (G.S.O.); (B.C.M.B.); (L.M.V.G.); (M.O.D.S.); (A.L.B.)
| |
Collapse
|
25
|
Acuna E, Ndlovu E, Molaeitabari A, Shahina Z, Dahms TES. Carvacrol-Induced Vacuole Dysfunction and Morphological Consequences in Nakaseomyces glabratus and Candida albicans. Microorganisms 2023; 11:2915. [PMID: 38138059 PMCID: PMC10745442 DOI: 10.3390/microorganisms11122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
With the prevalence of systemic fungal infections caused by Candida albicans and non-albicans species and their resistance to classical antifungals, there is an urgent need to explore alternatives. Herein, we evaluate the impact of the monoterpene carvacrol, a major component of oregano and thyme oils, on clinical and laboratory strains of C. albicans and Nakaseomyces glabratus. Carvacrol induces a wide range of antifungal effects, including the inhibition of growth and hyphal and biofilm formation. Using biochemical and microscopic approaches, we elucidate carvacrol-induced hyphal inhibition. The significantly reduced survival rates following exposure to carvacrol were accompanied by dose-dependent vacuolar acidification, disrupted membrane integrity, and aberrant morphology. Germ tube assays, used to elucidate the relationship between vacuolar dysfunction and hyphal inhibition, showed that carvacrol significantly reduced hyphal formation, which was accompanied by a defective C. albicans morphology. Thus, we show a link between vacuolar acidification/disrupted vacuole membrane integrity and compromised candidal morphology/morphogenesis, demonstrating that carvacrol exerts its anti-hyphal activity by altering vacuole integrity.
Collapse
Affiliation(s)
| | | | | | - Zinnat Shahina
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 1P4, Canada; (E.A.)
| | | |
Collapse
|
26
|
Fernandes C, Sousa-Baptista J, Lenha-Silva AF, Calheiros D, Correia E, Figueirinha A, Salgueiro L, Gonçalves T. Azorean Black Tea ( Camellia sinensis) Antidermatophytic and Fungicidal Properties. Molecules 2023; 28:7775. [PMID: 38067505 PMCID: PMC10707949 DOI: 10.3390/molecules28237775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The treatment of dermatophytoses, the most common human fungal infections, requires new alternatives. The aim of this study was to determine the antidermatophytic activity of the aqueous Azorean Black Tea extract (ABT), together with an approach to the mechanisms of action. The phytochemical analysis of ABT extract was performed by HPLC. The dermatophytes susceptibility was assessed using a broth microdilution assay; potential synergies with terbinafine and griseofulvin were evaluated by the checkerboard assay. The mechanism of action was appraised by the quantification of the fungal cell wall chitin and β-1,3-glucan, and by membrane ergosterol. The presence of ultrastructural modifications was studied by Transmission Electron Microscopy (TEM). The ABT extract contained organic and phenolic acids, flavonoids, theaflavins and alkaloids. It showed an antidermatophytic effect, with MIC values of 250 µg/mL for Trichophyton mentagrophytes, 125 µg/mL for Trichophyton rubrum and 500 µg/mL for Microsporum canis; at these concentrations, the extract was fungicidal. An additive effect of ABT in association to terbinafine on these three dermatophytes was observed. The ABT extract caused a significant reduction in β-1,3-glucan content, indicating the synthesis of this cell wall component as a possible target. The present study identifies the antidermatophytic activity of the ABT and highlights its potential to improve the effectiveness of conventional topical treatment currently used for the management of skin or mucosal fungal infections.
Collapse
Affiliation(s)
- Chantal Fernandes
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (C.F.); (J.S.-B.); (A.F.L.-S.); (D.C.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Sousa-Baptista
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (C.F.); (J.S.-B.); (A.F.L.-S.); (D.C.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- FMUC—Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Ana Filipa Lenha-Silva
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (C.F.); (J.S.-B.); (A.F.L.-S.); (D.C.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniela Calheiros
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (C.F.); (J.S.-B.); (A.F.L.-S.); (D.C.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- FMUC—Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Edmilson Correia
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (C.F.); (J.S.-B.); (A.F.L.-S.); (D.C.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (A.F.); (L.S.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (A.F.); (L.S.)
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Teresa Gonçalves
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (C.F.); (J.S.-B.); (A.F.L.-S.); (D.C.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- FMUC—Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| |
Collapse
|
27
|
Oyardi O, Demir ES, Alkan B, Komec S, Genc GE, Aygun G, Teke L, Turan D, Erturan Z, Savage PB, Guzel CB. Phenotypic Investigation of Virulence Factors, Susceptibility to Ceragenins, and the Impact of Biofilm Formation on Drug Efficacy in Candida auris Isolates from Türkiye. J Fungi (Basel) 2023; 9:1026. [PMID: 37888282 PMCID: PMC10607835 DOI: 10.3390/jof9101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Candida auris has emerged as a significant fungal threat due to its rapid worldwide spread since its first appearance, along with its potential for antimicrobial resistance and virulence properties. This study was designed to examine virulence characteristics, the efficacy of ceragenins, and biofilm-derived drug resistance in seven C. auris strains isolated from Turkish intensive care patients. It was observed that none of the tested strains exhibited proteinase or hemolysis activity; however, they demonstrated weak phospholipase and esterase activity. In addition, all strains were identified as having moderate to strong biofilm formation characteristics. Upon determining the minimum inhibitory concentrations (MIC) of ceragenins, it was discovered that CSA-138 exhibited the highest effectiveness with a MIC range of 1-0.5 µg/mL, followed by CSA-131 with a MIC of 1 µg/mL. Also, antimicrobial agents destroyed mature biofilms at high concentrations (40-1280 µg/mL). The investigation revealed that the strains isolated from Türkiye displayed weak exoenzyme activities. Notably, the ceragenins exhibited effectiveness against these strains, suggesting their potential as a viable treatment option.
Collapse
Affiliation(s)
- Ozlem Oyardi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| | - Elif Sena Demir
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Türkiye; (E.S.D.); (B.A.); (C.B.G.)
| | - Busra Alkan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Türkiye; (E.S.D.); (B.A.); (C.B.G.)
| | - Selda Komec
- Laboratory of Medical Microbiology, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Türkiye;
| | - Gonca Erkose Genc
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye; (G.E.G.); (Z.E.)
| | - Gokhan Aygun
- Department of Medical Microbiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Türkiye;
| | - Leyla Teke
- Clinic of Microbiology, Gaziosmanpasa Training and Research Hospital, University of Health Sciences, Istanbul 34255, Türkiye;
| | - Deniz Turan
- Medical Microbiology Laboratory, Haydarpasa Numune Training and Research Hospital, University of Health Sciences, Istanbul 34668, Türkiye;
| | - Zayre Erturan
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye; (G.E.G.); (Z.E.)
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Cagla Bozkurt Guzel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Türkiye; (E.S.D.); (B.A.); (C.B.G.)
| |
Collapse
|
28
|
Potocka W, Assy Z, Bikker FJ, Laine ML. Current and Potential Applications of Monoterpenes and Their Derivatives in Oral Health Care. Molecules 2023; 28:7178. [PMID: 37894657 PMCID: PMC10609285 DOI: 10.3390/molecules28207178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plant products have been employed in medicine for centuries. As the world becomes more health-conscious, there is a growing interest in natural and minimally processed products for oral health care. This has led to an increase in research into the bioactive compounds found in plant products, particularly monoterpenes. Monoterpenes are known to have beneficial biological properties, but the specific mechanisms by which they exert their effects are not yet fully understood. Despite this, some monoterpenes are already being used in oral health care. For example, thymol, which has antibacterial properties, is an ingredient in varnish used for caries prevention. In addition to this, monoterpenes have also demonstrated antifungal, antiviral, and anti-inflammatory properties, making them versatile for various applications. As research continues, there is potential for even more discoveries regarding the benefits of monoterpenes in oral health care. This narrative literature review gives an overview of the biological properties and current and potential applications of selected monoterpenes and their derivatives in oral health care. These compounds demonstrate promising potential for future medical development, and their applications in future research are expected to expand.
Collapse
Affiliation(s)
- Wiktoria Potocka
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Zainab Assy
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
| | - Marja L. Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| |
Collapse
|
29
|
Malinovská Z, Čonková E, Váczi P. Biofilm Formation in Medically Important Candida Species. J Fungi (Basel) 2023; 9:955. [PMID: 37888211 PMCID: PMC10607155 DOI: 10.3390/jof9100955] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 10/28/2023] Open
Abstract
Worldwide, the number of infections caused by biofilm-forming fungal pathogens is very high. In human medicine, there is an increasing proportion of immunocompromised patients with prolonged hospitalization, and patients with long-term inserted drains, cannulas, catheters, tubes, or other artificial devices, that exhibit a predisposition for colonization by biofilm-forming yeasts. A high percentage of mortality is due to candidemia caused by medically important Candida species. Species of major clinical significance include C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. krusei, and C. auris. The association of these pathogenic species in the biofilm structure is a serious therapeutic problem. Candida cells growing in the form of a biofilm are able to resist persistent therapy thanks to a combination of their protective mechanisms and their ability to disseminate to other parts of the body, thus representing a threat from the perspective of a permanent source of infection. The elucidation of the key mechanisms of biofilm formation is essential to progress in the understanding and treatment of invasive Candida infections.
Collapse
Affiliation(s)
- Zuzana Malinovská
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (E.Č.); (P.V.)
| | | | | |
Collapse
|
30
|
Elgammal Y, Salama EA, Seleem MN. Saquinavir potentiates itraconazole's antifungal activity against multidrug-resistant Candida auris in vitro andin vivo. Med Mycol 2023; 61:myad081. [PMID: 37558393 DOI: 10.1093/mmy/myad081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Candida species are highly opportunistic yeasts that are responsible for serious invasive fungal infections among immunocompromised patients worldwide. Due to the increase in drug resistance and incidence of infections, there is an urgent need to develop new antifungals and to identify co-drugs that can sensitize drug-resistant Candida to antifungals. The objective of this study was to assess the effect of saquinavir on the activity of azole antifungals against C. auris. The in vitro interaction of saquinavir and three azole antifungals (itraconazole, voriconazole, and fluconazole) was evaluated against a panel of C. auris isolates. The itraconazole/saquinavir combination exhibited a synergistic (SYN) relationship against all C. auris isolates tested with the fractional inhibitory concentration index ranging from 0.03 to 0.27. Moreover, a time-kill kinetics assay revealed that saquinavir restored the itraconazole's fungistatic activity against C. auris. Furthermore, saquinavir restored itraconazole's antifungal activity against other clinically important Candida species. The mechanistic investigation indicated that saquinavir significantly inhibited efflux pumps, glucose utilization, and ATP synthesis in Candida. Finally, a murine model of C. auris infection was used to evaluate the efficacy of the itraconazole/saquinavir combination in the presence of ritonavir (as a pharmacokinetic enhancer). The combination significantly reduced the fungal burden in the kidneys by 0.93-log10 colony-forming units (88%) compared to itraconazole alone. This study identified that saquinavir exhibits a potent SYN relationship in combination with itraconazole against Candida species, which warrants further consideration.
Collapse
Affiliation(s)
- Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ehab A Salama
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
31
|
Zapata-Zapata C, Rojas-López M, García LT, Quintero W, Terrón MC, Luque D, Mesa-Arango AC. Lippia origanoides Essential Oil or Thymol in Combination with Fluconazole Produces Damage to Cells and Reverses the Azole-Resistant Phenotype of a Candida tropicalis Strain. J Fungi (Basel) 2023; 9:888. [PMID: 37754996 PMCID: PMC10532872 DOI: 10.3390/jof9090888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Candida tropicalis is one of the most pathogenic species within the genus. Increased antifungal resistance has been reported, which is in part due to the organism's ability to form biofilms. In natural products derived from plants, such as essential oils (EOs) or their major components, there is significant potential to develop new antifungals or to both enhance the efficacy and reduce the toxicity of conventional antifungals. This study aimed to evaluate the effect of combining an EO of Lippia origanoides or thymol with fluconazole on an azole-resistant C. tropicalis strain. Synergism was observed in the combination of fluconazole with the EO and with thymol, and minimal inhibitory concentrations for fluconazole decreased at least 32-fold. As a consequence of the synergistic interactions, mitochondrial membrane potential was reduced, and mitochondrial superoxide production increased. Alteration in nuclear morphology, cell surface, and ultrastructure was also observed. In conclusion, the synergistic interaction between L. origanoides EO or thymol with fluconazole reverted the azole-resistant C. tropicalis phenotype. These findings suggest that L. origanoides EO or thymol alone, or in combination with fluconazole, have the potential for development as antifungal therapies for this yeast, including resistant strains.
Collapse
Affiliation(s)
- Carolina Zapata-Zapata
- Academic Group of Epidemiology, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia;
| | - Mauricio Rojas-López
- Group of Cellular Immunology and Immunogenetics (GICIG), Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia;
- Flow Cytometry Unit, University of Antioquia, Medellín 050010, Colombia
| | - Liliana T. García
- Postgraduate Department of Infectious Disease, University of Santander, Bucaramanga 680006, Colombia; (L.T.G.); (W.Q.)
| | - Wendy Quintero
- Postgraduate Department of Infectious Disease, University of Santander, Bucaramanga 680006, Colombia; (L.T.G.); (W.Q.)
| | - María C. Terrón
- Electron Microscopy Unit, Scientific-Technical Central Units, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (M.C.T.); (D.L.)
| | - Daniel Luque
- Electron Microscopy Unit, Scientific-Technical Central Units, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (M.C.T.); (D.L.)
| | - Ana C. Mesa-Arango
- Academic Group of Epidemiology, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
32
|
Correia EEM, Figueirinha A, Rodrigues L, Pinela J, Calhelha RC, Barros L, Fernandes C, Salgueiro L, Gonçalves T. The Chemical Profile, and Antidermatophytic, Anti-Inflammatory, Antioxidant and Antitumor Activities of Withania chevalieri A.E. Gonç. Ethanolic Extract. PLANTS (BASEL, SWITZERLAND) 2023; 12:2502. [PMID: 37447064 DOI: 10.3390/plants12132502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Withania chevalieri, endogenous from Cape Verde, is a medicinal plant used in ethnomedicine with a large spectrum of applications, such as treating skin fungal infections caused by dermatophytes. The aim of this work was to chemically characterize the W. chevalieri crude ethanolic extract (WcCEE), and evaluate its bioactivities as antidermatophytic, antioxidant, anti-inflammatory and anticancer, as well as its cytotoxicity. WcCEE was chemically characterized via HPLC-MS. The minimal inhibitory concentration, minimal fungicidal concentration, time-kill and checkerboard assays were used to study the antidermatophytic activity of WcCEE. As an approach to the mechanism of action, the cell wall components, β-1,3-glucan and chitin, and cell membrane ergosterol were quantified. Transmission electron microscopy (TEM) allowed for the study of the fungal ultrastructure. WcCEE contained phenolic acids, flavonoids and terpenes. It had a concentration-dependent fungicidal activity, not inducing relevant resistance, and was endowed with synergistic effects, especially terbinafine. TEM showed severely damaged fungi; the cell membrane and cell wall components levels had slight modifications. The extract had antioxidant, anti-inflammatory and anti-cancer activities, with low toxicity to non-tumoral cell lines. The results demonstrated the potential of WcCEE as an antidermatophytic agent, with antioxidant, anti-inflammatory and anticancer activity, to be safely used in pharmaceutical and dermocosmetic applications.
Collapse
Affiliation(s)
| | - Artur Figueirinha
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Lisa Rodrigues
- CNC-UC-Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Chantal Fernandes
- CNC-UC-Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Teresa Gonçalves
- CNC-UC-Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| |
Collapse
|
33
|
Helmy AK, Sidkey NM, El-Badawy RE, Hegazi AG. Emergence of microbial infections in some hospitals of Cairo, Egypt: studying their corresponding antimicrobial resistance profiles. BMC Infect Dis 2023; 23:424. [PMID: 37349674 DOI: 10.1186/s12879-023-08397-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Antimicrobial resistance is one of the ten major public health threats facing humanity, especially in developing countries. Identification of the pathogens responsible for different microbial infections and antimicrobial resistance patterns are important to help clinicians to choose the correct empirical drugs and provide optimal patient care. METHODS During the period from November 2020 to January 2021, one hundred microbial isolates were collected randomly from different specimens from some hospitals in Cairo, Egypt. Sputum and chest specimens were from COVID-19 patients. Antimicrobial susceptibility testing was performed according to CLSI guidelines. RESULTS Most microbial infections were more common in males and in elderly people over 45 years of age. They were caused by Gram-negative, Gram-positive bacteria, and yeast isolates that represented 69%, 15%, and 16%, respectively. Uropathogenic Escherichia coli (35%) were the most prevalent microbial isolates and showed high resistance rates towards penicillin, ampicillin, and cefixime, followed by Klebsiella spp. (13%) and Candida spp. (16%). Of all microbial isolates, Acinetobacter spp., Serratia spp., Hafnia alvei, and Klebsiella ozaenae were extremely multidrug-resistant (MDR) and have resisted all antibiotic classes used, except for glycylcycline, in varying degrees. Acinetobacter spp., Serratia spp., and Candida spp. were secondary microbial infections in COVID-19 patients, while H. alvei was a bloodstream infection isolate and K. ozaenae was recorded in most infections. Moreover, about half of Staphylococcus aureus strains were MRSA isolates and reported low rates of resistance to glycylcycline and linezolid. In comparison, Candida spp. showed high resistance rates between 77 and 100% to azole drugs and terbinafine, while no resistance rate towards nystatin was reported. Indeed, glycylcycline, linezolid, and nystatin were considered the drugs of choice for the treatment of MDR infections. CONCLUSION The prevalence of antimicrobial resistance in some Egyptian hospitals was high among Gram-negative, Gram-positive bacteria, and candida spp. The high resistance pattern -especially in secondary microbial infections in COVID-19 patients- to most antibiotics used is a matter of great concern, portends an inevitable catastrophe, and requires continuous monitoring to avoid the evolution of new generations.
Collapse
Affiliation(s)
- Asmaa K Helmy
- Botany and Microbiology Department, Faculty of Science for Girls, Al-Azhar University, Cairo, Egypt.
| | - Nagwa M Sidkey
- Botany and Microbiology Department, Faculty of Science for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Ahmed G Hegazi
- Zoonotic Diseases Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
34
|
Elgammal Y, Salama EA, Seleem MN. Atazanavir Resensitizes Candida auris to Azoles. Antimicrob Agents Chemother 2023; 67:e0163122. [PMID: 37092991 PMCID: PMC10190639 DOI: 10.1128/aac.01631-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/07/2023] [Indexed: 04/25/2023] Open
Abstract
Candida auris represents an urgent health threat. Here, we identified atazanavir as a potent drug capable of resensitizing C. auris clinical isolates to the activity of azole antifungals. Atazanavir was able to significantly inhibit the efflux pumps, glucose transport, and ATP synthesis of all tested isolates of C. auris. In addition, the combination of itraconazole with atazanavir-ritonavir significantly reduced the burden of azole-resistant C. auris in murine kidneys by 1.3 log10 (95%), compared to itraconazole alone.
Collapse
Affiliation(s)
- Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Ehab A. Salama
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
35
|
Kulshrestha A, Gupta P. Secreted aspartyl proteases family: a perspective review on the regulation of fungal pathogenesis. Future Microbiol 2023; 18:295-309. [PMID: 37097060 DOI: 10.2217/fmb-2022-0143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Secreted aspartyl proteases (SAPs) are important enzymes for fungal pathogenicity, playing a significant role in infection and survival. This article provides insight into how SAPs facilitate the transformation of yeast cells into hyphae and engage in biofilm formation, invasion and degradation of host cells and proteins. SAPs and their isoenzymes are prevalent during fungal infections, making them a potential target for antifungal and antibiofilm therapies. By targeting SAPs, critical stages of fungal pathogenesis such as adhesion, hyphal development, biofilm formation, host invasion and immune evasion can potentially be disrupted. Developing therapies that target SAPs could provide an effective treatment option for a wide range of fungal infections.
Collapse
Affiliation(s)
- Anmol Kulshrestha
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, India
| |
Collapse
|
36
|
Fernandes L, Costa R, Silva S, Henriques M, Costa-de-Oliveira S, Rodrigues ME. Effect of Vapor-Phase Oregano Essential Oil on Resistant Candida Species Biofilms: Mechanisms of Action. Microbiol Spectr 2023; 11:e0512422. [PMID: 36971589 PMCID: PMC10100680 DOI: 10.1128/spectrum.05124-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) is one of the most prevalent vaginal infectious diseases. The increasing incidence of drug-resistant Candida strains and the limited therapeutic options make the discovery of effective alternative therapies fundamental. Essential oils (EOs) have been suggested as a promising alternative, and interestingly, vapor-phase essential oils (VP-EOs) present more advantages than their direct application. Thus, this study aims to evaluate the effect of oregano VP-EO (VP-OEO) on biofilms of antifungal-resistant vaginal isolates of Candida species (Candida albicans and Candida glabrata) and determine its mode of action. CFU, membrane integrity, and metabolic activity were evaluated. Furthermore, a reconstituted vaginal epithelium was used to mimic vaginal conditions and evaluate the effect of VP-OEO on Candida species infection, analyzed by DNA quantification, microscopy, and lactate dehydrogenase activity. The results revealed high VP-OEO antifungal activity. There was a significant reduction (>4 log CFU) in Candida species biofilms. Furthermore, the results show that the mechanisms of action of VP-OEO are related to membrane integrity and metabolic activity. The epithelium model confirms the effectiveness of VP-OEO. This study suggests that VP-EO can be considered a first approach for the development of an alternative form of VVC treatment. IMPORTANCE This work presents a new approach to the application of essential oils, exposure to the vapor phase, which can be considered a first approach for the development of a complementary or alternative form of vulvovaginal candidiasis (VVC) treatment. VVC is a significant infection caused by Candida species and remains a common disease that affects millions of women every year. The great difficulty in treating VVC and the extremely limited effective therapeutic options make the development of alternative treatments crucial. In this scope, this study aims to contribute to the development of effective, inexpensive, and nontoxic strategies for the prevention and treatment of this infectious disease, based on natural products. Moreover, this new approach has several advantages for women, such as lower costs, easy access, an easier mode of application, avoidance of skin contact, and, therefore, fewer negative impacts on women's health.
Collapse
Affiliation(s)
- Liliana Fernandes
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Costa
- Aromas Aqua Spa—Clínica Saúde, Vila Verde, Braga, Portugal
| | - Sónia Silva
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
- National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
| | - Mariana Henriques
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Sofia Costa-de-Oliveira
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria E. Rodrigues
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
37
|
Ahmedi S, Manzoor N. Candida phospholipases as potential target for natural antifungals. PHOSPHOLIPASES IN PHYSIOLOGY AND PATHOLOGY 2023:281-296. [DOI: 10.1016/b978-0-323-95699-4.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
38
|
Moraes DCDE. Recent developments on the anti-Candida effect of amphotericin B combined with a second drug - a mini-review. AN ACAD BRAS CIENC 2023; 95:e20220033. [PMID: 37162085 DOI: 10.1590/0001-3765202320220033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/10/2022] [Indexed: 05/11/2023] Open
Abstract
Invasive Candida infections threaten human health due to the increasing incidence of resistance to the currently available antifungal agents. Amphotericin B (AMB) is the gold standard therapy to treat these infections. Nevertheless, the use of such substance in the clinic is aggravated by its toxicity. Since AMB binds to membrane sterols, it forms pores on human plasma membranes, mainly in kidney cells, leading to nephrotoxicity. The combination of this drug to a second substance could allow for the use of smaller concentrations of AMB, consequently lowering the probability of adverse effects. This mini-review summarizes information regarding an array of substances that enhance AMB antifungal activity. It may be noticed that several of these compounds target plasma membrane. Interestingly, substances approved for human use also presented combinatory anti-Candida activity with AMB. These data reinforce the potential of associating AMB to another drug as a promising therapeutical alternative to treat Candida infections. Further studies, regarding mechanism of action, pharmacokinetics and toxicity parameters must be conducted to confirm the role of these substances as adjuvant agents in candidiasis therapy.
Collapse
Affiliation(s)
- Daniel C DE Moraes
- Universidade Estácio de Sá, Bolsista do Programa de Pesquisa e Produtividade UNESA, Rua Eduardo Luiz Gomes 134, Centro, 24020-340 Niterói, RJ, Brazil
| |
Collapse
|
39
|
Gómez-Gaviria M, Ramírez-Sotelo U, Mora-Montes HM. Non- albicans Candida Species: Immune Response, Evasion Mechanisms, and New Plant-Derived Alternative Therapies. J Fungi (Basel) 2022; 9:jof9010011. [PMID: 36675832 PMCID: PMC9862154 DOI: 10.3390/jof9010011] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Fungal infections caused by Candida species have become a constant threat to public health, especially for immunocompromised patients, who are considered susceptible to this type of opportunistic infections. Candida albicans is known as the most common etiological agent of candidiasis; however, other species, such as Candida tropicalis, Candida parapsilosis, Nakaseomyces glabrata (previously known as Candida glabrata), Candida auris, Candida guilliermondii, and Pichia kudriavzevii (previously named as Candida krusei), have also gained great importance in recent years. The increasing frequency of the isolation of this non-albicans Candida species is associated with different factors, such as constant exposure to antifungal drugs, the use of catheters in hospitalized patients, cancer, age, and geographic distribution. The main concerns for the control of these pathogens include their ability to evade the mechanisms of action of different drugs, thus developing resistance to antifungal drugs, and it has also been shown that some of these species also manage to evade the host's immunity. These biological traits make candidiasis treatment a challenging task. In this review manuscript, a detailed update of the recent literature on the six most relevant non-albicans Candida species is provided, focusing on the immune response, evasion mechanisms, and new plant-derived compounds with antifungal properties.
Collapse
|
40
|
Similarities and Differences among Species Closely Related to Candida albicans: C. tropicalis, C. dubliniensis, and C. auris. Cell Microbiol 2022. [DOI: 10.1155/2022/2599136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although Candida species are widespread commensals of the microflora of healthy individuals, they are also among the most important human fungal pathogens that under certain conditions can cause diseases (candidiases) of varying severity ranging from mild superficial infections of the mucous membranes to life-threatening systemic infections. So far, the vast majority of research aimed at understanding the molecular basis of pathogenesis has been focused on the most common species—Candida albicans. Meanwhile, other closely related species belonging to the CTG clade, namely, Candida tropicalis and Candida dubliniensis, are becoming more important in clinical practice, as well as a relatively newly identified species, Candida auris. Despite the close relationship of these microorganisms, it seems that in the course of evolution, they have developed distinct biochemical, metabolic, and physiological adaptations, which they use to fit to commensal niches and achieve full virulence. Therefore, in this review, we describe the current knowledge on C. tropicalis, C. dubliniensis, and C. auris virulence factors, the formation of a mixed species biofilm and mutual communication, the environmental stress response and related changes in fungal cell metabolism, and the effect of pathogens on host defense response and susceptibility to antifungal agents used, highlighting differences with respect to C. albicans. Special attention is paid to common diagnostic problems resulting from similarities between these species and the emergence of drug resistance mechanisms. Understanding the different strategies to achieve virulence, used by important opportunistic pathogens of the genus Candida, is essential for proper diagnosis and treatment.
Collapse
|
41
|
Pino-Otín MR, Gan C, Terrado E, Sanz MA, Ballestero D, Langa E. Antibiotic properties of Satureja montana L. hydrolate in bacteria and fungus of clinical interest and its impact in non-target environmental microorganisms. Sci Rep 2022; 12:18460. [PMID: 36323748 PMCID: PMC9630514 DOI: 10.1038/s41598-022-22419-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to analyse the microbicidal and microbiostatic activity of S. montana hydrolate L., the water-soluble fraction of the hydro-distillation process used to obtain the essential oil, on 14 Gram-positive and Gram-negative bacteria and a fungus of clinical interest. To consider whether this hydrolate is a more environmentally friendly alternative to traditional antibiotics, its effect on non-target microorganisms in the aquatic and terrestrial environment was analysed using natural soil and river microorganism communities, characterized through 16S rRNA gene sequencing. Results showed that S. montana hydrolate was especially effective (25% v/v concentration) against Pasteurella aerogenes, Streptococcus agalactiae and Acinetobacter baumannii (priority 1, WHO). It was also a microbicide for a further 7 bacterial strains and the fungus Candida albicans (50% v/v concentration). The river and soil communities exposed to the hydrolate showed a decrease in their growth, as well as a decrease in their ability to metabolize polymers and carbohydrates (soil microorganisms) and polymers, carboxylic and ketone acids (river microorganisms). Hydrolates could be an alternative to conventional antibiotics, but their impact on the environment must be taken into account.
Collapse
Affiliation(s)
- María Rosa Pino-Otín
- Universidad San Jorge, Campus Universitario Villanueva de Gállego Autovía A-23 Zaragoza-Huesca, Km. 510, Villanueva de Gállego, 50830, Zaragoza, Spain.
| | - Cristina Gan
- Universidad San Jorge, Campus Universitario Villanueva de Gállego Autovía A-23 Zaragoza-Huesca, Km. 510, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Eva Terrado
- Universidad de Zaragoza, C. de Pedro Cerbuna, 12, 50009, Zaragoza, Spain
| | - María Angeles Sanz
- CITA, Área de Laboratorios de Análisis y Asistencia Tecnológica, Avda. Montañana 930, 50059, Zaragoza, Spain
| | - Diego Ballestero
- Universidad San Jorge, Campus Universitario Villanueva de Gállego Autovía A-23 Zaragoza-Huesca, Km. 510, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Elisa Langa
- Universidad San Jorge, Campus Universitario Villanueva de Gállego Autovía A-23 Zaragoza-Huesca, Km. 510, Villanueva de Gállego, 50830, Zaragoza, Spain
| |
Collapse
|
42
|
Tu J, Liu N, Huang Y, Yang W, Sheng C. Small molecules for combating multidrug-resistant superbug Candida auris infections. Acta Pharm Sin B 2022; 12:4056-4074. [PMID: 36386475 PMCID: PMC9643296 DOI: 10.1016/j.apsb.2022.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 01/12/2023] Open
Abstract
Candida auris is emerging as a major global threat to human health. C. auris infections are associated with high mortality due to intrinsic multi-drug resistance. Currently, therapeutic options for the treatment of C. auris infections are rather limited. We aim to provide a comprehensive review of current strategies, drug candidates, and lead compounds in the discovery and development of novel therapeutic agents against C. auris. The drug resistance profiles and mechanisms are briefly summarized. The structures and activities of clinical candidates, drug combinations, antifungal chemosensitizers, repositioned drugs, new targets, and new types of compounds will be illustrated in detail, and perspectives for guiding future research will be provided. We hope that this review will be helpful to prompting the drug development process to combat this fungal pathogen.
Collapse
Affiliation(s)
| | | | - Yahui Huang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wanzhen Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
43
|
Liu Y, Liu W, Yu S, Wang Q, Liu M, Han J, Sun B. Novel Aryl Alkamidazole Derivatives as Multifunctional Antifungal Inhibitors: Design, Synthesis, and Biological Evaluation. J Med Chem 2022; 65:14916-14937. [DOI: 10.1021/acs.jmedchem.2c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yating Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Wenxia Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Shuai Yu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Qingpeng Wang
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Min Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| |
Collapse
|
44
|
Zapata-Zapata C, Loaiza-Oliva M, Martínez-Pabón MC, Stashenko EE, Mesa-Arango AC. In Vitro Activity of Essential Oils Distilled from Colombian Plants against Candidaauris and Other Candida Species with Different Antifungal Susceptibility Profiles. Molecules 2022; 27:molecules27206837. [PMID: 36296428 PMCID: PMC9606955 DOI: 10.3390/molecules27206837] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Multi-drug resistant species such as Candida auris are a global health threat. This scenario has highlighted the need to search for antifungal alternatives. Essential oils (EOs), or some of their major compounds, could be a source of new antifungal molecules. The aim of this study was to evaluate the in vitro activity of EOs and some terpenes against C. auris and other Candida spp. The eleven EOs evaluated were obtained by hydro-distillation from different Colombian plants and the terpenes were purchased. EO chemical compositions were obtained by gas chromatography/mass spectrometry (GC/MS). Antifungal activity was evaluated following the CLSI standard M27, 4th Edition. Cytotoxicity was tested on the HaCaT cell line and fungal growth kinetics were tested by time–kill assays. Candida spp. showed different susceptibility to antifungals and the activity of EOs and terpenes was strain-dependent. The Lippia origanoides (thymol + p-cymene) chemotype EO, thymol, carvacrol, and limonene were the most active, mainly against drug-resistant strains. The most active EOs and terpenes were also slightly cytotoxic on the HaCaT cells. The findings of this study suggest that some EOs and commercial terpenes can be a source for the development of new anti-Candida products and aid the identification of new antifungal targets or action mechanisms.
Collapse
Affiliation(s)
- Carolina Zapata-Zapata
- Grupo de Investigación Dermatológica, Universidad de Antioquia, Medellín 050010, Colombia
| | - Manuela Loaiza-Oliva
- Grupo de Investigación en Patología Oral, Periodoncia y Cirugía Alveólo-Dentaria, Universidad de Antioquia, Medellín 050010, Colombia
| | - María C. Martínez-Pabón
- Grupo de Investigación en Patología Oral, Periodoncia y Cirugía Alveólo-Dentaria, Universidad de Antioquia, Medellín 050010, Colombia
| | - Elena E. Stashenko
- CROM-MASS-CENIVAM-Universidad Industrial de Santander, Bucaramanga 68002, Colombia
| | - Ana C. Mesa-Arango
- Grupo de Investigación Dermatológica, Universidad de Antioquia, Medellín 050010, Colombia
- Correspondence:
| |
Collapse
|
45
|
Candida auris, a singular emergent pathogenic yeast: its resistance and new therapeutic alternatives. Eur J Clin Microbiol Infect Dis 2022; 41:1371-1385. [PMID: 36198878 DOI: 10.1007/s10096-022-04497-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/09/2022] [Indexed: 11/03/2022]
Abstract
Nowadays, fungal infections affect millions of people across the world. Candida auris, a new emergent yeast, is a worrisome pathogen because it associates with a high rate of incidence and prevalence, including in the nosocomial environment. The hard identification, the phenotypic plasticity, and the easy adaptation to stressful conditions are some of the C. auris traits that render this latest yeast singular challenging. C. auris infections have already been reported from more than 30 countries and are associated with high mortality rates. This is the result from rapid transmission and the difficulty of prevention, control, and eradication. There are several factors related to the high virulence of C. auris, such as the multidrug resistance, biofilm development, and the ability to escape the response of the innate immune system. So, C. auris infections are a serious and alarming problem, not only because of the high pathogenicity of the fungal agent but also because of the low effectiveness of the treatments available. Although new formulations have been developed against C. auris strains, a better understanding is essential to efficiently treat, prevent, and control C. auris infections.
Collapse
|
46
|
Mitra S, Sultana SA, Prova SR, Uddin TM, Islam F, Das R, Nainu F, Sartini S, Chidambaram K, Alhumaydhi FA, Emran TB, Simal-Gandara J. Investigating forthcoming strategies to tackle deadly superbugs: current status and future vision. Expert Rev Anti Infect Ther 2022; 20:1309-1332. [PMID: 36069241 DOI: 10.1080/14787210.2022.2122442] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Superbugs are microorganisms that cause disease and have increased resistance to the treatments typically used against infections. Recently, antibiotic resistance development has been more rapid than the pace at which antibiotics are manufactured, leading to refractory infections. Scientists are concerned that a particularly virulent and lethal 'superbug' will one day join the ranks of existing bacteria that cause incurable diseases, resulting in a global health disaster on the scale of the Black Death. AREAS COVERED This study highlights the current developments in the management of antibiotic-resistant bacteria and recommends strategies for further regulating antibiotic-resistant microorganisms associated with the healthcare system. This review also addresses the origins, prevalence, and pathogenicity of superbugs, and the design of antibacterial against these growing multidrug-resistant organisms from a medical perspective. EXPERT OPINION It is recommended that antimicrobial resistance should be addressed by limiting human-to-human transmission of resistant strains, lowering the use of broad-spectrum antibiotics, and developing novel antimicrobials. Using the risk-factor domains framework from this study would assure that not only clinical but also community and hospital-specific factors are covered, lowering the chance of confounders. Extensive subjective research is necessary to fully understand the underlying factors and uncover previously unexplored areas.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, 1000, Dhaka, Bangladesh
| | - Sifat Ara Sultana
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, 1000, Dhaka, Bangladesh
| | - Shajuthi Rahman Prova
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, 1000, Dhaka, Bangladesh
| | - Tanvir Mahtab Uddin
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, 1000, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, 1000, Dhaka, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, 90245, Makassar, Indonesia
| | - Sartini Sartini
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, 90245, Makassar, Indonesia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, 62529, Abha, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 52571, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, 4381, Bangladesh
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
47
|
Souza RLD, Dantas AGB, Melo CDO, Felício IM, Oliveira EE. Nanotechnology as a tool to improve the biological activity of carvacrol: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Halophytes as Medicinal Plants against Human Infectious Diseases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Halophytes have long been used for medicinal purposes. However, for many decades, their use was entirely empirical, with virtually no knowledge of the bioactive compounds underlying the different applications. In recent decades, the growing problem of antibiotic resistance triggered the research on alternative antimicrobial approaches, and halophytes, along with other medicinal plants, regained attention as an underexplored pharmacological vein. Furthermore, the high nutritional/nutraceutical/pharmacological value of some halophytic species may represent added value to the emerging activity of saline agriculture and targeted modification of the rhizosphere, with plant-growth-promoting bacteria being attempted to be used as a tool to modulate the plant metabolome and enhance the expression of interesting metabolites. The objective of this review is to highlight the potential of halophytes as a valuable, and still unexplored, source of antimicrobial compounds for clinical applications. For that, we provide a critical perspective on the empirical use of halophytes in traditional medicine and a state-or-the-art overview of the most relevant plant species and metabolites related with antiviral, antifungal and antibacterial activities.
Collapse
|
49
|
Fernandes L, Ribeiro R, Costa R, Henriques M, Rodrigues ME. Essential Oils as a Good Weapon against Drug-Resistant Candida auris. Antibiotics (Basel) 2022; 11:antibiotics11070977. [PMID: 35884231 PMCID: PMC9311903 DOI: 10.3390/antibiotics11070977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/10/2022] Open
Abstract
Candida auris is a recently found Candida species, mainly associated with nosocomial outbreaks in intensive care hospital settings, and unlike other Candida species, it can be transmitted through person-to-person or by contact with surfaces. C. auris is described as resistant to first-line antifungals and, consequently, associated with high mortality. Nowadays, essential oils (EOs) are known to be effective against fungal and bacterial infections. This work aimed to evaluate the effect of four EOs (tea tree, niaouli, white thyme and cajeput) against C. auris. The EO’s effect on C. auris planktonic growth was evaluated by the minimum inhibitory concentration determination and by the agar disc diffusion method. Then, the same effect was evaluated on biofilm by colony-forming units’ enumeration. The results showed that EOs were able to inhibit the C. auris planktonic growth, with an MIC50 between 0.78 and 1.56% and halos of 20–21 mm for white thyme and tea tree and 13–14 mm for cajeput and niaouli. In addition, the EOs were also able to completely inhibit biofilm formation. Moreover, white thyme and cajeput completely eradicate pre-formed biofilms, while tea tree and niaouli significantly reduce it. Thus, this work demonstrates that EOs are a possible therapeutic alternative and a future perspective for the hard fight against C. auris.
Collapse
Affiliation(s)
- Liliana Fernandes
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.F.); (R.R.); (M.E.R.)
- LABBELS–Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Rita Ribeiro
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.F.); (R.R.); (M.E.R.)
- LABBELS–Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Raquel Costa
- Aromas Aqua Spa–Clínica Saúde, Praça 5 Outubro nº 32, 4730-731 Braga, Portugal;
| | - Mariana Henriques
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.F.); (R.R.); (M.E.R.)
- LABBELS–Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-253-601-961; Fax: +351-253-604-429
| | - M. Elisa Rodrigues
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.F.); (R.R.); (M.E.R.)
- LABBELS–Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
50
|
Molecular Mapping of Antifungal Mechanisms Accessing Biomaterials and New Agents to Target Oral Candidiasis. Int J Mol Sci 2022; 23:ijms23147520. [PMID: 35886869 PMCID: PMC9320712 DOI: 10.3390/ijms23147520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Oral candidiasis has a high rate of development, especially in immunocompromised patients. Immunosuppressive and cytotoxic therapies in hospitalized HIV and cancer patients are known to induce the poor management of adverse reactions, where local and systemic candidiasis become highly resistant to conventional antifungal therapy. The development of oral candidiasis is triggered by several mechanisms that determine oral epithelium imbalances, resulting in poor local defense and a delayed immune system response. As a result, pathogenic fungi colonies disseminate and form resistant biofilms, promoting serious challenges in initiating a proper therapeutic protocol. Hence, this study of the literature aimed to discuss possibilities and new trends through antifungal therapy for buccal drug administration. A large number of studies explored the antifungal activity of new agents or synergic components that may enhance the effect of classic drugs. It was of significant interest to find connections between smart biomaterials and their activity, to find molecular responses and mechanisms that can conquer the multidrug resistance of fungi strains, and to transpose them into a molecular map. Overall, attention is focused on the nanocolloids domain, nanoparticles, nanocomposite synthesis, and the design of polymeric platforms to satisfy sustained antifungal activity and high biocompatibility with the oral mucosa.
Collapse
|