1
|
Gupta R, Sharma S, Saroj A, Madhukalya R, Kumar V, Agarwal V, Kumar D, Prasad VM, Kumar R. Kyasanur Forest disease virus non-structural protein NS1 forms multimers in solution, with a distinctly identifiable tetrameric state. Biochimie 2025:S0300-9084(25)00080-X. [PMID: 40252820 DOI: 10.1016/j.biochi.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/30/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Kyasanur Forest Disease Virus (KFDV), a flavivirus, is predominantly present in the tropical region of southern India and is responsible for viral hemorrhagic disease in primates and non-primate animals. KFDV infection is spread by tick bites. The other medically important viruses of Flaviviridae family are dengue (DENV), Zika (ZIKV), West Nile virus (WNV) and Japanese encephalitis virus (JEV). The flaviviruses are collectively responsible for diverse disease pathologies and account for a major global health burden. A major contributing factor to disease pathogenesis of flavivirus is the secreted form of nonstructural protein 1 (NS1). However, in vivo studies using lethal flavivirus challenge have demonstrated the protective role of NS1-specific antibodies and complement the hypothesis to explore possibilities of NS1-based vaccine and therapeutic candidates. Recent structural studies on DENV, ZIKV, JEV and WNV NS1 antigen have shown that the sNS1 protein exists in high-order oligomeric states. However, structural insights about the high-order oligomeric states of sNS1 of tick-borne flaviviruses and their biological significance are poorly explored. In this study, we have expressed and purified the KFDV NS1 protein in the mammalian expression system. The KFDV sNS1 protein exhibits higher oligomeric conformation in solution as determined by size exclusion chromatography (SEC), and negative stain transmission electron microscopy (NS-TEM). Single-particle analysis of KFDV NS1 reveals tetrameric arrangements that are structurally similar to previously reported Ns1 structures from other flaviviruses. Our study will help to develop a future roadmap of the rational design of broad-spectrum anti-NS1 antibodies and subunit vaccines effective against tick-borne flaviviruses.
Collapse
Affiliation(s)
- Rohit Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Shruti Sharma
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India; Center for Infectious Diseases Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Anjali Saroj
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Rishav Madhukalya
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Vivek Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Vidushi Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Dilip Kumar
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India; Center for Infectious Diseases Research, Indian Institute of Science, Bengaluru, Karnataka, India.
| | - Rajesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| |
Collapse
|
2
|
Sharma S, Yadav P, Dash PK, Dhankher S. Molecular epidemiology of Kyasanur forest disease employing ONT-NGS a field forward sequencing. J Clin Virol 2025; 177:105783. [PMID: 40168937 DOI: 10.1016/j.jcv.2025.105783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
The future of infectious agent detection and molecular characterization lies in field-forward, on-site strategies. The lack of genomic information for recently circulating Kyasanur Forest Disease virus strains is critical. Kyasanur Forest Virus Disease virus PCR-positive samples from 2018 to 2020 were selected for sequencing. Detailed molecular phylogenetic analyses were performed. In this study, we deciphered KFDV whole genomes using the ONT-NGS technique to analyze targeted KFD surveillance from 2018-2020. This study is the first to report recently circulating KFDV strains employing a simple on-site field-forward approach for viral surveillance. Altogether, 19 KFDV genomes were sequenced, and 28 non-synonymous variants were detected in the viral strains circulating from 2018-2020 in the Shivamogga district of Karnataka state in India. The prevailing Variant was detected in more than 10 changes in 80 % of the samples in the viral envelope protein. Recently, circulating KFDV has been the predominant lineage over the past years. India reports seasonal outbreaks almost every year from the Karnataka state of the KFD. The genomic sequences deciphered here belong to the period (2018-2020) that covers the KFDV sequences as the first information. This will contribute to the development and revisiting of diagnostic and vaccine strategies.
Collapse
Affiliation(s)
- Shashi Sharma
- Virology Division, Defence Research Development Establishment, Jhansi Road, Gwalior 474002, India.
| | - Pooja Yadav
- Virology Division, Defence Research Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Paban Kumar Dash
- Virology Division, Defence Research Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Suman Dhankher
- Virology Division, Defence Research Development Establishment, Jhansi Road, Gwalior 474002, India
| |
Collapse
|
3
|
Kasibhatla SM, Rajan L, Shete A, Jani V, Yadav S, Joshi Y, Sahay R, Patil DY, Mohandas S, Majumdar T, Sonavane U, Joshi R, Yadav P. Construction of an immunoinformatics-based multi-epitope vaccine candidate targeting Kyasanur forest disease virus. PeerJ 2025; 13:e18982. [PMID: 40130172 PMCID: PMC11932114 DOI: 10.7717/peerj.18982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/22/2025] [Indexed: 03/26/2025] Open
Abstract
Kyasanur forest disease (KFD) is one of the neglected tick-borne viral zoonoses. KFD virus (KFDV) was initially considered endemic to the Western Ghats region of Karnataka state in India. Over the years, there have been reports of its spread to newer areas within and outside Karnataka. The absence of an effective treatment for KFD mandates the need for further research and development of novel vaccines. The present study was designed to develop a multi-epitope vaccine candidate against KFDV using immunoinformatics approaches. A total of 74 complete KFDV genome sequences were analysed for genetic recombination followed by phylogeny. Computational prediction of B- and T-cell epitopes belonging to envelope protein was performed and epitopes were prioritised based on IFN-Gamma, IL-4, IL-10 stimulation and checked for allergenicity and toxicity. The eight short-listed epitopes (three MHC-Class 1, three MHC-Class 2 and two B-cell) were then combined using various linkers to construct the vaccine candidate. Molecular docking followed by molecular simulations revealed stable interactions of the vaccine candidate with immune receptor complex namely Toll-like receptors (TLR2-TLR6). Codon optimization followed by in-silico cloning of the designed multi-epitope vaccine construct into the pET30b (+) expression vector was carried out. Immunoinformatics analysis of the multi-epitope vaccine candidate in the current study has potential to significantly accelerate the initial stages of vaccine development. Experimental validation of the potential multi-epitope vaccine candidate remains crucial to confirm effectiveness and safety in real-world conditions.
Collapse
Affiliation(s)
| | - Lekshmi Rajan
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Anita Shete
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Vinod Jani
- Centre for Development of Advanced Computing, Pune, India
| | - Savita Yadav
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Yash Joshi
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Rima Sahay
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Deepak Y. Patil
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | | | - Triparna Majumdar
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | | | - Rajendra Joshi
- Centre for Development of Advanced Computing, Pune, India
| | - Pragya Yadav
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| |
Collapse
|
4
|
Yu KM, Park SJ. Tick-borne viruses: Epidemiology, pathogenesis, and animal models. One Health 2024; 19:100903. [PMID: 39391267 PMCID: PMC11465198 DOI: 10.1016/j.onehlt.2024.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
Tick-borne viruses, capable of infecting animals and humans, are expanding geographically and increasing in prevalence, posing significant global public health threats. This review explores the current epidemiology of human pathogenic tick-borne viruses, emphasizing their diversity and the spectrum of symptomatic manifestations in humans, which range from mild to severe. We highlight how the infrequent and unpredictable nature of viral outbreaks complicates the precise identification and understanding of these viruses in human infections. Furthermore, we describe the utility of animal models that accurately mimic human clinical symptoms, facilitating the development of effective control strategies. Our comprehensive analysis provides crucial insights into disease progression and emphasizes the urgent need for continued research. This work aims to provide insight into knowledge gaps to mitigate the health burden of tick-borne infections and open an avenue for further study to enhance our understanding of these emerging infectious diseases.
Collapse
Affiliation(s)
- Kwang-Min Yu
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Su-Jin Park
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Srivastava A, Mahilkar S, Upadhyaya CP, Mishra PK, Malinda RR, Sonkar SC, Koner BC. Alkhumra Hemorrhagic Fever Virus (AHFV): A Concise Overview. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:505-514. [PMID: 39703604 PMCID: PMC11650908 DOI: 10.59249/qspc8835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Alkhumra fever is a viral disease caused by the Alkhumra hemorrhagic fever virus (AHFV). It belongs to family Flaviviridae, genus Flavivirus. AHFV is primarily transmitted to humans through the bite of infected ticks, for example, Hyalomma. This disease was first identified in the Kingdom of Saudi Arabia (KSA) in 1995 and then reported in other countries of the Arabian Peninsula and the Middle East. The AHFV genome consists of a positive-sense, single-stranded RNA molecule of approximately 10.2 kilobases (kb) in length. The Open Reading Frame (ORF) encodes a polyprotein precursor that is processed by viral and host proteases to yield individual viral proteins. The polyprotein precursor is cleaved by viral proteases and host signal peptidases into three structural and seven non-structural proteins. AHFV can cause a range of clinical manifestations, from mild flu-like symptoms to severe hemorrhagic fever. In this review, we focus on insightful understanding of molecular biology, pathogenesis, and their potential therapeutic targets for AHFV.
Collapse
Affiliation(s)
- Amrita Srivastava
- Department of Biotechnology, Dr. Harisingh Gour
Vishwavidyalaya (A Central University), Madhya Pradesh, India
| | - Shakuntala Mahilkar
- Vector-Borne Diseases Group, International Centre for
Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Chandrama Prakash Upadhyaya
- Department of Biotechnology, Dr. Harisingh Gour
Vishwavidyalaya (A Central University), Madhya Pradesh, India
| | | | | | - Subash Chandra Sonkar
- Multidisciplinary Research Unit (MRU), Maulana Azad
Medical College and Associated Hospitals, New Delhi, India
- Delhi School of Public Health, Institute of Eminence,
University of Delhi, India
| | - Bidhan Chandra Koner
- Multidisciplinary Research Unit (MRU), Maulana Azad
Medical College and Associated Hospitals, New Delhi, India
- Department of Biochemistry, Maulana Azad Medical
College and Associated Hospital, New Delhi, India
| |
Collapse
|
6
|
Perumalsamy N, Sharma R, Subramanian M, Nagarajan SA. Hard Ticks as Vectors: The Emerging Threat of Tick-Borne Diseases in India. Pathogens 2024; 13:556. [PMID: 39057783 PMCID: PMC11279560 DOI: 10.3390/pathogens13070556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 07/28/2024] Open
Abstract
Hard ticks (Ixodidae) play a critical role in transmitting various tick-borne diseases (TBDs), posing significant global threats to human and animal health. Climatic factors influence the abundance, diversity, and vectorial capacity of tick vectors. It is imperative to have a comprehensive understanding of hard ticks, pathogens, eco-epidemiology, and the impact of climatic changes on the transmission dynamics of TBDs. The distribution and life cycle patterns of hard ticks are influenced by diverse ecological factors that, in turn, can be impacted by changes in climate, leading to the expansion of the tick vector's range and geographical distribution. Vector competence, a pivotal aspect of vectorial capacity, involves the tick's ability to acquire, maintain, and transmit pathogens. Hard ticks, by efficiently feeding on diverse hosts and manipulating their immunity through their saliva, emerge as competent vectors for various pathogens, such as viruses, parasites and bacteria. This ability significantly influences the success of pathogen transmission. Further exploration of genetic diversity, population structure, and hybrid tick vectors is crucial, as they play a substantial role in influencing vector competence and complicating the dynamics of TBDs. This comprehensive review deals with important TBDs in India and delves into a profound understanding of hard ticks as vectors, their biology, and the factors influencing their vector competence. Given that TBDs continue to pose a substantial threat to global health, the review emphasizes the urgency of investigating tick control strategies and advancing vaccine development. Special attention is given to the pivotal role of population genetics in comprehending the genetic diversity of tick populations and providing essential insights into their adaptability to environmental changes.
Collapse
Affiliation(s)
| | | | | | - Shriram Ananganallur Nagarajan
- Division of Vector Biology and Control, Indian Council of Medical Research—Vector Control Research Centre (ICMR-VCRC), Puducherry 605006, India; (N.P.); (R.S.); (M.S.)
| |
Collapse
|
7
|
N S, Kandi V, G SR, Ca J, A H, As A, Kapil C, Palacholla PS. Kyasanur Forest Disease: A Comprehensive Review. Cureus 2024; 16:e65228. [PMID: 39184677 PMCID: PMC11343324 DOI: 10.7759/cureus.65228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Vector-borne microbial diseases are ubiquitous, and their management remains elusive. Such diseases with zoonotic potential result in public health challenges requiring additional control and preventive measures. Despite their cosmopolitan presence, vector-borne infections are neglected due to their endemicity in specified geographical regions. The Kyasanur forest disease (KFD) caused by the Kyasanur forest disease virus (KFDV) is among such diseases transmitted through ticks and localized to India. Despite its prevalence, high transmissibility, and potential to cause fatalities, KFDV has not been given the deserved attention by the governments. Further, KFDV circulates in the rural and wild geographical areas threatening infections to people living in these areas with limited access to medical and healthcare. Therefore, physicians, healthcare workers, and the general population need to understand the KFDV and its ecology, epidemiology, transmission, pathogenesis, laboratory diagnosis, and control and prevention as described comprehensively in this review.
Collapse
Affiliation(s)
- Srilekha N
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Venkataramana Kandi
- Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND
| | - Sri Ram G
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Jayashankar Ca
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Harshitha A
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Akshay As
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Challa Kapil
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Pratyusha S Palacholla
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| |
Collapse
|
8
|
Chakraborty S, Sander W, Allan BF, Andrade FCD. Sociodemographic factors associated with Kyasanur forest disease in India - a retrospective study. IJID REGIONS 2024; 10:219-227. [PMID: 38440151 PMCID: PMC10909739 DOI: 10.1016/j.ijregi.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/06/2024]
Abstract
Objectives Kyasanur forest disease (KFD) is a tick-borne disease in India affecting humans and two local non-human primate species. A critical knowledge gap in the scientific literature is the lack of information on how people's sociodemographic factors influence KFD occurrence. Methods We analyzed available data on KFD from three data sources: (a) 104 peer-reviewed articles using keyword searches on PubMed Central and Google Scholar, (b) 116 Program for Monitoring Emerging Diseases reports, and (c) an acute febrile illness surveillance data set on KFD from a report by the government of India. We performed statistical analyses to calculate the prevalence of KFD by state and differences in KFD cases by sex and age group. Results All three data sets used indicate that KFD cases and deaths have occurred predominantly in the 15-64 years age group (literature: 87% cases and 95% deaths, Program for Monitoring Emerging Diseases: 78% cases and 78% deaths, acute febrile illness: 96% cases [no breakdown for acute febrile illness death data]). Data reporting varies across states and is non-standardized. Conclusions The inconsistent reporting of sociodemographic data on KFD in India has created a gap in our understanding of its impact on different social groups. Collecting and reporting data on sociodemographic factors is critical to understanding the epidemiology of KFD and designing effective public health interventions.
Collapse
Affiliation(s)
- Sulagna Chakraborty
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - William Sander
- College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Brian F. Allan
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | |
Collapse
|
9
|
Munivenkatappa A, Yadav PD, Sahay RR, Sk K, Shete AM, Patil DY, Mohandas S, Jain R, Patil S, Sinha DP, Jayaswamy MM. Clinical, epidemiological, and molecular investigation of Kyasanur forest disease from Karnataka state, India during 2018-2019. Infect Dis (Lond) 2024; 56:145-156. [PMID: 37966909 DOI: 10.1080/23744235.2023.2282042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND In this study, we carried out an investigation of Kyasanur Forest Disease (KFD) suspected human cases reported in Karnataka state, India from December 2018 to June 2019. METHODS The clinical samples of KFD suspected cases (n = 1955) from 14 districts of Karnataka were tested for KFD using real-time RT-PCR and IgM ELISA. Further, the KFD-negative samples were tested for IgM antibodies against dengue and chikungunya viruses. Monkey samples (n = 276) and tick pools (n = 11582) were also screened using real-time RT-PCR. KFD-positive samples were further analysed using next-generation sequencing along with clinico-epidemiological analysis. RESULTS Of all, 173 (8.8%) cases tested positive for KFD either by real-time RT-PCR (n = 124), IgM ELISA (n = 53) or both tests (n = 4) from seven districts. Among KFD-negative cases, IgM antibody positivity was observed for dengue (2.6%), chikungunya (5.8%), dengue and chikungunya coinfection (3.7%). KFD cases peaked in January 2019 with fever, conjunctivitis, and myalgia as the predominant symptoms and a mortality of 4.6%. Among confirmed cases, 41% received a single dose and 20% received two doses of the KFD vaccine. Of the seven districts with KFDV positivity, Shivamogga and Hassan districts reported KFD viral RNA positivity in humans, monkeys, and ticks. Sequencing analysis of 2019 cases demonstrated a difference of less than 1.5% amino acid compared to prototype KFDV. CONCLUSION Although the KFD has been endemic in many districts of Karnataka state, our study confirms the presence of KFDV for the first time in two new districts, i.e. Hassan and Mysore. A comparative analysis of KFDV infection among the KFD-vaccinated and non-vaccinated populations demonstrated an insignificant difference.
Collapse
Affiliation(s)
- Ashok Munivenkatappa
- Indian Council of Medical Research-National Institute of Virology, Bangalore unit, Bangalore India
| | - Pragya D Yadav
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Rima R Sahay
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Kiran Sk
- District training centre, State institute of health and family welfare, Shivamogga, India
| | - Anita M Shete
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Deepak Y Patil
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | | | - Rajlaxmi Jain
- Indian Council of Medical Research-National Institute of Virology, Bangalore unit, Bangalore India
| | - Savita Patil
- Indian Council of Medical Research-National Institute of Virology, Bangalore unit, Bangalore India
| | - Diamond P Sinha
- ICMR-National Institute of Malaria Research, Field Unit, Raipur, India
| | - Manjunatha M Jayaswamy
- Indian Council of Medical Research-National Institute of Virology, Bangalore unit, Bangalore India
| |
Collapse
|
10
|
Radhakrishna S. Primates and pandemics: A biocultural approach to understanding disease transmission in human and nonhuman primates. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:595-605. [PMID: 36790634 DOI: 10.1002/ajpa.24613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/20/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022]
Abstract
Investigations into zoonotic disease outbreaks have been largely epidemiological and microbiological, with the primary focus being one of disease control and management. Increasingly though, the human-animal interface has proven to be an important driver for the acquisition and transmission of pathogens in humans, and this requires syncretic bio-socio-cultural enquiries into the origins of disease emergence, for more efficacious interventions. A biocultural lens is imperative for the examination of primate-related zoonoses, for the human-primate interface is broad and multitudinous, involving both physical and indirect interactions that occur due to shared spaces and ecologies. I use the case example of a viral zoonotic epidemic that is currently endemic to India, the Kysanaur Forest Disease, to show how biocultural anthropology provides a broad and integrative perspective into infectious disease ecology and presents new insights into the determinants of disease outbreaks. Drawing on insights from epidemiology, political ecology, primate behavioral ecology and ethnoprimatology, this paper demonstrates how human-primate interactions and shared ecologies impact infectious disease spread between human and nonhuman primate groups.
Collapse
|
11
|
Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KHM, Singh RK, Zhuang W, Varshney RK. Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol 2023; 43:1035-1062. [PMID: 35968922 DOI: 10.1080/07388551.2022.2093695] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/08/2022] [Indexed: 01/19/2023]
Abstract
Climate change gives rise to numerous environmental stresses, including soil salinity. Salinity/salt stress is the second biggest abiotic factor affecting agricultural productivity worldwide by damaging numerous physiological, biochemical, and molecular processes. In particular, salinity affects plant growth, development, and productivity. Salinity responses include modulation of ion homeostasis, antioxidant defense system induction, and biosynthesis of numerous phytohormones and osmoprotectants to protect plants from osmotic stress by decreasing ion toxicity and augmented reactive oxygen species scavenging. As most crop plants are sensitive to salinity, improving salt tolerance is crucial in sustaining global agricultural productivity. In response to salinity, plants trigger stress-related genes, proteins, and the accumulation of metabolites to cope with the adverse consequence of salinity. Therefore, this review presents an overview of salinity stress in crop plants. We highlight advances in modern biotechnological tools, such as omics (genomics, transcriptomics, proteomics, and metabolomics) approaches and different genome editing tools (ZFN, TALEN, and CRISPR/Cas system) for improving salinity tolerance in plants and accomplish the goal of "zero hunger," a worldwide sustainable development goal proposed by the FAO.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Zhejiang, China
| | - Ali Zeeshan Fakhar
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Luo Ju
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Zhejiang, China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Perth, Australia
| | - Rakesh K Singh
- Crop Diversification and Genetics, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Rajeev K Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Murdoch's Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| |
Collapse
|
12
|
Yadav P, Dhankher S, Sharma S. Simplified visual detection of Kyasanur Forest Disease virus employing Reverse Transcriptase-Polymerase Spiral Reaction (RT-PSR). Virus Res 2023; 335:199180. [PMID: 37482135 PMCID: PMC10412856 DOI: 10.1016/j.virusres.2023.199180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Among recently prevalent tick-borne infections in India, Kyasanur Forest Virus Disease (KFD) is an important public health concern. During last decade the emergence of cases apart from endemic zone raised concern about case positivity. Early diagnosis is therefore very important in disease management and primary containment. This study, aimed to develop a simplified viral RNA extraction in combination to dry down format of novel isothermal assay for (Reverse Transcription- Polymerase Spiral reaction) specific and rapid identification of Kyasanur Forest Disease Virus targeting viral envelope gene. The one step method was optimized by magnetic bead based viral RNA extraction followed by isothermal RT-PSR assay in heat bath at 63⁰C for 60 minutes. Further, visual results interpretation was done by color change of Hydroxy Naphthol Blue dye. The detection limit of the assay was found 10 RNA copies/rxn with comparable to silica column based viral RNA combined real time qPCR. No cross reactivity was observed with other closely related flaviviruses. The assay was evaluated with clinical samples has shown >99% concordance between two methods. This is the first report of sample extraction coupled isothermal detection of KFD in a simplified manner without a need of any hi-end equipment. The assay developed here has potential to use as an alternate for field-based detection in resource limited settings for KFD.
Collapse
Affiliation(s)
- Pooja Yadav
- Virology Division, Defence Research Development Establishment, Jhansi Road, Gwalior, 474002, India
| | - Suman Dhankher
- Virology Division, Defence Research Development Establishment, Jhansi Road, Gwalior, 474002, India
| | - Shashi Sharma
- Virology Division, Defence Research Development Establishment, Jhansi Road, Gwalior, 474002, India.
| |
Collapse
|
13
|
Bhatia B, Tang-Huau TL, Feldmann F, Hanley PW, Rosenke R, Shaia C, Marzi A, Feldmann H. Single-dose VSV-based vaccine protects against Kyasanur Forest disease in nonhuman primates. SCIENCE ADVANCES 2023; 9:eadj1428. [PMID: 37672587 PMCID: PMC10482351 DOI: 10.1126/sciadv.adj1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Kyasanur Forest disease virus (KFDV) is an endemic arbovirus in western India mainly transmitted by hard ticks of the genus Haemaphysalis. KFDV causes Kyasanur Forest disease (KFD), a syndrome including fever, gastrointestinal symptoms, and hemorrhages. There are no approved treatments, and the efficacy of the only vaccine licensed in India has recently been questioned. Here, we studied the protective efficacy of a vesicular stomatitis virus (VSV)-based vaccine expressing the KFDV precursor membrane and envelope proteins (VSV-KFDV) in pigtailed macaques. VSV-KFDV vaccination was found to be safe and elicited strong humoral and cellular immune responses. A single-dose vaccination reduced KFDV loads and pathology and protected macaques from KFD-like disease. Furthermore, VSV-KFDV elicited cross-reactive neutralizing immune responses to Alkhurma hemorrhagic fever virus, a KFDV variant found in Saudi Arabia.
Collapse
Affiliation(s)
- Bharti Bhatia
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Tsing-Lee Tang-Huau
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| |
Collapse
|
14
|
Bondaryuk AN, Belykh OI, Andaev EI, Bukin YS. Inferring Evolutionary Timescale of Omsk Hemorrhagic Fever Virus. Viruses 2023; 15:1576. [PMID: 37515262 PMCID: PMC10385366 DOI: 10.3390/v15071576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Until 2020, there were only three original complete genome (CG) nucleotide sequences of Omsk hemorrhagic fever virus (OHFV) in GenBank. For this reason, the evolutionary rate and divergence time assessments reported in the literature were based on the E gene sequences, but notably without temporal signal evaluation, such that their reliability is unclear. As of July 2022, 47 OHFV CG sequences have been published, which enables testing of temporal signal in the data and inferring unbiased and reliable substitution rate and divergence time values. Regression analysis in the TempEst software demonstrated a stronger clocklike behavior in OHFV samples for the complete open reading frame (ORF) data set (R2 = 0.42) than for the E gene data set (R2 = 0.11). Bayesian evaluation of temporal signal indicated very strong evidence, with a log Bayes factor of more than 5, in favor of temporal signal in all data sets. Our results based on the complete ORF sequences showed a more precise OHFV substitution rate (95% highest posterior density (HPD) interval, 9.1 × 10-5-1.8 × 10-4 substitutions per site per year) and tree root height (416-896 years ago) compared with previous assessments. The rate obtained is significantly higher than tick-borne encephalitis virus by at least 3.8-fold. The phylogenetic analysis and past population dynamics reconstruction revealed the declining trend of OHFV genetic diversity, but there was phylogenomic evidence that implicit virus subpopulations evolved locally and underwent an exponential growth phase.
Collapse
Affiliation(s)
- Artem N Bondaryuk
- Laboratory of Natural Focal Viral Infections, Irkutsk Antiplague Research Institute of Siberia and the Far East, Irkutsk 664047, Russia
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia
| | - Olga I Belykh
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia
| | - Evgeny I Andaev
- Laboratory of Natural Focal Viral Infections, Irkutsk Antiplague Research Institute of Siberia and the Far East, Irkutsk 664047, Russia
| | - Yurij S Bukin
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia
| |
Collapse
|
15
|
Srikanth UGK, Marinaik CB, Gomes AR, Rathnamma D, Byregowda SM, Isloor S, Munivenkatarayappa A, Venkatesha MD, Rao S, Rizwan A, Hegde R. Evaluation of Safety and Potency of Kyasanur Forest Disease (KFD) Vaccine Inactivated with Different Concentrations of Formalin and Comparative Evaluation of In Vitro and In Vivo Methods of Virus Titration in KFD Vaccine. Biomedicines 2023; 11:1871. [PMID: 37509510 PMCID: PMC10377137 DOI: 10.3390/biomedicines11071871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
We evaluated the safety and potency of the Kyasanur Forest disease (KFD) vaccine inactivated with different formalin concentrations in mice, since the side effects due to higher formalin concentrations have been a major reason for vaccine refusal. Furthermore, with an objective to reduce the use of mice in vaccine testing, we performed quantification of the KFD virus by real-time PCR and compared it with in vivo titration in mice. The KFD vaccine prepared in chicken embryo fibroblast cells was inactivated with 0.04%, 0.06%, and 0.08% concentrations of formalin. The vaccine inactivated with 0.04% and 0.06% formalin failed the safety test, whereas the KFD vaccine inactivated with 0.08% formalin was safe and potent with a log protective index of 5678 in mice. This reduced formalin content may induce no/lesser side-effects of pain/swelling which may increase the vaccine acceptance. The real-time PCR on individual KFD vaccine harvests interpreted that when the CT value of each harvest is <20, the vaccine will have sufficient viral particles to pass the potency test. Comparison of the real-time PCR on tenfold dilutions of the pooled harvests with in vivo mice inoculation test revealed that the 1MLD50 of the vaccine lies in the tenfold dilution that yields CT values between 31 and 34.
Collapse
Affiliation(s)
- Ullas Gowda K Srikanth
- Institute of Animal Health and Veterinary Biologicals, Karnataka Veterinary, Animal and Fisheries Sciences University-KVAFSU, Bangalore 560 0624, India
- Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University-KVAFSU, Bangalore 560 0624, India
| | - Chandranaik B Marinaik
- Institute of Animal Health and Veterinary Biologicals, Karnataka Veterinary, Animal and Fisheries Sciences University-KVAFSU, Bangalore 560 0624, India
| | - Amitha Reena Gomes
- Institute of Animal Health and Veterinary Biologicals, Karnataka Veterinary, Animal and Fisheries Sciences University-KVAFSU, Bangalore 560 0624, India
| | - Doddamane Rathnamma
- Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University-KVAFSU, Bangalore 560 0624, India
| | - Sonnahallipura M Byregowda
- Institute of Animal Health and Veterinary Biologicals, Karnataka Veterinary, Animal and Fisheries Sciences University-KVAFSU, Bangalore 560 0624, India
| | - Shrikrishna Isloor
- Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University-KVAFSU, Bangalore 560 0624, India
| | - Archana Munivenkatarayappa
- Institute of Animal Health and Veterinary Biologicals, Karnataka Veterinary, Animal and Fisheries Sciences University-KVAFSU, Bangalore 560 0624, India
| | - Mudalagiri D Venkatesha
- Institute of Animal Health and Veterinary Biologicals, Karnataka Veterinary, Animal and Fisheries Sciences University-KVAFSU, Bangalore 560 0624, India
| | - Suguna Rao
- Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University-KVAFSU, Bangalore 560 0624, India
| | - Apsana Rizwan
- Institute of Animal Health and Veterinary Biologicals, Karnataka Veterinary, Animal and Fisheries Sciences University-KVAFSU, Bangalore 560 0624, India
| | - Raveendra Hegde
- Institute of Animal Health and Veterinary Biologicals, Karnataka Veterinary, Animal and Fisheries Sciences University-KVAFSU, Bangalore 560 0624, India
| |
Collapse
|
16
|
Hassall RMJ, Burthe SJ, Schäfer SM, Hartemink N, Purse BV. Using mechanistic models to highlight research priorities for tick-borne zoonotic diseases: Improving our understanding of the ecology and maintenance of Kyasanur Forest Disease in India. PLoS Negl Trop Dis 2023; 17:e0011300. [PMID: 37126514 PMCID: PMC10174626 DOI: 10.1371/journal.pntd.0011300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/11/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
The risk of spillover of zoonotic diseases to humans is changing in response to multiple environmental and societal drivers, particularly in tropical regions where the burden of neglected zoonotic diseases is highest and land use change and forest conversion is occurring most rapidly. Neglected zoonotic diseases can have significant impacts on poor and marginalised populations in low-resource settings but ultimately receive less attention and funding for research and interventions. As such, effective control measures and interventions are often hindered by a limited ecological evidence base, which results in a limited understanding of epidemiologically relevant hosts or vectors and the processes that contribute to the maintenance of pathogens and spillover to humans. Here, we develop a generalisable next generation matrix modelling framework to better understand the transmission processes and hosts that have the greatest contribution to the maintenance of tick-borne diseases with the aim of improving the ecological evidence base and framing future research priorities for tick-borne diseases. Using this model we explore the relative contribution of different host groups and transmission routes to the maintenance of a neglected zoonotic tick-borne disease, Kyasanur Forest Disease Virus (KFD), in multiple habitat types. The results highlight the potential importance of transovarial transmission and small mammals and birds in maintaining this disease. This contradicts previous hypotheses that primates play an important role influencing the distribution of infected ticks. There is also a suggestion that risk could vary across different habitat types but currently more research is needed to evaluate this relationship. In light of these results, we outline the key knowledge gaps for this system and future research priorities that could inform effective interventions and control measures.
Collapse
Affiliation(s)
| | - Sarah J. Burthe
- UK Centre for Ecology & Hydrology, Edinburgh, United Kingdom
| | | | - Nienke Hartemink
- Biometris, Wageningen University and Research, Wageningen, The Netherlands
- Quantitative Veterinary Epidemiology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Bethan V. Purse
- UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
| |
Collapse
|
17
|
Bondaryuk AN, Kulakova NV, Belykh OI, Bukin YS. Dates and Rates of Tick-Borne Encephalitis Virus-The Slowest Changing Tick-Borne Flavivirus. Int J Mol Sci 2023; 24:2921. [PMID: 36769238 PMCID: PMC9917962 DOI: 10.3390/ijms24032921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
We evaluated the temporal signal and substitution rate of tick-borne encephalitis virus (TBEV) using 276 complete open reading frame (ORF) sequences with known collection dates. According to a permutation test, the TBEV Siberian subtype (TBEV-S) data set has no temporal structure and cannot be applied for substitution rate estimation without other TBEV subtypes. The substitution rate obtained suggests that the common clade of TBEV (TBEV-common), including all TBEV subtypes and louping-ill virus (LIV), is characterized by the lowest rate (1.87 × 10-5 substitutions per site per year (s/s/y) or 1 nucleotide substitution per ORF per 4.9 years; 95% highest posterior density (HPD) interval, 1.3-2.4 × 10-5 s/s/y) among all tick-borne flaviviruses previously assessed. Within TBEV-common, the TBEV European subtype (TBEV-E) has the lowest substitution rate (1.3 × 10-5 s/s/y or 1 nucleotide substitution per ORF per 7.5 years; 95% HPD, 1.0-1.8 × 10-5 s/s/y) as compared with TBEV Far-Eastern subtype (3.0 × 10-5 s/s/y or 1 nucleotide substitution per ORF per 3.2 years; 95% HPD, 1.6-4.5 × 10-5 s/s/y). TBEV-common representing the species tick-borne encephalitis virus diverged 9623 years ago (95% HPD interval, 6373-13,208 years). The TBEV Baikalian subtype is the youngest one (489 years; 95% HPD, 291-697 years) which differs significantly by age from TBEV-E (848 years; 95% HPD, 596-1112 years), LIV (2424 years; 95% HPD, 1572-3400 years), TBEV-FE (1936 years, 95% HPD, 1344-2598 years), and the joint clade of TBEV-S (2505 years, 95% HPD, 1700-3421 years) comprising Vasilchenko, Zausaev, and Baltic lineages.
Collapse
Affiliation(s)
- Artem N. Bondaryuk
- Laboratory of Natural Focal Viral Infections, Irkutsk Antiplague Research Institute of Siberia and the Far East, 664047 Irkutsk, Russia
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Nina V. Kulakova
- Department of Biodiversity and Biological Resources, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Olga I. Belykh
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Yurij S. Bukin
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| |
Collapse
|
18
|
Carpio KL, Thompson JK, Widen SG, Smith JK, Juelich TL, Clements DE, Freiberg AN, Barrett ADT. Differences in Genetic Diversity of Mammalian Tick-Borne Flaviviruses. Viruses 2023; 15:281. [PMID: 36851495 PMCID: PMC9959157 DOI: 10.3390/v15020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
The genetic diversities of mammalian tick-borne flaviviruses are poorly understood. We used next-generation sequencing (NGS) to deep sequence different viruses and strains belonging to this group of flaviviruses, including Central European tick-borne encephalitis virus (TBEV-Eur), Far Eastern TBEV (TBEV-FE), Langat (LGTV), Powassan (POWV), Deer Tick (DTV), Kyasanur Forest Disease (KFDV), Alkhurma hemorrhagic fever (AHFV), and Omsk hemorrhagic fever (OHFV) viruses. DTV, AHFV, and KFDV had the lowest genetic diversity, while POWV strains LEIV-5530 and LB, OHFV, TBEV-Eur, and TBEV-FE had higher genetic diversities. These findings are compatible with the phylogenetic relationships between the viruses. For DTV and POWV, the amount of genetic diversity could be explained by the number of tick vector species and amplification hosts each virus can occupy, with low diversity DTV having a more limited vector and host pool, while POWV with higher genetic diversities has been isolated from different tick species and mammals. It is speculated that high genetic diversity may contribute to the survival of the virus as it encounters these different environments.
Collapse
Affiliation(s)
- Kassandra L. Carpio
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jill K. Thompson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Steven G. Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jennifer K. Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Terry L. Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alan D. T. Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
19
|
Rajak A, Kumar JS, Dhankher S, Sandhya V, Kiran S, Golime R, Dash PK. Development and application of a recombinant Envelope Domain III protein based indirect human IgM ELISA for Kyasanur forest disease virus. Acta Trop 2022; 235:106623. [DOI: 10.1016/j.actatropica.2022.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/01/2022]
|
20
|
Yadav PD, Kaur H, Gupta N, Sahay RR, Sapkal GN, Shete AM, Deshpande GR, Mohandas S, Majumdar T, Patil S, Pandit P, Kumar A, Nyayanit DA, Sreelatha KH, Manjusree S, Sami H, Khan HM, Malhotra A, Dhingra K, Gadepalli R, Sudha Rani V, Singh MK, Joshi Y, Dudhmal M, Duggal N, Chabbra M, Dar L, Gawande P, Yemul J, Kalele K, Arjun R, Nagamani K, Borkakoty B, Sahoo G, Praharaj I, Dutta S, Barde P, Jaryal SC, Rawat V. Zika a Vector Borne Disease Detected in Newer States of India Amidst the COVID-19 Pandemic. Front Microbiol 2022; 13:888195. [PMID: 35756041 PMCID: PMC9226610 DOI: 10.3389/fmicb.2022.888195] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background During the second wave of the COVID-19 pandemic, outbreaks of Zika were reported from Kerala, Uttar Pradesh, and Maharashtra, India in 2021. The Dengue and Chikungunya negative samples were retrospectively screened to determine the presence of the Zika virus from different geographical regions of India. Methods During May to October 2021, the clinical samples of 1475 patients, across 13 states and a union territory of India were screened and re-tested for Dengue, Chikungunya and Zika by CDC Trioplex Real time RT-PCR. The Zika rRTPCR positive samples were further screened with anti-Zika IgM and Plaque Reduction Neutralization Test. Next generation sequencing was used for further molecular characterization. Results The positivity was observed for Zika (67), Dengue (121), and Chikungunya (10) amongst screened cases. The co-infections of Dengue/Chikungunya, Dengue/Zika, and Dengue/Chikungunya/Zika were also observed. All Zika cases were symptomatic with fever (84%) and rash (78%) as major presenting symptoms. Of them, four patients had respiratory distress, one presented with seizures, and one with suspected microcephaly at birth. The Asian Lineage of Zika and all four serotypes of Dengue were found in circulation. Conclusion Our study indicates the spread of the Zika virus to several states of India and an urgent need to strengthen its surveillance.
Collapse
Affiliation(s)
- Pragya D Yadav
- Indian Council of Medical Research, National Institute of Virology, Pune, India
| | - Harmanmeet Kaur
- Indian Council of Medical Research, V. Ramalingaswami Bhawan, New Delhi, India
| | - Nivedita Gupta
- Indian Council of Medical Research, V. Ramalingaswami Bhawan, New Delhi, India
| | - Rima R Sahay
- Indian Council of Medical Research, National Institute of Virology, Pune, India
| | - Gajanan N Sapkal
- Indian Council of Medical Research, National Institute of Virology, Pune, India
| | - Anita M Shete
- Indian Council of Medical Research, National Institute of Virology, Pune, India
| | - Gururaj R Deshpande
- Indian Council of Medical Research, National Institute of Virology, Pune, India
| | | | - Triparna Majumdar
- Indian Council of Medical Research, National Institute of Virology, Pune, India
| | - Savita Patil
- Indian Council of Medical Research, National Institute of Virology, Pune, India
| | - Priyanka Pandit
- Indian Council of Medical Research, National Institute of Virology, Pune, India
| | - Abhinendra Kumar
- Indian Council of Medical Research, National Institute of Virology, Pune, India
| | - Dimpal A Nyayanit
- Indian Council of Medical Research, National Institute of Virology, Pune, India
| | - K H Sreelatha
- Virus Research and Diagnostic Laboratory, Government Medical College, Thiruvananthapuram, India
| | - S Manjusree
- Virus Research and Diagnostic Laboratory, Government Medical College, Thiruvananthapuram, India
| | - Hiba Sami
- Virus Research and Diagnostic Laboratory, Jawaharlal Nehru Medical College, Aligarh, India
| | - Haris Mazoor Khan
- Virus Research and Diagnostic Laboratory, Jawaharlal Nehru Medical College, Aligarh, India
| | - Anuradha Malhotra
- Virus Research and Diagnostic Laboratory, Government Medical College, Amritsar, India
| | - Kanwardeep Dhingra
- Virus Research and Diagnostic Laboratory, Government Medical College, Amritsar, India
| | - Ravisekhar Gadepalli
- Virus Research and Diagnostic Laboratory, All India Institute of Medical Sciences, Jodhpur, India
| | - V Sudha Rani
- Virus Research and Diagnostic Laboratory, Osmania Medical College Hyderabad, Hyderabad, India
| | - Manoj Kumar Singh
- Virus Research and Diagnostic Laboratory, Rajendra Institute of Medical Sciences, Ranchi, India
| | - Yash Joshi
- Indian Council of Medical Research, National Institute of Virology, Pune, India
| | - Manisha Dudhmal
- Indian Council of Medical Research, National Institute of Virology, Pune, India
| | - Nandini Duggal
- Virus Research and Diagnostic Laboratory, Atal Bihari Vajpayee Institute of Medical Sciences & Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Mala Chabbra
- Virus Research and Diagnostic Laboratory, Atal Bihari Vajpayee Institute of Medical Sciences & Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Lalit Dar
- Virus Research and Diagnostic Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Pranita Gawande
- Indian Council of Medical Research, National Institute of Virology, Pune, India
| | - Jyoti Yemul
- Indian Council of Medical Research, National Institute of Virology, Pune, India
| | - Kaumudi Kalele
- Indian Council of Medical Research, National Institute of Virology, Pune, India
| | | | - K Nagamani
- Virus Research and Diagnostic Laboratory, Gandhi Medical College, Secunderabad, India
| | - Biswa Borkakoty
- Virus Research and Diagnostic Laboratory, ICMR-Regional Medical Research Centre, Dibrugarh, India
| | - Ganesh Sahoo
- Virus Research and Diagnostic Laboratory, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Ira Praharaj
- Virus Research and Diagnostic Laboratory, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Shanta Dutta
- Virus Research and Diagnostic Laboratory, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Pradip Barde
- Virus Research and Diagnostic Laboratory, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - S C Jaryal
- Virus Research and Diagnostic Laboratory, Dr. Rajendra Prasad Government Medical College, Tanda, India
| | - Vinita Rawat
- Virus Research and Diagnostic Laboratory, Government Medical College, Haldwani, India
| |
Collapse
|
21
|
Zhang D, Yang Y, Li M, Lu Y, Liu Y, Jiang J, Liu R, Liu J, Huang X, Li G, Qu J. Ecological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious Diseases. ENGINEERING (BEIJING, CHINA) 2022; 10:155-166. [PMID: 33903827 PMCID: PMC8060651 DOI: 10.1016/j.eng.2020.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 05/24/2023]
Abstract
The coronavirus disease 2019 (COVID-19) and concerns about several other pandemics in the 21st century have attracted extensive global attention. These emerging infectious diseases threaten global public health and raise urgent studies on unraveling the underlying mechanisms of their transmission from animals to humans. Although numerous works have intensively discussed the cross-species and endemic barriers to the occurrence and spread of emerging infectious diseases, both types of barriers play synergistic roles in wildlife habitats. Thus far, there is still a lack of a complete understanding of viral diffusion, migration, and transmission in ecosystems from a macro perspective. In this review, we conceptualize the ecological barrier that represents the combined effects of cross-species and endemic barriers for either the natural or intermediate hosts of viruses. We comprehensively discuss the key influential factors affecting the ecological barrier against viral transmission from virus hosts in their natural habitats into human society, including transmission routes, contact probability, contact frequency, and viral characteristics. Considering the significant impacts of human activities and global industrialization on the strength of the ecological barrier, ecological barrier deterioration driven by human activities is critically analyzed for potential mechanisms. Global climate change can trigger and expand the range of emerging infectious diseases, and human disturbances promote higher contact frequency and greater transmission possibility. In addition, globalization drives more transmission routes and produces new high-risk regions in city areas. This review aims to provide a new concept for and comprehensive evidence of the ecological barrier blocking the transmission and spread of emerging infectious diseases. It also offers new insights into potential strategies to protect the ecological barrier and reduce the wide-ranging risks of emerging infectious diseases to public health.
Collapse
Affiliation(s)
- Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yunfeng Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
22
|
Song S, Drotlef D, Son D, Koivikko A, Sitti M. Adaptive Self-Sealing Suction-Based Soft Robotic Gripper. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100641. [PMID: 34218533 PMCID: PMC8425915 DOI: 10.1002/advs.202100641] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/11/2021] [Indexed: 05/30/2023]
Abstract
While suction cups prevail as common gripping tools for a wide range of real-world parts and surfaces, they often fail to seal the contact interface when engaging with irregular shapes and textured surfaces. In this work, the authors propose a suction-based soft robotic gripper where suction is created inside a self-sealing, highly conformable and thin flat elastic membrane contacting a given part surface. Such soft gripper can self-adapt the size of its effective suction area with respect to the applied load. The elastomeric membrane covering edge of the soft gripper can develop an air-tight self-sealing with parts even smaller than the gripper diameter. Such gripper shows 4 times higher adhesion than the one without the membrane on various textured surfaces. The two major advantages, underactuated self-adaptability and enhanced suction performance, allow the membrane-based suction mechanism to grip various three-dimensional (3D) geometries and delicate parts, such as egg, lime, apple, and even hydrogels without noticeable damage, which can have not been gripped with the previous adhesive microstructures-based and active suction-based soft grippers. The structural and material simplicity of the proposed soft gripper design can have a broad use in diverse fields, such as digital manufacturing, robotic manipulation, transfer printing, and medical gripping.
Collapse
Affiliation(s)
- Sukho Song
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
- Laboratory for Soft Bioelectronic InterfacesÉcole Polytechnique Fédérale de LausanneGeneva1202Switzerland
| | - Dirk‐Michael Drotlef
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
| | - Donghoon Son
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
- School of Mechanical EngineeringPusan National UniversityBusan46241South Korea
| | - Anastasia Koivikko
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33720Finland
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
- Institute for Biomedical EngineeringETH ZurichZurich8092Switzerland
- School of Medicine and College of EngineeringKoç UniversityIstanbul34450Turkey
| |
Collapse
|
23
|
Low mammalian species richness is associated with Kyasanur Forest disease outbreak risk in deforested landscapes in the Western Ghats, India. One Health 2021; 13:100299. [PMID: 34430695 PMCID: PMC8367838 DOI: 10.1016/j.onehlt.2021.100299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 02/06/2023] Open
Abstract
Kyasanur forest disease virus (KFDV) is a rapidly expanding tick-borne zoonotic virus with natural foci in the forested region of the Western Ghats of South India. The Western Ghats is one of the world's most important biodiversity hotspots and, like many such areas of high biodiversity, is under significant pressure from anthropogenic landscape change. The current study sought to quantify mammalian species richness using ensemble models of the distributions of a sample of species extant in the Western Ghats and to explore its association with KFDV outbreaks, as well as the modifying effects of deforestation on this association. Species richness was quantified as a composite of individual species' distributions, as derived from ensembles of boosted regression tree, random forest, and generalised additive models. Species richness was further adjusted for the potential biotic constraints of sympatric species. Both species richness and forest loss demonstrated strong positive associations with KFDV outbreaks, however forest loss substantially modified the association between species richness and outbreaks. High species richness was associated with increased KFDV risk but only in areas of low forest loss. In contrast, lower species richness was associated with increased KFDV risk in areas of greater forest loss. This relationship persisted when species richness was adjusted for biotic constraints at the taluk-level. In addition, the taluk-level species abundances of three monkey species (Macaca radiata, Semnopithecus hypoleucus, and Semnopithecus priam) were also associated with outbreaks. These results suggest that increased monitoring of wildlife in areas of significant habitat fragmentation may add considerably to critical knowledge gaps in KFDV epidemiology and infection ecology and should be incorporated into novel One Health surveillance development for the region. In addition, the inclusion of some primate species as sentinels of KFDV circulation into general wildlife surveillance architecture may add further value.
Collapse
|
24
|
Arumugam S, Varamballi P. In-silico design of envelope based multi-epitope vaccine candidate against Kyasanur forest disease virus. Sci Rep 2021; 11:17118. [PMID: 34429443 PMCID: PMC8384868 DOI: 10.1038/s41598-021-94488-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Kyasanur forest disease virus (KFDV) causing tick-borne hemorrhagic fever which was earlier endemic to western Ghats, southern India, it is now encroaching into new geographic regions, but there is no approved medicine or effective vaccine against this deadly disease. In this study, we did in-silico design of multi-epitope subunit vaccine for KFDV. B-cell and T-cell epitopes were predicted from conserved regions of KFDV envelope protein and two vaccine candidates (VC1 and VC2) were constructed, those were found to be non-allergic and possess good antigenic properties, also gives cross-protection against Alkhurma hemorrhagic fever virus. The 3D structures of vaccine candidates were built and validated. Docking analysis of vaccine candidates with toll-like receptor-2 (TLR-2) by Cluspro and PatchDock revealed strong affinity between VC1 and TLR2. Ligplot tool was identified the intermolecular hydrogen bonds between vaccine candidates and TLR-2, iMOD server confirmed the stability of the docking complexes. JCAT sever ensured cloning efficiency of both vaccine constructs and in-silico cloning into pET30a (+) vector by SnapGene showed successful translation of epitope region. IMMSIM server was identified increased immunological responses. Finally, multi-epitope vaccine candidates were designed and validated their efficiency, it may pave the way for up-coming vaccine and diagnostic kit development.
Collapse
Affiliation(s)
- Sathishkumar Arumugam
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Prasad Varamballi
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
25
|
Mourya DT, Yadav PD, Patil DY, Sahay RR, Rahi M. Experiences of Indian Council of Medical Research with tick-borne zoonotic infections: Kyasanur Forest disease & Crimean-Congo haemorrhagic fever in India with One Health focus. Indian J Med Res 2021; 153:339-347. [PMID: 33906997 PMCID: PMC8204825 DOI: 10.4103/ijmr.ijmr_532_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Emergence and re-emergence of several pathogens have been witnessed by this century in the form of outbreaks, epidemics and pandemics. In India, the influencing factor that promotes dissemination of emerging and re-emerging viral infections is the biogeographical zones: a megadiverse country, characterized by varied geographical, climatic conditions and ever-changing socio-economical and geopolitical issues. These influence the movement of humans and animals and add layers of complexity for the identification and timely management of infectious diseases. This review focuses on two tick-borne infections: Crimean-Congo haemorrhagic fever (CCHF) and Kyasanur forest disease (KFD). In the last two decades, these viruses have emerged and caused outbreaks in different parts of India. KFD virus was initially identified in 1957 and was known to be endemic in Karnataka State while CCHF virus was first identified during 2010 in Gujarat State, India. These viruses have managed to emerge in new areas within the last decade. With changing epidemiology of these arboviruses, there is a probability of the emergence of these viruses from new areas in future. The investigations on these two diseases under the One Health focus involved early detection, quickly developing diagnostic tools, identifying stakeholders, capacity building by developing collaboration with major stakeholders to understand the epidemiology and geographical spread in domestic animal reservoirs and tick vectors in the affected areas, developing laboratory network, providing diagnostic reagents and biosafety and laboratory diagnosis training to the network laboratories to control these diseases.
Collapse
Affiliation(s)
| | - Pragya D Yadav
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Deepak Y Patil
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Rima R Sahay
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Manju Rahi
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
26
|
Anoopkumar AN, Aneesh EM. Assessing the importance of Molecular and Genetic perspectives in Prophesying the KFD transmission risk provinces in the Western Ghats, Kerala, INDIA in context with spatial distribution, Extensive genetic Diversity, and phylogeography. Comp Immunol Microbiol Infect Dis 2021; 76:101652. [PMID: 33910066 DOI: 10.1016/j.cimid.2021.101652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
The deadly effects of KFD have been pointed in southern India; however, the infecting regions have been getting larger in recent epochs. People who live or work in regions where KFDV infected tick vectors are present are severely prone to procuring the infection. Being aware of tick vectors and infectious agents' geospatial location is vital to direct sustenance approaches to prevent and manage such infectious diseases as KFD. The present investigation has focussed on the spatial distribution, Extensive genetic Diversity, and phylogeography to forecast the probable KFD disease risk provinces in the Western Ghats. The statistical analysis for diversity indices and community comparison has been performed by using SPSS version 24.0.0 and R software version 3.4.2. The nucleotide sequences of the respective ticks and KFDV were retrieved from NCBI. The first strand of this investigation revealed that, around the world, the Indian province was found to exhibit a maximum range of diversity for tick vectors. The next strands prophesied the KFD transmission risk areas in the Western Ghats region, India, with computational spatial analysis and phylogeography. The final strand exposed the genetic diversity of the KFD virus and the tick vectors in terms of their spatial distribution worldwide.
Collapse
Affiliation(s)
- A N Anoopkumar
- Communicable Disease Research Laboratory (CDRL), Department of Zoology, St. Joseph's College, Irinjalakuda, University of Calicut, Kerala, India.
| | - Embalil Mathachan Aneesh
- Communicable Disease Research Laboratory (CDRL), Department of Zoology, St. Joseph's College, Irinjalakuda, University of Calicut, Kerala, India.
| |
Collapse
|
27
|
Lappan S, Malaivijitnond S, Radhakrishna S, Riley EP, Ruppert N. The human-primate interface in the New Normal: Challenges and opportunities for primatologists in the COVID-19 era and beyond. Am J Primatol 2020; 82:e23176. [PMID: 32686188 PMCID: PMC7404331 DOI: 10.1002/ajp.23176] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/23/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
The emergence of SARS-CoV-2 in late 2019 and human responses to the resulting COVID-19 pandemic in early 2020 have rapidly changed many aspects of human behavior, including our interactions with wildlife. In this commentary, we identify challenges and opportunities at human-primate interfaces in light of COVID-19, focusing on examples from Asia, and make recommendations for researchers working with wild primates to reduce zoonosis risk and leverage research opportunities. First, we briefly review the evidence for zoonotic origins of SARS-CoV-2 and discuss risks of zoonosis at the human-primate interface. We then identify challenges that the pandemic has caused for primates, including reduced nutrition, increased intraspecific competition, and increased poaching risk, as well as challenges facing primatologists, including lost research opportunities. Subsequently, we highlight opportunities arising from pandemic-related lockdowns and public health messaging, including opportunities to reduce the intensity of problematic human-primate interfaces, opportunities to reduce the risk of zoonosis between humans and primates, opportunities to reduce legal and illegal trade in primates, new opportunities for research on human-primate interfaces, and opportunities for community education. Finally, we recommend specific actions that primatologists should take to reduce contact and aggression between humans and primates, to reduce demand for primates as pets, to reduce risks of zoonosis in the context of field research, and to improve understanding of human-primate interfaces. Reducing the risk of zoonosis and promoting the well-being of humans and primates at our interfaces will require substantial changes from "business as usual." We encourage primatologists to help lead the way.
Collapse
Affiliation(s)
- Susan Lappan
- Department of AnthropologyAppalachian State UniversityBooneNorth Carolina
- School of Biological SciencesUniversiti Sains MalaysiaPenangMalaysia
| | - Suchinda Malaivijitnond
- National Primate Research Center of ThailandChulalongkorn UniversityKaeng KhoiSaraburiThailand
- Department of Biology, Faculty of ScienceChulalongkorn UniversityBangkokThailand
| | - Sindhu Radhakrishna
- National Institute of Advanced StudiesIndian Institute of ScienceBengaluruIndia
| | - Erin P. Riley
- Department of AnthropologySan Diego State UniversitySan DiegoCalifornia
| | - Nadine Ruppert
- School of Biological SciencesUniversiti Sains MalaysiaPenangMalaysia
| |
Collapse
|