1
|
Shelley SP, James RS, Eustace SJ, Turner MC, Brett R, Eyre ELJ, Tallis J. Adverse effects of high-fat diet consumption on contractile mechanics of isolated mouse skeletal muscle are reduced when supplemented with resveratrol. J Physiol 2025; 603:2675-2698. [PMID: 40349319 PMCID: PMC12072245 DOI: 10.1113/jp287056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/27/2025] [Indexed: 05/14/2025] Open
Abstract
Increasing evidence indicates resveratrol (RES) supplementation evokes anti-obesogenic responses that could mitigate obesity-induced reductions in skeletal muscle (SkM) contractility. Contractile function is a key facet of SkM health that underpins whole body health. For the first time, the present study examines the effects of a high-fat diet and RES supplementation on isolated soleus (SOL) and extensor digitorum longus (EDL) contractile function. Female CD-1 mice, ∼6 weeks old (n = 38), consumed a standard laboratory diet (SLD) or a high-fat diet (HFD), with or without RES (4 g kg-1 diet) for 12 weeks. SOL and EDL (n = 8-10 per muscle, per group) were isolated and then absolute and normalised (to muscle size and body mass) isometric force and work loop power output (PO) were measured, and fatigue resistance was determined. Furthermore, sirtuin-1 expression was determined to provide mechanistic insight into any potential contractile changes. For SOL absolute force was higher in HFDRES compared to HFD (P = 0.033), and PO normalised to body mass and cumulative work during fatigue were reduced in HFD groups (P < 0.014). EDL absolute and normalised PO and cumulative work during fatigue were lower in HFD compared to other groups (P < 0.019). RES negated most adverse effects of HFD consumption on EDL contractility, with HFDRES producing PO and cumulative work comparable to the SLD groups. Sirtuin-1 expression was not influenced by diet in either muscle (P > 0.165). This study uniquely demonstrates that RES attenuates HFD-induced reductions in contractile performance of EDL, but this response is not explained by altered sirtuin-1 expression. These results suggest RES may be an appropriate strategy to alleviate obesity-induced declines in SkM function. KEY POINTS: Skeletal muscle health, a precursor for disease prevention, whole body health and quality of life, is substantially reduced because of obesity. Growing evidence suggests that the anti-obesogenic effects of nutritional supplement resveratrol may mitigate against obesity-induced muscle pathology. However, the effect of resveratrol on skeletal muscle contractile performance, a primary marker of skeletal muscle health, is yet to be examined. Our findings indicate that resveratrol reduces the adverse effects of high-fat diet consumption on the contractile performance of isolated fast twitch muscle and reduces the accumulation of central adipose. Resveratrol had little effect on skeletal muscle performance of standard diet mice, highlighting its specific efficacy in addressing high-fat diet-induced muscle pathology.
Collapse
Affiliation(s)
- Sharn P. Shelley
- Research Centre for Physical Activity, Sport and Exercise ScienceCoventry UniversityCoventryUK
| | - Rob S. James
- Faculty of Life SciencesUniversity of BradfordBradfordUK
| | - Steven J. Eustace
- Research Centre for Physical Activity, Sport and Exercise ScienceCoventry UniversityCoventryUK
| | - Mark C. Turner
- Research Centre for Health and Life SciencesCoventry UniversityCoventryUK
- Institute for Cardio‐Metabolic MedicineUniversity Hospital Coventry and WarwickshireCoventryUK
| | - Ryan Brett
- Research Centre for Health and Life SciencesCoventry UniversityCoventryUK
| | | | - Jason Tallis
- Research Centre for Physical Activity, Sport and Exercise ScienceCoventry UniversityCoventryUK
| |
Collapse
|
2
|
Xu M, Lv D, Wei H, Li Z, Jin S, Liu Q, Zhang Y, Liu Y. Effects of antidiabetic agents on lipid metabolism of skeletal muscle: A narrative review. Diabetes Obes Metab 2025; 27:1693-1707. [PMID: 39807619 DOI: 10.1111/dom.16189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025]
Abstract
Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked. However, current research has predominantly focused on muscle mass rather than skeletal muscle lipid metabolism and its interplay with glucose metabolism. In this review, we summarised the latest research on the effects of antidiabetic drugs and certain natural compounds with antidiabetic activity on skeletal muscle lipid metabolism, focusing on data from preclinical to clinical studies. Given the widespread use of antidiabetic drugs, a better understanding of their effects on skeletal muscle lipid metabolism merits further attention in future research.
Collapse
Affiliation(s)
- Ming Xu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Dongqing Lv
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Hongxia Wei
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhe Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Shuqing Jin
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Qinhao Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Ivanova D, Semkova S, Grigorov B, Tzanova M, Georgieva A, Danchev D, Nikolova B, Yaneva Z. The General Principle of the Warburg Effect as a Possible Approach for Cancer Immunotherapy: The Regulatory Effect of Plant Extracts Could Change the Game. Molecules 2025; 30:393. [PMID: 39860262 PMCID: PMC11767411 DOI: 10.3390/molecules30020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The interpretation of the biochemistry of immune metabolism could be considered an attractive scientific field of biomedicine research. In this review, the role of glycolysis in macrophage polarization is discussed together with mitochondrial metabolism in cancer cells. In the first part, the focus is on the Warburg effect and redox metabolism during macrophage polarization, cancer development, and management of the immune response by the cancer cells. The second part addresses the possibility of impacts on the Warburg effect through targeting peroxisome proliferator-activated receptors (PPARs). This could be an activator of native immune responses. Because of the reported serious adverse effects of using synthetic ligands for PPARs in combination with chemotherapeutics, searches for less toxic and more active PPAR inhibitors, as well as blocking undesirable cellular PPAR-dependent processes, are in progress. On the other hand, recent research in modern immunotherapy has focused on the search for gentle immune-modulating natural compounds with harmless synergistic chemotherapeutic efficacy that can be used as an adjuvant. It is a well-known fact that the plant kingdom is a source of important therapeutic agents with multifaceted effectiveness. One of these is the known association with PPAR activities. In this regard, the secondary metabolites extracted from plants could change the game.
Collapse
Affiliation(s)
- Donika Ivanova
- Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
- Department of Chemistry and Biochemistry, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Severina Semkova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Boncho Grigorov
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Milena Tzanova
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | | | | | - Biliana Nikolova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Zvezdelina Yaneva
- Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
4
|
Wang P, Li Z, Song Y, Zhang B, Fan C. Resveratrol-driven macrophage polarization: unveiling mechanisms and therapeutic potential. Front Pharmacol 2025; 15:1516609. [PMID: 39872049 PMCID: PMC11770351 DOI: 10.3389/fphar.2024.1516609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/23/2024] [Indexed: 01/29/2025] Open
Abstract
Resveratrol, a polyphenolic compound known for its diverse biological activities, has demonstrated multiple pharmacological effects, including anti-inflammatory, anti-aging, anti-diabetic, anti-cancer, and cardiovascular protective properties. Recent studies suggest that these effects are partly mediated through the regulation of macrophage polarization, wherein macrophages differentiate into pro-inflammatory M1 or anti-inflammatory M2 phenotypes. Our review highlights how resveratrol modulates macrophage polarization through various signaling pathways to achieve therapeutic effects. For example, resveratrol can activate the senescence-associated secretory phenotype (SASP) pathway and inhibit the signal transducer and activator of transcription (STAT3) and sphingosine-1-phosphate (S1P)-YAP signaling axes, promoting M1 polarization or suppressing M2 polarization, thereby inhibiting tumor growth. Conversely, it can promote M2 polarization or suppress M1 polarization by inhibiting the NF-κB signaling pathway or activating the PI3K/Akt and AMP-activated protein kinase (AMPK) pathways, thus alleviating inflammatory responses. Notably, the effect of resveratrol on macrophage polarization is concentration-dependent; moderate concentrations tend to promote M1 polarization, while higher concentrations may favor M2 polarization. This concentration dependence offers new perspectives for clinical treatment but also underscores the necessity for precise dosage control when using resveratrol. In summary, resveratrol exhibits significant potential in regulating macrophage polarization and treating related diseases.
Collapse
Affiliation(s)
- Panting Wang
- Department of Neurosurgery West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing Sichuan University, Chengdu, China
| | - Zixi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bowei Zhang
- Southwest Institute of Technical Physics, Chengdu, China
| | - Chaofeng Fan
- Department of Neurosurgery West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Ghavidel F, Hashemy SI, Aliari M, Rajabian A, Tabrizi MH, Atkin SL, Jamialahmadi T, Hosseini H, Sahebkar A. The Effects of Resveratrol Supplementation on the Metabolism of Lipids in Metabolic Disorders. Curr Med Chem 2025; 32:2219-2234. [PMID: 37828670 DOI: 10.2174/0109298673255218231005062112] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 08/26/2023] [Indexed: 10/14/2023]
Abstract
Lipids are stored energy sources in animals, and disturbance of lipid metabolism is associated with metabolic disorders, including cardiovascular diseases, obesity, nonalcoholic fatty liver disease, and diabetes. Modifying dysregulated lipid metabolism homeostasis can lead to enhanced therapeutic benefits, such as the use of statin therapy in cardiovascular disease. However, many natural compounds may have therapeutic utility to improve lipid metabolism. Resveratrol is a polyphenol extracted from dietary botanicals, including grapes and berries, which has been reported to affect many biological processes, including lipid metabolism. This review evaluates the effects of resveratrol on lipid metabolism dysregulation affecting atherosclerosis, diabetes, and nonalcoholic fatty liver disease (NAFLD). In addition, it details the mechanisms by which resveratrol may improve lipid metabolism homeostasis.
Collapse
Affiliation(s)
- Farideh Ghavidel
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdeyeh Aliari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Stephen L Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- International UNESCO center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Tello-Palencia MA, Yang T, Sularz O, Demers LE, Ma Y, Boycott C, Zhang HA, Lubecka-Gajewska K, Kumar S, Ramsey BS, Torregrosa-Allen S, Elzey BD, Lanman NA, Korthauer K, Stefanska B. Pterostilbene Targets Hallmarks of Aging in the Gene Expression Landscape in Blood of Healthy Rats. Mol Nutr Food Res 2024; 68:e2400662. [PMID: 39562169 DOI: 10.1002/mnfr.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/05/2024] [Indexed: 11/21/2024]
Abstract
SCOPE Polyphenols from the phytoestrogen group, including pterostilbene (PTS), are known for their antioxidant, anti-inflammatory, and anti-cancer effects. In recent reports, phytoestrogens attenuate age-related diseases; however, their pro-longevity effects in healthy models in mammals remain unknown. As longevity research demonstrates age-related transcriptomic signatures in human blood, the current study hypothesizes that phytoestrogen-supplemented diet may induce changes in gene expression that ultimately confer pro-longevity benefits. METHODS AND RESULTS In the present study, RNA sequencing is conducted to determine transcriptome-wide changes in gene expression in whole blood of healthy rats consuming diets supplemented with phytoestrogens. Ortholog cell deconvolution is applied to analyze the omics data. The study discovered that PTS leads to changes in the gene expression landscape and PTS-target genes are associated with functions counteracting hallmarks of aging, including genomic instability, epigenetic alterations, compromised autophagy, mitochondrial dysfunction, deregulated nutrient sensing, altered intercellular interaction, and loss of proteostasis. These functions bridge together under anti-inflammatory effects through multiple pathways, including immunometabolism, where changes in cellular metabolism (e.g., ribosome biogenesis) impact the immune system. CONCLUSION The findings provide a rationale for pre-clinical and clinical longevity studies and encourage investigations on PTS in maintaining cellular homeostasis, decelerating the process of aging, and improving conditions with chronic inflammation.
Collapse
Affiliation(s)
- Marco A Tello-Palencia
- Department of Statistics, Faculty of Science, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Olga Sularz
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, 31-120, Poland
| | - Louis Erik Demers
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Parasitology, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Yuexi Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Huiying Amelie Zhang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | - Sadhri Kumar
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Benjamin S Ramsey
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Sandra Torregrosa-Allen
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Bennett D Elzey
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Nadia Atallah Lanman
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Keegan Korthauer
- Department of Statistics, Faculty of Science, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, BC, V6H 0B3, Canada
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
7
|
Zhou J, Wang B, Wang M, Zha Y, Lu S, Zhang F, Peng Y, Duan Y, Zhong D, Zhang S. Daucosterol alleviates heart failure with preserved ejection fraction through activating PPAR α pathway. Heliyon 2024; 10:e38379. [PMID: 39416818 PMCID: PMC11481624 DOI: 10.1016/j.heliyon.2024.e38379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) has been increasing in the population in recent years and is mainly characterized by preserved left ventricle ejection fraction (LVEF), diastolic dysfunction and systemic inflammation. Daucosterol (DAU), a glycoside of β-sitosterol, has good anti-inflammatory and antioxidative properties; however, its effects and mechanisms in HFpEF have not been investigated. To detect whether DAU could alleviate HFpEF, C57BL/6J male mice were fed with N-nitro-l-arginine methyl ester (L-NAME) in drinking water and high fat diet (HFD) and treated with DAU by gavage (i.g.) for 10 weeks. The results showed that DAU treatment significantly alleviated HFpEF in mice. Mechanistically, by controlling PPARα and preventing NF-κB phosphorylation, DAU reduced oxidative stress and the inflammatory response. In conclusion, our study provides a new clue for natural product DAU in alleviating HFpEF.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Bei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Mengyao Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yang Zha
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shengyuan Lu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ying Peng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Dingrong Zhong
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
8
|
Kasai S, Karmacharya A, Sato S. Melinjo ( Gnetum gnemon L) Extract Attenuates Colonic Inflammation in a Mouse Colitis Model by Regulating the AMPK/NFκB/Sirt1 Pathway. J Med Food 2024; 27:931-939. [PMID: 39058737 DOI: 10.1089/jmf.2024.k.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Ulcerative colitis (UC) is a subtype of inflammatory bowel disease affecting the colon with idiopathic origin. Melinjo endosperm extract (MeE) contains polyphenolic compounds that have antioxidative and anticancer properties. We examined the effect of MeE on inflammation and mucin expression in the colons of UC of mice treated with dextran sulfate sodium (DSS). C57BL/6J male mice were assigned into four categories: control, DSS + 0% MeE, DSS + 0.1% MeE, and DSS + 0.5% MeE. The control group was provided distilled water and a standard chow diet for 4 weeks. In DSS + 0% MeE, DSS + 0.1% MeE, and DSS + 0.5% MeE groups, the mice were treated with MeE for 3 weeks followed by MeE diets and drinking water containing 3% DSS for a week. Macrophage count, the mucus area stained by Alcian blue (AB), the levels of adenosine monophosphate-activated protein kinase (AMPK), nuclear factor-κB (NFκB) p65, and silent information regulator (Sirt) 1 protein expression, as well as proinflammatory mediators and Mucin 2 mRNA expression were assessed. In the DSS + 0% MeE group, the AB-stained areas and Mucin 2 mRNA expression levels were observed to be lower than those of controls. However, the levels in the +0.5% MeE group were significantly increased. Compared with the control group, the macrophage number, the expression of IL-1β mRNA, and NFκB p65 protein in the DSS + 0% MeE group showed a significant increase. Conversely, these levels were significantly decreased in the +0.5% MeE group. The phosphorylated AMPK and Sirt1 protein levels were upregulated in the +0.5% MeE group. In conclusion, MeE may alleviate UC injury by reducing macrophage infiltration and regulating the AMPK/NFκB/Sirt1 pathway.
Collapse
Affiliation(s)
- Shiho Kasai
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Anishma Karmacharya
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Shin Sato
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| |
Collapse
|
9
|
Soufihasanabad S, Mahmoudi M, Taghavi-Farahabadi M, Mirsanei Z, Mahmoudi Lamouki R, Mirza Abdalla JK, Babaei E, Hashemi SM. In vivo polarization of M2 macrophages by mesenchymal stem cell-derived extracellular vesicles: A novel approach to macrophage polarization and its potential in treating inflammatory diseases. Med Hypotheses 2024; 187:111353. [DOI: 10.1016/j.mehy.2024.111353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Shabani M, Hosseini H, Tajik MH, Meshkani R, Sadeghi A. Resveratrol relieves HFD-induced insulin resistance in skeletal muscle tissue through antioxidant capacity enhancement and the Nrf2-Keap1 signaling pathway. Mol Biol Rep 2024; 51:516. [PMID: 38622329 DOI: 10.1007/s11033-024-09434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Resveratrol has received much attention due to its beneficial effects including antioxidant activity. The purpose of this study was to investigate the therapeutic effects of resveratrol treatment on oxidative stress and insulin resistance in the skeletal muscle of high-fat diet (HFD)-fed animals. METHODS AND RESULTS A total of 30 six-week-old C57BL/6J mice were randomly allocated to three groups (10 animals in each group): The control group in which mice were fed a normal chow diet (NCD); the HFD group in which mice were fed an HFD for 26 weeks; and the HFD-resveratrol group in which HFD was replaced by a resveratrol supplemented-HFD (400 mg/kg diet) after 10 weeks of HFD feeding. At the end of this period, gastrocnemius muscle samples were examined to determine insulin resistance and the oxidative status in the presence of HFD and resveratrol. Resveratrol supplementation in HFD-fed mice reduced body and adipose tissue weight, improved insulin sensitivity, and decreased oxidative stress as indicated by lower malonaldehyde (MDA) levels and higher total antioxidant capacity. The supplement also increased the expression and activity of antioxidative enzymes in gastrocnemius muscle and modulated Nrf2 and Keap1 expression levels. CONCLUSIONS These results suggest that resveratrol is effective in improving the antioxidant defense system of the skeletal muscle in HFD-fed mice, indicating its therapeutic potential to combat diseases associated with insulin resistance and oxidative stress.
Collapse
Affiliation(s)
- Maryam Shabani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hassan Tajik
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asie Sadeghi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
11
|
Pant T, Uche N, Juric M, Zielonka J, Bai X. Regulation of immunomodulatory networks by Nrf2-activation in immune cells: Redox control and therapeutic potential in inflammatory diseases. Redox Biol 2024; 70:103077. [PMID: 38359749 PMCID: PMC10877431 DOI: 10.1016/j.redox.2024.103077] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
Inflammatory diseases present a serious health challenge due to their widespread prevalence and the severe impact on patients' lives. In the quest to alleviate the burden of these diseases, nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a pivotal player. As a transcription factor intimately involved in cellular defense against metabolic and oxidative stress, Nrf2's role in modulating the inflammatory responses of immune cells has garnered significant attention. Recent findings suggest that Nrf2's ability to alter the redox status of cells underlies its regulatory effects on immune responses. Our review delves into preclinical and clinical evidence that underscores the complex influence of Nrf2 activators on immune cell phenotypes, particularly in the inflammatory milieu. By offering a detailed analysis of Nrf2's role in different immune cell populations, we cast light on the potential of Nrf2 activators in shaping the immune response towards a more regulated state, mitigating the adverse effects of inflammation through modeling redox status of immune cells. Furthermore, we explore the innovative use of nanoencapsulation techniques that enhance the delivery and efficacy of Nrf2 activators, potentially advancing the treatment strategies for inflammatory ailments. We hope this review will stimulate the development and expansion of Nrf2-targeted treatments that could substantially improve outcomes for patients suffering from a broad range of inflammatory diseases.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Nnamdi Uche
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matea Juric
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
12
|
Peng J, Lu C, Luo Y, Su X, Li S, Ho CT. Hypoglycemic effects and associated mechanisms of resveratrol and related stilbenes in diet. Food Funct 2024; 15:2381-2405. [PMID: 38376230 DOI: 10.1039/d3fo04761j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Hyperglycemia has become a global health problem due to changes in diet and lifestyle. Most importantly, persistent hyperglycemia can eventually develop into type II diabetes. While the usage of current drugs is limited by their side effects, stilbenes derived from fruits and herbal/dietary plants are considered as important phytochemicals with potential hypoglycemic properties. Herein, the most common stilbenoids in consumed foods, i.e. resveratrol, pterostilbene, piceatannol, oxyresveratrol, and 2,3,5,4'-tetrahydroxystilbene-2-O-β-glucopyranoside (THSG), are reviewed in this paper. These stilbenes are found to regulate glucose homeostasis via (a) modulation of feeding behaviour and nutrition absorption; (b) restoration of insulin signalling by enhancing insulin production/insulin sensitivity; (c) improvement of gut permeability, gut microbial profile and resulting metabolomes; and (d) amelioration of circadian rhythm disruption. In this review, we have summarized the underlying mechanisms for the hypoglycemic effects of the five most common dietary stilbenoids listed above, providing a comprehensive framework for future study and applications.
Collapse
Affiliation(s)
- Jie Peng
- Department of Food Science, Rutgers University, New Brunswick 08901, USA
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China.
| | - Yue Luo
- Department of Food Science, Rutgers University, New Brunswick 08901, USA
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China.
| | - Shiming Li
- Department of Food Science, Rutgers University, New Brunswick 08901, USA
- College of Life Sciences, Huanggang Normal University, Hubei 438000, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick 08901, USA
| |
Collapse
|
13
|
Silva PM, Neto MD, Cerqueira MA, Rodriguez I, Bourbon AI, Azevedo AG, Pastrana LM, Coimbra MA, Vicente AA, Gonçalves C. Resveratrol-loaded octenyl succinic anhydride modified starch emulsions and hydroxypropyl methylcellulose (HPMC) microparticles: Cytotoxicity and antioxidant bioactivity assessment after in vitro digestion. Int J Biol Macromol 2024; 259:129288. [PMID: 38211926 DOI: 10.1016/j.ijbiomac.2024.129288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Hydroxypropyl methylcellulose (HPMC)-based microparticles and modified starch emulsions (OSA-MS) were loaded with resveratrol and characterized regarding their physicochemical and thermal properties. Both delivery systems were subject to an in vitro gastrointestinal digestion to assess the bioaccessibility of resveratrol. In addition, cell-based studies were conducted after in vitro digestion and cytotoxicity and oxidative stress were assessed. HPMC-based microparticles displayed higher average sizes (d) and lower polydispersity index (PDI) (d = 948 nm, PDI < 0.2) when compared to OSA-MS-based emulsions (d = 217 nm, PDI < 0.3). Both proved to protect resveratrol under digestive conditions, leading to an increase in bioaccessibility. Resveratrol-loaded HPMC-microparticles showed a higher bioaccessibility (56.7 %) than resveratrol-loaded emulsions (19.7 %). Digested samples were tested in differentiated co-cultures of Caco-2 and HT29-MTX, aiming at assessing cytotoxicity and oxidative stress, and a lack of cytotoxicity was observed for all samples. Results displayed an increasing antioxidant activity, with 1.6-fold and 1.4-fold increases over the antioxidant activity of free resveratrol, for HPMC-microparticles and OSA-MS nanoemulsions, respectively. Our results offer insight into physiological relevancy due to assessment post-digestion and highlight the protection that the use of micro-nano delivery systems can confer to resveratrol and their potential to be used as functional food ingredients capable of providing antioxidant benefits upon consumption.
Collapse
Affiliation(s)
- Pedro M Silva
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; Associate Laboratory (LABBELS), Braga, Guimarães, Portugal; International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Mafalda D Neto
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Isabel Rodriguez
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Ana Isabel Bourbon
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Ana Gabriela Azevedo
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Manuel A Coimbra
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Antonio A Vicente
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; Associate Laboratory (LABBELS), Braga, Guimarães, Portugal.
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
14
|
Veluthakal R, Esparza D, Hoolachan JM, Balakrishnan R, Ahn M, Oh E, Jayasena CS, Thurmond DC. Mitochondrial Dysfunction, Oxidative Stress, and Inter-Organ Miscommunications in T2D Progression. Int J Mol Sci 2024; 25:1504. [PMID: 38338783 PMCID: PMC10855860 DOI: 10.3390/ijms25031504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Type 2 diabetes (T2D) is a heterogenous disease, and conventionally, peripheral insulin resistance (IR) was thought to precede islet β-cell dysfunction, promoting progression from prediabetes to T2D. New evidence suggests that T2D-lean individuals experience early β-cell dysfunction without significant IR. Regardless of the primary event (i.e., IR vs. β-cell dysfunction) that contributes to dysglycemia, significant early-onset oxidative damage and mitochondrial dysfunction in multiple metabolic tissues may be a driver of T2D onset and progression. Oxidative stress, defined as the generation of reactive oxygen species (ROS), is mediated by hyperglycemia alone or in combination with lipids. Physiological oxidative stress promotes inter-tissue communication, while pathological oxidative stress promotes inter-tissue mis-communication, and new evidence suggests that this is mediated via extracellular vesicles (EVs), including mitochondria containing EVs. Under metabolic-related stress conditions, EV-mediated cross-talk between β-cells and skeletal muscle likely trigger mitochondrial anomalies leading to prediabetes and T2D. This article reviews the underlying molecular mechanisms in ROS-related pathogenesis of prediabetes, including mitophagy and mitochondrial dynamics due to oxidative stress. Further, this review will describe the potential of various therapeutic avenues for attenuating oxidative damage, reversing prediabetes and preventing progression to T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| | | | | | | | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| |
Collapse
|
15
|
Kondo S, Adachi SI, Komatsu W, Yoshizawa F, Yagasaki K. Antidiabetic Effect of Urolithin A in Cultured L6 Myotubes and Type 2 Diabetic Model KK-A y/Ta Mice with Glucose Intolerance. Curr Issues Mol Biol 2024; 46:1078-1090. [PMID: 38392186 PMCID: PMC10887565 DOI: 10.3390/cimb46020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024] Open
Abstract
Diabetes is caused by abnormal glucose metabolism, and muscle, the largest tissue in the human body, is largely involved. Urolithin A (UroA) is a major intestinal and microbial metabolite of ellagic acid and ellagitannins and is found in fruits such as strawberry and pomegranate. In this present study, we investigated the antidiabetic effects of UroA in L6 myotubes and in KK-Ay/Ta, a mouse model of type 2 diabetes (T2D). UroA treatment elevated the glucose uptake (GU) of L6 myotubes in the absence of insulin. This elevation in GU by UroA treatment was partially inhibited by the concurrent addition of LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K) which activates Akt (PKB: protein kinase B) or Compound C, an inhibitor of 5'-adenosine monophosphate-activated protein kinase (AMPK). Moreover, UroA was found to activate both pathways of Akt and AMPK, and then to promote translocation of glucose transporter 4 (GLUT4) from the cytosol to the plasma membrane in L6 myotubes. Based on these in vitro findings, an intraperitoneal glucose tolerance test (IPGTT) was performed after the oral administration of UroA for 3 weeks to KK-Ay/Ta mice with glucose intolerance. UroA was demonstrated to alleviate glucose intolerance. These results suggest that UroA is a biofactor with antihyperglycemic effects in the T2D state.
Collapse
Affiliation(s)
- Shinji Kondo
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya 321-8505, Tochigi, Japan
| | - Shin-Ichi Adachi
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya 321-8505, Tochigi, Japan
| | - Wataru Komatsu
- Department of Public Health, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan
| | - Fumiaki Yoshizawa
- School of Agriculture, Utsunomiya University, Utsunomiya 321-8505, Tochigi, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Tokyo, Japan
| | - Kazumi Yagasaki
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya 321-8505, Tochigi, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Tokyo, Japan
| |
Collapse
|
16
|
Poulios E, Koukounari S, Psara E, Vasios GK, Sakarikou C, Giaginis C. Anti-obesity Properties of Phytochemicals: Highlighting their Molecular Mechanisms against Obesity. Curr Med Chem 2024; 31:25-61. [PMID: 37198988 DOI: 10.2174/0929867330666230517124033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023]
Abstract
Obesity is a complex, chronic and inflammatory disease that affects more than one-third of the world's population, leading to a higher incidence of diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and some types of cancer. Several phytochemicals are used as flavoring and aromatic compounds, also exerting many benefits for public health. This study aims to summarize and scrutinize the beneficial effects of the most important phytochemicals against obesity. Systematic research of the current international literature was carried out in the most accurate scientific databases, e.g., Pubmed, Scopus, Web of Science and Google Scholar, using a set of critical and representative keywords, such as phytochemicals, obesity, metabolism, metabolic syndrome, etc. Several studies unraveled the potential positive effects of phytochemicals such as berberine, carvacrol, curcumin, quercetin, resveratrol, thymol, etc., against obesity and metabolic disorders. Mechanisms of action include inhibition of adipocyte differentiation, browning of the white adipose tissue, inhibition of enzymes such as lipase and amylase, suppression of inflammation, improvement of the gut microbiota, and downregulation of obesity-inducing genes. In conclusion, multiple bioactive compounds-phytochemicals exert many beneficial effects against obesity. Future molecular and clinical studies must be performed to unravel the multiple molecular mechanisms and anti-obesity activities of these naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Efthymios Poulios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Stergia Koukounari
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Evmorfia Psara
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Georgios K Vasios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| |
Collapse
|
17
|
Chervet A, Nehme R, Decombat C, Longechamp L, Habanjar O, Rousset A, Fraisse D, Blavignac C, Filaire E, Berthon JY, Delort L, Caldefie-Chezet F. Exploring the Therapeutic Potential of Ampelopsis grossedentata Leaf Extract as an Anti-Inflammatory and Antioxidant Agent in Human Immune Cells. Int J Mol Sci 2023; 25:416. [PMID: 38203587 PMCID: PMC10779184 DOI: 10.3390/ijms25010416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Inflammation is a vital protective response to threats, but it can turn harmful if chronic and uncontrolled. Key elements involve pro-inflammatory cells and signaling pathways, including the secretion of pro-inflammatory cytokines, NF-κB, reactive oxygen species (ROS) production, and the activation of the NLRP3 inflammasome. Ampelopsis grossedentata, or vine tea, contains dihydromyricetin (DHM) and myricetin, which are known for their various health benefits, including anti-inflammatory properties. Therefore, the aim of this study is to assess the impact of an extract of A. grossedentata leaves (50 µg/mL) on inflammation factors such as inflammasome, pro-inflammatory pathways, and macrophage polarization, as well as its antioxidant properties, with a view to combating the development of low-grade inflammation. Ampelopsis grossedentata extract (APG) significantly decreased ROS production and the secretion of pro-inflammatory cytokines (IFNγ, IL-12, IL-2, and IL-17a) in human leukocytes. In addition, APG reduced LPS/IFNγ -induced M1-like macrophage polarization, resulting in a significant decrease in the expression of the pro-inflammatory cytokines TNF-α and IL-6, along with a decrease in the percentage of M1 macrophages and an increase in M0 macrophages. Simultaneously, a significant decrease in NF-κB p65 phosphorylation and in the expression of inflammasome genes (NLRP3, IL-1β and Caspase 1) was observed. The results suggest that Ampelopsis grossedentata could be a promising option for managing inflammation-related chronic diseases. Further research is needed to optimize dosage and administration methods.
Collapse
Affiliation(s)
- Arthur Chervet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Lucie Longechamp
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Amandine Rousset
- Greentech, Biopôle Clermont-Limagne, 63360 Saint-Beauzire, France (J.-Y.B.)
| | - Didier Fraisse
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Christelle Blavignac
- Centre Imagerie Cellulaire Santé, Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Edith Filaire
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Jean-Yves Berthon
- Greentech, Biopôle Clermont-Limagne, 63360 Saint-Beauzire, France (J.-Y.B.)
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| |
Collapse
|
18
|
Silva PM, Gonçalves C, Pastrana LM, Coimbra MA, Vicente AA, Cerqueira MA. Recent advances in oral delivery systems of resveratrol: foreseeing their use in functional foods. Food Funct 2023; 14:10286-10313. [PMID: 37947452 DOI: 10.1039/d3fo03065b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Herein, we review the current state-of-the-art on the use of micro- and nano-delivery systems, a possible solution to some of the drawbacks associated with the incorporation of resveratrol in foods. Specifically, we present an overview of a wide range of micro-nanostructures, namely, lipidic and polymeric, used for the delivery of resveratrol. Also, the gastrointestinal fate of resveratrol-loaded micro-nanostructures, as a critical parameter for their use as functional food, is explored in terms of stability, bioaccessibility, and bioavailability. Different micro-nanostructures are of interest for the development of functional foods given that they can provide different advantages and properties to these foods and even be tailor-made to address specific issues (e.g., controlled or targeted release). Therefore, we discuss a wide range of micro-nanostructures, namely, lipidic and polymeric, used to deliver resveratrol and aimed at the development of functional foods. It has been reported that the use of some production methodologies can be of greater interest than others, for example, emulsification, solvent displacement and electrohydrodynamic processing (EHDP) enable a greater increase in bioaccessibility. Additionally, the use of coatings facilitates further improvements in bioaccessibility, which is likely due to the increased gastric stability of the coated micro-nanostructures. Other properties, such as mucoadhesion, can also help improve bioaccessibility due to the increase in gut retention time. Additionally, cytotoxicity (e.g., biocompatibility, antioxidant, and anti-inflammatory) and possible sensorial impact of resveratrol-loaded micro- and nano-systems in foods are highlighted.
Collapse
Affiliation(s)
- Pedro M Silva
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal.
- Associate Laboratory (LABBELS), Braga/Guimarães, Portugal
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Manuel A Coimbra
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Antonio A Vicente
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal.
- Associate Laboratory (LABBELS), Braga/Guimarães, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| |
Collapse
|
19
|
Bahramzadeh A, Bolandnazar K, Meshkani R. Resveratrol as a potential protective compound against skeletal muscle insulin resistance. Heliyon 2023; 9:e21305. [PMID: 38027557 PMCID: PMC10660041 DOI: 10.1016/j.heliyon.2023.e21305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
The increasing prevalence of type 2 diabetes has become a major global problem. Insulin resistance has a central role in pathophysiology of type 2 diabetes. Skeletal muscle is responsible for the disposal of most of the glucose under conditions of insulin stimulation, and insulin resistance in skeletal muscle causes dysregulation of glucose homeostasis in the whole body. Despite the current pharmaceutical and non-pharmacological treatment strategies to combat diabetes, there is still a need for new therapeutic agents due to the limitations of the therapeutic agents. Meanwhile, plant polyphenols have attracted the attention of researchers for their use in the treatment of diabetes and have gained popularity. Resveratrol, a stilbenoid polyphenol, exists in various plant sources, and a growing body of evidence suggests its beneficial properties, including antidiabetic activities. The present review aimed to provide a summary of the role of resveratrol in insulin resistance in skeletal muscle and its related mechanisms. To achieve the objectives, by searching the PubMed, Scopus and Web of Science databases, we have summarized the results of all cell culture, animal, and human studies that have investigated the effects of resveratrol in different models on insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Arash Bahramzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Bolandnazar
- Department of Biological Sciences and Technology, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Chen ZH, Guan M, Zhao WJ. Effects of resveratrol on macrophages after phagocytosis of Candida glabrata. Int J Med Microbiol 2023; 313:151589. [PMID: 37952279 DOI: 10.1016/j.ijmm.2023.151589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023] Open
Abstract
Candida glabrata is believed to be the underlying cause of many human ailments, including oral, gastrointestinal, and vaginal disorders. C. glabrata-caused deep-seated infections, coupled with its resistance to antifungal drugs, may contribute to a high mortality rate. Resveratrol is a polyphenol and can achieve better therapeutic effects when administered in combination with micafungin, but the underlying molecular mechanisms remain unknown. Here, we investigate the effects of varying doses of resveratrol on the proliferation, apoptosis, and activity of macrophages, which were co-cultured with micafungin-pretreated C. glabrata. Resveratrol can restore the decreased proliferative activity of macrophages caused by the phagocytosis of C. glabrata. Further investigations demonstrated that this restoration ability exhibited a dose-dependent manner, reaching the highest level at 200 µM of resveratrol. Resveratrol tended to be more effective in inhibiting macrophage apoptosis and reducing reactive oxygen species (ROS) levels with concentration increases. In addition, at medium concentrations, resveratrol may down-regulate the expression of most inflammatory cytokines, whereas at high concentrations, it started to exert pro-inflammatory functions by up-regulating their expressions. Macrophages may shift from an anti-inflammatory (M2) phenotype to an inflammatory (M1) phenotype by resveratrol at 200 µM, and from M1 to M2 at 400 µM. Our research shows that resveratrol with micafungin are effective in treating C. glabrata infections. The resveratrol-micafungin combination can reduce the production of ROS, and promote the proliferation, inhibit the apoptosis, and activate the polarization of macrophages in a dose-dependent manner. This study offers insights into how this combination works and may provide possible direction for further clinical application of the combination.
Collapse
Affiliation(s)
- Zong-Han Chen
- Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, China
| | - Meng Guan
- Ophthalmology Department, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Wei-Jia Zhao
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China.
| |
Collapse
|
21
|
Mukherjee S, Skrede S, Haugstøyl M, López M, Fernø J. Peripheral and central macrophages in obesity. Front Endocrinol (Lausanne) 2023; 14:1232171. [PMID: 37720534 PMCID: PMC10501731 DOI: 10.3389/fendo.2023.1232171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/28/2023] [Indexed: 09/19/2023] Open
Abstract
Obesity is associated with chronic, low-grade inflammation. Excessive nutrient intake causes adipose tissue expansion, which may in turn cause cellular stress that triggers infiltration of pro-inflammatory immune cells from the circulation as well as activation of cells that are residing in the adipose tissue. In particular, the adipose tissue macrophages (ATMs) are important in the pathogenesis of obesity. A pro-inflammatory activation is also found in other organs which are important for energy metabolism, such as the liver, muscle and the pancreas, which may stimulate the development of obesity-related co-morbidities, including insulin resistance, type 2 diabetes (T2D), cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). Interestingly, it is now clear that obesity-induced pro-inflammatory signaling also occurs in the central nervous system (CNS), and that pro-inflammatory activation of immune cells in the brain may be involved in appetite dysregulation and metabolic disturbances in obesity. More recently, it has become evident that microglia, the resident macrophages of the CNS that drive neuroinflammation, may also be activated in obesity and can be relevant for regulation of hypothalamic feeding circuits. In this review, we focus on the action of peripheral and central macrophages and their potential roles in metabolic disease, and how macrophages interact with other immune cells to promote inflammation during obesity.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Silje Skrede
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Martha Haugstøyl
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
22
|
Wang Y, Qi C, Feng F, Hu X, Zhao N, Zhao J, Di T, Meng Y, Yang D, Zhu H, Zhang X, Li P, Wang Y. Resveratrol Ameliorates Imiquimod-Induced Psoriasis-Like Mouse Model via Reducing Macrophage Infiltration and Inhibiting Glycolysis. J Inflamm Res 2023; 16:3823-3836. [PMID: 37667801 PMCID: PMC10475308 DOI: 10.2147/jir.s416417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023] Open
Abstract
Purpose Resveratrol (Res) is a natural polyphenol with anti-inflammatory and immunomodulatory effects. Alterations in metabolic pathways have been studied in psoriasis. This study is aimed to further explore the potential molecular mechanism of psoriasis improvement by Res. Patients and Methods Imiquimod (IMQ)-induced psoriasis-like mouse model was established to observe the effects of Res. NanoString nCounter Metabolic Pathways Panel was used to analyze the changed mRNA and qRT-PCR was used for validation. Flow cytometry was used to analyze immune cell subsets in skin lesions. In vitro, we observed the effects of Res on R848-stimulated macrophages glycolysis and inflammation. Results Res reduced the proliferation of keratinocytes and the secretion of inflammatory cytokines in IMQ-induced psoriasis-like mouse model. Psoriasis model skin lesions were in a state of hypoxia, with upregulated glycolysis and downregulated AMPK activity. Res inhibited the levels of hypoxia-related genes (hif1α, hif3α) and glycolysis-related genes (hk1, ldha), meanwhile increased the levels of AMPK genes (prkaa1, prkaa2). Flow cytometry analysis revealed that Res decreased the infiltration of macrophages in psoriasis-like lesions. In addition, Res decreased the secretion of macrophage-associated pro-inflammatory cytokines (IL-23, TNF-α, IL-1β). In vitro, Res diminished the secretion of IL-23, TNF-α, IL-1β, and lactate by R848-stimulated macrophages and activated AMPK. Conclusion This study suggested that Res diminished psoriasis symptoms by inhibiting macrophages infiltration and inhibiting glycolysis, which providing novel insights into the underlying mechanisms of therapeutic action of Res in the treatment of psoriasis.
Collapse
Affiliation(s)
- Yazhuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, People’s Republic of China
- Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Cong Qi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, People’s Republic of China
- Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Fang Feng
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Xueqing Hu
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Ning Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, People’s Republic of China
- Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, People’s Republic of China
| | - Tingting Di
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, People’s Republic of China
| | - Yujiao Meng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, People’s Republic of China
| | - Danyang Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, People’s Republic of China
- Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Haoyue Zhu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, People’s Republic of China
- Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Xiawei Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, People’s Republic of China
- Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, People’s Republic of China
| | - Yan Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, People’s Republic of China
| |
Collapse
|
23
|
Ni H, Chen Y. Differentiation, regulation and function of regulatory T cells in non-lymphoid tissues and tumors. Int Immunopharmacol 2023; 121:110429. [PMID: 37327512 DOI: 10.1016/j.intimp.2023.110429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Regulatory T cells (Tregs) play a substantial role in inhibiting excessive immune response. A large number of studies have focused on the tissue homeostasis maintenance and remodeling characteristics of Tregs in non-lymphoid tissues, such as the skin, colon, lung, brain, muscle, and adipose tissues. Herein, we overview the kinetics of Treg migration to non-lymphoid tissues and adaptation to the specific tissue microenvironment through the development of tissue-specific chemokine receptors, transcription factors, and phenotypes. Additionally, tumor-infiltrating Tregs (Ti-Tregs) play an important role in tumor generation and immunotherapy resistance. The phenotypes of Ti-Tregs are related to the histological location of the tumor and there is a large overlap between the transcripts of Ti-Tregs and those of tissue-specific Tregs. We recapitulate the molecular underpinnings of tissue-specific Tregs, which might shed new light on Treg-based therapeutic targets and biomarkers for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Hongbo Ni
- The First Clinical Medicine Faculty, China Medical University, Shenyang 110001, China
| | - Yinghan Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
24
|
Suren Garg S, Kushwaha K, Dubey R, Gupta J. Association between obesity, inflammation and insulin resistance: Insights into signaling pathways and therapeutic interventions. Diabetes Res Clin Pract 2023; 200:110691. [PMID: 37150407 DOI: 10.1016/j.diabres.2023.110691] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Obesity, a metabolic disorder, is becoming a worldwide epidemic that predominantly increases the risk for various diseases including metabolic inflammation, insulin resistance, and cardiovascular diseases. However, the mechanisms that link obesity with other metabolic diseases are not completely understood. In obesity, various inflammatory pathways that cause inflammation in adipose tissue of an obese individual become activated and exacerbate the disease. Obesity-induced low-grade metabolic inflammation perturbates the insulin signaling pathway and leads to insulin resistance. Researchers have identified several pathways that link the impairment of insulin resistance through obesity-induced inflammation like activation of Nuclear factor kappa B (NF-κB), suppressor of cytokine signaling (SOCS) proteins, cJun-N-terminal Kinase (JNK), Wingless-related integration site (Wnt), and Toll-like receptor (TLR) signaling pathways. In this review article, the published studies have been reviewed to identify the potential and influential role of different signaling pathways in the pathogenesis of obesity-induced metabolic inflammation and insulin resistance along with the discussion on potential therapeutic strategies. Therapies targeting these signaling pathways show improvements in metabolic diseases associated with obesity, but require further testing and confirmation through clinical trials.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Kriti Kushwaha
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rupal Dubey
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
25
|
Scarano A, Laddomada B, Blando F, De Santis S, Verna G, Chieppa M, Santino A. The Chelating Ability of Plant Polyphenols Can Affect Iron Homeostasis and Gut Microbiota. Antioxidants (Basel) 2023; 12:antiox12030630. [PMID: 36978878 PMCID: PMC10045931 DOI: 10.3390/antiox12030630] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
In the past decades, many studies have widely examined the effects of dietary polyphenols on human health. Polyphenols are well known for their antioxidant properties and for their chelating abilities, by which they can be potentially employed in cases of pathological conditions, such as iron overload. In this review, we have highlighted the chelating abilities of polyphenols, which are due to their structural specific sites, and the differences for each class of polyphenols. We have also explored how the dietary polyphenols and their iron-binding abilities can be important in inflammatory/immunomodulatory responses, with a special focus on the involvement of macrophages and dendritic cells, and how they might contribute to reshape the gut microbiota into a healthy profile. This review also provides evidence that the axes “polyphenol–iron metabolism–inflammatory responses” and “polyphenol–iron availability–gut microbiota” have not been very well explored so far, and the need for further investigation to exploit such a potential to prevent or counteract pathological conditions.
Collapse
Affiliation(s)
- Aurelia Scarano
- Institute of Science of Food Production, C.N.R. Unit of Lecce, 73100 Lecce, Italy
| | - Barbara Laddomada
- Institute of Science of Food Production, C.N.R. Unit of Lecce, 73100 Lecce, Italy
| | - Federica Blando
- Institute of Science of Food Production, C.N.R. Unit of Lecce, 73100 Lecce, Italy
| | - Stefania De Santis
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giulio Verna
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Marcello Chieppa
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
- Correspondence: (M.C.); (A.S.)
| | - Angelo Santino
- Institute of Science of Food Production, C.N.R. Unit of Lecce, 73100 Lecce, Italy
- Correspondence: (M.C.); (A.S.)
| |
Collapse
|
26
|
Khalafani Z, Zamani-Garmsiri F, Panahi G, Meshkani R. Metformin-chlorogenic acid combination reduces skeletal muscle inflammation in c57BL/6 mice on high-fat diets. Mol Biol Rep 2023; 50:2581-2589. [PMID: 36626065 DOI: 10.1007/s11033-022-08030-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/12/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Inflammation at the low-grade level has been found to contribute to obesity-induced insulin resistance in the skeletal muscle (SM). This study investigated the anti-inflammatory potential of metformin (MET) combined with chlorogenic acid (CGA) in SM of mice fed a high-fat diet (HFD). MATERIALS AND METHODS The C57BL/6 mice were divided into five groups of ten each, normal diet, HFD, HFD + MET, HFD + CGA and HFD + MET + CGA. RESULTS The results revealed that MET and CGA, alone or in combination, have a reducing effect on weight gain, plasma triglyceride, glucose and insulin levels. MET in combination with CGA led to attenuation of SM inflammation, an effect that was associated with decreasing macrophages infiltration rate. Combined treatment of MET and CGA also resulted in switching macrophages from M1 to M2 phenotype, presented by the higher expression levels of arginase and CD206 (M2 markers) and lower expression levels of iNOS and cd11c markers (M1). In addition, combination treatment was more effective in increasing the anti-inflammatory cytokines expression (IL-10) and decreasing the expression of pro-inflammatory mediators (TNF-α, IL-1β, MCP-1 and IL-6). CONCLUSION These findings suggest that the combination treatment of MET and CGA is likely to be a promising approach to control SM inflammation in the HFD-fed model.
Collapse
Affiliation(s)
- Zahra Khalafani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran. .,Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
27
|
Hashemnia SMR, Meshkani R, Zamani-Garmsiri F, Shabani M, Tajabadi-Ebrahimi M, Ragerdi Kashani I, Siadat SD, Mohassel Azadi S, Emamgholipour S. Amelioration of obesity-induced white adipose tissue inflammation by Bacillus coagulans T4 in a high-fat diet-induced obese murine model. Life Sci 2023; 314:121286. [PMID: 36526049 DOI: 10.1016/j.lfs.2022.121286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
AIM Fresh evidence suggests that B. coagulans can be regarded as a promising therapeutic alternative for metabolic disorders. However, the possible effects of this probiotic on obesity-induced adipose tissue inflammation are unknown. METHODS C57BL/6j male mice were assigned to a normal-chow diet (NCD) or a high-fat diet (HFD) for 10 weeks. After this period, HFD-fed mice were randomly divided into two groups; HFD control group and HFD plus B. coagulans T4 (IBRC-N10791) for another 8 weeks. B. coagulans T4 was administrated daily by oral intragastric gavage (1 × 109 colony-forming units). KEY FINDINGS Here, we found that B. coagulans successfully mitigated obesity and related metabolic disorder, as indicated by reduced body weight gain, decreased adiposity, and improved glucose tolerance. B. coagulans T4 administration also inhibited HFD-induced macrophage accumulation in white adipose tissue and switched M1 to M2 macrophages. In parallel, B. coagulans T4 treatment attenuated HFD-induced alteration in mRNA expression of pro/anti-inflammatory cytokines and Tlr4 in white adipose tissue. Moreover, B. coagulans T4 supplementation reduced the Firmicutes/Bacteriodetes ratio and increased the number of Lactobacillus and Faecalibacterium compared to the HFD group. Additionally, a significant increase in propionate and acetate levels in the HFD group was seen following B. coagulans T4 administration. SIGNIFICANCE Taken together, the present study provides evidence that B. coagulans T4 supplementation exerts anti-obesity effects in part through attenuating inflammation in adipose tissue. The present study will have significant implications for obesity management.
Collapse
Affiliation(s)
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Tehran, Iran
| | | | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samaneh Mohassel Azadi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Carica Papaya Reduces High Fat Diet and Streptozotocin-Induced Development of Inflammation in Adipocyte via IL-1β/IL-6/TNF-α Mediated Signaling Mechanisms in Type-2 Diabetic Rats. Curr Issues Mol Biol 2023; 45:852-884. [PMID: 36826001 PMCID: PMC9956039 DOI: 10.3390/cimb45020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
The prevalence of obesity in contemporary society has brought attention to how serious it is all around the world. Obesity, a proinflammatory condition defined by hypertrophied adipocytes and immune cells that reside in adipose tissue, is characterized by elevated circulating levels of proinflammatory cytokines. The pro-inflammatory mediators trigger a number of inflammatory pathways and affect the phosphorylation of a number of insulin-signaling pathways in peripheral tissues. In this work, we pointed the outcome of the leaves of Carica papaya (C. papaya) on the inflammatory molecules by in vivo and in silico analysis in order to prove its mechanisms of action. Adipocytokines, antioxidant enzymes, gene and protein expression of pro-inflammatory signaling molecules (mTOR, TNF-α, IL-1β, IL-6 and IKKβ) by q-RT-PCR and immunohistochemistry, as well as histopathological analysis, in adipose tissues were carried out. C. papaya reinstated the levels of adipocytokines, antioxidant enzymes and mRNA levels of mTOR, TNF-α, IL-1β, IL-6 and IKKβ in the adipose tissues of type 2 diabetic rats. Molecular docking and dynamics simulation studies revealed that caffeic acid, transferulic acid and quercetin had the top hit rates against IKKβ, TNF-α, IL-6, IL-1β, and mTOR. This study concludes that C. papaya put back the altered effects in fatty tissue of type 2 diabetic rats by restoring the adipocytokines and the gene expression.
Collapse
|
29
|
Alba G, Dakhaoui H, Santa-Maria C, Palomares F, Cejudo-Guillen M, Geniz I, Sobrino F, Montserrat-de la Paz S, Lopez-Enriquez S. Nutraceuticals as Potential Therapeutic Modulators in Immunometabolism. Nutrients 2023; 15:411. [PMID: 36678282 PMCID: PMC9865834 DOI: 10.3390/nu15020411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Nutraceuticals act as cellular and functional modulators, contributing to the homeostasis of physiological processes. In an inflammatory microenvironment, these functional foods can interact with the immune system by modulating or balancing the exacerbated proinflammatory response. In this process, immune cells, such as antigen-presenting cells (APCs), identify danger signals and, after interacting with T lymphocytes, induce a specific effector response. Moreover, this conditions their change of state with phenotypical and functional modifications from the resting state to the activated and effector state, supposing an increase in their energy requirements that affect their intracellular metabolism, with each immune cell showing a unique metabolic signature. Thus, nutraceuticals, such as polyphenols, vitamins, fatty acids, and sulforaphane, represent an active option to use therapeutically for health or the prevention of different pathologies, including obesity, metabolic syndrome, and diabetes. To regulate the inflammation associated with these pathologies, intervention in metabolic pathways through the modulation of metabolic energy with nutraceuticals is an attractive strategy that allows inducing important changes in cellular properties. Thus, we provide an overview of the link between metabolism, immune function, and nutraceuticals in chronic inflammatory processes associated with obesity and diabetes, paying particular attention to nutritional effects on APC and T cell immunometabolism, as well as the mechanisms required in the change in energetic pathways involved after their activation.
Collapse
Affiliation(s)
- Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Hala Dakhaoui
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Consuelo Santa-Maria
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Francisca Palomares
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Marta Cejudo-Guillen
- Department of Pharmacology, Pediatry, and Radiology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Isabel Geniz
- Distrito Sanitario Seville Norte y Aljarafe, Servicio Andaluz de Salud, 41008 Seville, Spain
| | - Francisco Sobrino
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Soledad Lopez-Enriquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
30
|
Al-Otaibi KM, Alghamdi BS, Al-Ghamdi MA, Mansouri RA, Ashraf GM, Omar UM. Therapeutic effect of combination vitamin D3 and siponimod on remyelination and modulate microglia activation in cuprizone mouse model of multiple sclerosis. Front Behav Neurosci 2023; 16:1068736. [PMID: 36688131 PMCID: PMC9849768 DOI: 10.3389/fnbeh.2022.1068736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 01/07/2023] Open
Abstract
Stimulation of remyelination is critical for the treatment of multiple sclerosis (MS) to alleviate symptoms and protect the myelin sheath from further damage. The current study aimed to investigate the possible therapeutic effects of combining vitamin D3 (Vit D3) and siponimod (Sipo) on enhancing remyelination and modulating microglia phenotypes in the cuprizone (CPZ) demyelination mouse model. The study was divided into two stages; demyelination (first 5 weeks) and remyelination (last 4 weeks). In the first 5 weeks, 85 mice were randomly divided into two groups, control (n = 20, standard rodent chow) and CPZ (n = 65, 0.3% CPZ mixed with chow for 6 weeks, followed by 3 weeks of standard rodent chow). At week 5, the CPZ group was re-divided into four groups (n = 14) for remyelination stages; untreated CPZ (0.2 ml of CMC orally), CPZ+Vit D3 (800 IU/kg Vit D3 orally), CPZ+Sipo (1.5 mg/kg Sipo orally), and CPZ+Vit D3 (800 IU/kg Vit D3) + Sipo (1.5 mg/kg Sipo orally). Various behavioral tasks were performed to evaluate motor performance. Luxol Fast Blue (LFB) staining, the expression level of myelin basic protein (MBP), and M1/M2 microglia phenotype genes were assessed in the corpus callosum (CC). The results showed that the combination of Vit D3 and Sipo improved behavioral deficits, significantly promoted remyelination, and modulated expression levels of microglia phenotype genes in the CC at early and late remyelination stages. These results demonstrate for the first time that a combination of Vit D3 and Sipo can improve the remyelination process in the cuprizone (CPZ) mouse model by attenuating the M1 microglia phenotype. This may help to improve the treatment of MS patients.
Collapse
Affiliation(s)
- Kholoud M. Al-Otaibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia,*Correspondence: Badrah S. Alghamdi Kholoud M. Al-Otaibi
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Badrah S. Alghamdi Kholoud M. Al-Otaibi
| | - Maryam A. Al-Ghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Vitamin D Pharmacogenomics Research Group, King Abdulaziz University, Jeddah, Saudi Arabia,Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ulfat M. Omar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Mohseni R, Teimouri M, Safaei M, Arab Sadeghabadi Z. AMP-activated protein kinase is a key regulator of obesity-associated factors. Cell Biochem Funct 2023; 41:20-32. [PMID: 36468539 DOI: 10.1002/cbf.3767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/29/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022]
Abstract
An imbalance between caloric intake and energy expenditure leads to obesity. Obesity is an important risk factor for the development of several metabolic diseases including insulin resistance, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. So, controlling obesity could be effective in the improvement of obesity-related diseases. Various factors are involved in obesity, such as AMP-activated protein kinases (AMPK), silent information regulators, inflammatory mediators, oxidative stress parameters, gastrointestinal hormones, adipokines, angiopoietin-like proteins, and microRNAs. These factors play an important role in obesity by controlling fat metabolism, energy homeostasis, food intake, and insulin sensitivity. AMPK is a heterotrimeric serine/threonine protein kinase known as a fuel-sensing enzyme. The central role of AMPK in obesity makes it an attractive molecule to target obesity and related metabolic diseases. In this review, the critical role of AMPK in obesity and the interplay between AMPK and obesity-associated factors were elaborated.
Collapse
Affiliation(s)
- Roohollah Mohseni
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Clinical Biochemistry & Nutrition, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Teimouri
- Department of Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Safaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Arab Sadeghabadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Clinical Biochemistry & Nutrition, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
32
|
Ding Y, Yang P, Li S, Zhang H, Ding X, Tan Q. Resveratrol accelerates wound healing by inducing M2 macrophage polarisation in diabetic mice. PHARMACEUTICAL BIOLOGY 2022; 60:2328-2337. [PMID: 36469602 PMCID: PMC9728132 DOI: 10.1080/13880209.2022.2149821] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT The reduction in M2 macrophage polarisation plays a major role during diabetic wound healing. Resveratrol (RSV) can promote the polarisation of M2 macrophages and accelerate diabetic wound healing. However, the specific mechanism by which RSV regulates M2 macrophage polarisation to promote diabetic wound healing is unclear. OBJECTIVE This study evaluated the effectiveness of RSV on diabetic wound healing and analysed the underlying mechanisms. MATERIALS AND METHODS STZ-induced C57/B6 mice were used as a diabetic mice model for a period of 15 days. RSV (10 μmol/L) was injected around the wound to evaluate the effect of RSV on the healing process of diabetic wounds. The human monocyte line THP-1 was used to evaluate the effects of RSV (10 μmol/L) on polarisation of M2 macrophages and the secretion of pro-inflammatory factors. RESULTS In vivo, RSV significantly increased diabetic wound healing (p < 0.05) and make the regenerated skin structure more complete. And it promoted the expression of α-SMA and Collagen I (p < 0.05). Moreover, RSV reduced the secretion of inflammatory factors (TNF-α, iNOS and IL-1β) (p < 0.05) and promoted M2 macrophage polarisation by increasing Arg-1 and CD206 expression (p < 0.01). In vitro, RSV promoted the polarisation of M2 macrophages (p < 0.001) and reduced the secretion of pro-inflammatory factors (TNF-α, IL-6 and IL-1β) (p < 0.05). The therapeutic effects of RSV were all significantly reversed with LY294002 (p < 0.01). DISCUSSION AND CONCLUSIONS RSV has the positive effects on promoting the acceleration and quality of skin wound healing, which provides a scientific basis for clinical treatment in diabetic wound.
Collapse
Affiliation(s)
- Youjun Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
- Department of Emergency Surgery, The Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Fourth People’s Hospital), Zhenjiang, China
| | - Ping Yang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shiyan Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao Zhang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaofeng Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of Burns and Plastic Surgery, Anqing Shihua Hospital of Nanjing Drum Tower Hospital Group, Anqing, China
- CONTACT Qian Tan Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Molaaghaee‐Rouzbahani S, Asri N, Jahani‐Sherafat S, Amani D, Masotti A, Baghaei K, Yadegar A, Mirjalali H, Rostami‐Nejad M. The modulation of macrophage subsets in celiac disease pathogenesis. Immun Inflamm Dis 2022; 10:e741. [PMID: 36444633 PMCID: PMC9667199 DOI: 10.1002/iid3.741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/12/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND So far, limited studies have focused on the role of Macrophages (MQs) in the development or progression of celiac disease (CD). Researchers believe that increasing knowledge about the function of MQs in inflammatory disorders plays a critical role in finding a new treatment for these kinds of diseases. MAIN BODY CD is a permanent autoimmune intestinal disorder triggered by gluten exposure in predisposed individuals. This disorder happens due to the loss of intestinal epithelial barrier integrity characterized by dysregulated innate and adaptive immune responses. MQs are known as key players of the innate immune system that link innate and adaptive immunity. MQs of human intestinal lamina propria participate in maintaining tissue homeostasis, and also intestinal inflammation development. Previous studies suggested that gliadin triggers a proinflammatory phenotype (M1 MQ) in human primary MQs. Moreover, M2-related immunosuppressive mediators are also present in CD. In fact, CD patients present an impaired transition from pro-inflammatory to anti-inflammatory responses due to inappropriate responses to gliadin peptides. CONCLUSION The M1/M2 MQs polarization balancing regulators can be considered novel therapeutic targets for celiac disease.
Collapse
Affiliation(s)
| | - Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Somayeh Jahani‐Sherafat
- Laser Application in Medical Sciences Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Davar Amani
- Department of Immunology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Andrea Masotti
- Bambino Gesù Children's Hospital‐IRCCSResearch LaboratoriesRomeItaly
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Rostami‐Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
34
|
Zhu W, Dong Y, Xu P, Pan Q, Jia K, Jin P, Zhou M, Xu Y, Guo R, Cheng B. A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound healing in diabetic mice. Acta Biomater 2022; 154:212-230. [PMID: 36309190 DOI: 10.1016/j.actbio.2022.10.038] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023]
Abstract
Diabetic wounds are difficult to heal because of persistent inflammation and limited angiogenesis. Resveratrol (RES) is an anti-inflammatory and antioxidant agent. Platelet-derived extracellular vesicles (PDEVs) are rich in growth factors and cytokines, which promote proliferation and angiogenesis. However, single drug treatment has limited efficacy and delivery efficiency. Bioengineering can improve the limited effect of single drugs by combining drugs and materials to obtain complementary or cooperative bioengineered drugs. In this study, gelatin methacrylate (GelMA) and silk fibroin glycidyl methacrylate (SFMA) were used to synthesize GelMA/SFMA composite hydrogels with suitable mechanical properties, swelling ratio and biodegradability. The composite hydrogel was used as a wound dressing for sustained drug release. RES was loaded into mesoporous silica nanoparticles (MSNs) to synthesize MSN-RES to enhance the release dynamic, and MSN-RES and PDEVs were combined with the composite hydrogels to form GelMA/SFMA/MSN-RES/PDEVs hydrogels. The GelMA/SFMA/MSN-RES/PDEVs had low cytotoxicity and good biocompatibility, inhibited macrophage iNOS expression, and promoted the tube formation by human umbilical vein endothelial cells (HUVECs) in vitro. In a diabetic mouse wound model, the GelMA/SFMA/MSN-RES/PDEVs hydrogels decreased the expression of pro-inflammatory factors TNF-α and iNOS, increased the expression of anti-inflammatory factors TGF-β1 and Arg-1, promoted angiogenesis, and accelerated wound healing. Interestingly, the GelMA/SFMA/MSN-RES/PDEVs hydrogels promoted the expression of extracellular purinergic signaling pathway-related CD73 and adenosine 2A receptor (A2A-R). Therefore, the GelMA/SFMA/MSN-RES/PDEVs hydrogels could be used as wound dressings to regulate the inflammation and angiogenesis of diabetic wounds and accelerate wound healing. STATEMENT OF SIGNIFICANCE: Drugs often fail to function because of a continuous oxidative stress microenvironment and inflammation. Here, a GelMA/SFMA hydrogel, with enhanced mechanical properties and liquid absorption ability, is proposed for sustained release of drugs. In addition to carrying platelet-derived extracellular vesicles (PDEVs) with pro-angiogenic effects, the hydrogels were also loaded with nanoparticle-encapsulated resveratrol with anti-inflammatory activities, aiming to reduce inflammation and oxidative stress in the wound microenvironment, such that the wound could receive proliferative repair signals to achieve sequential treatment and heal quickly. We also experimentally predicted that the regulatory mechanism of the GelMA/SFMA/MSN-RES/PDEVs in wound healing might be related to the extracellular purinergic signaling pathway.
Collapse
Affiliation(s)
- Weidong Zhu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510120, China
| | - Yunqing Dong
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510120, China
| | - Pengcheng Xu
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Qiao Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510120, China
| | - Keyao Jia
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510120, China
| | - Panshi Jin
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510120, China
| | - Mou Zhou
- Department of Blood Transfusion, General Hospital of Southern Theater Command, PLA, Guangzhou 510515, China
| | - Yubing Xu
- Department of Blood Transfusion, General Hospital of Southern Theater Command, PLA, Guangzhou 510515, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Biao Cheng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510120, China.
| |
Collapse
|
35
|
Wang D, Wang T, Zhang Z, Li Z, Guo Y, Zhao G, Wu L. Recent advances in the effects of dietary polyphenols on inflammation in vivo: potential molecular mechanisms, receptor targets, safety issues, and uses of nanodelivery system and polyphenol polymers. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Ryyti R, Hämäläinen M, Leppänen T, Peltola R, Moilanen E. Phenolic Compounds Known to Be Present in Lingonberry ( Vaccinium vitis-idaea L.) Enhance Macrophage Polarization towards the Anti-Inflammatory M2 Phenotype. Biomedicines 2022; 10:3045. [PMID: 36551801 PMCID: PMC9776286 DOI: 10.3390/biomedicines10123045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Macrophages are pleiotropic immune cells whose phenotype can polarize towards the pro-inflammatory M1 or anti-inflammatory M2 direction as a response to environmental changes. In obesity, the number of macrophages in adipose tissue is enhanced, and they shift towards the M1 phenotype. Activated M1 macrophages secrete pro-inflammatory cytokines and adipokines involved in the development of systemic low-grade inflammation, complicating obesity. Polyphenols are widely found in the vegetable kingdom and have anti-inflammatory properties. We and others have recently found that lingonberry (Vaccinium vitis-idaea L.) supplementation is able to prevent the development of low-grade inflammation and its metabolic consequences in experimentally induced obesity. In the present study, we investigated the effects of twelve phenolic compounds known to be present in lingonberry (resveratrol, piceid, quercetin, kaempferol, proanthocyanidins, delphinidin, cyanidin, benzoic acid, cinnamic acid, coumaric acid, caffeic acid, and ferulic acid) on macrophage polarization, which is a meaningful mechanism determining the low-grade inflammation in obesity. Mouse J774 and human U937 macrophages and commercially available phenolic compounds were used in the studies. Three of the twelve compounds investigated showed an effect on macrophage polarization. Resveratrol, kaempferol, and proanthocyanidins enhanced anti-inflammatory M2-type activation, evidenced as increased expression of Arg-1 and MRC-1 in murine macrophages and CCL-17 and MRC-1 in human macrophages. Resveratrol and kaempferol also inhibited pro-inflammatory M1-type activation, shown as decreased expression of IL-6, NO, and MCP-1 in murine macrophages and TNF-α and IL-6 in human macrophages. In the further mechanistic studies, the effects of the three active compounds were investigated on two transcription factors important in M2 activation, namely on PPARγ and STAT6. Resveratrol and kaempferol were found to enhance PPARγ expression, while proanthocyanidins increased the phosphorylation of STAT6. The results suggest proanthocyanidins, resveratrol, and kaempferol as active constituents that may be responsible for the positive anti-inflammatory effects of lingonberry supplementation in obesity models. These data also extend the previous knowledge on the anti-inflammatory effects of lingonberry and encourage further studies to support the use of lingonberry and lingonberry-based products as a part of a healthy diet.
Collapse
Affiliation(s)
- Riitta Ryyti
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| | - Rainer Peltola
- Bioeconomy and Environment, Natural Resources Institute Finland, 96200 Rovaniemi, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
37
|
Fang H, Chen J, Luo J, Hu J, Wang D, Lv L, Zhang W. Abietic acid attenuates sepsis-induced lung injury by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway to inhibit M1 macrophage polarization. Exp Anim 2022; 71:481-490. [PMID: 35644586 PMCID: PMC9671762 DOI: 10.1538/expanim.22-0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/03/2022] [Indexed: 08/17/2024] Open
Abstract
Lung injury is one of the leading causes of death in sepsis. Abietic acid (AA) has demonstrated anti-inflammatory and bacteriostatic properties. Herein, we established a mouse model of sepsis by cecal ligation and puncture, and intraperitoneally injected AA to treat. Lung injury was assessed by H&E staining and the inflammation in bronchoalveolar lavage fluid (BALF) were assessed by counting the number of inflammatory cells and detecting the content of inflammatory factors. Meanwhile, we also designed to study the effect of AA on lipopolysaccharide (LPS)-induced inflammatory response and macrophage marker gene expression in RAW264.7 cells in vitro. In this study, we found that AA inhibited LPS-induced secretion of inflammatory mediators (IL-1β, TNF-α, IL-6 and MIP-2), and decreased the expression of M1 macrophage e markers (CD16 and iNOS) and p-p65 protein, while increased the expression of M2 macrophage markers (CD206 and Arg-1) in RAW264.7 cells in vitro. In vivo, the therapy of AA not only rescued septic animals, but also attenuated lung injury in sepsis mice. Moreover, AA decreased the number of total cells, neutrophils and macrophages, the conceration of total protein, and the levels of inflammatory mediators in BALF of sepsis mice. Further, we found that AA inhibited M1 macrophage polarization and blocked nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway in BALF of sepsis mice. In conclusion, Abietic acid attenuates sepsis-induced lung injury, and its mechanism may be related to reducing inflammation by inhibiting NF-κB signaling to inhibit M1 macrophage polarization.
Collapse
Affiliation(s)
- Honglong Fang
- Department of Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou Zhejiang, 324000, P.R. China
| | - Juan Chen
- Department of Laboratory Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou Zhejiang, 324000, P.R. China
| | - Jian Luo
- Department of Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou Zhejiang, 324000, P.R. China
| | - Jianhua Hu
- Department of Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou Zhejiang, 324000, P.R. China
| | - Danqiong Wang
- Department of Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou Zhejiang, 324000, P.R. China
| | - Liang Lv
- Department of Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou Zhejiang, 324000, P.R. China
| | - Weiwen Zhang
- Department of Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou Zhejiang, 324000, P.R. China
| |
Collapse
|
38
|
Komori T, Morikawa Y. Essential roles of the cytokine oncostatin M in crosstalk between muscle fibers and immune cells in skeletal muscle after aerobic exercise. J Biol Chem 2022; 298:102686. [PMID: 36370846 PMCID: PMC9720348 DOI: 10.1016/j.jbc.2022.102686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
Crosstalk between muscle fibers and immune cells is well known in the processes of muscle repair after exercise, especially resistance exercise. In aerobic exercise, however, this crosstalk is not fully understood. In the present study, we found that macrophages, especially anti-inflammatory (M2) macrophages, and neutrophils accumulated in skeletal muscles of mice 24 h after a single bout of an aerobic exercise. The expression of oncostatin M (OSM), a member of the interleukin 6 family of cytokines, was also increased in muscle fibers immediately after the exercise. In addition, we determined that deficiency of OSM in mice inhibited the exercise-induced accumulation of M2 macrophages and neutrophils, whereas intramuscular injection of OSM increased these immune cells in skeletal muscles. Furthermore, the chemokines related to the recruitment of macrophages and neutrophils were induced in skeletal muscles after aerobic exercise, which were attenuated in OSM-deficient mice. Among them, CC chemokine ligand 2, CC chemokine ligand 7, and CXC chemokine ligand 1 were induced by OSM in skeletal muscles. Next, we analyzed the direct effects of OSM on the skeletal muscle macrophages, because the OSM receptor β subunit was expressed predominantly in macrophages in the skeletal muscle. OSM directly induced the expression of these chemokines and anti-inflammatory markers in the skeletal muscle macrophages. From these findings, we conclude that OSM is essential for aerobic exercise-induced accumulation of M2 macrophages and neutrophils in the skeletal muscle partly through the regulation of chemokine expression in macrophages.
Collapse
|
39
|
Zhang W, Zhang R, Chang Z, Wang X. Resveratrol activates CD8+ T cells through IL-18 bystander activation in lung adenocarcinoma. Front Pharmacol 2022; 13:1031438. [PMCID: PMC9630476 DOI: 10.3389/fphar.2022.1031438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Resveratrol, a natural product, has demonstrated anti-tumor effects in various kinds of tumor types, including colon, breast, and pancreatic cancers. Most research has focused on the inhibitory effects of resveratrol on tumor cells themselves rather than resveratrol’s effects on tumor immunology. In this study, we found that resveratrol inhibited the growth of lung adenocarcinoma in a subcutaneous tumor model by using the β-cyclodextrin-resveratrol inclusion complex. After resveratrol treatment, the proportion of M2-like tumor-associated macrophages (TAMs) was reduced and tumor-infiltrating CD8T cells showed significantly increased activation. The results of co-culture and antibody neutralization experiments suggested that macrophage-derived IL-18 may be a key cytokine in the resveratrol anti-tumor effect of CD8T cell activation. The results of this study demonstrate a novel view of the mechanisms of resveratrol tumor suppression. This natural product could reprogram TAMs and CD8T effector cells for tumor treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Emergency and Disaster Medical Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Ruohao Zhang
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhiguang Chang, ; Xiaobo Wang,
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhiguang Chang, ; Xiaobo Wang,
| |
Collapse
|
40
|
Capozzi A, Saucier C, Bisbal C, Lambert K. Grape Polyphenols in the Treatment of Human Skeletal Muscle Damage Due to Inflammation and Oxidative Stress during Obesity and Aging: Early Outcomes and Promises. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196594. [PMID: 36235130 PMCID: PMC9573747 DOI: 10.3390/molecules27196594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Today, inactivity and high-calorie diets contribute to the development of obesity and premature aging. In addition, the population of elderly people is growing due to improvements in healthcare management. Obesity and aging are together key risk factors for non-communicable diseases associated with several co-morbidities and increased mortality, with a major impact on skeletal muscle defect and/or poor muscle mass quality. Skeletal muscles contribute to multiple body functions and play a vital role throughout the day, in all our activities. In our society, limiting skeletal muscle deterioration, frailty and dependence is not only a major public health challenge but also a major socio-economic issue. Specific diet supplementation with natural chemical compounds such as grape polyphenols had shown to play a relevant and direct role in regulating metabolic and molecular pathways involved in the prevention and treatment of obesity and aging and their related muscle comorbidities in cell culture and animal studies. However, clinical studies aiming to restore skeletal muscle mass and function with nutritional grape polyphenols supplementation are still very scarce. There is an urgent need for clinical studies to validate the very encouraging results observed in animal models.
Collapse
Affiliation(s)
- Adriana Capozzi
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- SPO, INRAE, Institute Agro, University of Montpellier, 34000 Montpellier, France
| | - Cédric Saucier
- SPO, INRAE, Institute Agro, University of Montpellier, 34000 Montpellier, France
| | - Catherine Bisbal
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- Correspondence: (C.B.); (K.L.); Tel.: +33-(0)4-1175-9891 (C.B. & K.L.)
| | - Karen Lambert
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- Correspondence: (C.B.); (K.L.); Tel.: +33-(0)4-1175-9891 (C.B. & K.L.)
| |
Collapse
|
41
|
Yuan B, Luo S, Feng L, Wang J, Mao J, Luo B. Resveratrol regulates the inflammation and oxidative stress of granulosa cells in PCOS via targeting TLR2. J Bioenerg Biomembr 2022; 54:191-201. [PMID: 35836030 DOI: 10.1007/s10863-022-09942-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Polycystic ovary syndrome (PCOS) is featured as a common endocrine disorder in reproductive-aged women, while its pathophysiology is not fully illustrated. This study examined potential actions of resveratrol in PCOS cellular model and explored the underlying interaction between resveratrol and toll-like receptor 2 (TLR2). This study performed the bioinformatics analysis on two microarray datasets (GSE34526 and GSE138518). We found that TLR2 was one of potential hub genes that may be associated with PCOS. Further examination showed that TLR2 was highly expressed in granulosa cells from PCOS group compared with control. The in vitro studies showed that LPS intervention caused an increased expression of TLR2 and the pro-inflammatory mediators, and induced oxidative stress in the granulosa cells, which was concentration-dependently antagonized by resveratrol treatment. TLR2 silence significantly attenuated LPS-induced increase TNF-α, IL-1β, IL-6 and IL-8 expression and oxidative stress of granulosa cells. Furthermore, TLR2 overexpression promoted inflammatory response and oxidative stress in the granulosa cells, which was antagonized by resveratrol treatment. In conclusion, resveratrol could attenuate LPS-induced inflammation and oxidative stress in granulosa cells, and the underlying mechanisms may be related to the inhibitory effect of resveratrol on TLR2 expression in granulosa cells.
Collapse
Affiliation(s)
- Ben Yuan
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China.
| | - Shuhong Luo
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China
| | - Liulian Feng
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China
| | - Junling Wang
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China
| | - Junbiao Mao
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China
| | - Bingbing Luo
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, Hubei, China
| |
Collapse
|
42
|
Calabriso N, Scoditti E, Massaro M, Maffia M, Chieppa M, Laddomada B, Carluccio MA. Non-Celiac Gluten Sensitivity and Protective Role of Dietary Polyphenols. Nutrients 2022; 14:2679. [PMID: 35807860 PMCID: PMC9268201 DOI: 10.3390/nu14132679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Pathogenetically characterized by the absence of celiac disease and wheat allergy, non-celiac gluten sensitivity (NCGS) is a clinical entity triggered by the consumption of gluten-containing foods that relieved by a gluten-free diet. Since it is very difficult to maintain a complete gluten-free diet, there is a high interest in discovering alternative strategies aimed at reducing gluten concentration or mitigating its toxic effects. Plant-based dietary models are usually rich in bioactive compounds, such as polyphenols, recognized to prevent, delay, or even reverse chronic diseases, including intestinal disorders. However, research on the role of polyphenols in mitigating the toxicity of gluten-containing foods is currently limited. We address the metabolic fate of dietary polyphenols, both as free and bound macromolecule-linked forms, with particular reference to the gastrointestinal compartment, where the concentration of polyphenols can reach high levels. We analyze the potential targets of polyphenols including the gluten peptide bioavailability, the dysfunction of the intestinal epithelial barrier, intestinal immune response, oxidative stress and inflammation, and dysbiosis. Overall, this review provides an updated overview of the effects of polyphenols as possible dietary strategies to counteract the toxic effects of gluten, potentially resulting in the improved quality of life of patients with gluten-related disorders.
Collapse
Affiliation(s)
- Nadia Calabriso
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Egeria Scoditti
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; (M.M.); (M.C.)
| | - Marcello Chieppa
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; (M.M.); (M.C.)
| | - Barbara Laddomada
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 73100 Lecce, Italy
| | - Maria Annunziata Carluccio
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| |
Collapse
|
43
|
Schwager J, Bompard A, Raederstorff D, Hug H, Bendik I. Resveratrol and ω-3 PUFAs Promote Human Macrophage Differentiation and Function. Biomedicines 2022; 10:biomedicines10071524. [PMID: 35884829 PMCID: PMC9313469 DOI: 10.3390/biomedicines10071524] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Monocytes differentiate into M1 and M2 macrophages, which are classically activated by microbial products such as LPS or IFN-γ and interleukins (e.g., the anti-inflammatory and Th2 promoting IL-4), respectively. The contribution of nutrients or nutrient-based substances such as ω-3 polyunsaturated fatty acids (ω-3 PUFAs) and resveratrol (Res) on the differentiation and function of M1 and M2 macrophages was evaluated. THP-1 cells and peripheral blood mononuclear cells (PBMCs) were differentiated into M1 and M2 cells and activated with LPS/IFN-γ or IL-4/IL-13. Macrophage lineage specific surface determinants (e.g., CD11b, CD11c, CD14, CD206, CD209, CD274, HLA-DR, CCR7, CCR2) were analysed by cytofluorometry. Res and ω-3 PUFAs altered CD14, CD206, CD274 and HL-DR surface expression patterns in M1 and M2 macrophages differentiated from PBMC. LPS/IFN-γ or IL-14/IL-13 activated macrophages subpopulations, which secreted cytokines and chemokines as measured by multiplex ELISA. Res and ω-3 PUFA reduced IL-1β, IL-6, TNF-α, CXCL10/IP-10, CCL13/MCP-4 and CCL20/MIP-3α in LPS/IFN-γ activated human leukaemia THP-1 cells, which is indicative of a dampening effect on M1 macrophages. However, Res increased M1 prototypic cytokines such as IL-1β or IL-6 in macrophages derived from PBMCs and also modified the expression of IL-12p70. Collectively, Res and ω-3 PUFAs distinctly promoted the differentiation and function of M1 and M2 macrophages. We conclude that these substances strengthen the macrophage-mediated effects on the innate and adaptive immune response.
Collapse
Affiliation(s)
- Joseph Schwager
- DSM, HNC, Innovation, Global R&D Center, Wurmisweg 567, CH-4303 Kaiseraugst, Switzerland; (D.R.); (H.H.); (I.B.)
- Correspondence: ; Tel.: +41-79-488-0905
| | - Albine Bompard
- DSM, HNB, BDT, Toxicology & Kinetics, Wurmisweg 567, CH-4303 Kaiseraugst, Switzerland;
| | - Daniel Raederstorff
- DSM, HNC, Innovation, Global R&D Center, Wurmisweg 567, CH-4303 Kaiseraugst, Switzerland; (D.R.); (H.H.); (I.B.)
| | - Hubert Hug
- DSM, HNC, Innovation, Global R&D Center, Wurmisweg 567, CH-4303 Kaiseraugst, Switzerland; (D.R.); (H.H.); (I.B.)
| | - Igor Bendik
- DSM, HNC, Innovation, Global R&D Center, Wurmisweg 567, CH-4303 Kaiseraugst, Switzerland; (D.R.); (H.H.); (I.B.)
| |
Collapse
|
44
|
Xiao F, Farag MA, Xiao J, Yang X, Liu Y, Shen J, Lu B. The influence of phytochemicals on cell heterogeneity in chronic inflammation-associated diseases: the prospects of single cell sequencing. J Nutr Biochem 2022; 108:109091. [PMID: 35718097 DOI: 10.1016/j.jnutbio.2022.109091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/25/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
Chronic inflammation-associated diseases include, but is not limited to cardiovascular disease, cancer, obesity, diabetes, etc. Cell heterogeneity is a prerequisite for understanding the physiological and pathological development of cell metabolism, and its response to external stimuli. Recently, dietary habits based on phytochemicals became increasingly recognized to play a pivotal role in chronic inflammation. Phytochemicals can relieve chronic inflammation by regulating inflammatory cell differentiation and immune cell response, but the influence of phytochemicals on cell heterogeneity from in vitro and ex vivo studies cannot simulate the complexity of cell differentiation in vivo due to the differences in cell lines and extracellular environment. Therefore, there is no consensus on the regulation mechanism of phytochemicals on chronic diseases based on cell heterogeneity. The purpose of this review is to summarize cell heterogeneity in common chronic inflammation-associated diseases and trace the effects of phytochemicals on cell differentiation in chronic diseases development. More importantly, by discussing the problems and challenges which hinder the study of cell heterogeneity in recent nutritional assessment experiments, we propose new prospects based on the drawbacks of existing research to optimize the research on the regulation mechanism of phytochemicals on chronic diseases. The need to explore precise measurements of cell heterogeneity is a key pillar in understanding the influence of phytochemicals on certain diseases. In the future, deeper understanding of cell-to-cell variation and the impact of food components and their metabolites on cell function by single-cell genomics and epigenomics with the focus on individual differences will open new avenues for the next generation of health care.
Collapse
Affiliation(s)
- Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt; Department of Chemistry, School of Sciences & Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Jianfu Shen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
45
|
López-Armada MJ, Fernández-Rodríguez JA, Blanco FJ. Mitochondrial Dysfunction and Oxidative Stress in Rheumatoid Arthritis. Antioxidants (Basel) 2022; 11:antiox11061151. [PMID: 35740048 PMCID: PMC9220001 DOI: 10.3390/antiox11061151] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Control of excessive mitochondrial oxidative stress could provide new targets for both preventive and therapeutic interventions in the treatment of chronic inflammation or any pathology that develops under an inflammatory scenario, such as rheumatoid arthritis (RA). Increasing evidence has demonstrated the role of mitochondrial alterations in autoimmune diseases mainly due to the interplay between metabolism and innate immunity, but also in the modulation of inflammatory response of resident cells, such as synoviocytes. Thus, mitochondrial dysfunction derived from several danger signals could activate tricarboxylic acid (TCA) disruption, thereby favoring a vicious cycle of oxidative/mitochondrial stress. Mitochondrial dysfunction can act through modulating innate immunity via redox-sensitive inflammatory pathways or direct activation of the inflammasome. Besides, mitochondria also have a central role in regulating cell death, which is deeply altered in RA. Additionally, multiple evidence suggests that pathological processes in RA can be shaped by epigenetic mechanisms and that in turn, mitochondria are involved in epigenetic regulation. Finally, we will discuss about the involvement of some dietary components in the onset and progression of RA.
Collapse
Affiliation(s)
- María José López-Armada
- Grupo de Investigación en Envejecimiento e Inflamación (ENVEINF), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain;
- Correspondence: (M.J.L.-A.); (F.J.B.); Tel./Fax: +34-981-178272-73 (M.J.L.-A.)
| | - Jennifer Adriana Fernández-Rodríguez
- Grupo de Investigación en Envejecimiento e Inflamación (ENVEINF), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain;
| | - Francisco Javier Blanco
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña, 15001 A Coruña, Spain
- Correspondence: (M.J.L.-A.); (F.J.B.); Tel./Fax: +34-981-178272-73 (M.J.L.-A.)
| |
Collapse
|
46
|
Liu S, Lu Z, Liu C, Chang X, Apudureheman B, Chen S, Ye X. Castanea mollissima shell polyphenols regulate JAK2 and PPARγ expression to suppress inflammation and lipid accumulation by inhibiting M1 macrophages polarization. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
47
|
Schumacher NSG, Fernandes LGR, de Lima Zollner R. Aqueous extract of Passiflora alata leaves modulates in vitro the indoleamine 2,3-dioxygenase (IDO) and CD86 expression in bone marrow-derived professional antigen-presenting cells polarizing NOD mice T cells to a Treg profile. Cytokine 2022; 152:155832. [PMID: 35202987 DOI: 10.1016/j.cyto.2022.155832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) and macrophages are professional antigen-presenting cells (pAPCs), numerous in the pancreas of nonobese diabetic (NOD) mice and playing an essential role in the autoimmune response of type 1 diabetes. The expression of the enzyme indoleamine 2,3-dioxygenase (IDO) is a critical factor for the tolerogenic activity of pAPCs, acting in the catabolism of tryptophan, providing metabolites that suppress the T cell effectors and induce T regulatory cells differentiation. Here we investigated the in vitro mechanisms of lyophilized aqueous extract from Passiflora alata leaves (LAEPAL) that modulates bone marrow-derived professional antigen-presenting cells (BM-pAPCs), affecting their ability to polarize T cells. A cell culture model was defined using mixed cultures of BM-pAPCs and T lymphocytes NOD mice with stressed MIN-6 cells as a source of pancreatic β cells antigens. We showed that the treatment with 300 µg/mL of LAEPAL induces a significant decrease in the CD4 and CD8 T effector lymphocytes proliferation from diabetic but not in non-diabetic mice, followed by a reduction of the IL-6 and IFN-γ cytokines release in the cell cultures supernatants. Moreover, we observed an increase of CD4+CD25+FoxP3+ Tregs in the cell cultures from diabetic mice. These results could be partially explained by the LAEPAL modulatory effects in BM-pAPCs, downregulating the CD86 co-stimulatory molecule expression, and increasing IDO-1 expression in F4/80+ BM-pAPCs. These results contribute to a better understanding of the polyphenols' immunomodulatory properties, meaning they could induce tolerogenic antigen-presenting cells, which could polarize T cells to a Treg profile and decrease the activity of CD4+ and CD8+ T effector cells.
Collapse
Affiliation(s)
- Nayara Simon Gonzalez Schumacher
- Laboratory of Translational Immunology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil.
| | - Luís Gustavo Romani Fernandes
- Laboratory of Translational Immunology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil.
| | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil.
| |
Collapse
|
48
|
Clayton ZS, Gioscia-Ryan RA, Justice JN, Lubieniecki KL, Hutton DA, Rossman MJ, Zigler MC, Seals DR. Lifelong physical activity attenuates age- and Western-style diet-related declines in physical function and adverse changes in skeletal muscle mass and inflammation. Exp Gerontol 2022; 157:111632. [PMID: 34822971 DOI: 10.1016/j.exger.2021.111632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022]
Abstract
It is unknown if consumption of a Western diet (WD; high-fat/sucrose), versus a non-WD (healthy diet), accelerates declines in physical function over the adult lifespan, and whether regular voluntary activity attenuates age- and WD-associated declines in function. Accordingly, we studied 4 cohorts of mice that consumed either normal chow [NC] or WD with or without access (sedentary, Sed) to voluntary wheel running [VWR] beginning at 3 mo of age. We assessed coordination, grip strength and endurance every 6 mo throughout life, and measured skeletal muscle mass and inflammation at 3 pre-determined ages (6-7, 13-14 and 19-20 mo). Age-related declines (% change 3-18 mo) in physical function were accelerated in WD-Sed versus NC-Sed (coordination: +47 ± 5%; grip strength: +18 ± 2%; endurance: +32 ± 5%; all p < 0.05). VWR attenuated declines in physical function within diet group (coordination: -31 ± 3% with WD-VWR; -18 ± 2% with NC-VWR; grip strength: -26 ± 2% with WD-VWR; -24 ± 2% with NC-VWR; endurance: -48 ± 4% with WD-VWR; -23 ± 6% with NC-VWR; all p < 0.05). Skeletal muscle mass loss and pro-inflammatory cytokine abundance were exacerbated by WD throughout life (mass: NC-Sed [-]7-28%, WD-Sed [-]17-40%; inflammation: NC-Sed [+]40-65%, WD-Sed [+]40-84%, all p < 0.05 versus NC-Sed), and attenuated by VWR (mass: NC-VWR, [-]0-10%, WD-VWR [-]0-10%; inflammation: NC-VWR [+]0-30%, WD-VWR [+]0-42%, all p < 0.05 versus diet-matched Sed group). Our results depict the temporal impairment of physical function over the lifespan in mice, acceleration of dysfunction with WD, the protective effects of voluntary exercise, and the potential associations with skeletal muscle mass and inflammation.
Collapse
Affiliation(s)
- Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Rachel A Gioscia-Ryan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Jamie N Justice
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Kara L Lubieniecki
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - David A Hutton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Melanie C Zigler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America.
| |
Collapse
|
49
|
Sikorska M, Dutkiewicz M, Zegrocka-Stendel O, Kowalewska M, Grabowska I, Koziak K. Beneficial effects of β-escin on muscle regeneration in rat model of skeletal muscle injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153791. [PMID: 34666284 DOI: 10.1016/j.phymed.2021.153791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/20/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Recent advancements in understanding β-escin action provide basis for new therapeutic claims for the drug. β-escin-evoked attenuation of NF-κB-dependent signaling, increase in MMP-14 and decrease in COUP-TFII content and a rise in cholesterol biosynthesis could be beneficial in alleviating muscle-damaging processes. PURPOSE The aim of this study was to investigate the effect of β-escin on skeletal muscle regeneration. METHODS Rat model of cardiotoxin-induced injury of fast-twich extensor digitorum longus (EDL) and slow-twich soleus (SOL) muscles and C2C12 myoblast cells were used in the study. We evaluated muscles obtained on day 3 and 14 post-injury by histological analyses of muscle fibers, connective tissue, and mononuclear infiltrate, by immunolocalization of macrophages and by qPCR to quantify the expression of muscle regeneration-related genes. Mechanism of drug action was investigated in vitro by assessing cell viability, NF-κB activation, MMP-2 and MMP-9 secretion, and ALDH activity. RESULTS In rat model, β-escin rescues regenerating muscles from atrophy. The drug reduces inflammatory infiltration, increases the number of muscle fibers and decreases fibrosis. β-escin reduces macrophage infiltration into injured muscles and promotes their M2 polarization. It also alters transcription of muscle regeneration-related genes: Myf5, Myh2, Myh3, Myh8, Myod1, Pax3 and Pax7, and Pcna. In C2C12 myoblasts in vitro, β-escin inhibits TNF-α-induced activation of NF-κB, reduces secretion of MMP-9 and increases ALDH activity. CONCLUSIONS The data reveal beneficial role of β-escin in muscle regeneration, particularly in poorly regenerating slow-twitch muscles. The findings provide rationale for further studies on β-escin repositioning into conditions associated with muscle damage such as strenuous exercise, drug-induced myotoxicity or age-related disuse atrophy.
Collapse
Affiliation(s)
- Maria Sikorska
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland
| | - Małgorzata Dutkiewicz
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland
| | - Oliwia Zegrocka-Stendel
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland
| | - Magdalena Kowalewska
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland; Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, ul. Roentgena 5, 02-781 Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Koziak
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland.
| |
Collapse
|
50
|
Aliabadi M, Zamani-Garmsiri F, Panahi G, Tehrani SS, Meshkani R. Metformin in combination with genistein ameliorates skeletal muscle inflammation in high-fat diet fed c57BL/6 mice. Cytokine 2021; 146:155638. [PMID: 34242900 DOI: 10.1016/j.cyto.2021.155638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022]
Abstract
Although the beneficial effects of metformin (MET) and genistein in ameliorating inflammation have been elucidated, their combined impacts on skeletal muscle inflammation have not been clearly understood. This study aimed to examine the possible preventive effect of MET in combination with genistein on skeletal muscle inflammation in high-fat diet (HFD) fed C57BL/6 mice. Fifty C57BL/6 male mice were fed on an HFD for 10 weeks. The mice were categorized into five groups, control, HFD, HFD + MET (0.23%), HFD + genistein (0.2%), and HFD + MET + genistein for 12 weeks. The results showed that treatment with MET and genistein, either alone or in combination, led to reduced weight gain, fasting blood glucose, plasma insulin, HOMA-IR levels, and Area Under the Curves (AUCs) in ipGTT. MET in combination with genistein demonstrated a decreasing effect on macrophages infiltration rate compared to genistein and MET groups alone. The expression of iNOS was reduced, whereas the expression of M2 macrophage markers was increased in combined treatment of MET and genistein. Furthermore, MET in combination with genistein reduced the expression of TNF-α, IL-1β, MCP-1, and IL-6 and increased the expression of IL-10 in comparison with genistein and MET groups alone. Plasma and skeletal muscle triglycerides and intra-myocellular lipid deposition were reversed by treatment with MET and genistein, alone or in combination. These results imply that the combination therapy of MET and genistein may have therapeutic potential for decreasing obesity-induced skeletal muscle inflammation in the HFD-fed model.
Collapse
Affiliation(s)
- Masoume Aliabadi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|