1
|
Kress T, Duer MJ. Solid-State NMR Spectroscopy Investigation of Structural Changes of Mechanically Strained Mouse Tail Tendons. J Am Chem Soc 2025; 147:9220-9228. [PMID: 40056116 PMCID: PMC11926861 DOI: 10.1021/jacs.4c13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Structural tissues like tendon are subjected to repeated tensile strains in vivo and excessive strains cause irreversible changes to the tissue. Large strains affect the molecular structure and organization of the extracellular matrix, and these are the parameters that drive cell behavior, including tissue repair. Here we describe a method to perform solid-state NMR spectroscopy on in situ strained tissue samples under magic-angle spinning to achieve high-resolution NMR spectra while maintaining the tissue's native hydration state. The changes observed in the NMR spectra are interpreted using quantum mechanics molecular mechanics (QM/MM) chemical shift calculations on strained collagen triple-helix structures and consideration of changes in the distribution of molecular orientations between strained and relaxed mechanical states. We demonstrate that our tissue strain method in combination with spectral simulations can detect changes in collagen organization between tendons loaded to plastic deformation and subsequent structural relaxation in the unloaded state.
Collapse
Affiliation(s)
- Thomas Kress
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Melinda J Duer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
2
|
Zhou Y, Jiang Z, Cao L, Yang J. The role of various collagen types in tumor biology: a review. Front Oncol 2025; 15:1549797. [PMID: 40110201 PMCID: PMC11919678 DOI: 10.3389/fonc.2025.1549797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Collagen comprises approximately 30% of the body's protein content and is essential for maintaining the structural integrity, support, and strength of the skin, muscles, bones, and connective tissues. Recent research has further elucidated its role in various aspects of tumor biology, including tumorigenesis, invasion, migration, drug resistance, and recurrence. Furthermore, collagen is involved in prognostic assessments, the evaluation of therapeutic efficacy, immunoregulation, and the identification of potential treatment targets in oncology. This review examines a range of tumor types, including lung, gastric, breast, melanoma, and colorectal cancers, among others. Our objective is to differentiate these tumors based on the specific types of collagen present and to analyze the roles of various collagen types in tumor development, progression, prognosis, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yuchuan Zhou
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhonghui Jiang
- Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lu Cao
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jianquan Yang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
3
|
Whitehead M, Faleeva M, Oexner R, Cox S, Schmidt L, Mayr M, Shanahan CM. ECM Modifications Driven by Age and Metabolic Stress Directly Promote Vascular Smooth Muscle Cell Osteogenic Processes. Arterioscler Thromb Vasc Biol 2025; 45:424-442. [PMID: 39817328 PMCID: PMC11856005 DOI: 10.1161/atvbaha.124.321467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on VSMC phenotype remains poorly studied. METHODS Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact VSMC phenotype. ECM was synthesized using primary human VSMCs and modified during culture or after decellularization. Integrity, stiffness, and composition of the ECM was measured using superresolution microscopy, atomic force microscopy, and proteomics, respectively. VSMCs reseeded onto the modified ECM were analyzed for viability and osteogenic differentiation. RESULTS ECMs produced in response to mineral stress showed extracellular vesicle-mediated hydroxyapatite deposition and sequential changes in collagen composition and ECM properties. VSMCs seeded onto the calcified ECM exhibited increased extracellular vesicle release and Runx2 (Runt-related transcription factor 2)-mediated osteogenic gene expression due to the uptake of hydroxyapatite, which led to increased reactive oxygen species and the induction of DNA damage signaling. VSMCs seeded onto the nonmineralized, senescent ECM also exhibited increased Runx2-mediated osteogenic gene expression and accelerated calcification. In contrast, glycated ECM specifically induced increased ALP (alkaline phosphatase) activity, and this was dependent on RAGE (receptor for advanced glycation end products) signaling with both ALP and RAGE receptor inhibition attenuating calcification. CONCLUSIONS ECM modifications associated with aging and metabolic disease can directly induce osteogenic differentiation of VSMCs via distinct mechanisms and without the need for additional stimuli. This highlights the importance of the ECM microenvironment as a key driver of phenotypic modulation acting to accelerate age-associated vascular pathologies and provides a novel model system to study the mechanisms of calcification.
Collapse
Affiliation(s)
- Meredith Whitehead
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.W., M.F., R.O., L.S., M.M., C.M.S.), King’s College London, United Kingdom
| | - Maria Faleeva
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.W., M.F., R.O., L.S., M.M., C.M.S.), King’s College London, United Kingdom
| | - Rafael Oexner
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.W., M.F., R.O., L.S., M.M., C.M.S.), King’s College London, United Kingdom
| | - Susan Cox
- Randall Centre for Cell & Molecular Biophysics, Faculty of Life Sciences & Medicine (S.C.), King’s College London, United Kingdom
| | - Lukas Schmidt
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.W., M.F., R.O., L.S., M.M., C.M.S.), King’s College London, United Kingdom
| | - Manuel Mayr
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.W., M.F., R.O., L.S., M.M., C.M.S.), King’s College London, United Kingdom
| | - Catherine M. Shanahan
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.W., M.F., R.O., L.S., M.M., C.M.S.), King’s College London, United Kingdom
| |
Collapse
|
4
|
Zecca MA, Greer HF, Müller KH, Duer MJ. Poly(ADP-ribose) binding sites on collagen I fibrils for nucleating intrafibrillar bone mineral. Proc Natl Acad Sci U S A 2025; 122:e2414849122. [PMID: 39977326 PMCID: PMC11873830 DOI: 10.1073/pnas.2414849122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/26/2025] [Indexed: 02/22/2025] Open
Abstract
Bone calcification is essential for vertebrate life. The mechanism by which mineral ions are transported into collagen fibrils to induce intrafibrillar mineral formation requires a calcium binding biopolymer that also has highly selective binding to the collagen fibril hole zones where intrafibrillar calcification begins, over other bone extracellular matrix components. Poly(ADP-ribose) (PAR) has been shown to be a candidate biopolymer for this process and we show here that PAR has high affinity, highly conserved binding sites in the collagen type I C-terminal telopeptides. The identification of these PAR-collagen binding sites gives insights into the chemical mechanisms underlying bone calcification and possible mechanisms behind pathologies where there is dysfunctional bone calcification.
Collapse
Affiliation(s)
- Marco A. Zecca
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Heather F. Greer
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Karin H. Müller
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience, University of Cambridge, CambridgeCB2 3DY, United Kingdom
| | - Melinda J. Duer
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| |
Collapse
|
5
|
Sloseris D, Forde NR. AGEing of collagen: The effects of glycation on collagen's stability, mechanics and assembly. Matrix Biol 2025; 135:153-160. [PMID: 39805674 DOI: 10.1016/j.matbio.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
Advanced Glycation End Products (AGEs) are the end result of the irreversible, non-enzymatic glycation of proteins by reducing sugars. These chemical modifications accumulate with age and have been associated with various age-related and diabetic complications. AGEs predominantly accumulate on proteins with slow turnover rates, of which collagen is a prime example. Glycation has been associated with tissue stiffening and reduced collagen fibril remodelling. In this study, we investigate the effects of glycation on the stability of type I collagen, its molecular-level mechanics and its ability to perform its physiological role of self-assembly. Collagen AGEing is induced in vitro by incubation with ribose. We confirm and assess glycation using fluorescence measurements and changes in collagen's electrophoretic mobility. Susceptibility to trypsin digestion and circular dichroism (CD) spectroscopy are used to probe changes in collagen's triple helical stability, revealing decreased stability due to glycation. Atomic Force Microscopy (AFM) imaging is used to quantify how AGEing affects collagen flexibility, where we find molecular-scale stiffening. Finally we use microscopy to show that glycated collagen molecules are unable to self-assemble into fibrils. These findings shed light on the molecular mechanisms underlying AGE-induced tissue changes, offering insight into how glycation modifies protein structure and stability.
Collapse
Affiliation(s)
- Daniel Sloseris
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
6
|
Araújo R, Páscoa RNMJ, Bernardino R, Gomes PS. Impact of High Glucose on Bone Collagenous Matrix Composition, Structure, and Organization: An Integrative Analysis Using an Ex Vivo Model. Cells 2025; 14:130. [PMID: 39851558 PMCID: PMC11764406 DOI: 10.3390/cells14020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Diabetes mellitus is a widespread metabolic disorder linked to numerous systemic complications, including adverse effects on skeletal health, such as increased bone fragility and fracture risk. Emerging evidence suggests that high glucose may disrupt the extracellular matrix (ECM) of bone, potentially altering its composition and organization. Collagen, the primary organic component of the ECM, is critical for maintaining structural integrity and biomechanical properties. However, definitive evidence and a comprehensive understanding of the molecular mechanisms through which high glucose impacts the ECM and collagen remain elusive. This study employed an ex vivo embryonic chicken femur model to investigate the effects of high glucose on the collagenous matrix. A comprehensive approach integrating histological evaluation, histomorphometry, ATR-FTIR spectroscopy, and proteomics was adopted to unravel structural, biochemical, and molecular changes in the ECM. Histomorphometric analysis revealed disrupted collagen fibril architecture, characterized by altered fibril diameter, alignment, and spatial organization. ATR-FTIR spectroscopy highlighted biochemical modifications, including non-enzymatic glycation that impaired collagen crosslinking and reduced matrix integrity. Proteomic profiling unveiled significant alterations in ECM composition and function, including downregulation of key collagen crosslinking enzymes and upregulation of inflammatory and coagulation pathways. High glucose profoundly disrupts the collagenous matrix of bone, weakening its structural integrity and organization. These findings emphasize the critical impact of high glucose environments on extracellular matrix composition and bone quality, offering insights into the mechanisms behind diabetic bone fragility and guiding future research toward targeted therapeutic strategies.
Collapse
Affiliation(s)
- Rita Araújo
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal;
- LAQV/REQUIMTE, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
- Endocrine and Metabolic Research, UMIB Unit for Multidisciplinary Research in Biomedicine, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal;
| | - Ricardo N. M. J. Páscoa
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Raquel Bernardino
- Endocrine and Metabolic Research, UMIB Unit for Multidisciplinary Research in Biomedicine, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
| | - Pedro S. Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal;
- LAQV/REQUIMTE, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
| |
Collapse
|
7
|
Rutten L, Macías-Sánchez E, Sommerdijk N. On the role of the glycosylation of type I collagen in bone. J Struct Biol 2024; 216:108145. [PMID: 39447940 DOI: 10.1016/j.jsb.2024.108145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Glycan-protein interactions play a crucial role in biology, providing additional functions capable of inducing biochemical and cellular responses. In the extracellular matrix of bone, this type of interactions is ubiquitous. During the synthesis of the collagen molecule, glycans are post-translationally added to specific lysine residues through an enzymatically catalysed hydroxylation and subsequent glycosylation. During and after fibril assembly, proteoglycans are essential for maintaining tissue structure, porosity, and integrity. Glycosaminoglycans (GAGs), the carbohydrate chains attached to interstitial proteoglycans, are known to be involved in mineralization. They can attract and retain water, which is critical for the mechanical properties of bone. In addition, like other long-lived proteins, collagen is susceptible to glycation. Prolonged exposure of the amine group to glucose eventually leads to the formation of advanced glycation end-products (AGEs). Changes in the degree of glycosylation and glycation have been identified in bone pathologies such as osteogenesis imperfecta and diabetes and appear to be associated with a reduction in bone quality. However, how these changes affect mineralization is not well understood. Based on the literature review, we hypothesize that the covalently attached carbohydrates may have a water-attracting function similar to that of GAGs, but at different lengths and timescales in the bone formation process. Glycosylation potentially increases the hydration around the collagen triple helix, leading to increased mineralization (hypermineralization) after water has been replaced by mineral. Meanwhile, glycation leads to the formation of crosslinking AGEs, which are associated with a decrease in hydration levels, reducing the mechanical properties of bone.
Collapse
Affiliation(s)
- Luco Rutten
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Geert Grooteplein Noord 29, 6525 EZ Nijmegen, Netherlands; Department of Medical BioSciences, Research Institute for Medical Innovations, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, Netherlands
| | - Elena Macías-Sánchez
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Geert Grooteplein Noord 29, 6525 EZ Nijmegen, Netherlands; Department of Medical BioSciences, Research Institute for Medical Innovations, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, Netherlands; Department of Stratigraphy and Palaeontolgy, University of Granada, Avenida Fuente Nueva s/n, 18071 Granada, Spain.
| | - Nico Sommerdijk
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Geert Grooteplein Noord 29, 6525 EZ Nijmegen, Netherlands; Department of Medical BioSciences, Research Institute for Medical Innovations, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, Netherlands.
| |
Collapse
|
8
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 PMCID: PMC11931590 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
9
|
Rufin M, Nalbach M, Rakuš M, Fuchs M, Poik M, Schitter G, Thurner PJ, Andriotis OG. Methylglyoxal alters collagen fibril nanostiffness and surface potential. Acta Biomater 2024; 189:208-216. [PMID: 39218277 DOI: 10.1016/j.actbio.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Collagen fibrils are fundamental to the mechanical strength and function of biological tissues. However, they are susceptible to changes from non-enzymatic glycation, resulting in the formation of advanced glycation end-products (AGEs) that are not reversible. AGEs accumulate with aging and disease and can adversely impact tissue mechanics and cell-ECM interactions. AGE-crosslinks have been related, on the one hand, to dysregulation of collagen fibril stiffness and damage and, on the other hand, to altered collagen net surface charge as well as impaired cell recognition sites. While prior studies using Kelvin probe force microscopy (KPFM) have shown the effect glycation has on collagen fibril surface potential (i.e., net charge), the combined effect on individual and isolated collagen fibril mechanics, hydration, and surface potential has not been documented. Here, we explore how methylglyoxal (MGO) treatment affects the mechanics and surface potential of individual and isolated collagen fibrils by utilizing atomic force microscopy (AFM) nanoindentation and KPFM. Our results reveal that MGO treatment significantly increases nanostiffness, alters surface potential, and modifies hydration characteristics at the collagen fibril level. These findings underscore the critical impact of AGEs on collagen fibril physicochemical properties, offering insights into pathophysiological mechanical and biochemical alterations with implications for cell mechanotransduction during aging and in diabetes. STATEMENT OF SIGNIFICANCE: Collagen fibrils are susceptible to glycation, the irreversible reaction of amino acids with sugars. Glycation affects the mechanical properties and surface chemistry of collagen fibrils with adverse alterations in biological tissue mechanics and cell-ECM interactions. Current research on glycation, at the level of individual collagen fibrils, is sparse and has focused either on collagen fibril mechanics, with contradicting evidence, or surface potential. Here, we utilized a multimodal approach combining Kelvin probe force (KPFM) and atomic force microscopy (AFM) to examine how methylglyoxal glycation induces structural, mechanical, and surface potential changes on the same individual and isolated collagen fibrils. This approach helps inform structure-function relationships at the level of individual collagen fibrils.
Collapse
Affiliation(s)
- Manuel Rufin
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Strasse 7, A-1060 Vienna, Austria
| | - Mathis Nalbach
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Strasse 7, A-1060 Vienna, Austria
| | - Maja Rakuš
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Strasse 7, A-1060 Vienna, Austria
| | - Magdalena Fuchs
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Strasse 7, A-1060 Vienna, Austria
| | - Mathias Poik
- Automation and Control Institute (ACIN), TU Wien, Gusshausstrasse 27-29, A-1040 Vienna, Austria
| | - Georg Schitter
- Automation and Control Institute (ACIN), TU Wien, Gusshausstrasse 27-29, A-1040 Vienna, Austria
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Strasse 7, A-1060 Vienna, Austria
| | - Orestis G Andriotis
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Strasse 7, A-1060 Vienna, Austria.
| |
Collapse
|
10
|
Bains AK, Naba A. Proteomic insights into the extracellular matrix: a focus on proteoforms and their implications in health and disease. Expert Rev Proteomics 2024; 21:463-481. [PMID: 39512072 PMCID: PMC11602344 DOI: 10.1080/14789450.2024.2427136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION The extracellular matrix (ECM) is a highly organized and dynamic network of proteins and glycosaminoglycans that provides critical structural, mechanical, and biochemical support to cells. The functions of the ECM are directly influenced by the conformation of the proteins that compose it. ECM proteoforms, which can result from genetic, transcriptional, and/or post-translational modifications, adopt different conformations and, consequently, confer different structural properties and functionalities to the ECM in both physiological and pathological contexts. AREAS COVERED In this review, we discuss how bottom-up proteomics has been applied to identify, map, and quantify post-translational modifications (e.g. additions of chemical groups, proteolytic cleavage, or cross-links) and ECM proteoforms arising from alternative splicing or genetic variants. We further illustrate how proteoform-level information can be leveraged to gain novel insights into ECM protein structure and ECM functions in health and disease. EXPERT OPINION In the Expert opinion section, we discuss remaining challenges and opportunities with an emphasis on the importance of devising experimental and computational methods tailored to account for the unique biochemical properties of ECM proteins with the goal of increasing sequence coverage and, hence, accurate ECM proteoform identification.
Collapse
Affiliation(s)
- Amanpreet Kaur Bains
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
11
|
Voziyan P, Brown KL, Uppuganti S, Leser M, Rose KL, Nyman JS. A map of glycation and glycoxidation sites in collagen I of human cortical bone: Effects of sex and type 2 diabetes. Bone 2024; 187:117209. [PMID: 39047900 PMCID: PMC11875209 DOI: 10.1016/j.bone.2024.117209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Complications of diabetes is a major health problem affecting multiple organs including bone, where the chronic disease increases the risk of fragility fractures. One hypothesis suggests a pathogenic role for hyperglycemia-induced modification of proteins, a.k.a. advanced glycation end products (AGEs), resulting in structural and functional damage to bone extracellular matrix (ECM). Evidence supporting this hypothesis has been limited by the lack of comprehensive information about the location of AGEs that accumulate in vivo at specific sites within the proteins of bone ECM. Analyzing extracts from cortical bone of cadaveric femurs by liquid chromatography tandem mass spectrometry, we generated a quantitative AGE map of human collagen I for male and female adult donors with and without diabetes. The map describes the chemical nature, sequence position, and levels of four major physiological AGEs, e.g. carboxymethyllysine, and an AGE precursor fructosyllysine within the collagen I triple-helical region. The important features of the map are: 1) high map reproducibility in the individual bone extracts, i.e. 20 male and 20 female donors; 2) localization of modifications to distinct clusters: 10 clusters containing 34 AGE sites in male donors and 9 clusters containing 28 sites in female donors; 3) significant increases in modification levels in diabetes at multiple sites: 26 out of 34 sites in males and in 17 out of 28 sites in females; and 4) generally higher modification levels in male vs. female donors. Moreover, the AGE levels at multiple individual sites correlated with total bone pentosidine levels in male but not in female donors. Molecular dynamics simulations and molecular modeling predicted significant impact of modifications on solvent exposure, charge distribution, and hydrophobicity of the triple helix as well as disruptions to the structure of collagen I fibril. In summary, the AGE map of collagen I revealed diabetes-induced, sex-specific non-enzymatic modifications at distinct triple helical sites that can disrupt collagen structure, thus proposing a specific mechanism of AGE contribution to diabetic complications in human bone.
Collapse
Affiliation(s)
- Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| | - Kyle L Brown
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Micheal Leser
- Department of Biochemistry and Proteomics Core, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Kristie Lindsey Rose
- Department of Biochemistry and Proteomics Core, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
12
|
Vasarri M, Bergonzi MC, Ivanova Stojcheva E, Bilia AR, Degl’Innocenti D. Olea europaea L. Leaves as a Source of Anti-Glycation Compounds. Molecules 2024; 29:4368. [PMID: 39339362 PMCID: PMC11434099 DOI: 10.3390/molecules29184368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
High concentrations of advanced glycation end products (AGEs) have been linked to diseases, including diabetic complications. The pathophysiological effects of AGEs are mainly due to oxidative stress and inflammatory processes. Among the proteins most affected by glycation are albumin, the most abundant circulating protein, and collagen, which has a long biological half-life and is abundant in the extracellular matrix. The potential cellular damage caused by AGEs underscores the importance of identifying and developing natural AGE inhibitors. Indeed, despite initial promise, many synthetic inhibitors have been withdrawn from clinical trials due to issues such as cytotoxicity and poor pharmacokinetics. In contrast, natural products have shown significant potential in inhibiting AGE formation. Olea europaea L. leaves, rich in bioactive compounds like oleuropein and triterpenoids, have attracted scientific interest, emphasizing the potential of olive leaf extracts in health applications. This study investigates the anti-glycation properties of two polyphenol-rich extracts (OPA40 and OPA70) and a triterpene-enriched extract (TTP70) from olive leaves. Using in vitro protein glycation methods with bovine serum albumin (BSA)-glucose and gelatin-glucose systems, this study assesses AGE formation inhibition by these extracts through native polyacrylamide gel electrophoresis (N-PAGE) and autofluorescence detection. OPA40 and OPA70 exhibited strong, dose-dependent anti-glycation effects. These effects were corroborated by electrophoresis and further supported by similar results in a gelatin-glucose system. Additionally, TTP70 showed moderate anti-glycation activity, with a synergistic effect of its components. The results support the real possibility of using olive leaf bioproducts in ameliorating diabetic complications, contributing to sustainable bio-economy practices.
Collapse
Affiliation(s)
- Marzia Vasarri
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
| | | | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| |
Collapse
|
13
|
Oliveira LR, Pinheiro MR, Tuchina DK, Timoshina PA, Carvalho MI, Oliveira LM. Light in evaluation of molecular diffusion in tissues: Discrimination of pathologies. Adv Drug Deliv Rev 2024; 212:115420. [PMID: 39096937 DOI: 10.1016/j.addr.2024.115420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
The evaluation of the diffusion properties of different molecules in tissues is a subject of great interest in various fields, such as dermatology/cosmetology, clinical medicine, implantology and food preservation. In this review, a discussion of recent studies that used kinetic spectroscopy measurements to evaluate such diffusion properties in various tissues is made. By immersing ex vivo tissues in agents or by topical application of those agents in vivo, their diffusion properties can be evaluated by kinetic collimated transmittance or diffuse reflectance spectroscopy. Using this method, recent studies were able to discriminate the diffusion properties of agents between healthy and diseased tissues, especially in the cases of cancer and diabetes mellitus. In the case of cancer, it was also possible to evaluate an increase of 5% in the mobile water content from the healthy to the cancerous colorectal and kidney tissues. Considering the application of some agents to living organisms or food products to protect them from deterioration during low temperature preservation (cryopreservation), and knowing that such agent inclusion may be reversed, some studies in these fields are also discussed. Considering the broadband application of the optical spectroscopy evaluation of the diffusion properties of agents in tissues and the physiological diagnostic data that such method can acquire, further studies concerning the optimization of fruit sweetness or evaluation of poison diffusion in tissues or antidote application for treatment optimization purposes are indicated as future perspectives.
Collapse
Affiliation(s)
- Luís R Oliveira
- Department of Public and Environmental Health, Polytechnic of Porto - School of Health (ESS), Porto, Portugal
| | - Maria R Pinheiro
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
| | - Daria K Tuchina
- Institute of Physics and Science Medical Center, Saratov State University, Saratov, Russian Federation; Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation
| | - Polina A Timoshina
- Institute of Physics and Science Medical Center, Saratov State University, Saratov, Russian Federation; Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation; Lomonosov Moscow State University, Moscow, Russian Federation
| | - Maria I Carvalho
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal; Department of Electrical and Computer Engineering, Porto University - Faculty of Engineering, Porto, Portugal
| | - Luís M Oliveira
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal; Physics Department, Polytechnic of Porto - School of Engineering (ISEP), Porto, Portugal.
| |
Collapse
|
14
|
Rodriguez-Lejarraga P, Martin-Iglesias S, Moneo-Corcuera A, Colom A, Redondo-Morata L, Giannotti MI, Petrenko V, Monleón-Guinot I, Mata M, Silvan U, Lanceros-Mendez S. The surface charge of electroactive materials governs cell behaviour through its effect on protein deposition. Acta Biomater 2024; 184:201-209. [PMID: 38950807 DOI: 10.1016/j.actbio.2024.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
The precise mechanisms underlying the cellular response to static electric cues remain unclear, limiting the design and development of biomaterials that utilize this parameter to enhance specific biological behaviours. To gather information on this matter we have explored the interaction of collagen type-I, the most abundant mammalian extracellular protein, with poly(vinylidene fluoride) (PVDF), an electroactive polymer with great potential for tissue engineering applications. Our results reveal significant differences in collagen affinity, conformation, and interaction strength depending on the electric charge of the PVDF surface, which subsequently affects the behaviour of mesenchymal stem cells seeded on them. These findings highlight the importance of surface charge in the establishment of the material-protein interface and ultimately in the biological response to the material. STATEMENT OF SIGNIFICANCE: The development of new tissue engineering strategies relies heavily on the understanding of how biomaterials interact with biological tissues. Although several factors drive this process and their driving principles have been identified, the relevance and mechanism by which the surface potential influences cell behaviour is still unknown. In our study, we investigate the interaction between collagen, the most abundant component of the extracellular matrix, and poly(vinylidene fluoride) with varying surface charges. Our findings reveal substantial variations in the binding forces, structure and adhesion of collagen on the different surfaces, which collectively explain the differential cellular responses. By exposing these differences, our research fills a critical knowledge gap and paves the way for innovations in material design for advanced tissue regeneration strategies.
Collapse
Affiliation(s)
| | - Sara Martin-Iglesias
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
| | - Andrea Moneo-Corcuera
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
| | - Adai Colom
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain; Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain; Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Campus Universitario, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Lorena Redondo-Morata
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, 08028 Barcelona, Spain; CIBER-BBN, ISCIII, 08028 Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 10, 08028 Barcelona, Spain
| | - Viktor Petrenko
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Irene Monleón-Guinot
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Manuel Mata
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Unai Silvan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
15
|
de Boer RA, Ardehali R. Exploring Cardiac Fibrosis: A Novel Ex Vivo Model Using Whole Mouse Hearts. JACC Basic Transl Sci 2024; 9:1023-1025. [PMID: 39297131 PMCID: PMC11405892 DOI: 10.1016/j.jacbts.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Affiliation(s)
- Rudolf A de Boer
- Cardiovascular Institute, Thorax Center, Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Reza Ardehali
- Department of Medicine-Cardiology, Baylor College of Medicine, Texas Heart Institute, Houston, Texas, USA
| |
Collapse
|
16
|
Egawa T, Ogawa T, Yokokawa T, Kido K, Iyama R, Zhao H, Kurogi E, Goto K, Hayashi T. Glycative stress inhibits hypertrophy and impairs cell membrane integrity in overloaded mouse skeletal muscle. J Cachexia Sarcopenia Muscle 2024; 15:883-896. [PMID: 38575520 PMCID: PMC11154761 DOI: 10.1002/jcsm.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/04/2024] [Accepted: 01/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Glycative stress, characterized by the formation and accumulation of advanced glycation end products (AGEs) associated with protein glycation reactions, has been implicated in inducing a decline of muscle function. Although the inverse correlation between glycative stress and muscle mass and strength has been demonstrated, the underlying molecular mechanisms are not fully understood. This study aimed to elucidate how glycative stress affects the skeletal muscle, particularly the adaptive muscle response to hypertrophic stimuli and its molecular mechanism. METHODS Male C57BL/6NCr mice were randomly divided into the following two groups: the bovine serum albumin (BSA)-treated and AGE-treated groups. Mice in the AGE-treated group were intraperitoneally administered AGEs (0.5 mg/g) once daily, whereas those in the BSA-treated group received an equal amount of BSA (0.5 mg/g) as the vehicle control. After 7 days of continuous administration, the right leg plantaris muscle of mice in each group underwent functional overload treatment by synergist ablation for 7 days to induce muscle hypertrophy. In in vitro studies, cultured C2C12 myocytes were treated with AGEs (1 mg/mL) to examine cell adhesion and cell membrane permeability. RESULTS Continuous AGE administration increased the levels of fluorescent AGEs, Nε-(carboxymethyl) lysine, and methylglyoxal-derived hydroimidazolone-1 in both plasma and skeletal muscle. Plantaris muscle weight, muscle fibre cross-sectional area, protein synthesis rate, and the number of myonuclei increased with functional overload in both groups; however, the increase was significantly reduced by AGE treatment. Some muscles of AGE-treated mice were destroyed by functional overload. Proteomic analysis was performed to explore the mechanisms of muscle hypertrophy suppression and myofibre destruction by AGEs. When principal component analysis was performed on 4659 data obtained by proteomic analysis, AGE treatment was observed to affect protein expression only in functionally overloaded muscles. Enrichment analysis of the 436 proteins extracted using the K-means method further identified a group of proteins involved in cell adhesion. Consistent with this finding, dystrophin-glycoprotein complex proteins and cell adhesion-related proteins were confirmed to increase with functional overload; however, this was attenuated by AGE treatment. Additionally, the treatment of C2C12 muscle cells with AGEs inhibited their ability to adhere and increased cell membrane permeability. CONCLUSIONS This study indicates that glycative stress may be a novel pathogenic factor in skeletal muscle dysfunctions by causing loss of membrane integrity and preventing muscle mass gain.
Collapse
Affiliation(s)
- Tatsuro Egawa
- Laboratory of Health and Exercise Sciences, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Takeshi Ogawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Takumi Yokokawa
- Division of Food Science and Biotechnology, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Kohei Kido
- Health and Medical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)KagawaJapan
- Institute for Physical ActivityFukuoka UniversityFukuokaJapan
| | - Ryota Iyama
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Haiyu Zhao
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Eriko Kurogi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Katsumasa Goto
- Laboratory of Physiology, Graduate School of Health SciencesToyohashi SOZO UniversityToyohashiJapan
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| |
Collapse
|
17
|
Kawecki NS, Chen KK, Smith CS, Xie Q, Cohen JM, Rowat AC. Scalable Processes for Culturing Meat Using Edible Scaffolds. Annu Rev Food Sci Technol 2024; 15:241-264. [PMID: 38211941 DOI: 10.1146/annurev-food-072023-034451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
There is increasing consumer demand for alternative animal protein products that are delicious and sustainably produced to address concerns about the impacts of mass-produced meat on human and planetary health. Cultured meat has the potential to provide a source of nutritious dietary protein that both is palatable and has reduced environmental impact. However, strategies to support the production of cultured meats at the scale required for food consumption will be critical. In this review, we discuss the current challenges and opportunities of using edible scaffolds for scaling up the production of cultured meat. We provide an overview of different types of edible scaffolds, scaffold fabrication techniques, and common scaffold materials. Finally, we highlight potential advantages of using edible scaffolds to advance cultured meat production by accelerating cell growth and differentiation, providing structure to build complex 3D tissues, and enhancing the nutritional and sensory properties of cultured meat.
Collapse
Affiliation(s)
- N Stephanie Kawecki
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Kathleen K Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Corinne S Smith
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Qingwen Xie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Julian M Cohen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Amy C Rowat
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
18
|
Shen DN, Xu YD, He C, Zhou ZH, Zhu HH, Shi Y, Yu MF, Hu J, Fu BP. Citrate Improves Biomimetic Mineralization Induced by Polyelectrolyte-Cation Complexes Using PAsp-Ca&Mg Complexes. Adv Healthc Mater 2024; 13:e2303870. [PMID: 38412305 DOI: 10.1002/adhm.202303870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/14/2024] [Indexed: 02/29/2024]
Abstract
Magnesium ions are highly enriched in early stage of biological mineralization of hard tissues. Paradoxically, hydroxyapatite (HAp) crystallization is inhibited significantly by high concentration of magnesium ions. The mechanism to regulate magnesium-doped biomimetic mineralization of collagen fibrils has never been fully elucidated. Herein, it is revealed that citrate can bioinspire the magnesium-stabilized mineral precursors to generate magnesium-doped biomimetic mineralization as follows: Citrate can enhance the electronegativity of collagen fibrils by its absorption to fibrils via hydrogen bonds. Afterward, electronegative collagen fibrils can attract highly concentrated electropositive polyaspartic acid-Ca&Mg (PAsp-Ca&Mg) complexes followed by phosphate solution via strong electrostatic attraction. Meanwhile, citrate adsorbed in/on fibrils can eliminate mineralization inhibitory effects of magnesium ions by breaking hydration layer surrounding magnesium ions and thus reduce dehydration energy barrier for rapid fulfillment of biomimetic mineralization. The remineralized demineralized dentin with magnesium-doped HAp possesses antibacterial ability, and the mineralization mediums possess excellent biocompatibility via cytotoxicity and oral mucosa irritation tests. This strategy shall shed light on cationic ions-doped biomimetic mineralization with antibacterial ability via modifying collagen fibrils and eliminating mineralization inhibitory effects of some cationic ions, as well as can excite attention to the neglected multiple regulations of small biomolecules, such as citrate, during biomineralization process.
Collapse
Affiliation(s)
- Dong-Ni Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Yue-Dan Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Cheng He
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Zi-Huai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Hai-Hua Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Meng-Fei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Bai-Ping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| |
Collapse
|
19
|
Komsa-Penkova R, Dimitrov B, Todinova S, Ivanova V, Stoycheva S, Temnishki P, Georgieva G, Tonchev P, Iliev M, Altankov G. Early Stages of Ex Vivo Collagen Glycation Disrupt the Cellular Interaction and Its Remodeling by Mesenchymal Stem Cells-Morphological and Biochemical Evidence. Int J Mol Sci 2024; 25:5795. [PMID: 38891981 PMCID: PMC11172055 DOI: 10.3390/ijms25115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Mesenchymal stem cells (MSCs), pivotal for tissue repair, utilize collagen to restore structural integrity in damaged tissue, preserving its organization through concomitant remodeling. The non-enzymatic glycation of collagen potentially compromises MSC communication, particularly upon advancing the process, underlying various pathologies such as late-stage diabetic complications and aging. However, an understanding of the impact of early-stage collagen glycation on MSC interaction is lacking. This study examines the fate of in vitro glycated rat tail collagen (RTC) upon exposure to glucose for 1 or 5 days in contact with MSCs. Utilizing human adipose tissue-derived MSCs (ADMSCs), we demonstrate their significantly altered interaction with glycated collagen, characterized morphologically by reduced cell spreading, diminished focal adhesions formation, and attenuated development of the actin cytoskeleton. The morphological findings were confirmed by ImageJ 1.54g morphometric analysis with the most significant drop in the cell spreading area (CSA), from 246.8 μm2 for the native collagen to 216.8 μm2 and 163.7 μm2 for glycated ones, for 1 day and 5 days, respectively, and a similar trend was observed for cell perimeter 112.9 μm vs. 95.1 μm and 86.2 μm, respectively. These data suggest impaired recognition of early glycated collagen by integrin receptors. Moreover, they coincide with the reduced fibril-like reorganization of adsorbed FITC-collagen (indicating impaired remodeling) and a presumed decreased sensitivity to proteases. Indeed, confirmatory assays reveal diminished FITC-collagen degradation for glycated samples at 1 day and 5 days by attached cells (22.8 and 30.4%) and reduced proteolysis upon exogenous collagenase addition (24.5 and 40.4%) in a cell-free system, respectively. The mechanisms behind these effects remain uncertain, although differential scanning calorimetry confirms subtle structural/thermodynamic changes in glycated collagen.
Collapse
Affiliation(s)
| | - Borislav Dimitrov
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Violina Ivanova
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria
| | | | - Peter Temnishki
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Galya Georgieva
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Pencho Tonchev
- Department of Surgery, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Mario Iliev
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria
| | - George Altankov
- Research Institute, Medical University Pleven, 5800 Pleven, Bulgaria
| |
Collapse
|
20
|
Sharma S, Kishen A. Bioarchitectural Design of Bioactive Biopolymers: Structure-Function Paradigm for Diabetic Wound Healing. Biomimetics (Basel) 2024; 9:275. [PMID: 38786486 PMCID: PMC11117869 DOI: 10.3390/biomimetics9050275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic wounds such as diabetic ulcers are a major complication in diabetes caused by hyperglycemia, prolonged inflammation, high oxidative stress, and bacterial bioburden. Bioactive biopolymers have been found to have a biological response in wound tissue microenvironments and are used for developing advanced tissue engineering strategies to enhance wound healing. These biopolymers possess innate bioactivity and are biodegradable, with favourable mechanical properties. However, their bioactivity is highly dependent on their structural properties, which need to be carefully considered while developing wound healing strategies. Biopolymers such as alginate, chitosan, hyaluronic acid, and collagen have previously been used in wound healing solutions but the modulation of structural/physico-chemical properties for differential bioactivity have not been the prime focus. Factors such as molecular weight, degree of polymerization, amino acid sequences, and hierarchical structures can have a spectrum of immunomodulatory, anti-bacterial, and anti-oxidant properties that could determine the fate of the wound. The current narrative review addresses the structure-function relationship in bioactive biopolymers for promoting healing in chronic wounds with emphasis on diabetic ulcers. This review highlights the need for characterization of the biopolymers under research while designing biomaterials to maximize the inherent bioactive potency for better tissue regeneration outcomes, especially in the context of diabetic ulcers.
Collapse
Affiliation(s)
- Shivam Sharma
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
| | - Anil Kishen
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
- Department of Dentistry, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| |
Collapse
|
21
|
Borst R, Meyaard L, Pascoal Ramos MI. Understanding the matrix: collagen modifications in tumors and their implications for immunotherapy. J Transl Med 2024; 22:382. [PMID: 38659022 PMCID: PMC11040975 DOI: 10.1186/s12967-024-05199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/13/2024] [Indexed: 04/26/2024] Open
Abstract
Tumors are highly complex and heterogenous ecosystems where malignant cells interact with healthy cells and the surrounding extracellular matrix (ECM). Solid tumors contain large ECM deposits that can constitute up to 60% of the tumor mass. This supports the survival and growth of cancerous cells and plays a critical role in the response to immune therapy. There is untapped potential in targeting the ECM and cell-ECM interactions to improve existing immune therapy and explore novel therapeutic strategies. The most abundant proteins in the ECM are the collagen family. There are 28 different collagen subtypes that can undergo several post-translational modifications (PTMs), which alter both their structure and functionality. Here, we review current knowledge on tumor collagen composition and the consequences of collagen PTMs affecting receptor binding, cell migration and tumor stiffness. Furthermore, we discuss how these alterations impact tumor immune responses and how collagen could be targeted to treat cancer.
Collapse
Affiliation(s)
- Rowie Borst
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - M Ines Pascoal Ramos
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
22
|
Marques C, Hadjab F, Porcello A, Lourenço K, Scaletta C, Abdel-Sayed P, Hirt-Burri N, Applegate LA, Laurent A. Mechanistic Insights into the Multiple Functions of Niacinamide: Therapeutic Implications and Cosmeceutical Applications in Functional Skincare Products. Antioxidants (Basel) 2024; 13:425. [PMID: 38671873 PMCID: PMC11047333 DOI: 10.3390/antiox13040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Niacinamide (or nicotinamide) is a small-molecule hydrosoluble vitamin with essential metabolic functions in mammalian cells. Niacinamide has become a key functional ingredient in diverse skincare products and cosmetics. This vitamin plays a pivotal role in NAD+ synthesis, notably contributing to redox reactions and energy production in cutaneous cells. Via diversified biochemical mechanisms, niacinamide is also known to influence human DNA repair and cellular stress responses. Based on decades of safe use in cosmetics, niacinamide recently gained widespread popularity as an active ingredient which aligns with the "Kligman standards" in skincare. From a therapeutic standpoint, the intrinsic properties of niacinamide may be applied to managing acne vulgaris, melasma, and psoriasis. From a cosmeceutical standpoint, niacinamide has been widely leveraged as a multipurpose antiaging ingredient. Therein, it was shown to significantly reduce cutaneous oxidative stress, inflammation, and pigmentation. Overall, through multimodal mechanisms, niacinamide may be considered to partially prevent and/or reverse several biophysical changes associated with skin aging. The present narrative review provides multifactorial insights into the mechanisms of niacinamide's therapeutic and cosmeceutical functions. The ingredient's evolving role in skincare was critically appraised, with a strong focus on the biochemical mechanisms at play. Finally, novel indications and potential applications of niacinamide in dermal fillers and alternative injectable formulations were prospectively explored.
Collapse
Affiliation(s)
- Cíntia Marques
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (A.P.); (K.L.)
| | - Farid Hadjab
- Development Department, Albomed GmbH, D-90592 Schwarzenbruck, Germany;
| | - Alexandre Porcello
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (A.P.); (K.L.)
| | - Kelly Lourenço
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (A.P.); (K.L.)
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.)
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.)
- STI School of Engineering, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.)
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.)
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
| |
Collapse
|
23
|
Jadach B, Mielcarek Z, Osmałek T. Use of Collagen in Cosmetic Products. Curr Issues Mol Biol 2024; 46:2043-2070. [PMID: 38534748 DOI: 10.3390/cimb46030132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Collagen (CLG) belongs to the family of fibrillar proteins and is composed of left-handed α polypeptide chains, which, twisting around themselves and their axis, form a right-handed superhelix. In the chemical structure, it contains mainly proline, hydroxyproline, glycine, and hydroxylysine. It occurs naturally in the dermis in the form of fibers that provide the skin with proper density and elasticity. The review aimed to present the types of collagen protein, factors affecting its structure and its unusual role in the functioning of the human body. Also, an overview of cosmetic products containing collagen or its derivatives, the characteristics of the formulas of these products, and the effects of their use were presented. Throughout the market, there are many cosmetic and cosmeceutical products containing CLG. They are in the form of fillers administered as injections, belonging to the group of the oldest tissue fillers; products administered orally and for topical use, such as creams, gels, serums, or cosmetic masks. Analyzed studies have shown that the use of products with collagen or its peptides improves the general condition of the skin and delays the aging process by reducing the depth of wrinkles, improving hydration (in the case of oral preparations), reducing transepithelial water loss (TEWL), as well as improving skin density and elasticity. In addition, oral application of bioactive CLG peptides has shown a positive effect on the nails, reducing the frequency of their breakage.
Collapse
Affiliation(s)
- Barbara Jadach
- Division of Industrial Pharmacy, Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland
| | - Zofia Mielcarek
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland
| |
Collapse
|
24
|
Jung J, Habib M, Morrissette LJ, Timmons SC, Maerz T, Fields AJ. Non-enzymatic glycation reduces glucose transport in the human cartilage endplate independently of matrix porosity or proteoglycan content. JOR Spine 2024; 7:e1297. [PMID: 38222801 PMCID: PMC10782066 DOI: 10.1002/jsp2.1297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 01/16/2024] Open
Abstract
Background Intervertebral disc degeneration is associated with low back pain, which is a leading cause of disability. While the precise causes of disc degeneration are unknown, inadequate nutrient and metabolite transport through the cartilage endplate (CEP) may be one important factor. Prior work shows that CEP transport properties depend on the porosity of the CEP matrix, but little is known about the role of CEP characteristics that could influence transport properties independently from porosity. Here, we show that CEP transport properties depend on the extent of non-enzymatic glycation of the CEP matrix. Methods and Results Using in vitro ribosylation to induce non-enzymatic glycation and promote the formation of advanced glycation end products, we found that ribosylation reduced glucose partition coefficients in human cadaveric lumbar CEP tissues by 10.7%, on average, compared with donor- and site-matched CEP tissues that did not undergo ribosylation (p = 0.04). These reductions in glucose uptake were observed in the absence of differences in CEP porosity (p = 0.89) or in the amounts of sulfated glycosaminoglycans (sGAGs, p = 0.47) or collagen (p = 0.61). To investigate whether ribosylation altered electrostatic interactions between fixed charges on the sGAG molecules and the mobile free ions, we measured the charge density in the CEP matrix using equilibrium partitioning of a cationic contrast agent using micro-computed tomography. After contrast enhancement, mean X-ray attenuation was 11.9% lower in the CEP tissues that had undergone ribosylation (p = 0.02), implying the CEP matrix was less negatively charged. Conclusions Taken together, these findings indicate that non-enzymatic glycation negatively impacts glucose transport in the CEP independent of matrix porosity or sGAG content and that the effects may be mediated by alterations to matrix charge density.
Collapse
Affiliation(s)
- Jae‐Young Jung
- Department of Orthopaedic SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mohamed Habib
- Department of Orthopaedic SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Luke J. Morrissette
- Department of Natural SciencesLawrence Technological UniversitySouthfieldMichiganUSA
| | - Shannon C. Timmons
- Department of Natural SciencesLawrence Technological UniversitySouthfieldMichiganUSA
| | - Tristan Maerz
- Departments of Orthopaedic Surgery and Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Aaron J. Fields
- Department of Orthopaedic SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
25
|
Haque A, Khan MWA, Alenezi KM, Soury R, Khan MS, Ahamad S, Mushtaque M, Gupta D. Synthesis, Characterization, Antiglycation Evaluation, Molecular Docking, and ADMET Studies of 4-Thiazolidinone Derivatives. ACS OMEGA 2024; 9:1810-1820. [PMID: 38222574 PMCID: PMC10785283 DOI: 10.1021/acsomega.3c08463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
The design and development of new small-molecule glycation inhibitors are essential for preventing various chronic diseases, including diabetes mellitus, immunoinflammation, cardiovascular, and neurodegenerative diseases. 4-Thiazolidinone or thiazolidine-4-one is a well-known heterocyclic compound with the potential to inhibit the formation of advanced glycation end products. In the present work, we report the synthesis and characterization of four new 5-arylidene 3-cyclopropyl-2-(phenylimino)thiazolidin-4-one (1-4) compounds and their human serum albumin glycation inhibitory activity. One of the compounds 5-(2H-1,3-benzodioxol-5-ylmethylidene)-3-cyclopropyl-2-(phenylimino)-1,3-thiazolidin-4-one (3) showed potent inhibition in the synthesis of initial, intermediary, and final products of glycation reactions. Besides, conformational changes in the α-helix and β-sheet (due to hyperglycemia) were also found to be reversed upon the addition of (3). Experimental findings were complemented by computational [molecular docking, ADME/Tox, and density functional theory (DFT)] studies. The docking scores of the compounds were in order 1 > 3 > 2 > 4, indicating the importance of the polar group at the 5-arylidene moiety. The results of ADME/Tox and DFT calculations revealed the safe nature of the compounds with high drug-likeness and stability. Overall, we speculate that the results of this study could provide valuable insights into the biological activity of 4-thiazolidinones.
Collapse
Affiliation(s)
- Ashanul Haque
- Department
of Chemistry, College of Science, University
of Ha’il, Ha’il 81451, Saudi Arabia
- Medical
and Diagnostic Research Centre, University
of Ha’il, Ha’il 55473, Saudi Arabia
| | - Mohd Wajid Ali Khan
- Department
of Chemistry, College of Science, University
of Ha’il, Ha’il 81451, Saudi Arabia
- Medical
and Diagnostic Research Centre, University
of Ha’il, Ha’il 55473, Saudi Arabia
| | - Khalaf M. Alenezi
- Department
of Chemistry, College of Science, University
of Ha’il, Ha’il 81451, Saudi Arabia
- Medical
and Diagnostic Research Centre, University
of Ha’il, Ha’il 55473, Saudi Arabia
| | - Raoudha Soury
- Department
of Chemistry, College of Science, University
of Ha’il, Ha’il 81451, Saudi Arabia
- Medical
and Diagnostic Research Centre, University
of Ha’il, Ha’il 55473, Saudi Arabia
| | - Muhammad S. Khan
- Department
of Chemistry, College of Science, Sultan
Qaboos University, Muscat 123, Oman
| | - Shahzaib Ahamad
- Translational
Bioinformatics Group, International Centre
for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg 110067, New Delhi, India
| | - Md. Mushtaque
- Department
of Chemistry, Millat College (A Constituent
College of Lalit Narayan Mithila University), Darbhanga 846003, Bihar, India
| | - Dinesh Gupta
- Translational
Bioinformatics Group, International Centre
for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg 110067, New Delhi, India
| |
Collapse
|
26
|
Van Gulick L, Saby C, Mayer C, Fossier E, Jaisson S, Okwieka A, Gillery P, Chenais B, Mimouni V, Morjani H, Beljebbar A. Biochemical and morpho-mechanical properties, and structural organization of rat tail tendon collagen in diet-induced obesity model. Int J Biol Macromol 2024; 254:127936. [PMID: 37939767 DOI: 10.1016/j.ijbiomac.2023.127936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
We have investigated the impact of obesity on the structural organization, morpho-mechanical properties of collagen fibers from rat tail tendon fascicles (RTTFs). Polarized Raman microspectroscopy showed that the collagen bands 855, 875, 938, and 960 cm-1 as well as those 1631 and 1660 cm-1 were affected by diet. Mechanical properties exhibited an increase in the yield strength from control (CTRL) to high fat (HF) diet (9.60 ± 1.71 and 13.09 ± 1.81 MPa) (p < 0.01) and ultimate tensile strength (13.12 ± 2.37 and 18.32 ± 2.83 MPa) (p < 0.05) with no significant change in the Young's Modulus. During mechanical, the band at 875 cm-1 exhibited the most relevant frequency shift (2 cm-1). The intensity of those at 855, 875, and 938 cm-1 in HF collagen displayed a comparable response to mechanical stress as compared to CTRL collagen with no significant diet-related changes in the Full Width at Half Maximum. Second harmonic generation technique revealed i) similar fiber straightness (0.963 ± 0.004 and 0.965 ± 0.003) and ii) significant changes in fibers diameter (1.48 ± 0.07 and 1.52 ± 0.08 μm) (p < 0.05) and length (22.06 ± 2.38 and 29.00 ± 3.76 μm) (p < 0.001) between CTRL and HF diet, respectively. The quantification of advanced glycation end products (AGEs) revealed an increase in both carboxymethyl-lysine and total fluorescence AGEs from CTRL to HF RTTFs.
Collapse
Affiliation(s)
- Laurence Van Gulick
- Université de Reims Champagne-Ardenne, BioSpecT EA 7506, UFR de Pharmacie, 51096 Reims, France
| | - Charles Saby
- Université de Reims Champagne-Ardenne, BioSpecT EA 7506, UFR de Pharmacie, 51096 Reims, France
| | - Claire Mayer
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France
| | - Emilie Fossier
- Université de Reims Champagne-Ardenne, BioSpecT EA 7506, UFR de Pharmacie, 51096 Reims, France
| | - Stéphane Jaisson
- Université de Reims Champagne-Ardenne, MEDyC CNRS UMR 7369, UFR de Médecine, 51097 Reims, France; Centre Hospitalo-Universitaire, Service de Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Anaïs Okwieka
- Université de Reims Champagne-Ardenne, MEDyC CNRS UMR 7369, UFR de Médecine, 51097 Reims, France
| | - Philippe Gillery
- Université de Reims Champagne-Ardenne, MEDyC CNRS UMR 7369, UFR de Médecine, 51097 Reims, France; Centre Hospitalo-Universitaire, Service de Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Benoît Chenais
- BiOSSE, Biology of Organisms, Stress, Health, Environment, UFR Sciences et Techniques, Le Mans Université, 72085 Le Mans, France
| | - Virginie Mimouni
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France
| | - Hamid Morjani
- Université de Reims Champagne-Ardenne, BioSpecT EA 7506, UFR de Pharmacie, 51096 Reims, France
| | - Abdelilah Beljebbar
- Université de Reims Champagne-Ardenne, BioSpecT EA 7506, UFR de Pharmacie, 51096 Reims, France.
| |
Collapse
|
27
|
Özliseli E, Şanlıdağ S, Süren B, Mahran A, Parikainen M, Sahlgren C, Rosenholm JM. Directing cellular responses in a nanocomposite 3D matrix for tissue regeneration with nanoparticle-mediated drug delivery. Mater Today Bio 2023; 23:100865. [PMID: 38054034 PMCID: PMC10694759 DOI: 10.1016/j.mtbio.2023.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/28/2023] [Accepted: 11/11/2023] [Indexed: 12/07/2023] Open
Abstract
Hydrogels play an important role in tissue engineering due to their native extracellular matrix-like characteristics, but they are insufficient in providing the necessary stimuli to support tissue formation. Efforts to integrate bioactive cues directly into hydrogels are hindered by incompatibility with hydrophobic drugs, issues of burst/uncontrolled release, and rapid degradation of the bioactive molecules. Skeletal muscle tissue repair requires internal stimuli and communication between cells for regeneration, and nanocomposite systems offer to improve the therapeutic effects in tissue regeneration. Here, the versatility of mesoporous silica nanoparticles (MSN) was leveraged to formulate a nanoparticle-hydrogel composite and to combine the benefits of controlled delivery of bioactive cues and cellular support. The tunable surface characteristics of MSNs were exploited to optimize homogeneity and intracellular drug delivery in a 3D matrix. Nanocomposite hydrogels formulated with acetylated or succinylated MSNs achieved high homogeneity in 3D distribution, with succinylated MSNs being rapidly internalized and acetylated MSNs exhibiting slower cellular uptake. MSN-hydrogel nanocomposites simultaneously allowed efficient local intracellular delivery of a hydrophobic model drug. To further study the efficiency of directing cell response, a Notch signaling inhibitor (DAPT) was incorporated into succinylated MSNs and incorporated into the hydrogel. MSN-hydrogel nanocomposites effectively downregulated the Notch signaling target genes, and accelerated and maintained the expression of myogenic markers. The current findings demonstrate a proof-of-concept in effective surface engineering strategies for MSN-based nanocomposites, suited for hydrophobic drug delivery in tissue regeneration with guided cues.
Collapse
Affiliation(s)
- Ezgi Özliseli
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Sami Şanlıdağ
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
| | - Behice Süren
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Alaa Mahran
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Marjaana Parikainen
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
28
|
Kollet O, Sagi I. Glycation-driven matrix crosslinking in cirrhosis. Nat Biomed Eng 2023; 7:1343-1345. [PMID: 37919368 DOI: 10.1038/s41551-023-01119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Affiliation(s)
- Orit Kollet
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Sagi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
29
|
Anousakis-Vlachochristou N, Athanasiadou D, Carneiro KM, Toutouzas K. Focusing on the Native Matrix Proteins in Calcific Aortic Valve Stenosis. JACC Basic Transl Sci 2023; 8:1028-1039. [PMID: 37719438 PMCID: PMC10504402 DOI: 10.1016/j.jacbts.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 09/19/2023]
Abstract
Calcific aortic valve stenosis (CAVS) is a widespread valvular heart disease affecting people in aging societies, primarily characterized by fibrosis, inflammation, and progressive calcification, leading to valve orifice stenosis. Understanding the factors associated with CAVS onset and progression is crucial to develop effective future pharmaceutical therapies. In CAVS, native extracellular matrix proteins modifications, play a significant role in calcification in vitro and in vivo. This work aimed to review the evidence on the alterations of structural native extracellular matrix proteins involved in calcification development during CAVS and highlight its link to deregulated biomechanical function.
Collapse
Affiliation(s)
| | | | - Karina M.M. Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Konstantinos Toutouzas
- National and Kapodistrian University of Athens, Medical School, First Department of Cardiology, Athens, Greece
| |
Collapse
|
30
|
Añazco C, Riedelsberger J, Vega-Montoto L, Rojas A. Exploring the Interplay between Polyphenols and Lysyl Oxidase Enzymes for Maintaining Extracellular Matrix Homeostasis. Int J Mol Sci 2023; 24:10985. [PMID: 37446164 PMCID: PMC10342021 DOI: 10.3390/ijms241310985] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Collagen, the most abundant structural protein found in mammals, plays a vital role as a constituent of the extracellular matrix (ECM) that surrounds cells. Collagen fibrils are strengthened through the formation of covalent cross-links, which involve complex enzymatic and non-enzymatic reactions. Lysyl oxidase (LOX) is responsible for catalyzing the oxidative deamination of lysine and hydroxylysine residues, resulting in the production of aldehydes, allysine, and hydroxyallysine. These intermediates undergo spontaneous condensation reactions, leading to the formation of immature cross-links, which are the initial step in the development of mature covalent cross-links. Additionally, non-enzymatic glycation contributes to the formation of abnormal cross-linking in collagen fibrils. During glycation, specific lysine and arginine residues in collagen are modified by reducing sugars, leading to the creation of Advanced Glycation End-products (AGEs). These AGEs have been associated with changes in the mechanical properties of collagen fibers. Interestingly, various studies have reported that plant polyphenols possess amine oxidase-like activity and can act as potent inhibitors of protein glycation. This review article focuses on compiling the literature describing polyphenols with amine oxidase-like activity and antiglycation properties. Specifically, we explore the molecular mechanisms by which specific flavonoids impact or protect the normal collagen cross-linking process. Furthermore, we discuss how these dual activities can be harnessed to generate properly cross-linked collagen molecules, thereby promoting the stabilization of highly organized collagen fibrils.
Collapse
Affiliation(s)
- Carolina Añazco
- Laboratorio de Bioquímica Nutricional, Escuela de Nutrición y Dietética, Carrera de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, General Lagos #1190, Valdivia 5110773, Chile
| | - Janin Riedelsberger
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente 1141, Talca 3462227, Chile;
| | - Lorenzo Vega-Montoto
- Chemical and Radiation Measurement, Idaho National Laboratory (INL), 1705 N. Yellowstone Hwy, Idaho Falls, ID 83415, USA;
| | - Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca 3480112, Chile;
| |
Collapse
|
31
|
Single collagen fibrils isolated from high stress and low stress tendons show differing susceptibility to enzymatic degradation by the interstitial collagenase matrix metalloproteinase-1 (MMP-1). Matrix Biol Plus 2023; 18:100129. [PMID: 36915648 PMCID: PMC10006499 DOI: 10.1016/j.mbplus.2023.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Bovine forelimb flexor and extensor tendons serve as a model for examining high stress, energy storing and low stress, positional tendons, respectively. Previous research has shown structural differences between the collagen fibrils of these tissues. The nanoscale collagen fibrils of flexor tendons are smaller in size, more heavily crosslinked, and respond differently to mechanical loading. Meanwhile, energy storing tendons undergo less collagen turnover compared to positional tendons and are more commonly injured. These observations raise the question of whether collagen fibril structure influences the collagen degradation processes necessary for remodelling. Atomic force microscopy was used to image dry collagen fibrils before and after 5-hour exposure to matrix metalloproteinase-1 (MMP-1) to detect changes in fibril size. Collagen fibrils from three tissue types were studied: bovine superficial digital flexor tendons, matched-pair bovine lateral digital extensor tendons, and rat tail tendons. Compared to control fibrils exposed only to buffer, a significant decrease in fibril cross-sectional area (CSA) following MMP-1 exposure was observed for bovine extensor and rat tail fibrils, with larger fibrils experiencing a greater magnitude of CSA decrease in both fibril types. Fibrils from bovine flexor tendons, on the other hand, showed no decrease in CSA when exposed to MMP-1. The result did not appear to be linked to the small size of flexor fibrils, as equivalently sized extensor fibrils were readily degraded by the enzyme. Increased proteolytic resistance of collagen fibrils from high stress tendons may help to explain the longevity of collagen within these tissues in vivo.
Collapse
|
32
|
Sergeeva IA, Klinov DV, Schäffer TE, Dubrovin EV. Characterization of the effect of chromium salts on tropocollagen molecules and molecular aggregates. Int J Biol Macromol 2023; 242:124835. [PMID: 37201883 DOI: 10.1016/j.ijbiomac.2023.124835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Though the capability of chromium treatment to improve the stability and mechanical properties of collagen fibrils is well-known, the influence of different chromium salts on collagen molecules (tropocollagen) is not well characterized. In this study, the effect of Cr3+ treatment on the conformation and hydrodynamic properties of collagen was studied using atomic force microscopy (AFM) and dynamic light scattering (DLS). Statistical analysis of contours of adsorbed tropocollagen molecules using the two-dimensional worm-like chain model revealed a reduction of the persistence length (i.e., the increase of flexibility) from ≈72 nm in water to ≈56-57 nm in chromium (III) salt solutions. DLS studies demonstrated an increase of the hydrodynamic radius from ≈140 nm in water to ≈190 nm in chromium (III) salt solutions, which is associated with protein aggregation. The kinetics of collagen aggregation was shown to be ionic strength dependent. Collagen molecules treated with three different chromium (III) salts demonstrated similar properties such as flexibility, aggregation kinetics, and susceptibility to enzymatic cleavage. The observed effects are explained by a model that considers the formation of chromium-associated intra- and intermolecular crosslinks. The obtained results provide novel insights into the effect of chromium salts on the conformation and properties of tropocollagen molecules.
Collapse
Affiliation(s)
- Irina A Sergeeva
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 bld 2, 119991 Moscow, Russia.
| | - Dmitry V Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Tilman E Schäffer
- University of Tübingen, Institute of Applied Physics, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Evgeniy V Dubrovin
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 bld 2, 119991 Moscow, Russia.
| |
Collapse
|
33
|
Abstract
Diabetes mellitus is the ninth leading cause of mortality worldwide. It is a complex disease that manifests as chronic hyperglycemia. Glucose exposure causes biochemical changes at the proteome level as reflected in accumulation of glycated proteins. A prominent example is hemoglobin A1c (HbA1c), a glycated protein widely accepted as a diabetic indicator. Another emerging biomarker is glycated albumin which has demonstrated utility in situations where HbA1c cannot be used. Other proteins undergo glycation as well thus impacting cellular function, transport and immune response. Accordingly, these glycated counterparts may serve as predictors for diabetic complications and thus warrant further inquiry. Fortunately, modern proteomics has provided unique analytic capability to enable improved and more comprehensive exploration of glycating agents and glycated proteins. This review broadly covers topics from epidemiology of diabetes to modern analytical tools such as mass spectrometry to facilitate a better understanding of diabetes pathophysiology. This serves as an attempt to connect clinically relevant questions with findings of recent proteomic studies to suggest future avenues of diabetes research.
Collapse
Affiliation(s)
- Aleks Shin
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shawn Connolly
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kuanysh Kabytaev
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
34
|
Visser DR, Loo TS, Norris GE, Parry DAD. Potential implications of the glycosylation patterns in collagen α1(I) and α2(I) chains for fibril assembly and growth. J Struct Biol 2023; 215:107938. [PMID: 36641113 DOI: 10.1016/j.jsb.2023.107938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
O-Glycosylation of hydroxylysine (Hyl) in collagen occurs at an early stage of biosynthesis before the triple-helix has formed. This simple post-translational modification (PTM) of lysine by either a galactosyl or glucosylgalactosyl moiety is highly conserved in collagens and depends on the species, type of tissue and the collagen amino acid sequence. The structural/functional reason why only specific lysines are modified is poorly understood, and has led to increased efforts to map the sites of PTMs on collagen sequences from different species and to ascertain their potential role in vivo. To investigate this, we purified collagen type I (Col1) from the skins of four animals, then used mass spectrometry and proteomic techniques to identify lysines that were oxidised, galactosylated, glucosylgalactosylated, or glycated in its mature sequence. We found 18 out of the 38 lysines in collagen type Iα1, (Col1A1) and 7 of the 30 lysines in collagen type Iα2 (Col1A2) were glycosylated. Six of these modifications had not been reported before, and included a lysine involved in crosslinking collagen molecules. A Fourier transform analysis of the positions of the glycosylated hydroxylysines showed they display a regular axial distribution with the same d-period observed in collagen fibrils. The significance of this finding in terms of the assembly of collagen molecules into fibrils and of potential restrictions on the growth of the collagen fibrils is discussed.
Collapse
Affiliation(s)
- D R Visser
- School of Natural Sciences, Massey University, New Zealand
| | - T S Loo
- School of Natural Sciences, Massey University, New Zealand
| | - G E Norris
- School of Natural Sciences, Massey University, New Zealand.
| | | |
Collapse
|
35
|
Naftaly A, Kislev N, Izgilov R, Adler R, Silber M, Shalgi R, Benayahu D. Nutrition Alters the Stiffness of Adipose Tissue and Cell Signaling. Int J Mol Sci 2022; 23:ijms232315237. [PMID: 36499567 PMCID: PMC9736042 DOI: 10.3390/ijms232315237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a complex organ composed of various cell types and an extracellular matrix (ECM). The visceral adipose tissue (VAT) is dynamically altered in response to nutritional regimens that lead to local cues affecting the cells and ECM. The adipocytes are in conjunction with the surrounding ECM that maintains the tissue's niche, provides a scaffold for cells and modulates their signaling. In this study, we provide a better understanding of the crosstalk between nutritional regimens and the ECM's stiffness. Histological analyses showed that the adipocytes in mice fed a high-fat diet (HFD) were increased in size, while the ECM was also altered with changes in mass and composition. HFD-fed mice exhibited a decrease in elastin and an increase in collagenous proteins. Rheometer measurements revealed a stiffer ECM in whole tissue (nECM) and decellularized (deECM) in HFD-fed animals. These alterations in the ECM regulate cellular activity and influence their metabolic function. HFD-fed mice expressed high levels of the receptor for advanced-glycation-end-products (RAGE), indicating that AGEs might play a role in these processes. The cells also exhibited an increase in phosphoserine332 of IRS-1, a decrease in the GLUT4 transporter levels at the cells' membrane, and a consequent reduction in insulin sensitivity. These results show how alterations in the stiffness of ECM proteins can affect the mechanical cues transferred to adipocytes and, thereby, influence the adipocytes' functionality, leading to metabolic disorders.
Collapse
|
36
|
Hackl T, Schitter G, Mesquida P. AC Kelvin Probe Force Microscopy Enables Charge Mapping in Water. ACS NANO 2022; 16:17982-17990. [PMID: 36215653 PMCID: PMC9706780 DOI: 10.1021/acsnano.2c07121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Mapping charged chemical groups at the solid-liquid interface is important in many areas, ranging from colloidal systems to biomolecular interactions. However, classical methods to measure surface charges either lack spatial resolution or─like Kelvin-probe force microscopy (KPFM)─cannot be applied in aqueous solutions because a DC bias voltage is used. Here, we show that using AC Kelvin probe force microscopy (AC-KPFM), in which the DC bias is replaced with an AC voltage of sufficiently high frequency, the surface potential of spatially fixated, charged surface groups can be mapped in aqueous solution. We demonstrate this with micropatterned, functionalized alkanethiol layers which expose ionized amino- and carboxy-groups. These groups are representative of the charged groups of most biomolecules such as proteins. By adjusting the pH of the solution, the charge of the groups was reversibly altered, demonstrating the electrostatic nature of the measured signal. The influence of the electric double layer (EDL) on the measurement is discussed, and we, furthermore, show how charged, micropatterned layers can be used to spatially direct the deposition of nanoparticles of opposite charge.
Collapse
Affiliation(s)
- Thomas Hackl
- Automation
and Control Institute (ACIN), TU Wien, Gusshausstrasse 27-29, A-1040Vienna, Austria
| | - Georg Schitter
- Automation
and Control Institute (ACIN), TU Wien, Gusshausstrasse 27-29, A-1040Vienna, Austria
| | - Patrick Mesquida
- Automation
and Control Institute (ACIN), TU Wien, Gusshausstrasse 27-29, A-1040Vienna, Austria
- Department
of Physics, King’s College London, Strand, LondonWC2R 2LS, United Kingdom
| |
Collapse
|
37
|
Bangar NS, Gvalani A, Ahmad S, Khan MS, Tupe RS. Understanding the role of glycation in the pathology of various non-communicable diseases along with novel therapeutic strategies. Glycobiology 2022; 32:1068-1088. [PMID: 36074518 DOI: 10.1093/glycob/cwac060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 01/07/2023] Open
Abstract
Glycation refers to carbonyl group condensation of the reducing sugar with the free amino group of protein, which forms Amadori products and advanced glycation end products (AGEs). These AGEs alter protein structure and function by configuring a negative charge on the positively charged arginine and lysine residues. Glycation plays a vital role in the pathogenesis of metabolic diseases, brain disorders, aging, and gut microbiome dysregulation with the aid of 3 mechanisms: (i) formation of highly reactive metabolic pathway-derived intermediates, which directly affect protein function in cells, (ii) the interaction of AGEs with its associated receptors to create oxidative stress causing the activation of transcription factor NF-κB, and (iii) production of extracellular AGEs hinders interactions between cellular and matrix molecules affecting vascular and neural genesis. Therapeutic strategies are thus required to inhibit glycation at different steps, such as blocking amino and carbonyl groups, Amadori products, AGEs-RAGE interactions, chelating transition metals, scavenging free radicals, and breaking crosslinks formed by AGEs. The present review focused on explicitly elaborating the impact of glycation-influenced molecular mechanisms in developing and treating noncommunicable diseases.
Collapse
Affiliation(s)
- Nilima S Bangar
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Armaan Gvalani
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, University of Hail, Hail City 2440, Saudi Arabia
| | - Mohd S Khan
- Department of Biochemistry, Protein Research Chair, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| |
Collapse
|
38
|
Mull V, Kreplak L. Adhesion force microscopy is sensitive to the charge distribution at the surface of single collagen fibrils. NANOSCALE ADVANCES 2022; 4:4829-4837. [PMID: 36381506 PMCID: PMC9642350 DOI: 10.1039/d2na00514j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Collagen fibrils are a key component of the extracellular matrix of mammalian tissues where they serve as structural elements and as a ligand for receptor-mediated signaling. As collagen molecules assemble into fibrils, in vitro or in vivo, they acquire a modulation of their molecular and electron densities called the D-band, with a 67 nm spacing, that can be visualized by cryo-electron microscopy. The D-band is composed of a gap region missing one-fifth of the molecules in the cross-section compared to the overlap region. This leads to the gap region having a positive potential and the overlap region a negative potential with respect to an n-doped silicon probe as observed by Kelvin Probe Force Microscopy. In this study, we use the adhesion force between an n-doped silicon probe and a collagen substrate to demonstrate the sensitivity of adhesion force towards charge distribution on the surface of collagen fibrils. We also map the charge distribution at the surface of single in vivo and in vitro assembled collagen fibrils and characterize the three-dimensional location and strength of three sub D-band regions that have been observed previously by cryo-electron microscopy. Our approach provides an adhesion fingerprint unique to each fibril type we analyzed and points to local charge variations at the sub D-band level even along a single fibril. It opens the road for a detailed analysis of collagen fibrils surface modifications due to ligand binding or the accumulation of advanced glycation end products at sub D-band resolution on a fibril by fibril basis.
Collapse
Affiliation(s)
- Vinayak Mull
- Department of Physics and Atmospheric Science, Dalhousie University Halifax Nova Scotia Canada +1 902 494 8435
| | - Laurent Kreplak
- Department of Physics and Atmospheric Science, Dalhousie University Halifax Nova Scotia Canada +1 902 494 8435
| |
Collapse
|
39
|
Baldari S, Di Modugno F, Nisticò P, Toietta G. Strategies for Efficient Targeting of Tumor Collagen for Cancer Therapy. Cancers (Basel) 2022; 14:cancers14194706. [PMID: 36230627 PMCID: PMC9563908 DOI: 10.3390/cancers14194706] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The tumor microenvironment encompasses the cellular and extracellular matrix components that support and shape the three-dimensional framework in which solid tumors develop and grow. The extracellular matrix of the tumor is characterized by increased deposition and aberrant architecture of collagen fibers. Therefore, as a key mechanical component of the tumor microenvironment, collagen plays a critical role in cancer progression, metastasis, and therapeutic response. To boost the efficacy of current anticancer therapies, including immunotherapy, innovative approaches should take into account strategies directed against the dysregulated non-cancer cell stromal components. In the current review, we provide an overview of the principal approaches to target tumor collagen to provide therapeutic benefits. Abstract The tumor stroma, which comprises stromal cells and non-cellular elements, is a critical component of the tumor microenvironment (TME). The dynamic interactions between the tumor cells and the stroma may promote tumor progression and metastasis and dictate resistance to established cancer therapies. Therefore, novel antitumor approaches should combine anticancer and anti-stroma strategies targeting dysregulated tumor extracellular matrix (ECM). ECM remodeling is a hallmark of solid tumors, leading to extensive biochemical and biomechanical changes, affecting cell signaling and tumor tissue three-dimensional architecture. Increased deposition of fibrillar collagen is the most distinctive alteration of the tumor ECM. Consequently, several anticancer therapeutic strategies have been developed to reduce excessive tumor collagen deposition. Herein, we provide an overview of the current advances and challenges of the main approaches aiming at tumor collagen normalization, which include targeted anticancer drug delivery, promotion of degradation, modulation of structure and biosynthesis of collagen, and targeting cancer-associated fibroblasts, which are the major extracellular matrix producers.
Collapse
|
40
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
41
|
Distinctive structure, composition and biomechanics of collagen fibrils in vaginal wall connective tissues associated with pelvic organ prolapse. Acta Biomater 2022; 152:335-344. [PMID: 36055614 PMCID: PMC10182770 DOI: 10.1016/j.actbio.2022.08.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
Collagen is the predominant structural protein within connective tissues. Pelvic organ prolapse (POP) is characterized by weakening of the pelvic floor connective tissues and loss of support for pelvic organs. In this study, we examined the multiscale structure, molecular composition and biomechanics of native collagen fibrils in connective tissues of the posterior vaginal fornix collected from healthy women and POP patients, and established the correlation of these properties with clinical POP quantification (POP-Q) scores. The collagen characteristics, including collagen amount, ratio of Collagen I and Collagen III, collagen fibril d-period, alignment and stiffness, were found to change progressively with the increase of the clinical measurement of Point C, a measure of uterine descent and apical prolapse. The results imply that a severe prolapse is associated with stiffer collagen fibrils, reduced collagen d-period, increased fibril alignment and imbalanced collagen synthesis, degradation and deposition. Additionally, prolapse progression appears to be synchronized with deterioration of the collagen matrix, suggesting that a POP-Q score obtained via a non-invasive clinical test can be potentially used to quantitatively assess collagen abnormality of a patient's local tissue. STATEMENT OF SIGNIFICANCE: Abnormal collagen metabolism and deposition are known to associate with connective tissue disorders, such as pelvic organ prolapse. Quantitative correlation of the biochemical and biophysical characteristics of collagen in a prolapse patient's tissue with the clinical diagnostic measurements is unexplored and unestablished. This study fills the knowledge gap between clinical prolapse quantification and the individual's cellular and molecular disorders leading to connective tissue failure, thus, provides the basis for clinicians to employ personalized treatment that can best manage the patient's condition and to alert pre-symptomatic patients for early management to avoid unwanted surgery.
Collapse
|
42
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales M. The RAGE/multiligand axis: a new actor in tumor biology. Biosci Rep 2022; 42:BSR20220395. [PMID: 35727208 PMCID: PMC9251583 DOI: 10.1042/bsr20220395] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is a multiligand binding and single-pass transmembrane protein which actively participates in several chronic inflammation-related diseases. RAGE, in addition to AGEs, has a wide repertoire of ligands, including several damage-associated molecular pattern molecules or alarmins such as HMGB1 and members of the S100 family proteins. Over the last years, a large and compelling body of evidence has revealed the active participation of the RAGE axis in tumor biology based on its active involvement in several crucial mechanisms involved in tumor growth, immune evasion, dissemination, as well as by sculpturing of the tumor microenvironment as a tumor-supportive niche. In the present review, we will detail the consequences of the RAGE axis activation to fuel essential mechanisms to guarantee tumor growth and spreading.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ivan Schneider
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Cristian Lindner
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ileana Gonzalez
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Miguel A. Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago 8320000, Chile, Santiago, Chile
| |
Collapse
|
43
|
Suki B, Bates JH, Bartolák-Suki E. Remodeling of the Aged and Emphysematous Lungs: Roles of Microenvironmental Cues. Compr Physiol 2022; 12:3559-3574. [PMID: 35766835 PMCID: PMC11470990 DOI: 10.1002/cphy.c210033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aging is a slow process that affects all organs, and the lung is no exception. At the alveolar level, aging increases the airspace size with thicker and stiffer septal walls and straighter and thickened collagen and elastic fibers. This creates a microenvironment that interferes with the ability of cells in the parenchyma to maintain normal homeostasis and respond to injury. These changes also make the lung more susceptible to disease such as emphysema. Emphysema is characterized by slow but progressive remodeling of the deep alveolar regions that leads to airspace enlargement and increased but disorganized elastin and collagen deposition. This remodeling has been attributed to ongoing inflammation that involves inflammatory cells and the cytokines they produce. Cellular senescence, another consequence of aging, weakens the ability of cells to properly respond to injury, something that also occurs in emphysema. These factors conspire to make alveolar walls more prone to mechanical failure, which can set emphysema in motion by driving inflammation through immune stimulation by protein fragments. Both aging and emphysema are influenced by microenvironmental conditions such as local inflammation, chemical makeup, tissue stiffness, and mechanical stresses. Although aging and emphysema are not equivalent, they have the potential to influence each other in synergistic ways; aging sets up the conditions for emphysema to develop, while emphysema may accelerate cellular senescence and thus aging itself. This article focuses on the similarities and differences between the remodeled microenvironment of the aging and emphysematous lung, with special emphasis on the alveolar septal wall. © 2022 American Physiological Society. Compr Physiol 12:3559-3574, 2022.
Collapse
Affiliation(s)
- Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Jason H.T. Bates
- Depatment of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont
| | | |
Collapse
|
44
|
Van Gulick L, Saby C, Jaisson S, Okwieka A, Gillery P, Dervin E, Morjani H, Beljebbar A. An integrated approach to investigate age-related modifications of morphological, mechanical and structural properties of type I collagen. Acta Biomater 2022; 137:64-78. [PMID: 34673231 DOI: 10.1016/j.actbio.2021.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022]
Abstract
The main propose of this study is to characterize the impact of chronological aging on mechanical, structural, biochemical, and morphological properties of type I collagen. We have developed an original approach combining a stress-strain measurement device with a portable Raman spectrometer to enable simultaneous measurement of Raman spectra during stress vs strain responses of young adult, adult and old rat tail tendon fascicles (RTTFs). Our data showed an increase in all mechanical properties such as Young's modulus, yield strength, and ultimate tensile strength with aging. At the molecular level, Raman data revealed that the most relevant frequency shift was observed at 938 cm-1 in Old RTTFs, which is assigned to the C-C. This suggested a long axis deformation of the peptide chains in Old RTTFs during tensile stress. In addition, the intensity of the band at 872 cm-1, corresponding to hydroxyproline decreased for young adult RTTFs and increased for the adult ones, while it remained unchanged for Old RTTFs during tensile stress. The amide III band (1242 and 1265 cm-1) as well as the band ratios I1631/ I1663 and I1645 / I1663 responses to tensile stress were depending on mechanical phases (toe, elastic and plastic). The quantification of advanced glycation end-products by LC-MS/MS and spectrofluorometry showed an increase in their content with aging. This suggested that the accumulation of such products was correlated to the alterations observed in the mechanical and molecular properties of RTTFs. Analysis of the morphological properties of RTTFs by SHG combined with CT-FIRE software revealed an increase in length and straightness of collagen fibers, whereas their width and wavy fraction decreased. Our integrated study model could be useful to provide additional translational information to monitor progression of diseases related to collagen remodeling in musculoskeletal disorders. STATEMENT OF SIGNIFICANCE: Type I collagen is the major component of the extracellular matrix. Its architectural and structural organization plays an important role in the mechanical properties of many tissues at the physiological and pathological levels. The objective of this work is to develop an integrated approach to bring a new insight on the impact of chronological aging on the structural organization and mechanical properties of type I collagen. We combined a portable Raman spectrometer with a mechanical tensile testing device in order to monitor in real time the changes in the Raman fingerprint of type I collagen fibers during the mechanical stress. Raman spectroscopy allowed the identification of the type I collagen bonds that were affected by mechanical stress in a differential manner with aging.
Collapse
|
45
|
Corica D, Pepe G, Currò M, Aversa T, Tropeano A, Ientile R, Wasniewska M. Methods to investigate advanced glycation end-product and their application in clinical practice. Methods 2021; 203:90-102. [DOI: 10.1016/j.ymeth.2021.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
|
46
|
Molecular conformations and dynamics in the extracellular matrix of mammalian structural tissues: Solid-state NMR spectroscopy approaches. Matrix Biol Plus 2021; 12:100086. [PMID: 34746737 PMCID: PMC8551230 DOI: 10.1016/j.mbplus.2021.100086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Solid-state NMR spectroscopy probes molecular conformation and dynamics in intact ECM. Collagen conformational dynamics has roles in mechanical properties of fibrils and cell adhesion. Solid-state NMR spectroscopy has shed new light on the chemical structure of bone mineral.
Solid-state NMR spectroscopy has played an important role in multidisciplinary studies of the extracellular matrix. Here we review how solid-state NMR has been used to probe collagen molecular conformations, dynamics, post-translational modifications and non-enzymatic chemical changes, and in calcified tissues, the molecular structure of bone mineral and its interface with collagen. We conclude that NMR spectroscopy can deliver vital information that in combination with data from structural imaging techniques, can result in significant new insight into how the extracellular matrix plays its multiple roles.
Collapse
|
47
|
Tabang DN, Cui Y, Tremmel DM, Ford M, Li Z, Sackett SD, Odorico JS, Li L. Analysis of pancreatic extracellular matrix protein post-translational modifications via electrostatic repulsion-hydrophilic interaction chromatography coupled with mass spectrometry. Mol Omics 2021; 17:652-664. [PMID: 34318855 PMCID: PMC8511275 DOI: 10.1039/d1mo00104c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pancreas is a vital organ with digestive and endocrine roles, and diseases of the pancreas affect millions of people yearly. A better understanding of the pancreas proteome and its dynamic post-translational modifications (PTMs) is necessary to engineer higher fidelity tissue analogues for use in transplantation. The extracellular matrix (ECM) has major roles in binding and signaling essential to the viability of insulin-producing islets of Langerhans. To characterize PTMs in the pancreas, native and decellularized tissues from four donors were analyzed. N-Glycosylated and phosphorylated peptides were simultaneously enriched via electrostatic repulsion-hydrophilic interaction chromatography and analyzed with mass spectrometry, maximizing PTM information from one workflow. A modified surfactant and chaotropic agent assisted sequential extraction/on-pellet digestion was used to maximize solubility of the ECM. The analysis resulted in the confident identification of 3650 proteins, including 517 N-glycoproteins and 148 phosphoproteins. We identified 214 ECM proteins, of which 99 were N-glycosylated, 18 were phosphorylated, and 9 were found to have both modifications. Collagens, a major component of the ECM, were the most highly glycosylated of the ECM proteins and several were also heavily phosphorylated, raising the possibility of structural and thus functional changes resulting from these modifications. To our knowledge, this work represents the first characterization of PTMs in pancreatic ECM proteins. This work provides a basal profile of PTMs in the healthy human pancreatic ECM, laying the foundation for future investigations to determine disease-specific changes such as in diabetes and pancreatic cancer, and potentially helping to guide the development of tissue replacement constructs. Data are available via ProteomeXchange with identifier PXD025048.
Collapse
Affiliation(s)
- Dylan Nicholas Tabang
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI, 53706, USA.
| | - Yusi Cui
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI, 53706, USA.
| | - Daniel M Tremmel
- Department of Surgery, Division of Transplantation, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Megan Ford
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zihui Li
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI, 53706, USA.
| | - Sara Dutton Sackett
- Department of Surgery, Division of Transplantation, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jon S Odorico
- Department of Surgery, Division of Transplantation, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI, 53706, USA.
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
48
|
Abstract
One of the most important functions of the skin, i.e., protection from mechanical damage, is ensured by collagen fibers and their interaction with other elements in the extracellular matrix. Collagen fiber turnover is a complex multi-stage process. At each stage, a disruption may occur, leading to a decrease in the mechanical properties of the connective tissue. Clinically, collagen formation disorders manifest themselves as increased flabbiness and looseness of the skin and as early signs of facial aging. In addition to the clinical picture, it is important for cosmetologists and dermatologists to understand the etiology and pathogenesis of collagenopathies. In our review, we summarized and systematized the available information concerning the role of genetic and epigenetic factors in skin collagen fiber turnover. Furthermore, we focused on the functions of different types of collagens present in the skin. Understanding the etiology of impaired collagen formation can allow doctors to prescribe pathogenetically based treatments, achieve the most effective results, and minimize adverse reactions.
Collapse
|
49
|
Pfisterer K, Shaw LE, Symmank D, Weninger W. The Extracellular Matrix in Skin Inflammation and Infection. Front Cell Dev Biol 2021; 9:682414. [PMID: 34295891 PMCID: PMC8290172 DOI: 10.3389/fcell.2021.682414] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is an integral component of all organs and plays a pivotal role in tissue homeostasis and repair. While the ECM was long thought to mostly have passive functions by providing physical stability to tissues, detailed characterization of its physical structure and biochemical properties have uncovered an unprecedented broad spectrum of functions. It is now clear that the ECM not only comprises the essential building block of tissues but also actively supports and maintains the dynamic interplay between tissue compartments as well as embedded resident and recruited inflammatory cells in response to pathologic stimuli. On the other hand, certain pathogens such as bacteria and viruses have evolved strategies that exploit ECM structures for infection of cells and tissues, and mutations in ECM proteins can give rise to a variety of genetic conditions. Here, we review the composition, structure and function of the ECM in cutaneous homeostasis, inflammatory skin diseases such as psoriasis and atopic dermatitis as well as infections as a paradigm for understanding its wider role in human health.
Collapse
Affiliation(s)
- Karin Pfisterer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Gachon E, Mesquida P. Mechanical Strain Alters the Surface Charge of Collagen Fibrils. ACS NANO 2021; 15:9820-9826. [PMID: 34024097 DOI: 10.1021/acsnano.1c00682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Collagen fibrils act like nanoscale cables in the extracellular matrix of vertebrate tissues and provide a scaffold for cells to attach to. However, beyond this mechanical function, the surface charge of collagen fibrils is also likely to play an important role. Here, we show that native, type I collagen fibrils from a mammal tendon exhibit a particular dependence of surface charge on longitudinal strain. Fibrils first become more positive with strain of up to 10% and then become more negative again with strain between 10 and 17%. The effect correlates with the stiffness of fibrils and can be explained by structural rearrangements, which expose hidden, ionizable residues. Fibrils treated with glutaraldehyde did not show any change in surface charge when strained. The electrical surface potential, which is directly related to the number ratio of exposed amine and carboxy groups on the surface, was determined by Kelvin-probe force microscopy of fibrils attached on an extensible, thin polymer film. By stretching the film, a large number of individual fibrils could be strained simultaneously without resorting to sophisticated nanomechanical devices. It is conceivable that cells react to such changes of the fibril charge and that this effect is an additional contributor, besides mechanics, to a number of physiological processes. It may also need to be considered in the design of tissue-engineering scaffolds.
Collapse
Affiliation(s)
- Emilie Gachon
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Patrick Mesquida
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| |
Collapse
|