1
|
Ragni E, Papait A, Taiana MM, De Luca P, Grieco G, Vertua E, Romele P, Colombo C, Silini AR, Parolini O, de Girolamo L. Cell culture expansion media choice affects secretory, protective and immuno-modulatory features of adipose mesenchymal stromal cell-derived secretomes for orthopaedic applications. Regen Ther 2025; 28:481-497. [PMID: 39980717 PMCID: PMC11840939 DOI: 10.1016/j.reth.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Mesenchymal stromal cells (MSCs) gained attention for their anti-inflammatory and trophic properties, with musculoskeletal diseases and osteoarthritis (OA) being among the most studied conditions. Alongside cells, their released factors and extracellular vesicles (EVs), overall termed "secretome", are actively sifted being envisioned as the main therapeutic actors. In addition to standard supplementation given by foetal bovine serum (FBS) or human platelet lysate (hPL), new good manufacturing practice (GMP)-compliant serum/xeno (S/X)-free media formulations have been proposed, although their influence on MSCs phenotype and potential is scarcely described. The aim of this study is therefore to evaluate, in the OA context, the differences in secretome composition and potential after adipose-MSCs (ASCs) cultivation in both standard (FBS and hPL) and two next generation (S/X) GMP-ready supplements. Methods Immunophenotype and secretory ability at soluble protein and EV-related levels, including embedded miRNAs, were analysed in the secretomes by means of flow cytometry, nanoparticle tracking analysis, high throughput ELISA and qRT-PCR arrays. Secretomes effect was tested in in vitro models of chondrocytes, lymphocytes and monocytes to mimic the OA microenvironment. Results Within a conserved molecular signature, a divergent fingerprint emerged for ASCs' secretomes collected after expansion in standard FBS/hPL or next-generation S/X formulations. Regarding soluble factors, a less protective feature for those in the secretome collected after ASCs were cultured in S/X media emerged. Moreover, the overall message for EV-miRNAs was characterized by a preponderance of protective signals in FBS and hPL conditions in a context of general safeguard given by ASCs released molecules. This dichotomy was reflected on secretomes' potential in vitro, with expansion in hPL resulting in the most effective secretome for chondrocytes and in FBS for immune cells. Conclusions These data open the question about the implications from using new media for MSCs expansion for clinical application. Although the undeniable advantages for GMP compliant processes, this study results suggest that new media formulations would deserve a deep characterization to drive the choice of the most effective one tailored to each specific application.
Collapse
Affiliation(s)
- Enrico Ragni
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Andrea Papait
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Roma, Italy
| | - Michela Maria Taiana
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Paola De Luca
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Giulio Grieco
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Elsa Vertua
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Pietro Romele
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Cecilia Colombo
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Roma, Italy
| | - Laura de Girolamo
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| |
Collapse
|
2
|
Yarahmadi A, Dorri Giv M, Hosseininejad R, Rezaie A, Mohammadi N, Afkhami H, Farokhi A. Mesenchymal stem cells and their extracellular vesicle therapy for neurological disorders: traumatic brain injury and beyond. Front Neurol 2025; 16:1472679. [PMID: 39974358 PMCID: PMC11835705 DOI: 10.3389/fneur.2025.1472679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025] Open
Abstract
Traumatic brain injury (TBI) is a complex condition involving mechanisms that lead to brain dysfunction and nerve damage, resulting in significant morbidity and mortality globally. Affecting ~50 million people annually, TBI's impact includes a high death rate, exceeding that of heart disease and cancer. Complications arising from TBI encompass concussion, cerebral hemorrhage, tumors, encephalitis, delayed apoptosis, and necrosis. Current treatment methods, such as pharmacotherapy with dihydropyridines, high-pressure oxygen therapy, behavioral therapy, and non-invasive brain stimulation, have shown limited efficacy. A comprehensive understanding of vascular components is essential for developing new treatments to improve blood vessel-related brain damage. Recently, mesenchymal stem cells (MSCs) have shown promising results in repairing and mitigating brain damage. Studies indicate that MSCs can promote neurogenesis and angiogenesis through various mechanisms, including releasing bioactive molecules and extracellular vesicles (EVs), which help reduce neuroinflammation. In research, the distinctive characteristics of MSCs have positioned them as highly desirable cell sources. Extensive investigations have been conducted on the regulatory properties of MSCs and their manipulation, tagging, and transportation techniques for brain-related applications. This review explores the progress and prospects of MSC therapy in TBI, focusing on mechanisms of action, therapeutic benefits, and the challenges and potential limitations of using MSCs in treating neurological disorders.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Masoumeh Dorri Giv
- Nuclear Medicine Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Hosseininejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azin Rezaie
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Narges Mohammadi
- Department of Molecular Cell Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arastoo Farokhi
- Department of Anesthesiology, Kermanshah University of Medical Sciences, Imam Reza Hospital, Kermanshah, Iran
| |
Collapse
|
3
|
Che H, Hart ML, Lauer JC, Selig M, Voelker M, Kurz B, Rolauffs B. A xenogenic-free culture medium for cell micro-patterning systems as cell-instructive biomaterials for potential clinical applications. Biomed Mater 2025; 20:025008. [PMID: 39719129 DOI: 10.1088/1748-605x/ada335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/24/2024] [Indexed: 12/26/2024]
Abstract
Cell micro-patterning controls cell fate and function and has potential for generating therapeutically usable mesenchymal stromal cell (MSC) populations with precise functions. However, to date, the micro-patterning of human cells in a translational context has been impossible because only ruminant media supplements, e.g. fetal bovine serum (FBS), are established for use with micro-patterns (MPs). Thus, there are currently no good manufacturing practice (GMP)-compliant media available for MPs. This study tested a xenogenic-free human plasma and platelet lysate (hP + PL) medium supplement to determine its compatibility with MPs. Unfiltered hP + PL medium resulted in significant protein deposition, creating a 'carpet-like' layer that rendered MPs ineffective. Filtration (3×/5×) eliminated this effect. Importantly, quantitative comparison using droplet digital PCR revealed that human MSCs in all media types exhibited similar profiles with strong myogenic Calponin 1/Transgelin 2 (TAGLN2) and weaker osteogenic alkaline phosphatase/Runt-related transcription factor 2 marker expression, and much weaker adipogenic (lipoprotein lipase/peroxisome proliferator-activated receptor gamma) and chondrogenic (collagen type II/aggrecan) expression, with profiles being dominated by myogenic markers. Within these similar profiles, an even stronger induction of the myogenic marker TAGLN2 by all hP + PL- compared to FBS-containing media. Overall, this suggested that FBS can be replaced with hP + PL without altering differentiation profiles. However, assessing individual MSC responses to various MP types with defined categories revealed that unfiltered hP + PL medium was unusable. Importantly, FBS- and 3× filtered hP + PL media were comparable in each differentiation category. Summarized, this study recommends 3× filtered hP + PL as a xenogenic-free and potentially GMP-compliant alternative to FBS as a culture medium supplement for micro-patterning cell populations in both basic and translational research that will ensure consistent and reliable MSC micro-patterning for therapeutic use.
Collapse
Affiliation(s)
- Hui Che
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Melanie L Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Jasmin C Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Marita Voelker
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Bodo Kurz
- Department of Anatomy, Christian-Albrechts-University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| |
Collapse
|
4
|
Romão CM, de Lara Janz F, Ruiz JLM, Lopes MAB, Cristante AF, de Barros Filho TEP, Levy D, Bydlowski SP. Expression of ABCB1, ABCC1, and LRP in Mesenchymal Stem Cells from Human Amniotic Fluid and Bone Marrow in Culture-Effects of In Vitro Osteogenic and Adipogenic Differentiation. Int J Mol Sci 2025; 26:510. [PMID: 39859227 PMCID: PMC11765172 DOI: 10.3390/ijms26020510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into various lineages. They have also the potential to protect themselves against harmful stimuli to maintain their functional integrity. Drug resistance-related transporters such as ABCB1 (P-glycoprotein; P-gp), ABCC1 (MRP1; multidrug resistance-related Protein 1), and LRP (lung resistance protein) may protect MSCs against toxic substances such as chemotherapeutic agents. This study evaluated ABCB1, ABCC1, and LRP before and after the differentiation of MSCs derived from human amniotic fluid (AF) and bone marrow (BM). P-gp expression in both AFMSCs and BMMSCs was analyzed by immunocytochemistry, and pump function was analyzed by cell viability assay with doxorubicin (DOX) and Rhodamine 123 (Rh 123) dye exclusion. ABCB1, ABCC1, and LRP gene expression was determined by RT-PCR both before and after osteogenic and adipogenic differentiation. The MES-SA/DX5 cell line was used as a model of resistance to DOX and the overexpression of P-gp. Both AFMSCs and BMMSCs displayed a high P-gp expression, although lower than MES-SA/DX5 control cells. It was shown that both, undifferentiated AFMSCs and BMMSCs, have high cell viability in response to DOX, similar to the MES-SA/DX5 lineage. ABCB1 was less expressed in BM than in AFMSCs in undifferentiated samples, while no differences were observed in the expression of ABCC1 and LRP. AFMSCs showed an increase in ABCB1 after osteogenic differentiation, whereas BMMSCs exhibited lower ABCB1 and ABCC1 expression after osteogenic and adipogenic differentiation. The findings suggest that ABCB1, ABCC1, and LRP gene expression in AFMSCs and BMMSCs is influenced by differentiation processes and further support the concept that these transporters modulate MSC differentiation in a cell source-dependent way.
Collapse
Affiliation(s)
- Carolina Martinez Romão
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo 05403-900, Brazil; (C.M.R.); (D.L.)
- Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Felipe de Lara Janz
- General Biology Department, State University of Ponta Grossa (UEPG), Ponta Grossa 84010-330, Brazil;
| | - Jorge Luis Maria Ruiz
- Latin American Institute of Life and Natural Sciences, Federal University for Latin American Integration (UNILA), Foz do Iguaçu 85870-650, Brazil;
| | - Marco Antônio Borges Lopes
- Laboratory of Obstetric Physiology, Department of Obstetrics and Gynecology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil;
| | - Alexandre Fogaça Cristante
- Department of Orthopedics and Traumatology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 05402-000, Brazil; (A.F.C.); (T.E.P.d.B.F.)
| | - Tarcísio Eloy Pessoa de Barros Filho
- Department of Orthopedics and Traumatology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 05402-000, Brazil; (A.F.C.); (T.E.P.d.B.F.)
| | - Débora Levy
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo 05403-900, Brazil; (C.M.R.); (D.L.)
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo 05403-900, Brazil; (C.M.R.); (D.L.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
5
|
Hong H, Park CH, Lee JS, Kim K, Nath S, Oh MS, Kim S, Lee CH, Kim KH, Choi WH, Choi KY, Park HS, Lee OJ, Hong IS, Kim SH. Ex vivo enhancement of CD8+ T cell activity using functionalized hydrogel encapsulating tonsil-derived lymphatic endothelial cells. Theranostics 2025; 15:850-874. [PMID: 39776798 PMCID: PMC11700866 DOI: 10.7150/thno.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Rationale: This study investigates a method for programming immune cells using a biomaterial-based system, providing an alternative to traditional ex vivo cell manipulation techniques. It addresses the limitations of engineered adoptive T cell therapies, such as T cell exhaustion, by introducing a gelatin-hyaluronic acid (GH-GMA) hydrogel system. Methods: We characterized tonsil mesenchymal stem cells (TMSCs), lymphatic endothelial cells (T-LECs), stimulated T-CD8+ T cells (STCs), and GH-GMA biomaterials. The 10% 5:1 GH-GMA hydrogel, loaded with anti-CD28, cytokines interleukin-2 (IL-2) and vascular endothelial growth factor C (VEGF-C), forms a functional hydrogel capable of releasing these immune-stimulating factors. T-LEC spheroids, derived from tonsil mesenchymal stem cells (TMSCs), were encapsulated within the hydrogel to act as antigen-presenting cells for T cells. Results: Co-encapsulation of STCs and T-LEC spheroids in the functional hydrogel resulted in significant expansion and enrichment of STCs during cultivation. Moreover, when cancer cells were co-encapsulated with STCs and T-LECs, there was increased migration of STCs towards the cancer cells and elevated expression of PD-L1 on the cancer cells. Conclusions: These findings suggest that the GH-GMA hydrogel, combined with anti-CD28, IL-2, VEGF-C, and T-LEC spheroids, enhances T cell activity, presenting a promising platform for cancer immunotherapies and modulation of the suppressive tumor microenvironment.
Collapse
Affiliation(s)
- Heesun Hong
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hos-pital, School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyunghee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sudarshini Nath
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Moon Sik Oh
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sol Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Chul Hee Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ki Hyun Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Woo Hee Choi
- R&D Institute, ORGANOIDSCIENCES Ltd., Seongnam 13488, Republic of Korea
| | - Kyu Young Choi
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea
| | - Hae Sang Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hos-pital, School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21565, Republic of Korea
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
6
|
Roy NS, Kumari M, Alam K, Bhattacharya A, Kaity S, Kaur K, Ravichandiran V, Roy S. Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012007. [PMID: 39662055 DOI: 10.1088/2516-1091/ad9dcb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Three-dimensional (3D) models, such as tumor spheroids and organoids, are increasingly developed by integrating tissue engineering, regenerative medicine, and personalized therapy strategies. These advanced 3Din-vitromodels are not merely endpoint-driven but also offer the flexibility to be customized or modulated according to specific disease parameters. Unlike traditional 2D monolayer cultures, which inadequately capture the complexities of solid tumors, 3D co-culture systems provide a more accurate representation of the tumor microenvironment. This includes critical interactions with mesenchymal stem/stromal cells (MSCs) and induced pluripotent stem cells (iPSCs), which significantly modulate cancer cell behavior and therapeutic responses. Most of the findings from the co-culture of Michigan Cancer Foundation-7 breast cancer cells and MSC showed the formation of monolayers. Although changes in the plasticity of MSCs and iPSCs caused by other cells and extracellular matrix (ECM) have been extensively researched, the effect of MSCs on cancer stem cell (CSC) aggressiveness is still controversial and contradictory among different research communities. Some researchers have argued that CSCs proliferate more, while others have proposed that cancer spread occurs through dormancy. This highlights the need for further investigation into how these interactions shape cancer aggressiveness. The objective of this review is to explore changes in cancer cell behavior within a 3D microenvironment enriched with MSCs, iPSCs, and ECM components. By describing various MSC and iPSC-derived 3D breast cancer models that replicate tumor biology, we aim to elucidate potential therapeutic targets for breast cancer. A particular focus of this review is the Transwell system, which facilitates understanding how MSCs and iPSCs affect critical processes such as migration, invasion, and angiogenesis. The gradient formed between the two chambers is based on diffusion, as seen in the human body. Once optimized, this Transwell model can serve as a high-throughput screening platform for evaluating various anticancer agents. In the future, primary cell-based and patient-derived 3D organoid models hold promise for advancing personalized medicine and accelerating drug development processes.
Collapse
Affiliation(s)
- Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Department of Anatomy & Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| |
Collapse
|
7
|
Larrea Murillo L, Sugden CJ, Ozsvari B, Moftakhar Z, Hassan GS, Sotgia F, Lisanti MP. ALDH High Breast Cancer Stem Cells Exhibit a Mesenchymal-Senescent Hybrid Phenotype, with Elevated Metabolic and Migratory Activities. Cells 2024; 13:2059. [PMID: 39768151 PMCID: PMC11674378 DOI: 10.3390/cells13242059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer stem cells (CSCs) account for 0.01 to 2% of the total tumor mass; however, they play a key role in tumor progression, metastasis and resistance to current cancer therapies. The generation and maintenance of CSCs are usually linked to the epithelial-mesenchymal transition (EMT), a dynamic process involved in reprogramming cancer cells towards a more aggressive and motile phenotype with increased stemness potential. Cells that undergo an EMT process have shown to be more resistant to conventional chemo/radiotherapies. In this context, aldehyde dehydrogenase (ALDH) enzymes, known for their role in the cellular detoxification of aldehydes and enhancement of cell survival, are often upregulated in cancer cells, promoting their resistance to conventional cancer treatments. Indeed, high ALDH levels have become a hallmark biomarker of CSCs and are often used to isolate this sub-population from the more abundant cancer cell populations. Herein, we isolated human breast cancer epithelial cells with higher ALDH abundance (ALDHHigh) and compared them to those with low ALDH abundance (ALDHLow). ALDHHigh sub-populations exhibited more characteristic EMT biomarkers by adopting a more mesenchymal phenotype with increased stemness and enhanced migratory potential. Furthermore, ALDHHigh sub-populations displayed elevated senescent markers. Moreover, these cells also demonstrated higher levels of mitochondria DNA/mass, as well as greater mitochondrial and glycolytic metabolic function. Conversely, ALDHLow sub-populations showed a higher efficiency of mammosphere/colony formation and an increased proliferative capacity. Therefore, we demonstrated that these ALDH sub-populations have distinct characteristics, underscoring their role in EMT, the formation of tumors and the mechanisms of metastasis.
Collapse
Affiliation(s)
- Luis Larrea Murillo
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
| | - Conor J. Sugden
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
| | - Bela Ozsvari
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Zahra Moftakhar
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
| | - Ghada S. Hassan
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| |
Collapse
|
8
|
Huang Z, Iqbal Z, Zhao Z, Liu J, Alabsi AM, Shabbir M, Mahmood A, Liang Y, Li W, Deng Z. Cellular crosstalk in the bone marrow niche. J Transl Med 2024; 22:1096. [PMID: 39627858 PMCID: PMC11613879 DOI: 10.1186/s12967-024-05900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024] Open
Abstract
The bone marrow niche is a special microenvironment that comprises elements, including hematopoietic stem cells, osteoblasts, and endothelial cells, and helps maintain their characteristic functions. Here, we elaborate on the crosstalk between various cellular components, hematopoietic stem cells, and other cells in the bone marrow niche. We further explain the mechanism of preserving equilibrium in the bone marrow niche, which is crucial for the directional regulation of bone reconstruction and repair. Additionally, we elucidate the intercommunication among osteocytes, the regulation of osteoblast maturation and activation by lymphocytes, the deficiency of megakaryocytes that can markedly impair osteoblast formation, and the mechanism of interaction between macrophages and mesenchymal stem cells in the bone marrow niche. Finally, we discussed the new immunotherapies for bone tumors in the BM niche. In this review, we aimed to provide a candid overview of the crosstalk among bone marrow niche cells and to highlight new concepts underlying the unknown mechanisms of hematopoiesis and bone reconstruction. Thus, this review may provide a more comprehensive understanding of the role of these niche cells in improving hematopoietic function and help identify their therapeutic potential for different diseases in the future.
Collapse
Affiliation(s)
- Zeqi Huang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zoya Iqbal
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - A M Alabsi
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia
- School of Dentistry, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 ShahAlam, Selangor, Malaysia
| | - Maryam Shabbir
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ayesha Mahmood
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Yujie Liang
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia.
- Department of Child and Adolescent Psychiatry, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China.
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| | - Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| |
Collapse
|
9
|
Dao HH, Nguyen TH, Hoang DH, Vu BD, Tran MA, Le MT, Hoang NTM, Bui AV, Than UTT, Nguyen XH. Manufacturing exosomes for wound healing: Comparative analysis of culture media. PLoS One 2024; 19:e0313697. [PMID: 39541412 PMCID: PMC11563385 DOI: 10.1371/journal.pone.0313697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Mesenchymal stem cell (MSC)-derived exosomes (EXs) have emerged as promising therapeutic agents for wound healing. However, the optimal conditions for manufacturing MSC-derived EXs that maximize their wound-healing potential have yet to be established. Hence, we compared the efficacy of five different MSC culture media, including three different serum-free, a platelet-supplemented, and a fetal bovine serum-supplemented media, in exosome manufacturing for wound healing applications. Although umbilical cord-derived MSCs (UCMSCs) cultured in these media exhibited similar proliferation, morphology, MSC surface marker expression, and stemness, EXs derived from UCMSCs cultured in different culture media displayed varying levels of growth factors and cytokines. Notably, EXs derived from platelet-supplemented media (DM-PLT_EXs) exhibited significantly higher concentrations of keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF-A), platelet-derived growth factor (PDGF-BB), interleukin 6 (IL-6), interleukin 7 (IL-7), and interleukin 8 (IL-8) than EXs from other media. These differences correlated with the superior capability of DM-PLT_EXs to promote human skin fibroblast proliferation and stimulate angiogenesis of human umbilical vein endothelial cells, making them a more suitable choice for wound healing applications. Our findings emphasize the significance of the culture medium selection in tailoring the therapeutic potential of UCMSC-derived EXs for wound healing.
Collapse
Affiliation(s)
- Huy Hoang Dao
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | | | - Bach Duong Vu
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Minh-Anh Tran
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Mai Thi Le
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Nhung Thi My Hoang
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Anh Viet Bui
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Uyen Thi Trang Than
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Xuan-Hung Nguyen
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
| |
Collapse
|
10
|
Shin SW, Mudvari P, Thaploo S, Wheeler MA, Douek DC, Quintana FJ, Boritz EA, Abate AR, Clark IC. FIND-seq: high-throughput nucleic acid cytometry for rare single-cell transcriptomics. Nat Protoc 2024; 19:3191-3218. [PMID: 39039320 PMCID: PMC11537836 DOI: 10.1038/s41596-024-01021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 05/09/2024] [Indexed: 07/24/2024]
Abstract
Rare cells have an important role in development and disease, and methods for isolating and studying cell subsets are therefore an essential part of biology research. Such methods traditionally rely on labeled antibodies targeted to cell surface proteins, but large public databases and sophisticated computational approaches increasingly define cell subsets on the basis of genomic, epigenomic and transcriptomic sequencing data. Methods for isolating cells on the basis of nucleic acid sequences powerfully complement these approaches by providing experimental access to cell subsets discovered in cell atlases, as well as those that cannot be otherwise isolated, including cells infected with pathogens, with specific DNA mutations or with unique transcriptional or splicing signatures. We recently developed a nucleic acid cytometry platform called 'focused interrogation of cells by nucleic acid detection and sequencing' (FIND-seq), capable of isolating rare cells on the basis of RNA or DNA markers, followed by bulk or single-cell transcriptomic analysis. This platform has previously been used to characterize the splicing-dependent activation of the transcription factor XBP1 in astrocytes and HIV persistence in memory CD4 T cells from people on long-term antiretroviral therapy. Here, we outline the molecular and microfluidic steps involved in performing FIND-seq, including protocol updates that allow detection and whole transcriptome sequencing of rare HIV-infected cells that harbor genetically intact virus genomes. FIND-seq requires knowledge of microfluidics, optics and molecular biology. We expect that FIND-seq, and this comprehensive protocol, will enable mechanistic studies of rare HIV+ cells, as well as other cell subsets that were previously difficult to recover and sequence.
Collapse
Affiliation(s)
- Seung Won Shin
- Department of Bioengineering, College of Engineering, California Institute for Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA, USA
| | - Prakriti Mudvari
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shravan Thaploo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eli A Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA
| | - Iain C Clark
- Department of Bioengineering, College of Engineering, California Institute for Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
11
|
Kang M, Yang Y, Zhang H, Zhang Y, Wu Y, Denslin V, Othman RB, Yang Z, Han J. Comparative Analysis of Serum and Serum-Free Medium Cultured Mesenchymal Stromal Cells for Cartilage Repair. Int J Mol Sci 2024; 25:10627. [PMID: 39408956 PMCID: PMC11476526 DOI: 10.3390/ijms251910627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for cartilage repair therapy due to their self-renewal, chondrogenic, and immunomodulatory capacities. It is widely recognized that a shift from fetal bovine serum (FBS)-containing medium toward a fully chemically defined serum-free (SF) medium would be necessary for clinical applications of MSCs to eliminate issues such as xeno-contamination and batch-to-batch variation. However, there is a notable gap in the literature regarding the evaluation of the chondrogenic ability of SF-expanded MSCs (SF-MSCs). In this study, we compared the in vivo regeneration effect of FBS-MSCs and SF-MSCs in a rat osteochondral defect model and found poor cartilage repair outcomes for SF-MSCs. Consequently, a comparative analysis of FBS-MSCs and SF-MSCs expanded using two SF media, MesenCult™-ACF (ACF), and Custom StemPro™ MSC SFM XenoFree (XF) was conducted in vitro. Our results show that SF-expanded MSCs constitute variations in morphology, surface markers, senescence status, differentiation capacity, and senescence/apoptosis status. Highly proliferative MSCs supported by SF medium do not always correlate to their chondrogenic and cartilage repair ability. Prior determination of the SF medium's ability to support the chondrogenic ability of expanded MSCs is therefore crucial when choosing an SF medium to manufacture MSCs for clinical application in cartilage repair.
Collapse
Affiliation(s)
- Meiqi Kang
- Critical Analytics for Manufacturing Personalised-Medicine (CAMP) Interdisciplinary Research Group (IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; (M.K.); (Y.Y.); (R.B.O.)
| | - Yanmeng Yang
- Critical Analytics for Manufacturing Personalised-Medicine (CAMP) Interdisciplinary Research Group (IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; (M.K.); (Y.Y.); (R.B.O.)
| | - Haifeng Zhang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore; (H.Z.); (Y.Z.); (Y.W.); (V.D.)
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore 117510, Singapore
| | - Yuan Zhang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore; (H.Z.); (Y.Z.); (Y.W.); (V.D.)
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore 117510, Singapore
| | - Yingnan Wu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore; (H.Z.); (Y.Z.); (Y.W.); (V.D.)
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore 117510, Singapore
| | - Vinitha Denslin
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore; (H.Z.); (Y.Z.); (Y.W.); (V.D.)
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore 117510, Singapore
| | - Rashidah Binte Othman
- Critical Analytics for Manufacturing Personalised-Medicine (CAMP) Interdisciplinary Research Group (IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; (M.K.); (Y.Y.); (R.B.O.)
| | - Zheng Yang
- Critical Analytics for Manufacturing Personalised-Medicine (CAMP) Interdisciplinary Research Group (IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; (M.K.); (Y.Y.); (R.B.O.)
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore; (H.Z.); (Y.Z.); (Y.W.); (V.D.)
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore 117510, Singapore
| | - Jongyoon Han
- Critical Analytics for Manufacturing Personalised-Medicine (CAMP) Interdisciplinary Research Group (IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; (M.K.); (Y.Y.); (R.B.O.)
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Luo L, Peng B, Xiong L, Wang B, Wang L. Ginsenoside Re promotes proliferation of murine bone marrow mesenchymal stem cells in vitro through estrogen-like action. In Vitro Cell Dev Biol Anim 2024; 60:996-1008. [PMID: 39256290 DOI: 10.1007/s11626-024-00969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024]
Abstract
Ginsenoside Re (GS-Re) is a major saponin monomer found in Panax ginseng Meyer. It has been shown to exhibit a wide range of biological and pharmacological activities. This study aimed to investigate the effect of GS-Re on the proliferation of murine bone marrow-derived MSCs in vitro and to assess whether its effect is dependent on the estrogen receptor-mediated signal transduction. CFU colony formation assay, cell counting, and colorimetric MTT test were employed to examine effects of GS-Re on the in vitro proliferation of MSCs and the mechanisms of the underlying effect were detected by flow cytometric analysis, immunofluorescence staining for BrdU, and Western blotting. GS-Re dose-dependently promoted the in vitro proliferation of murine bone marrow-derived MSCs over a range of concentrations of 0.5 ~ 20 µmol/L, and this effect approached the maximal level at 10 µmol/L. Increases in the expression level of phosphorylated extracellular signal-regulated kinases 1/2 (p-ERK1/2) were observed in the passaged MSCs treated with 10 µmol/L of GS-Re. These effects of GS-Re on the MSCs were significantly counteracted by the addition of ICI 182, 780 (an estrogen receptor antagonist) to the culture media. We concluded that GS-Re is able to exert a proliferation-promoting effect on murine bone marrow-derived mesenchymal stem cells in vitro, and its action is involved in the estrogen receptor-mediated signaling.
Collapse
Affiliation(s)
- Linzi Luo
- Department of Endoscopic Diagnosis and Treatment, Hunan Chest Hospital, Changsha, China
| | - Bin Peng
- School of Life Science, Hunan Normal University, Changsha, China
| | - Lei Xiong
- School of Life Science, Hunan Normal University, Changsha, China
| | - Baohe Wang
- School of Life Science, Hunan Normal University, Changsha, China
| | - Linghao Wang
- Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
13
|
Wang J, Li R. Effects, methods and limits of the cryopreservation on mesenchymal stem cells. Stem Cell Res Ther 2024; 15:337. [PMID: 39343920 PMCID: PMC11441116 DOI: 10.1186/s13287-024-03954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are a type of cell capable of regulating the immune system, as well as exhibiting self-renewal and multi-lineage differentiation potential. Mesenchymal stem cells have emerged as an essential source of seed cells for therapeutic cell therapy. It is crucial to cryopreserve MSCs in liquid nitrogen prior to clinical application while preserving their functionality. Furthermore, efficient cryopreservation greatly enhances MSCs' potential in a range of biological domains. Nevertheless, there are several limits on the MSC cryopreservation methods now in use, necessitating thorough biosafety assessments before utilizing cryopreserved MSCs. Therefore, in order to improve the effectiveness of cryopreserved MSCs in clinical stem cell treatment procedures, new technological techniques must be developed immediately. The study offers an exhaustive analysis of the state-of-the-art MSC cryopreservation techniques, their effects on MSCs, and the difficulties encountered when using cryopreserved MSCs in clinical applications.
Collapse
Affiliation(s)
- Jialing Wang
- Chengdu Senkicel Biotechnology Co. Ltd, Chengdu, China
| | - Rui Li
- Chengdu Senkicel Biotechnology Co. Ltd, Chengdu, China.
| |
Collapse
|
14
|
Zhao L, Ni B, Li J, Liu R, Zhang Q, Zheng Z, Yang W, Yu W, Bi L. Evaluation of the impact of customized serum-free culture medium on the production of clinical-grade human umbilical cord mesenchymal stem cells: insights for future clinical applications. Stem Cell Res Ther 2024; 15:327. [PMID: 39334391 PMCID: PMC11438183 DOI: 10.1186/s13287-024-03949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The selection of suitable culture medium is critical for achieving good clinical outcomes in cell therapy. To support the commercial application of stem cell therapy, customized culture media not only need to promote stem cell proliferation, but also need to save costs and meet industrial requirements for inter-batch consistency, efficacy, and biosafety. In this study, we developed a series of serum-free media (SFM) and elucidated the effects between different SFM, as well as between SFM and serum-containing meida (SCM), on human umbilical cord mesenchymal stem cells (hUC-MSCs) phenotype and function. We analyze and emphasize from the perspectives of clinical and commercial application why research on customized culture media is critical for the success of enterprises developing novel cellular therapeutics. METHODS We cultured hUC-MSCs with identical cell seeding densities in different formulations of SFM and SCM until passage 10 and examined the changes in cell phenotype and function. We analyzed the results with the commercial application requirments of the cellular therapy industry to assess the potential impact of customized culture media on inter-batch consistency, efficacy, stability, biosafety, and cost-effectiveness of industrial-scale cell production. RESULTS hUC-MSCs cultured in SCM and SFM exhibit consistent cell morphology and surface molecule expression, but hUC-MSCs cultured in SFM demonstrate higher activity, superior proliferative capacity, and greater stability. Furthermore, hUC-MSCs cultured in different SFM exhibit differences in cell activity, proliferative capacity, senescent rate, and S/M ratio of cell cycle, while maintaining a normal karyotype after long-term in vitro cultivation. Moreover, we found that hUC-MSCs cultured in different media exhibit variations in paracrine capacity and in their support of hematopoietic stem cell (HSC) self-renewal. CONCLUSION Considering the substantial funding and time required for cell-based drug development, our results underscore the importances of comprehensively optimizing the composition of medium for the specific disease prior to conducting clinical trials of cell-based therapies. The criteria for selecting culture medium should be based on the requirements of the target disease for cellular function. In addition, we provide a way to formulate different customized SFM, which is beneficial for the development of cell therapy industry.
Collapse
Affiliation(s)
- Lan Zhao
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Beibei Ni
- Vaccine Research Institute, Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Jinqing Li
- Division of Hematology and Oncology, Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People's Republic of China
| | - Rui Liu
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Qi Zhang
- Vaccine Research Institute, Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Zhuangbin Zheng
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Wenjuan Yang
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.
| | - Wei Yu
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China.
| | - Lijun Bi
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China.
| |
Collapse
|
15
|
Noller K, Cahan P. Cell cycle expression heterogeneity predicts degree of differentiation. Brief Bioinform 2024; 25:bbae536. [PMID: 39446193 PMCID: PMC11500603 DOI: 10.1093/bib/bbae536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Methods that predict fate potential or degree of differentiation from transcriptomic data have identified rare progenitor populations and uncovered developmental regulatory mechanisms. However, some state-of-the-art methods are too computationally burdensome for emerging large-scale data and all methods make inaccurate predictions in certain biological systems. We developed a method in R (stemFinder) that predicts single cell differentiation time based on heterogeneity in cell cycle gene expression. Our method is computationally tractable and is as good as or superior to competitors. As part of our benchmarking, we implemented four different performance metrics to assist potential users in selecting the tool that is most apt for their application. Finally, we explore the relationship between differentiation time and cell fate potential by analyzing a lineage tracing dataset with clonally labelled hematopoietic cells, revealing that metrics of differentiation time are correlated with the number of downstream lineages.
Collapse
Affiliation(s)
- Kathleen Noller
- Institute for Cell Engineering, Johns Hopkins University, 733 N. Broadway, Baltimore MD, 21205, United States
- Department of Biomedical Engineering, Johns Hopkins University, 733 N. Broadway, Baltimore MD, 21205, United States
| | - Patrick Cahan
- Institute for Cell Engineering, Johns Hopkins University, 733 N. Broadway, Baltimore MD, 21205, United States
- Department of Biomedical Engineering, Johns Hopkins University, 733 N. Broadway, Baltimore MD, 21205, United States
- Department of Molecular Biology and Genetics, Johns Hopkins University, 733 N. Broadway, Baltimore MD, 21205, United States
| |
Collapse
|
16
|
Zhidu S, Ying T, Rui J, Chao Z. Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: challenges and opportunities. Stem Cell Res Ther 2024; 15:266. [PMID: 39183341 PMCID: PMC11346273 DOI: 10.1186/s13287-024-03885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Advances in stem cell technology offer new possibilities for patients with untreated diseases and disorders. Stem cell-based therapy, which includes multipotent mesenchymal stem cells (MSCs), has recently become important in regenerative therapies. MSCs are multipotent progenitor cells that possess the ability to undergo in vitro self-renewal and differentiate into various mesenchymal lineages. MSCs have demonstrated promise in several areas, such as tissue regeneration, immunological modulation, anti-inflammatory qualities, and wound healing. Additionally, the development of specific guidelines and quality control methods that ultimately result in the therapeutic application of MSCs has been made easier by recent advancements in the study of MSC biology. This review discusses the latest clinical uses of MSCs obtained from the umbilical cord (UC), bone marrow (BM), or adipose tissue (AT) in treating various human diseases such as pulmonary dysfunctions, neurological disorders, endocrine/metabolic diseases, skin burns, cardiovascular conditions, and reproductive disorders. Additionally, this review offers comprehensive information regarding the clinical application of targeted therapies utilizing MSCs. It also presents and examines the concept of MSC tissue origin and its potential impact on the function of MSCs in downstream applications. The ultimate aim of this research is to facilitate translational research into clinical applications in regenerative therapies.
Collapse
Affiliation(s)
- Song Zhidu
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China
| | - Tao Ying
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiang Rui
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhang Chao
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
17
|
Noller K, Cahan P. Cell cycle expression heterogeneity predicts degree of differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604184. [PMID: 39091773 PMCID: PMC11291076 DOI: 10.1101/2024.07.19.604184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Methods that predict fate potential or degree of differentiation from transcriptomic data have identified rare progenitor populations and uncovered developmental regulatory mechanisms. However, some state-of-the-art methods are too computationally burdensome for emerging large-scale data and all methods make inaccurate predictions in certain biological systems. We developed a method in R (stemFinder) that predicts single cell differentiation time based on heterogeneity in cell cycle gene expression. Our method is computationally tractable and is as good as or superior to competitors. As part of our benchmarking, we implemented four different performance metrics to assist potential users in selecting the tool that is most apt for their application. Finally, we explore the relationship between differentiation time and cell fate potential by analyzing a lineage tracing dataset with clonally labelled hematopoietic cells, revealing that metrics of differentiation time are correlated with the number of downstream lineages.
Collapse
Affiliation(s)
- Kathleen Noller
- Institute for Cell Engineering, Johns Hopkins University, Baltimore MD USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD USA
| | - Patrick Cahan
- Institute for Cell Engineering, Johns Hopkins University, Baltimore MD USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD USA
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore MD USA
| |
Collapse
|
18
|
Doherty-Boyd WS, Donnelly H, Tsimbouri MP, Dalby MJ. Building bones for blood and beyond: the growing field of bone marrow niche model development. Exp Hematol 2024; 135:104232. [PMID: 38729553 DOI: 10.1016/j.exphem.2024.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
The bone marrow (BM) niche is a complex microenvironment that provides the signals required for regulation of hematopoietic stem cells (HSCs) and the process of hematopoiesis they are responsible for. Bioengineered models of the BM niche incorporate various elements of the in vivo BM microenvironment, including cellular components, soluble factors, a three-dimensional environment, mechanical stimulation of included cells, and perfusion. Recent advances in the bioengineering field have resulted in a spate of new models that shed light on BM function and are approaching precise imitation of the BM niche. These models promise to improve our understanding of the in vivo microenvironment in health and disease. They also aim to serve as platforms for HSC manipulation or as preclinical models for screening novel therapies for BM-associated disorders and diseases.
Collapse
Affiliation(s)
- W Sebastian Doherty-Boyd
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom.
| | - Hannah Donnelly
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Monica P Tsimbouri
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom
| | - Matthew J Dalby
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
19
|
Velikova T, Dekova T, Miteva DG. Controversies regarding transplantation of mesenchymal stem cells. World J Transplant 2024; 14:90554. [PMID: 38947963 PMCID: PMC11212595 DOI: 10.5500/wjt.v14.i2.90554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 06/13/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have tantalized regenerative medicine with their therapeutic potential, yet a cloud of controversies looms over their clinical transplantation. This comprehensive review navigates the intricate landscape of MSC controversies, drawing upon 15 years of clinical experience and research. We delve into the fundamental properties of MSCs, exploring their unique immunomodulatory capabilities and surface markers. The heart of our inquiry lies in the controversial applications of MSC transplantation, including the perennial debate between autologous and allogeneic sources, concerns about efficacy, and lingering safety apprehensions. Moreover, we unravel the enigmatic mechanisms surrounding MSC transplantation, such as homing, integration, and the delicate balance between differentiation and paracrine effects. We also assess the current status of clinical trials and the ever-evolving regulatory landscape. As we peer into the future, we examine emerging trends, envisioning personalized medicine and innovative delivery methods. Our review provides a balanced and informed perspective on the controversies, offering readers a clear understanding of the complexities, challenges, and potential solutions in MSC transplantation.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Department of Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Tereza Dekova
- Department of Genetics, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia 1164, Bulgaria
| | | |
Collapse
|
20
|
Chan AML, Ng AMH, Yunus MHM, Idrus RH, Law JX, Yazid MD, Chin KY, Yusof MRM, Ng SN, Koh B, Lokanathan Y. Single high-dose intravenous injection of Wharton's jelly-derived mesenchymal stem cell exerts protective effects in a rat model of metabolic syndrome. Stem Cell Res Ther 2024; 15:160. [PMID: 38835014 DOI: 10.1186/s13287-024-03769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/26/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a significant epidemiological problem worldwide. It is a pre-morbid, chronic and low-grade inflammatory disorder that precedes many chronic diseases. Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) could be used to treat MetS because they express high regenerative capacity, strong immunomodulatory properties and allogeneic biocompatibility. This study aims to investigate WJ-MSCs as a therapy against MetS in a rat model. METHODS Twenty-four animals were fed with high-fat high-fructose (HFHF) diet ad libitum. After 16 weeks, the animals were randomised into treatment groups (n = 8/group) and received a single intravenous administration of vehicle, that is, 3 × 106 cells/kg or 10 × 106 cells/kg of WJ-MSCs. A healthy animal group (n = 6) fed with a normal diet received the same vehicle as the control (CTRL). All animals were periodically assessed (every 4 weeks) for physical measurements, serum biochemistry, glucose tolerance test, cardiovascular function test and whole-body composition. Post-euthanasia, organs were weighed and processed for histopathology. Serum was collected for C-reactive protein and inflammatory cytokine assay. RESULTS The results between HFHF-treated groups and healthy or HFHF-CTRL did not achieve statistical significance (α = 0.05). The effects of WJ-MSCs were masked by the manifestation of different disease subclusters and continuous supplementation of HFHF diet. Based on secondary analysis, WJ-MSCs had major implications in improving cardiopulmonary morbidities. The lungs, liver and heart show significantly better histopathology in the WJ-MSC-treated groups than in the untreated CTRL group. The cells produced a dose-dependent effect (high dose lasted until week 8) in preventing further metabolic decay in MetS animals. CONCLUSIONS The establishment of safety and therapeutic proof-of-concept encourages further studies by improving the current therapeutic model.
Collapse
Affiliation(s)
- Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/46, 47301, Petaling Jaya, Selangor, Malaysia
| | - Angela Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Ruszymah Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Mohd Rafizul Mohd Yusof
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - See Nguan Ng
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/46, 47301, Petaling Jaya, Selangor, Malaysia
| | - Benson Koh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
21
|
Chao CL, Applewhite B, Reddy NK, Matiuto N, Dang C, Jiang B. Advances and challenges in regenerative therapies for abdominal aortic aneurysm. Front Cardiovasc Med 2024; 11:1369785. [PMID: 38895536 PMCID: PMC11183335 DOI: 10.3389/fcvm.2024.1369785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a significant source of mortality worldwide and carries a mortality of greater than 80% after rupture. Despite extensive efforts to develop pharmacological treatments, there is currently no effective agent to prevent aneurysm growth and rupture. Current treatment paradigms only rely on the identification and surveillance of small aneurysms, prior to ultimate open surgical or endovascular repair. Recently, regenerative therapies have emerged as promising avenues to address the degenerative changes observed in AAA. This review briefly outlines current clinical management principles, characteristics, and pharmaceutical targets of AAA. Subsequently, a thorough discussion of regenerative approaches is provided. These include cellular approaches (vascular smooth muscle cells, endothelial cells, and mesenchymal stem cells) as well as the delivery of therapeutic molecules, gene therapies, and regenerative biomaterials. Lastly, additional barriers and considerations for clinical translation are provided. In conclusion, regenerative approaches hold significant promise for in situ reversal of tissue damages in AAA, necessitating sustained research and innovation to achieve successful and translatable therapies in a new era in AAA management.
Collapse
Affiliation(s)
- Calvin L. Chao
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brandon Applewhite
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL, United States
| | - Nidhi K. Reddy
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Natalia Matiuto
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Caitlyn Dang
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bin Jiang
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL, United States
| |
Collapse
|
22
|
Ding Z, Greenberg ZF, Serafim MF, Ali S, Jamieson JC, Traktuev DO, March K, He M. Understanding molecular characteristics of extracellular vesicles derived from different types of mesenchymal stem cells for therapeutic translation. EXTRACELLULAR VESICLE 2024; 3:100034. [PMID: 38957857 PMCID: PMC11218754 DOI: 10.1016/j.vesic.2024.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Mesenchymal stem cells (MSCs) have been studied for decades as candidates for cellular therapy, and their secretome, including secreted extracellular vesicles (EVs), has been identified to contribute significantly to regenerative and reparative functions. Emerging evidence has suggested that MSC-EVs alone, could be used as therapeutics that emulate the biological function of MSCs. However, just as with MSCs, MSC-EVs have been shown to vary in composition, depending on the tissue source of the MSCs as well as the protocols employed in culturing the MSCs and obtaining the EVs. Therefore, the importance of careful choice of cell sources and culture environments is receiving increasing attention. Many factors contribute to the therapeutic potential of MSC-EVs, including the source tissue, isolation technique, and culturing conditions. This review illustrates the molecular landscape of EVs derived from different types of MSC cells along with culture strategies. A thorough analysis of publicly available omic datasets was performed to advance the precision understanding of MSC-EVs with unique tissue source-dependent molecular characteristics. The tissue-specific protein and miRNA-driven Reactome ontology analysis was used to reveal distinct patterns of top Reactome ontology pathways across adipose, bone marrow, and umbilical MSC-EVs. Moreover, a meta-analysis assisted by an AI technique was used to analyze the published literature, providing insights into the therapeutic translation of MSC-EVs based on their source tissues.
Collapse
Affiliation(s)
- Zuo Ding
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Zachary F. Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Maria Fernanda Serafim
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Samantha Ali
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Julia C. Jamieson
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Dmitry O. Traktuev
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Keith March
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
23
|
Hughes AM, Kuek V, Oommen J, Kotecha RS, Cheung LC. Murine bone-derived mesenchymal stem cells undergo molecular changes after a single passage in culture. Sci Rep 2024; 14:12396. [PMID: 38811646 PMCID: PMC11137146 DOI: 10.1038/s41598-024-63009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
The rarity of the mesenchymal stem cell (MSC) population poses a significant challenge for MSC research. Therefore, these cells are often expanded in vitro, prior to use. However, long-term culture has been shown to alter primary MSC properties. Additionally, early passage primary MSCs in culture are often assumed to represent the primary MSC population in situ, however, little research has been done to support this. Here, we compared the transcriptomic profiles of murine MSCs freshly isolated from the bone marrow to those that had been expanded in culture for 10 days. We identified that a single passage in culture extensively altered MSC molecular signatures associated with cell cycling, differentiation and immune response. These findings indicate the critical importance of the MSC source, highlighting the need for optimization of culture conditions to minimize the impact on MSC biology and a transition towards in vivo methodologies for the study of MSC function.
Collapse
Affiliation(s)
- Anastasia M Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia
| | - Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Joyce Oommen
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
| | - Rishi S Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia
- UWA Medical School, University of Western Australia, Perth, WA, 6009, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, 6009, Australia
| | - Laurence C Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia.
- Curtin Medical School, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia.
| |
Collapse
|
24
|
Quek J, Vizetto-Duarte C, Teoh SH, Choo Y. Towards Stem Cell Therapy for Critical-Sized Segmental Bone Defects: Current Trends and Challenges on the Path to Clinical Translation. J Funct Biomater 2024; 15:145. [PMID: 38921519 PMCID: PMC11205181 DOI: 10.3390/jfb15060145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The management and reconstruction of critical-sized segmental bone defects remain a major clinical challenge for orthopaedic clinicians and surgeons. In particular, regenerative medicine approaches that involve incorporating stem cells within tissue engineering scaffolds have great promise for fracture management. This narrative review focuses on the primary components of bone tissue engineering-stem cells, scaffolds, the microenvironment, and vascularisation-addressing current advances and translational and regulatory challenges in the current landscape of stem cell therapy for critical-sized bone defects. To comprehensively explore this research area and offer insights for future treatment options in orthopaedic surgery, we have examined the latest developments and advancements in bone tissue engineering, focusing on those of clinical relevance in recent years. Finally, we present a forward-looking perspective on using stem cells in bone tissue engineering for critical-sized segmental bone defects.
Collapse
Affiliation(s)
- Jolene Quek
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Catarina Vizetto-Duarte
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Swee Hin Teoh
- Centre for Advanced Medical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410012, China
| | - Yen Choo
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| |
Collapse
|
25
|
Chu W, Zhang F, Zeng X, He F, Shang G, Guo T, Wang Q, Wu J, Li T, Zhong ZZ, Liang X, Hu J, Liu M. A GMP-compliant manufacturing method for Wharton's jelly-derived mesenchymal stromal cells. Stem Cell Res Ther 2024; 15:131. [PMID: 38702793 PMCID: PMC11069138 DOI: 10.1186/s13287-024-03725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) hold great therapeutic potential in regenerative medicine. Therefore, it is crucial to establish a Good Manufacturing Practice (GMP)-compliant methodology for the isolation and culture of WJ-MSCs. Through comprehensive research, encompassing laboratory-scale experiments to pilot-scale studies, we aimed to develop standardized protocols ensuring the high yield and quality of WJ-MSCs manufacturing. METHODS Firstly, optimization of parameters for the enzymatic digestion method used to isolate WJ-MSCs was conducted. These parameters included enzyme concentrations, digestion times, seeding densities, and culture media. Additionally, a comparative analysis between the explant method and the enzymatic digestion method was performed. Subsequently, the consecutive passaging of WJ-MSCs, specifically up to passage 9, was evaluated using the optimized method. Finally, manufacturing processes were developed and scaled up, starting from laboratory-scale flask-based production and progressing to pilot-scale cell factory-based production. Furthermore, a stability study was carried out to assess the storage and use of drug products (DPs). RESULTS The optimal parameters for the enzymatic digestion method were a concentration of 0.4 PZ U/mL Collagenase NB6 and a digestion time of 3 h, resulting in a higher yield of P0 WJ-MSCs. In addition, a positive correlation between the weight of umbilical cord tissue and the quantities of P0 WJ-MSCs has been observed. Evaluation of different concentrations of human platelet lysate revealed that 2% and 5% concentrations resulted in similar levels of cell expansion. Comparative analysis revealed that the enzymatic digestion method exhibited faster outgrowth of WJ-MSCs compared to the explant method during the initial passage. Passages 2 to 5 exhibited higher viability and proliferation ability throughout consecutive passaging. Moreover, scalable manufacturing processes from the laboratory scale to the pilot scale were successfully developed, ensuring the production of high-quality WJ-MSCs. Multiple freeze-thaw cycles of the DPs led to reduced cell viability and viable cell concentration. Subsequent thawing and dilution of the DPs resulted in a significant decrease in both metrics, especially when stored at 20-27 °C. CONCLUSION This study offers valuable insights into optimizing the isolation and culture of WJ-MSCs. Our scalable manufacturing processes facilitate the large-scale production of high-quality WJ-MSCs. These findings contribute to the advancement of WJ-MSCs-based therapies in regenerative medicine.
Collapse
Affiliation(s)
- Wanglong Chu
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Fen Zhang
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Xiuping Zeng
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Fangtao He
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Guanyan Shang
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Tao Guo
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Qingfang Wang
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Jianfu Wu
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Tongjing Li
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Zhen Zhong Zhong
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Xiao Liang
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Junyuan Hu
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China.
| | - Muyun Liu
- National Engineering Research Center of Foundational Technologies for CGT Industry, 518000, Shenzhen, Guangdong, People's Republic of China.
- Shenzhen Kenuo Medical Laboratory, 518000, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
26
|
Wang J, Zhao Z, Yang K, Bai Y. Research progress in cell therapy for oral diseases: focus on cell sources and strategies to optimize cell function. Front Bioeng Biotechnol 2024; 12:1340728. [PMID: 38515628 PMCID: PMC10955105 DOI: 10.3389/fbioe.2024.1340728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
In recent years, cell therapy has come to play an important therapeutic role in oral diseases. This paper reviews the active role of mesenchymal stem cells, immune cell sources, and other cells in oral disorders, and presents data supporting the role of cell therapy in oral disorders, including bone and tooth regeneration, oral mucosal disorders, oral soft tissue defects, salivary gland dysfunction, and orthodontic tooth movement. The paper will first review the progress of cell optimization strategies for oral diseases, including the use of hormones in combination with stem cells, gene-modified regulatory cells, epigenetic regulation of cells, drug regulation of cells, cell sheets/aggregates, cell-binding scaffold materials and hydrogels, nanotechnology, and 3D bioprinting of cells. In summary, we will focus on the therapeutic exploration of these different cell sources in oral diseases and the active application of the latest cell optimization strategies.
Collapse
Affiliation(s)
| | | | | | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Maličev E, Jazbec K. An Overview of Mesenchymal Stem Cell Heterogeneity and Concentration. Pharmaceuticals (Basel) 2024; 17:350. [PMID: 38543135 PMCID: PMC10975472 DOI: 10.3390/ph17030350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest in cell therapies due to the immunomodulatory and other effects they have after autologous or allogeneic transplantation. In most clinical applications, a high number of MSCs is required; therefore, the isolated MSC population must be expanded in the cell culture until the desired number is reached. Analysing freshly isolated MSCs is challenging due to their rareness and heterogeneity, which is noticeable among donors, tissues, and cell subpopulations. Although the phenotype of MSCs in tissue can differ from those of cultured cells, phenotyping and counting are usually performed only after MSC proliferation. As MSC applicability is a developing and growing field, there is a need to implement phenotyping and counting methods for freshly isolated MSCs, especially in new one-step procedures where isolated cells are implanted immediately without cell culturing. Only by analysing harvested cells can we correctly evaluate such studies. This review describes multilevel heterogeneity and concentrations of MSCs and different strategies for phenotype determination and enumeration of freshly isolated MSCs.
Collapse
Affiliation(s)
- Elvira Maličev
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Katerina Jazbec
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
| |
Collapse
|
28
|
Smolinska A, Chodkowska M, Kominek A, Janiec J, Piwocka K, Sulejczak D, Sarnowska A. Stemness properties of SSEA-4+ subpopulation isolated from heterogenous Wharton's jelly mesenchymal stem/stromal cells. Front Cell Dev Biol 2024; 12:1227034. [PMID: 38455073 PMCID: PMC10917976 DOI: 10.3389/fcell.2024.1227034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/17/2024] [Indexed: 03/09/2024] Open
Abstract
Background: High heterogeneity of mesenchymal stem/stromal cells (MSCs) due to different degrees of differentiation of cell subpopulations poses a considerable challenge in preclinical studies. The cells at a pluripotent-like stage represent a stem cell population of interest for many researchers worldwide, which is worthy of identification, isolation, and functional characterization. In the current study, we asked whether Wharton's jelly-derived MSCs (WJ-MSCs) which express stage-specific embryonic antigen-4 (SSEA-4) can be considered as a pluripotent-like stem cell population. Methods: SSEA-4 expression in different culture conditions was compared and the efficiency of two cell separation methods were assessed: Magnetic Activated Cell Sorting (MACS) and Fluorescence Activated Cell Sorting (FACS). After isolation, SSEA-4+ cells were analyzed for the following parameters: the maintenance of the SSEA-4 antigen expression after cell sorting, stem cell-related gene expression, proliferation potential, clonogenicity, secretome profiling, and the ability to form spheres under 3D culture conditions. Results: FACS allowed for the enrichment of SSEA-4+ cell content in the population that lasted for six passages after sorting. Despite the elevated expression of stemness-related genes, SSEA-4+ cells neither differed in their proliferation and clonogenicity potential from initial and negative populations nor exhibited pluripotent differentiation repertoire. SSEA-4+ cells were observed to form smaller spheroids and exhibited increased survival under 3D conditions. Conclusion: Despite the transient expression of stemness-related genes, our findings could not fully confirm the undifferentiated pluripotent-like nature of the SSEA-4+ WJ-MSC population cultured in vitro.
Collapse
Affiliation(s)
- Agnieszka Smolinska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Chodkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kominek
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Janiec
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
29
|
Tashima T. Mesenchymal Stem Cell (MSC)-Based Drug Delivery into the Brain across the Blood-Brain Barrier. Pharmaceutics 2024; 16:289. [PMID: 38399342 PMCID: PMC10891589 DOI: 10.3390/pharmaceutics16020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
At present, stem cell-based therapies using induced pluripotent stem cells (iPSCs) or mesenchymal stem cells (MSCs) are being used to explore the potential for regenerative medicine in the treatment of various diseases, owing to their ability for multilineage differentiation. Interestingly, MSCs are employed not only in regenerative medicine, but also as carriers for drug delivery, homing to target sites in injured or damaged tissues including the brain by crossing the blood-brain barrier (BBB). In drug research and development, membrane impermeability is a serious problem. The development of central nervous system drugs for the treatment of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, remains difficult due to impermeability in capillary endothelial cells at the BBB, in addition to their complicated pathogenesis and pathology. Thus, intravenously or intraarterially administered MSC-mediated drug delivery in a non-invasive way is a solution to this transendothelial problem at the BBB. Substances delivered by MSCs are divided into artificially included materials in advance, such as low molecular weight compounds including doxorubicin, and expected protein expression products of genetic modification, such as interleukins. After internalizing into the brain through the fenestration between the capillary endothelial cells, MSCs release their cargos to the injured brain cells. In this review, I introduce the potential and advantages of drug delivery into the brain across the BBB using MSCs as a carrier that moves into the brain as if they acted of their own will.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama 222-0035, Japan
| |
Collapse
|
30
|
Aglan HA, Kotob SE, Mahmoud NS, Kishta MS, Ahmed HH. Bone marrow stem cell-derived β-cells: New issue for diabetes cell therapy. Tissue Cell 2024; 86:102280. [PMID: 38029457 DOI: 10.1016/j.tice.2023.102280] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
This investigation aimed to establish the promising role of insulin-producing cells (IPCs) growing from bone marrow-mesenchymal stem cells (BM-MSCs) in relieving hyperglycemia induced in rats. BM-MSCs were differentiated into IPCs using three different protocols. The efficiency of BM-MSCs differentiation into IPCs in vitro was confirmed by detecting IPCs specific gene expression (Foxa-2, PDX-1 and Ngn-3) and insulin release assay. The in vivo study design included 3 groups of male Wistar rats; negative control group, diabetic group and IPCs-transfused group (5 ×106 cells of the most functional IPCs/rat). One month after IPCs infusion, serum glucose, insulin, c-peptide and visfatin levels as well as pancreatic glucagon level were quantified. Gene expression analysis of pancreatic Foxa-2 and Sox-17, IGF-1 and FGF-10 was done. Additionally, histological investigation of pancreatic tissue sections was performed. Our data clarified that, the most functional IPCs are those generated from BM-MSCs using differentiation protocol 3 as indicated by the significant up-regulation of Foxa-2, PDX-1 and Ngn-3 gene expression levels. These findings were further emphasized by releasing of a significant amount of insulin in response to glucose load. The transplantation of the IPCs in diabetic rats elicited significant decline in serum glucose, visfatin and pancreatic glucagon levels along with significant rise in serum insulin and c-peptide levels. Moreover, it triggered significant up-regulation in the expression levels of pancreatic Foxa-2, Sox-17, IGF-1 and FGF-10 genes versus the untreated diabetic counterpart. The histopathological examination of pancreatic tissue almost assisted the biochemical and molecular genetic analyses. These results disclose that the cell therapy holds potential to develop a new cure for DM based on the capability of BM-MSCs to generate β-cell phenotype using specific protocol.
Collapse
Affiliation(s)
- Hadeer A Aglan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt.
| | - Soheir E Kotob
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Nadia S Mahmoud
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed S Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
31
|
Santa Cruz-Pavlovich FJ, Bolaños-Chang AJ, Del Rio-Murillo XI, Aranda-Preciado GA, Razura-Ruiz EM, Santos A, Navarro-Partida J. Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care. Cells 2024; 13:179. [PMID: 38247870 PMCID: PMC10814238 DOI: 10.3390/cells13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Regenerative medicine (RM) has emerged as a promising and revolutionary solution to address a range of unmet needs in healthcare, including ophthalmology. Moreover, RM takes advantage of the body's innate ability to repair and replace pathologically affected tissues. On the other hand, despite its immense promise, RM faces challenges such as ethical concerns, host-related immune responses, and the need for additional scientific validation, among others. The primary aim of this review is to present a high-level overview of current strategies in the domain of RM (cell therapy, exosomes, scaffolds, in vivo reprogramming, organoids, and interspecies chimerism), centering around the field of ophthalmology. A search conducted on clinicaltrials.gov unveiled a total of at least 209 interventional trials related to RM within the ophthalmological field. Among these trials, there were numerous early-phase studies, including phase I, I/II, II, II/III, and III trials. Many of these studies demonstrate potential in addressing previously challenging and degenerative eye conditions, spanning from posterior segment pathologies like Age-related Macular Degeneration and Retinitis Pigmentosa to anterior structure diseases such as Dry Eye Disease and Limbal Stem Cell Deficiency. Notably, these therapeutic approaches offer tailored solutions specific to the underlying causes of each pathology, thus allowing for the hopeful possibility of bringing forth a treatment for ocular diseases that previously seemed incurable and significantly enhancing patients' quality of life. As advancements in research and technology continue to unfold, future objectives should focus on ensuring the safety and prolonged viability of transplanted cells, devising efficient delivery techniques, etc.
Collapse
Affiliation(s)
- Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Andres J. Bolaños-Chang
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Ximena I. Del Rio-Murillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | | | - Esmeralda M. Razura-Ruiz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| |
Collapse
|
32
|
Fitzgerald JC, Shaw G, Murphy JM, Barry F. Media matters: culture medium-dependent hypervariable phenotype of mesenchymal stromal cells. Stem Cell Res Ther 2023; 14:363. [PMID: 38087388 PMCID: PMC10717324 DOI: 10.1186/s13287-023-03589-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Despite a long history of investigation and sustained efforts in clinical testing, the number of market authorisations for mesenchymal stromal cell (MSC) therapies remains limited, with none approved by the United States Food and Drug Administration. Several barriers are impeding the clinical progression of MSC therapies, to the forefront of these is a lack of standardised manufacturing protocols which is further compounded by an absence of biologically meaningful characterisation and release assays. A look at clinical trial registries demonstrates the diversity of MSC expansion protocols with variabilities in cell source, isolation method and expansion medium, among other culture variables, making it extraordinarily difficult to compare study outcomes. Current identification and characterisation standards are insufficient; they are not specific to MSCs and do not indicate cell function or therapeutic action. METHODS This work analysed the influence of five widely used culture media formulations on the colony-forming potential, proliferation kinetics, trilineage differentiation potential and immunomodulatory potential of human bone marrow-derived MSCs (BM-MSCs). The surface marker expression profiles were also characterised using a high-content flow cytometry screening panel of 243 markers. RESULTS Significant differences in the biological attributes of BM-MSCs including clonogenicity, proliferation, differentiation propensity and immunomodulatory capacity were revealed in response to the composition of the culture medium. Despite their biological differences, all cell preparations uniformly and strongly expressed the standard positive markers proposed for BM-MSCs: CD73, CD90 and CD105. Immunophenotypic profiling revealed that the culture medium also had a significant influence on the surface proteome, with one-third of tested markers exhibiting variable expression profiles. Principal component analysis demonstrated that BM-MSCs isolated and expanded in a proprietary xeno- and serum-free medium displayed the most consistent cell phenotypes with little variability between donors compared to platelet lysate and foetal bovine serum-containing media. CONCLUSIONS These data suggest that media composition has a highly significant impact on the biological attributes of MSCs, but standard surface marker tests conceal these differences. The results indicate a need for (1) standardised approaches to manufacturing, with an essential focus on defined media and (2) new biologically relevant tests for MSC characterisation and product release.
Collapse
Affiliation(s)
- Joan C Fitzgerald
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Georgina Shaw
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - J Mary Murphy
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland.
| |
Collapse
|
33
|
Rhim WK, Kim JY, Lee SY, Cha SG, Park JM, Park HJ, Park CG, Han DK. Recent advances in extracellular vesicle engineering and its applications to regenerative medicine. Biomater Res 2023; 27:130. [PMID: 38082304 PMCID: PMC10712135 DOI: 10.1186/s40824-023-00468-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 01/02/2025] Open
Abstract
Extracellular vesicles (EVs) are nanosized particles that are released from cells and reflect the characteristics of the mother cell. Recently, the EVs have been used in several types of studies across many different fields. In the field of EV research, multiple cell culture and EV isolation techniques have been highlighted in importance. Various strategies, including exclusive component culture media, three-dimensional (3D) cultures, and hypoxic conditions, have been proposed for the cell culture to control function of the EVs. Ultracentrifugation, ultrafiltration, precipitation, and tangential flow filtration (TFF) have been utilized for EV isolation. Although isolated EVs have their own functionalities, several researchers are trying to functionalize EVs by applying various engineering approaches. Gene editing, exogenous, endogenous, and hybridization methods are the four well-known types of EV functionalization strategies. EV engineered through these processes has been applied in the field of regenerative medicine, including kidney diseases, osteoarthritis, rheumatoid arthritis, nervous system-related diseases, and others. In this review, it was focused on engineering approaches for EV functionalization and their applications in regenerative medicine.
Collapse
Affiliation(s)
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
- Department of Biomedical Engineering, 2066 Seobu-ro Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Seung Yeon Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Seung-Gyu Cha
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jeong Min Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hyeon Jeong Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, 2066 Seobu-ro Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
34
|
Deptuła M, Zawrzykraj M, Sawicka J, Banach-Kopeć A, Tylingo R, Pikuła M. Application of 3D- printed hydrogels in wound healing and regenerative medicine. Biomed Pharmacother 2023; 167:115416. [PMID: 37683592 DOI: 10.1016/j.biopha.2023.115416] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Hydrogels are three-dimensional polymer networks with hydrophilic properties. The modifiable properties of hydrogels and the structure resembling living tissue allow their versatile application. Therefore, increasing attention is focused on the use of hydrogels as bioinks for three-dimensional (3D) printing in tissue engineering. Bioprinting involves the fabrication of complex structures from several types of materials, cells, and bioactive compounds. Stem cells (SC), such as mesenchymal stromal cells (MSCs) are frequently employed in 3D constructs. SCs have desirable biological properties such as the ability to differentiate into various types of tissue and high proliferative capacity. Encapsulating SCs in 3D hydrogel constructs enhances their reparative abilities and improves the likelihood of reaching target tissues. In addition, created constructs can simulate the tissue environment and mimic biological signals. Importantly, the immunogenicity of scaffolds is minimized through the use of patient-specific cells and the biocompatibility and biodegradability of the employed biopolymers. Regenerative medicine is taking advantage of the aforementioned capabilities in regenerating various tissues- muscle, bones, nerves, heart, skin, and cartilage.
Collapse
Affiliation(s)
- Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdansk, Poland.
| | | | - Justyna Sawicka
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Poland
| | - Adrianna Banach-Kopeć
- Department of Chemistry, Technology and Biochemistry of Food, Faculty of Chemistry, Gdansk University of Technology, Poland
| | - Robert Tylingo
- Department of Chemistry, Technology and Biochemistry of Food, Faculty of Chemistry, Gdansk University of Technology, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdansk, Poland
| |
Collapse
|
35
|
Bakadia BM, Qaed Ahmed AA, Lamboni L, Shi Z, Mutu Mukole B, Zheng R, Pierre Mbang M, Zhang B, Gauthier M, Yang G. Engineering homologous platelet-rich plasma, platelet-rich plasma-derived exosomes, and mesenchymal stem cell-derived exosomes-based dual-crosslinked hydrogels as bioactive diabetic wound dressings. Bioact Mater 2023; 28:74-94. [PMID: 37234363 PMCID: PMC10206161 DOI: 10.1016/j.bioactmat.2023.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
The management of diabetic wounds remains a critical therapeutic challenge. Platelet-rich plasma (PRP) gel, PRP-derived exosomes (PRP-Exos), and mesenchymal stem cell-derived exosomes (MSC-Exos) have demonstrated therapeutic potential in wound treatment. Unfortunately, their poor mechanical properties, the short half-lives of growth factors (GFs), and the burst release of GFs and exosomes have limited their clinical applications. Furthermore, proteases in diabetic wounds degrade GFs, which hampers wound repair. Silk fibroin is an enzyme-immobilization biomaterial that could protect GFs from proteases. Herein, we developed novel dual-crosslinked hydrogels based on silk protein (SP) (sericin and fibroin), including SP@PRP, SP@MSC-Exos, and SP@PRP-Exos, to promote diabetic wound healing synergistically. SP@PRP was prepared from PRP and SP using calcium gluconate/thrombin as agonist, while SP@PRP-Exos and SP@MSC-Exos were derived from exosomes and SP with genipin as crosslinker. SP provided improved mechanical properties and enabled the sustained release of GFs and exosomes, thereby overcoming the limitations of PRP and exosomes in wound healing. The dual-crosslinked hydrogels displayed shear-induced thinning, self-healing, and eradication of microbial biofilms in a bone-mimicking environment. In vivo, the dual-crosslinked hydrogels contributed to faster diabetic wound healing than PRP and SP by upregulating GFs expression, down-regulating matrix metalloproteinase-9 expression, and by promoting an anti-NETotic effect, angiogenesis, and re-epithelialization. Hence, these dual-crosslinked hydrogels have the potential to be translated into a new generation of diabetic wound dressings.
Collapse
Affiliation(s)
- Bianza Moise Bakadia
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institut Supérieur des Techniques Médicales de Lubumbashi, Lubumbashi, Congo
| | - Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100, Pavia, Italy
| | - Lallepak Lamboni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Ruizhu Zheng
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mazono Pierre Mbang
- Institut Supérieur des Techniques Médicales de Lubumbashi, Lubumbashi, Congo
| | - Bi Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Mario Gauthier
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
36
|
Shekari F, Alibhai FJ, Baharvand H, Börger V, Bruno S, Davies O, Giebel B, Gimona M, Salekdeh GH, Martin‐Jaular L, Mathivanan S, Nelissen I, Nolte‐’t Hoen E, O'Driscoll L, Perut F, Pluchino S, Pocsfalvi G, Salomon C, Soekmadji C, Staubach S, Torrecilhas AC, Shelke GV, Tertel T, Zhu D, Théry C, Witwer K, Nieuwland R. Cell culture-derived extracellular vesicles: Considerations for reporting cell culturing parameters. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e115. [PMID: 38939735 PMCID: PMC11080896 DOI: 10.1002/jex2.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 09/17/2023] [Indexed: 06/29/2024]
Abstract
Cell culture-conditioned medium (CCM) is a valuable source of extracellular vesicles (EVs) for basic scientific, therapeutic and diagnostic applications. Cell culturing parameters affect the biochemical composition, release and possibly the function of CCM-derived EVs (CCM-EV). The CCM-EV task force of the Rigor and Standardization Subcommittee of the International Society for Extracellular Vesicles aims to identify relevant cell culturing parameters, describe their effects based on current knowledge, recommend reporting parameters and identify outstanding questions. While some recommendations are valid for all cell types, cell-specific recommendations may need to be established for non-mammalian sources, such as bacteria, yeast and plant cells. Current progress towards these goals is summarized in this perspective paper, along with a checklist to facilitate transparent reporting of cell culturing parameters to improve the reproducibility of CCM-EV research.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP‐TDC), Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | | | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran
| | - Verena Börger
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Stefania Bruno
- Department of Medical Sciences and Molecular Biotechnology CenterUniversity of TorinoTurinItaly
| | - Owen Davies
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Bernd Giebel
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Mario Gimona
- GMP UnitSpinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS) and Research Program “Nanovesicular Therapies” Paracelsus Medical UniversitySalzburgAustria
| | | | - Lorena Martin‐Jaular
- Institut Curie, INSERM U932 and Curie CoreTech Extracellular VesiclesPSL Research UniversityParisFrance
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVICAustralia
| | - Inge Nelissen
- VITO (Flemish Institute for Technological Research), Health departmentBoeretangBelgium
| | - Esther Nolte‐’t Hoen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology LabIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Stefano Pluchino
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResourcesNational Research CouncilNaplesItaly
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae‐Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of MedicineThe University of QueenslandBrisbaneAustralia
| | - Carolina Soekmadji
- School of Biomedical Sciences, Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| | | | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)SPBrazil
| | - Ganesh Vilas Shelke
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Tobias Tertel
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Dandan Zhu
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVICAustralia
| | - Clotilde Théry
- Institut Curie, INSERM U932 and Curie CoreTech Extracellular VesiclesPSL Research UniversityParisFrance
| | - Kenneth Witwer
- Departments of Molecular and Comparative Pathobiology and Neurology and Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Amsterdam University Medical CentersLocation AMC, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
37
|
Kashani SA, Navabi R, Amini A, Hajinasrollah M, Jenab Y, Rabbani S, Nazari A, Pakzad M, Moazenchi M, Atrabi MJ, Samsonchi Z, Hezavehei M, Hosseini-Beheshti E, Shekari F, Hajizadeh-Saffar E, Baharvand H. Immunomodulatory potential of human clonal mesenchymal stem cells and their extracellular vesicle subpopulations in an inflammatory-mediated diabetic Rhesus monkey model. Life Sci 2023; 329:121950. [PMID: 37473804 DOI: 10.1016/j.lfs.2023.121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
AIMS This study aimed to investigate the therapeutic potential of a homogenous clonal population of mesenchymal stem cells (cMSC) and their extracellular vesicles (cMSC-EV) subpopulations on isolated rat islets in vitro and in inflammatory-mediated type 1 diabetes (T1D) non-human primate models. MAIN METHODS EV subpopulations were isolated from human bone marrow-derived cMSC supernatant by low- and high-speed ultracentrifuge (EV-20K and EV-U110K) and sucrose density gradient (EV-S110K). The EVs were characterized generally and for the level of albumin, acetylcholinesterase (AChE) activity, co-isolate apoptotic markers, and expression of CD63+/annexin V+. Rat islet-derived single cells (iSCs) proliferation was measured using a Ki-67 proliferation assay. Diabetes was induced by multiple low-dose administrations of streptozotocin in rhesus monkeys. The diabetic monkeys were divided into three groups: the cMSC group, received two injections of 1.5 × 106 cMSC/kg body weight; the EV group received two injections of EVs isolated from 1.5 × 106 cMSC/kg, and the vehicle group received phosphate-buffered saline. KEY FINDINGS EV-S110K showed higher AChE activity, lower expression of CD63+/annexin V+, and lower apoptotic co-isolates. EV-S110K induced β-cell proliferation in vitro in a dose-dependent manner. The administration of EV-S110K and/or cMSC in diabetic monkeys demonstrated no significant changes in general diabetic indices and β-cell mass in the pancreas of the monkeys. Both treatments demonstrated a lowering trend in blood glucose levels and reduced pro-inflammatory cytokines. In contrast, regulatory T cells and anti-inflammatory cytokines were increased. SIGNIFICANCE cMSC and cMSC-EV provided initial evidence to attenuate clinical symptoms in inflammatory-mediated T1D non-human primates through immunomodulation.
Collapse
Affiliation(s)
- Sara Assar Kashani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Roghayeh Navabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azadeh Amini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mostafa Hajinasrollah
- Animal Core Facility, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Yaser Jenab
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdoreza Nazari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Pakzad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maedeh Moazenchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Jafari Atrabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zakieh Samsonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Elham Hosseini-Beheshti
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
38
|
Jakl V, Popp T, Haupt J, Port M, Roesler R, Wiese S, Friemert B, Rojewski MT, Schrezenmeier H. Effect of Expansion Media on Functional Characteristics of Bone Marrow-Derived Mesenchymal Stromal Cells. Cells 2023; 12:2105. [PMID: 37626914 PMCID: PMC10453497 DOI: 10.3390/cells12162105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free (XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-free (SF/XF) formulations have been established as safe and efficient, and both groups provide different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and concentration of supplement. The lactate per glucose yield increased along with a higher proportion of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on the supplement (e.g., FGF-2, TGFβ, and insulin only in PL-expanded MSC, and leptin, sCD40L PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like migratory potential. These findings support current approaches where growth media may be utilized for priming MSCs for specific therapeutic applications.
Collapse
Affiliation(s)
- Viktoria Jakl
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Julian Haupt
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Reinhild Roesler
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Benedikt Friemert
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Markus T. Rojewski
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
39
|
Woodbury SM, Swanson WB, Mishina Y. Mechanobiology-informed biomaterial and tissue engineering strategies for influencing skeletal stem and progenitor cell fate. Front Physiol 2023; 14:1220555. [PMID: 37520820 PMCID: PMC10373313 DOI: 10.3389/fphys.2023.1220555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Skeletal stem and progenitor cells (SSPCs) are the multi-potent, self-renewing cell lineages that form the hematopoietic environment and adventitial structures of the skeletal tissues. Skeletal tissues are responsible for a diverse range of physiological functions because of the extensive differentiation potential of SSPCs. The differentiation fates of SSPCs are shaped by the physical properties of their surrounding microenvironment and the mechanical loading forces exerted on them within the skeletal system. In this context, the present review first highlights important biomolecules involved with the mechanobiology of how SSPCs sense and transduce these physical signals. The review then shifts focus towards how the static and dynamic physical properties of microenvironments direct the biological fates of SSPCs, specifically within biomaterial and tissue engineering systems. Biomaterial constructs possess designable, quantifiable physical properties that enable the growth of cells in controlled physical environments both in-vitro and in-vivo. The utilization of biomaterials in tissue engineering systems provides a valuable platform for controllably directing the fates of SSPCs with physical signals as a tool for mechanobiology investigations and as a template for guiding skeletal tissue regeneration. It is paramount to study this mechanobiology and account for these mechanics-mediated behaviors to develop next-generation tissue engineering therapies that synergistically combine physical and chemical signals to direct cell fate. Ultimately, taking advantage of the evolved mechanobiology of SSPCs with customizable biomaterial constructs presents a powerful method to predictably guide bone and skeletal organ regeneration.
Collapse
Affiliation(s)
- Seth M. Woodbury
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
- University of Michigan College of Literature, Science, and Arts, Department of Chemistry, Ann Arbor, MI, United States
- University of Michigan College of Literature, Science, and Arts, Department of Physics, Ann Arbor, MI, United States
| | - W. Benton Swanson
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
| | - Yuji Mishina
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
| |
Collapse
|
40
|
Moein S, Ahmadbeigi N, Adibi R, Kamali S, Moradzadeh K, Nematollahi P, Nardi NB, Gheisari Y. Regenerative potential of multinucleated cells: bone marrow adiponectin-positive multinucleated cells take the lead. Stem Cell Res Ther 2023; 14:173. [PMID: 37403181 DOI: 10.1186/s13287-023-03400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 06/13/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Polyploid cells can be found in a wide evolutionary spectrum of organisms. These cells are assumed to be involved in tissue regeneration and resistance to stressors. Although the appearance of large multinucleated cells (LMCs) in long-term culture of bone marrow (BM) mesenchymal cells has been reported, the presence and characteristics of such cells in native BM and their putative role in BM reconstitution following injury have not been fully investigated. METHODS BM-derived LMCs were explored by time-lapse microscopy from the first hours post-isolation to assess their colony formation and plasticity. In addition, sub-lethally irradiated mice were killed every other day for four weeks to investigate the histopathological processes during BM regeneration. Moreover, LMCs from GFP transgenic mice were transplanted to BM-ablated recipients to evaluate their contribution to tissue reconstruction. RESULTS BM-isolated LMCs produced mononucleated cells with characteristics of mesenchymal stromal cells. Time-series inspections of BM sections following irradiation revealed that LMCs are highly resistant to injury and originate mononucleated cells which reconstitute the tissue. The regeneration process was synchronized with a transient augmentation of adipocytes suggesting their contribution to tissue repair. Additionally, LMCs were found to be adiponectin positive linking the observations on multinucleation and adipogenesis to BM regeneration. Notably, transplantation of LMCs to myeloablated recipients could reconstitute both the hematopoietic system and BM stroma. CONCLUSIONS A population of resistant multinucleated cells reside in the BM that serves as the common origin of stromal and hematopoietic lineages with a key role in tissue regeneration. Furthermore, this study underscores the contribution of adipocytes in BM reconstruction.
Collapse
Affiliation(s)
- Shiva Moein
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Adibi
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Kamali
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Kobra Moradzadeh
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pardis Nematollahi
- Department of Pathology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nance Beyer Nardi
- Institute of Cardiology of Rio Grande do Sul, Av Princesa Isabel 370, Porto Alegre, RS, 90620-001, Brazil
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
41
|
Teale MA, Schneider S, Eibl D, van den Bos C, Neubauer P, Eibl R. Mesenchymal and induced pluripotent stem cell-based therapeutics: a comparison. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12583-4. [PMID: 37246986 DOI: 10.1007/s00253-023-12583-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Stem cell-based cell therapeutics and especially those based on human mesenchymal stem cells (hMSCs) and induced pluripotent stem cells (hiPSCs) are said to have enormous developmental potential in the coming years. Their applications range from the treatment of orthopedic disorders and cardiovascular diseases to autoimmune diseases and even cancer. However, while more than 27 hMSC-derived therapeutics are currently commercially available, hiPSC-based therapeutics have yet to complete the regulatory approval process. Based on a review of the current commercially available hMSC-derived therapeutic products and upcoming hiPSC-derived products in phase 2 and 3, this paper compares the cell therapy manufacturing process between these two cell types. Moreover, the similarities as well as differences are highlighted and the resulting impact on the production process discussed. Here, emphasis is placed on (i) hMSC and hiPSC characteristics, safety, and ethical aspects, (ii) their morphology and process requirements, as well as (iii) their 2- and 3-dimensional cultivations in dependence of the applied culture medium and process mode. In doing so, also downstream processing aspects are covered and the role of single-use technology is discussed. KEY POINTS: • Mesenchymal and induced pluripotent stem cells exhibit distinct behaviors during cultivation • Single-use stirred bioreactor systems are preferred for the cultivation of both cell types • Future research should adapt and modify downstream processes to available single-use devices.
Collapse
Affiliation(s)
- Misha A Teale
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland.
| | - Samuel Schneider
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Dieter Eibl
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | | | - Peter Neubauer
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technical University of Berlin, ACK24, Ackerstraße 76, 13355, Berlin, Germany
| | - Regine Eibl
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| |
Collapse
|
42
|
Silva Couto P, Molina SA, O'Sullivan D, O'Neill L, Lyness AM, Rafiq QA. Understanding the impact of bioactive coating materials for human mesenchymal stromal cells and implications for manufacturing. Biotechnol Lett 2023:10.1007/s10529-023-03369-9. [PMID: 37227598 DOI: 10.1007/s10529-023-03369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/06/2023] [Accepted: 03/31/2023] [Indexed: 05/26/2023]
Abstract
Bioactive materials interact with cells and modulate their characteristics which enable the generation of cell-based products with desired specifications. However, their evaluation and impact are often overlooked when establishing a cell therapy manufacturing process. In this study, we investigated the role of different surfaces for tissue culture including, untreated polystyrene surface, uncoated Cyclic Olefin Polymer (COP) and COP coated with collagen and recombinant fibronectin. It was observed that human mesenchymal stromal cells (hMSCs) expanded on COP-coated plates with different bioactive materials resulted in improved cell growth kinetics compared to traditional polystyrene plates and non-coated COP plates. The doubling time obtained was 2.78 and 3.02 days for hMSC seeded in COP plates coated with collagen type I and recombinant fibronectin respectively, and 4.64 days for cells plated in standard polystyrene treated plates. Metabolite analysis reinforced the findings of the growth kinetic studies, specifically that cells cultured on COP plates coated with collagen I and fibronectin exhibited improved growth as evidenced by a higher lactate production rate (9.38 × 105 and 9.67 × 105 pmol/cell/day, respectively) compared to cells from the polystyrene group (5.86 × 105 pmol/cell/day). This study demonstrated that COP is an effective alternative to polystyrene-treated plates when coated with bioactive materials such as collagen and fibronectin, however COP-treated plates without additional coatings were found not to be sufficient to support cell growth. These findings demonstrate the key role biomaterials play in the cell manufacturing process and the importance of optimising this selection.
Collapse
Affiliation(s)
- Pedro Silva Couto
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Samuel A Molina
- Applied Research & Technology Scouting R&D, West Pharmaceutical Services, Inc., Exton, PA, USA
| | - Denis O'Sullivan
- TheraDep, Questum, Ballingarrane, Clonmel, Co., Tipperary, Ireland
| | - Liam O'Neill
- TheraDep, Questum, Ballingarrane, Clonmel, Co., Tipperary, Ireland
| | - Alexander M Lyness
- Applied Research & Technology Scouting R&D, West Pharmaceutical Services, Inc., Exton, PA, USA
| | - Qasim A Rafiq
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
43
|
Kim SG, George NP, Hwang JS, Park S, Kim MO, Lee SH, Lee G. Human Bone Marrow-Derived Mesenchymal Stem Cell Applications in Neurodegenerative Disease Treatment and Integrated Omics Analysis for Successful Stem Cell Therapy. Bioengineering (Basel) 2023; 10:bioengineering10050621. [PMID: 37237691 DOI: 10.3390/bioengineering10050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Neurodegenerative diseases (NDDs), which are chronic and progressive diseases, are a growing health concern. Among the therapeutic methods, stem-cell-based therapy is an attractive approach to NDD treatment owing to stem cells' characteristics such as their angiogenic ability, anti-inflammatory, paracrine, and anti-apoptotic effects, and homing ability to the damaged brain region. Human bone-marrow-derived mesenchymal stem cells (hBM-MSCs) are attractive NDD therapeutic agents owing to their widespread availability, easy attainability and in vitro manipulation and the lack of ethical issues. Ex vivo hBM-MSC expansion before transplantation is essential because of the low cell numbers in bone marrow aspirates. However, hBM-MSC quality decreases over time after detachment from culture dishes, and the ability of hBM-MSCs to differentiate after detachment from culture dishes remains poorly understood. Conventional analysis of hBM-MSCs characteristics before transplantation into the brain has several limitations. However, omics analyses provide more comprehensive molecular profiling of multifactorial biological systems. Omics and machine learning approaches can handle big data and provide more detailed characterization of hBM-MSCs. Here, we provide a brief review on the application of hBM-MSCs in the treatment of NDDs and an overview of integrated omics analysis of the quality and differentiation ability of hBM-MSCs detached from culture dishes for successful stem cell therapy.
Collapse
Affiliation(s)
- Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Nimisha Pradeep George
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Seokho Park
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Soo Hwan Lee
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Republic of Korea
| |
Collapse
|
44
|
Chatree K, Sriboonaied P, Phetkong C, Wattananit W, Chanchao C, Charoenpanich A. Distinctions in bone matrix nanostructure, composition, and formation between osteoblast-like cells, MG-63, and human mesenchymal stem cells, UE7T-13. Heliyon 2023; 9:e15556. [PMID: 37153435 PMCID: PMC10160763 DOI: 10.1016/j.heliyon.2023.e15556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Osteoblast-like cells and human mesenchymal stem cells (hMSCs) are frequently employed as osteoprogenitor cell models for evaluating novel biomaterials in bone healing and tissue engineering. In this study, the characterization of UE7T-13 hMSCs and MG-63 human osteoblast-like cells was examined. Both cells can undergo osteogenesis and produce calcium extracellular matrix; however, calcium nodules produced by MG-63 lacked a central mass and appeared flatter than UE7T-13. The absence of growing calcium nodules in MG-63 was discovered by SEM-EDX to be associated with the formation of alternating layers of cells and calcium extracellular matrix. The nanostructure and composition analysis showed that UE7T-13 had a finer nanostructure of calcium nodules with a higher calcium/phosphate ratio than MG-63. Both cells expressed high intrinsic levels of collagen type I alpha 1 chain, while only UE7T-13 expressed high levels of alkaline phosphatase, biomineralization associated (ALPL). High ALP activity in UE7T-13 was not further enhanced by osteogenic induction, but in MG-63, low intrinsic ALP activity was greatly induced by osteogenic induction. These findings highlight the differences between the two immortal osteoprogenitor cell lines, along with some technical notes that should be considered while selecting and interpreting the pertinent in vitro model.
Collapse
Affiliation(s)
- Kamonwan Chatree
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Patsawee Sriboonaied
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Chinnatam Phetkong
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Witoon Wattananit
- Scientific and Technological Equipment Centre, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Chanpen Chanchao
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Adisri Charoenpanich
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
45
|
Parvin Nejad S, Lecce M, Mirani B, Machado Siqueira N, Mirzaei Z, Santerre JP, Davies JE, Simmons CA. Serum- and xeno-free culture of human umbilical cord perivascular cells for pediatric heart valve tissue engineering. Stem Cell Res Ther 2023; 14:96. [PMID: 37076906 PMCID: PMC10116794 DOI: 10.1186/s13287-023-03318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/29/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Constructs currently used to repair or replace congenitally diseased pediatric heart valves lack a viable cell population capable of functional adaptation in situ, necessitating repeated surgical intervention. Heart valve tissue engineering (HVTE) can address these limitations by producing functional living tissue in vitro that holds the potential for somatic growth and remodelling upon implantation. However, clinical translation of HVTE strategies requires an appropriate source of autologous cells that can be non-invasively harvested from mesenchymal stem cell (MSC)-rich tissues and cultured under serum- and xeno-free conditions. To this end, we evaluated human umbilical cord perivascular cells (hUCPVCs) as a promising cell source for in vitro production of engineered heart valve tissue. METHODS The proliferative, clonogenic, multilineage differentiation, and extracellular matrix (ECM) synthesis capacities of hUCPVCs were evaluated in a commercial serum- and xeno-free culture medium (StemMACS™) on tissue culture polystyrene and benchmarked to adult bone marrow-derived MSCs (BMMSCs). Additionally, the ECM synthesis potential of hUCPVCs was evaluated when cultured on polycarbonate polyurethane anisotropic electrospun scaffolds, a representative biomaterial for in vitro HVTE. RESULTS hUCPVCs had greater proliferative and clonogenic potential than BMMSCs in StemMACS™ (p < 0.05), without differentiation to osteogenic and adipogenic phenotypes associated with valve pathology. Furthermore, hUCPVCs cultured with StemMACS™ on tissue culture plastic for 14 days synthesized significantly more total collagen, elastin, and sulphated glycosaminoglycans (p < 0.05), the ECM constituents of the native valve, than BMMSCs. Finally, hUCPVCs retained their ECM synthesizing capacity after 14 and 21 days in culture on anisotropic electrospun scaffolds. CONCLUSION Overall, our findings establish an in vitro culture platform that uses hUCPVCs as a readily-available and non-invasively sourced autologous cell population and a commercial serum- and xeno-free culture medium to increase the translational potential of future pediatric HVTE strategies. This study evaluated the proliferative, differentiation and extracellular matrix (ECM) synthesis capacities of human umbilical cord perivascular cells (hUCPVCs) when cultured in serum- and xeno-free media (SFM) against conventionally used bone marrow-derived MSCs (BMMSCs) and serum-containing media (SCM). Our findings support the use of hUCPVCs and SFM for in vitro heart valve tissue engineering (HVTE) of autologous pediatric valve tissue. Figure created with BioRender.com.
Collapse
Affiliation(s)
- Shouka Parvin Nejad
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
| | - Monica Lecce
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Bahram Mirani
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Nataly Machado Siqueira
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Zahra Mirzaei
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - J Paul Santerre
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - John E Davies
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Canada
- Tissue Regeneration Therapeutics, Toronto, Canada
| | - Craig A Simmons
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada.
| |
Collapse
|
46
|
Sahoo A, Damala M, Jaffet J, Prasad D, Basu S, Singh V. Expansion and characterization of human limbus-derived stromal/mesenchymal stem cells in xeno-free medium for therapeutic applications. Stem Cell Res Ther 2023; 14:89. [PMID: 37061739 PMCID: PMC10105964 DOI: 10.1186/s13287-023-03299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/24/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been proven to prevent and clear corneal scarring and limbal stem cell deficiency. However, using animal-derived serum in a culture medium raises the ethical and regulatory bar. This study aims to expand and characterize human limbus-derived stromal/mesenchymal stem cells (hLMSCs) for the first time in vitro in the xeno-free medium. METHODS Limbal tissue was obtained from therapeutic grade corneoscleral rims and subjected to explant culture till tertiary passage in media with and without serum (STEM MACS XF; SM), to obtain pure hLMSCs. Population doubling time, cell proliferation, expression of phenotypic markers, tri-lineage differentiation, colony-forming potential and gene expression analysis were carried out to assess the retention of phenotypic and genotypic characteristics of hLMSCs. RESULTS The serum-free medium supported the growth of hLMSCs, retaining similar morphology but a significantly lower doubling time of 23 h (*p < 0.01) compared to the control medium. FACS analysis demonstrated ≥ 90% hLMSCs were positive for CD90+, CD73+, CD105+, and ≤ 6% were positive for CD45-, CD34- and HLA-DR-. Immunofluorescence analysis confirmed similar expression of Pax6+, COL IV+, ABCG2+, ABCB5+, VIM+, CD90+, CD105+, CD73+, HLA-DR- and CD45-, αSMA- in both the media. Tri-lineage differentiation potential and gene expression of hLMSCs were retained similarly to that of the control medium. CONCLUSION The findings of this study demonstrate successful isolation, characterization and culture optimization of hLMSCs for the first time in vitro in a serum-free environment. This will help in the future pre-clinical and clinical applications of MSCs in translational research.
Collapse
Affiliation(s)
- Abhishek Sahoo
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Mukesh Damala
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Jilu Jaffet
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Deeksha Prasad
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sayan Basu
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Vivek Singh
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
47
|
Mori T, Igarashi M, Onodera Y, Takehara T, Itokazu M, Teramura T. Fibrinogen supports self-renewal of mesenchymal stem cells under serum-reduced condition through autophagy activation. Biochem Biophys Res Commun 2023; 651:70-78. [PMID: 36796212 DOI: 10.1016/j.bbrc.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/05/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Mesenchymal stem cells (MSCs) are somatic stem cells used in cell transplantation therapy for tissue injuries and inflammatory diseases because of their ability to support tissue regeneration and to suppress inflammation. While their applications are expanding, needs for automation of culture procedures with reduction of animal-derived materials to meet stable quality and suppliability are also increasing. On the other hand, the development of molecules that safely support cell adherence and expansion on a variety of interfaces under the serum-reduced culture condition remains a challenge. We report here that fibrinogen enables MSC culture on various materials with low cell adhesion property even under serum-reduced culture conditions. Fibrinogen promoted MSC adhesion and proliferation by stabilizing basic fibroblast growth factor (bFGF), which was secreted in the culture medium by autocrine, and also activated autophagy to suppress cellar senescence. Fibrinogen coating allowed MSCs expansion even on the polyether sulfone membrane that represents very low cell adhesion, and the MSCs showed therapeutic effects in a pulmonary fibrosis model. This study demonstrates that fibrinogen is currently the safest and most widely available extracellular matrix and can be used as a versatile scaffold for cell culture in regenerative medicine.
Collapse
Affiliation(s)
| | | | - Yuta Onodera
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan
| | - Toshiyuki Takehara
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan
| | - Maki Itokazu
- Department of Rehabilitation Medicine, Kindai University Faculty of Medicine, Japan
| | - Takeshi Teramura
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan.
| |
Collapse
|
48
|
Teoh PL, Mohd Akhir H, Abdul Ajak W, Hiew VV. Human Mesenchymal Stromal Cells Derived from Perinatal Tissues: Sources, Characteristics and Isolation Methods. Malays J Med Sci 2023; 30:55-68. [PMID: 37102047 PMCID: PMC10125235 DOI: 10.21315/mjms2023.30.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/22/2022] [Indexed: 04/28/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) derived from perinatal tissues have become indispensable sources for clinical applications due to their superior properties, ease of accessibility and minimal ethical concerns. MSCs isolated from different placenta (PL) and umbilical cord (UC) compartments exhibit great potential for stem cell-based therapies. However, their biological activities could vary due to tissue origins and differences in differentiation potentials. This review provides an overview of MSCs derived from various compartments of perinatal tissues, their characteristics and current isolation methods. Factors affecting the yield and purity of MSCs are also discussed as they are important to ensure consistent and unlimited supply for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Peik Lin Teoh
- Biotechnology Research Institute, Universiti Malaysia Sabah, Sabah, Malaysia
| | | | - Warda Abdul Ajak
- Biotechnology Research Institute, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Vun Vun Hiew
- Biotechnology Research Institute, Universiti Malaysia Sabah, Sabah, Malaysia
| |
Collapse
|
49
|
Yu X, Liu P, Li Z, Zhang Z. Function and mechanism of mesenchymal stem cells in the healing of diabetic foot wounds. Front Endocrinol (Lausanne) 2023; 14:1099310. [PMID: 37008908 PMCID: PMC10061144 DOI: 10.3389/fendo.2023.1099310] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes has become a global public health problem. Diabetic foot is one of the most severe complications of diabetes, which often places a heavy economic burden on patients and seriously affects their quality of life. The current conventional treatment for the diabetic foot can only relieve the symptoms or delay the progression of the disease but cannot repair damaged blood vessels and nerves. An increasing number of studies have shown that mesenchymal stem cells (MSCs) can promote angiogenesis and re-epithelialization, participate in immune regulation, reduce inflammation, and finally repair diabetic foot ulcer (DFU), rendering it an effective means of treating diabetic foot disease. Currently, stem cells used in the treatment of diabetic foot are divided into two categories: autologous and allogeneic. They are mainly derived from the bone marrow, umbilical cord, adipose tissue, and placenta. MSCs from different sources have similar characteristics and subtle differences. Mastering their features to better select and use MSCs is the premise of improving the therapeutic effect of DFU. This article reviews the types and characteristics of MSCs and their molecular mechanisms and functions in treating DFU to provide innovative ideas for using MSCs to treat diabetic foot and promote wound healing.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu, Sichuan, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zheng Li
- People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
50
|
Duda GN, Geissler S, Checa S, Tsitsilonis S, Petersen A, Schmidt-Bleek K. The decisive early phase of bone regeneration. Nat Rev Rheumatol 2023; 19:78-95. [PMID: 36624263 DOI: 10.1038/s41584-022-00887-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/11/2023]
Abstract
Bone has a remarkable endogenous regenerative capacity that enables scarless healing and restoration of its prior mechanical function, even under challenging conditions such as advanced age and metabolic or immunological degenerative diseases. However - despite much progress - a high number of bone injuries still heal with unsatisfactory outcomes. The mechanisms leading to impaired healing are heterogeneous, and involve exuberant and non-resolving immune reactions or overstrained mechanical conditions that affect the delicate regulation of the early initiation of scar-free healing. Every healing process begins phylogenetically with an inflammatory reaction, but its spatial and temporal intensity must be tightly controlled. Dysregulation of this inflammatory cascade directly affects the subsequent healing phases and hinders the healing progression. This Review discusses the complex processes underlying bone regeneration, focusing on the early healing phase and its highly dynamic environment, where vibrant changes in cellular and tissue composition alter the mechanical environment and thus affect the signalling pathways that orchestrate the healing process. Essential to scar-free healing is the interplay of various dynamic cascades that control timely resolution of local inflammation and tissue self-organization, while also providing sufficient local stability to initiate endogenous restoration. Various immunotherapy and mechanobiology-based therapy options are under investigation for promoting bone regeneration.
Collapse
Affiliation(s)
- Georg N Duda
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Sven Geissler
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Serafeim Tsitsilonis
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ansgar Petersen
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|