1
|
Mukkala AN, David BA, Ailenberg M, Liang J, Vaswani CM, Karakas D, Goldfarb R, Barbour W, Gasner A, Wu RS, Petrut R, Jerkic M, Andreazza AC, Dos Santos C, Ni H, Zhang H, Kapus A, Kubes P, Rotstein OD. Mitochondrial Transplantation: A Novel Therapy for Liver Ischemia/Reperfusion Injury. Ann Surg 2025; 281:1032-1047. [PMID: 39912224 DOI: 10.1097/sla.0000000000006655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
OBJECTIVE To investigate the hepatoprotective effects of mitochondrial transplantation (MTx) in a murine liver ischemia/reperfusion (I/R) model. BACKGROUND Sequential liver ischemia, followed by reperfusion (I/R), is a pathophysiological process underlying hepatocellular injury in a number of clinical contexts, such as hemorrhagic shock/resuscitation, major elective liver surgery, and organ transplantation. A unifying pathogenic consequence of I/R is mitochondrial dysfunction. Restoration of mitochondria through transplantation (MTx) has emerged as a potential therapeutic in I/R. However, its role in liver I/R and its mechanisms of action remain poorly defined. METHODS We investigated the hepatoprotective effects of MTx in an in vivo mouse model of liver I/R and used in vivo imaging and various knockout and transgenic mouse models to determine the mechanism of protection. RESULTS We found that I/R-induced hepatocellular injury was prevented by MTx, as measured by plasma ALT, AST, and liver histology. In addition, I/R-induced pro-inflammatory cytokine release (IL-6, TNFα) was dampened by MTx, and anti-inflammatory IL-10 was enhanced. Moreover, MTx lowered neutrophil infiltration into both the liver sinusoids and lung bronchoalveolar lavage fluid, suggesting a local and distant reduction in inflammation. Using in vivo intravital imaging, we found that I/R-subjected Kupffer cells (KCs), rapidly sequestered transplanted mitochondria, and acidified mitochondria within lysosomal compartments. To specifically interrogate the role of KCs, we depleted KCs using the diphtheria toxin-inducible Clec4f/iDTR transgenic mouse, then induced I/R, and discovered that KCs are necessary for the beneficial effects of MTx. Finally, we induced I/R in the complement receptor of the immunoglobulin (CRIg) superfamily knockout mice and found that CRIg was required for mitochondria capture by KCs and mitochondria-mediated hepatoprotection. CONCLUSIONS In this study, we demonstrated that CRIg-dependent capture of mitochondria by I/R-subjected KCs is a hepatoprotective mechanism in vivo . These data progress knowledge on the mechanisms of MTx and open new avenues for clinical translation.
Collapse
Affiliation(s)
- Avinash Naraiah Mukkala
- Keenan Research Centre for Biomedical Science, Department of Surgery, St. Michael's Hospital, Unity Health Toronto; Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto; Toronto, ON, Canada
| | - Bruna Araujo David
- Department of Physiology and Pharmacology, University of Calgary; Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Calgary, AB, Canada
| | - Menachem Ailenberg
- Keenan Research Centre for Biomedical Science, Department of Surgery, St. Michael's Hospital, Unity Health Toronto; Toronto, ON, Canada
| | - Jady Liang
- Keenan Research Centre for Biomedical Science, Department of Surgery, St. Michael's Hospital, Unity Health Toronto; Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto; Toronto, ON, Canada
| | - Chirag Manoj Vaswani
- Keenan Research Centre for Biomedical Science, Department of Surgery, St. Michael's Hospital, Unity Health Toronto; Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto; Toronto, ON, Canada
| | - Danielle Karakas
- Keenan Research Centre for Biomedical Science, Department of Surgery, St. Michael's Hospital, Unity Health Toronto; Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto; Toronto, ON, Canada
| | - Rachel Goldfarb
- Keenan Research Centre for Biomedical Science, Department of Surgery, St. Michael's Hospital, Unity Health Toronto; Toronto, ON, Canada
| | - William Barbour
- Keenan Research Centre for Biomedical Science, Department of Surgery, St. Michael's Hospital, Unity Health Toronto; Toronto, ON, Canada
| | - Avishai Gasner
- Keenan Research Centre for Biomedical Science, Department of Surgery, St. Michael's Hospital, Unity Health Toronto; Toronto, ON, Canada
| | - Ruoxian Scarlet Wu
- Keenan Research Centre for Biomedical Science, Department of Surgery, St. Michael's Hospital, Unity Health Toronto; Toronto, ON, Canada
| | - Raluca Petrut
- Keenan Research Centre for Biomedical Science, Department of Surgery, St. Michael's Hospital, Unity Health Toronto; Toronto, ON, Canada
| | - Mirjana Jerkic
- Keenan Research Centre for Biomedical Science, Department of Surgery, St. Michael's Hospital, Unity Health Toronto; Toronto, ON, Canada
| | - Ana Cristina Andreazza
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto; Toronto, ON, Canada
| | - Claudia Dos Santos
- Keenan Research Centre for Biomedical Science, Department of Surgery, St. Michael's Hospital, Unity Health Toronto; Toronto, ON, Canada
- Interdepartmental Division of Critical Care, Temerty Faculty of Medicine, University of Toronto; Toronto, ON, Canada
| | - Heyu Ni
- Keenan Research Centre for Biomedical Science, Department of Surgery, St. Michael's Hospital, Unity Health Toronto; Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto; Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto; Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Canadian Blood Service; Toronto, ON, Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science, Department of Surgery, St. Michael's Hospital, Unity Health Toronto; Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto; Toronto, ON, Canada
- Interdepartmental Division of Critical Care, Temerty Faculty of Medicine, University of Toronto; Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, Temerty Faculty of Medicine, University of Toronto; Toronto, ON, Canada
| | - Andras Kapus
- Keenan Research Centre for Biomedical Science, Department of Surgery, St. Michael's Hospital, Unity Health Toronto; Toronto, ON, Canada
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto; Toronto, ON, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary; Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Calgary, AB, Canada
| | - Ori David Rotstein
- Keenan Research Centre for Biomedical Science, Department of Surgery, St. Michael's Hospital, Unity Health Toronto; Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto; Toronto, ON, Canada
- Department of Surgery, St. Michael's Hospital, Unity Health Toronto; Toronto, ON, Canada
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto; Toronto, ON, Canada
| |
Collapse
|
2
|
Cunningham CN, Van Vranken JG, Larios J, Heyden K, Gygi SP, Rutter J. A dual-purification system to isolate mitochondrial subpopulations. J Cell Sci 2025; 138:jcs263693. [PMID: 40079232 PMCID: PMC12045638 DOI: 10.1242/jcs.263693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Mitochondria perform diverse functions, including producing ATP through oxidative phosphorylation, synthesizing macromolecule precursors, maintaining redox balance among many others. Given this diversity of functions, we and others have hypothesized that cells maintain specialized subpopulations of mitochondria. To begin addressing this hypothesis, we developed a new dual-purification system to isolate subpopulations of mitochondria for chemical and biochemical analyses. We used APEX2 proximity labeling such that mitochondria were biotinylated based on proximity to another organelle. All mitochondria were isolated by an elutable MitoTag-based affinity precipitation system. Biotinylated mitochondria were then purified using immobilized avidin. We used this system to compare the proteomes of endosome- and lipid droplet-associated mitochondria in U-2 OS cells, which demonstrated that these subpopulations were indistinguishable from one another but were distinct from the global mitochondria proteome. Our results suggest that this purification system could aid in describing subpopulations that contribute to intracellular mitochondrial heterogeneity, and that this heterogeneity might be more substantial than previously imagined.
Collapse
Affiliation(s)
- Corey N. Cunningham
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Jakeline Larios
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Katarina Heyden
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Howard Hughes Medical Institute, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Zhao S, Jiang X, Li N, Wang T. SLMO transfers phosphatidylserine between the outer and inner mitochondrial membrane in Drosophila. PLoS Biol 2024; 22:e3002941. [PMID: 39680501 DOI: 10.1371/journal.pbio.3002941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Phospholipids are critical building blocks of mitochondria, and proper mitochondrial function and architecture rely on phospholipids that are primarily transported from the endoplasmic reticulum (ER). Here, we show that mitochondrial form and function rely on synthesis of phosphatidylserine (PS) in the ER through phosphatidylserine synthase (PSS), trafficking of PS from ER to mitochondria (and within mitochondria), and the conversion of PS to phosphatidylethanolamine (PE) by phosphatidylserine decarboxylase (PISD) in the inner mitochondrial membrane (IMM). Using a forward genetic screen in Drosophila, we found that Slowmo (SLMO) specifically transfers PS from the outer mitochondrial membrane (OMM) to the IMM within the inner boundary membrane (IBM) domain. Thus, SLMO is required for shaping mitochondrial morphology, but its putative conserved binding partner, dTRIAP, is not. Importantly, SLMO's role in maintaining mitochondrial morphology is conserved in humans via the SLMO2 protein and is independent of mitochondrial dynamics. Our results highlight the importance of a conserved PSS-SLMO-PISD pathway in maintaining the structure and function of mitochondria.
Collapse
Affiliation(s)
- Siwen Zhao
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuguang Jiang
- National Institute of Biological Sciences, Beijing, China
| | - Ning Li
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Tam LM, Bushnell T. Deciphering the aging process through single-cell cytometric technologies. Cytometry A 2024; 105:621-638. [PMID: 38847116 DOI: 10.1002/cyto.a.24852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 03/20/2025]
Abstract
The advent of single-cell cytometric technologies, in conjunction with advances in single-cell biology, has significantly propelled forward the field of geroscience, enhancing our comprehension of the mechanisms underlying age-related diseases. Given that aging is a primary risk factor for numerous chronic health conditions, investigating the dynamic changes within the physiological landscape at the granularity of single cells is crucial for elucidating the molecular foundations of biological aging. Utilizing hallmarks of aging as a conceptual framework, we review current literature to delineate the progression of single-cell cytometric techniques and their pivotal applications in the exploration of molecular alterations associated with aging. We next discuss recent advancements in single-cell cytometry in terms of the development in instrument, software, and reagents, highlighting its promising and critical role in driving future breakthrough discoveries in aging research.
Collapse
Affiliation(s)
- Lok Ming Tam
- Center for Advanced Research Technologies, University of Rochester Medical Center, Rochester, New York, USA
| | - Timothy Bushnell
- Center for Advanced Research Technologies, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
5
|
Kadam PS, Yang Z, Lu Y, Zhu H, Atiyas Y, Shah N, Fisher S, Nordgren E, Kim J, Issadore D, Eberwine J. Single-mitochondrion sequencing uncovers distinct mutational patterns and heteroplasmy landscape in mouse astrocytes and neurons. BMC Biol 2024; 22:162. [PMID: 39075589 PMCID: PMC11287894 DOI: 10.1186/s12915-024-01953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Mitochondrial (mt) heteroplasmy can cause adverse biological consequences when deleterious mtDNA mutations accumulate disrupting "normal" mt-driven processes and cellular functions. To investigate the heteroplasmy of such mtDNA changes, we developed a moderate throughput mt isolation procedure to quantify the mt single-nucleotide variant (SNV) landscape in individual mouse neurons and astrocytes. In this study, we amplified mt-genomes from 1645 single mitochondria isolated from mouse single astrocytes and neurons to (1) determine the distribution and proportion of mt-SNVs as well as mutation pattern in specific target regions across the mt-genome, (2) assess differences in mtDNA SNVs between neurons and astrocytes, and (3) study co-segregation of variants in the mouse mtDNA. RESULTS (1) The data show that specific sites of the mt-genome are permissive to SNV presentation while others appear to be under stringent purifying selection. Nested hierarchical analysis at the levels of mitochondrion, cell, and mouse reveals distinct patterns of inter- and intra-cellular variation for mt-SNVs at different sites. (2) Further, differences in the SNV incidence were observed between mouse neurons and astrocytes for two mt-SNV 9027:G > A and 9419:C > T showing variation in the mutational propensity between these cell types. Purifying selection was observed in neurons as shown by the Ka/Ks statistic, suggesting that neurons are under stronger evolutionary constraint as compared to astrocytes. (3) Intriguingly, these data show strong linkage between the SNV sites at nucleotide positions 9027 and 9461. CONCLUSIONS This study suggests that segregation as well as clonal expansion of mt-SNVs is specific to individual genomic loci, which is important foundational data in understanding of heteroplasmy and disease thresholds for mutation of pathogenic variants.
Collapse
Affiliation(s)
- Parnika S Kadam
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zijian Yang
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Youtao Lu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hua Zhu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yasemin Atiyas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nishal Shah
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen Fisher
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erik Nordgren
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Issadore
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - James Eberwine
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Kadam PS, Yang Z, Lu Y, Zhu H, Atiyas Y, Shah N, Fisher S, Nordgren E, Kim J, Issadore D, Eberwine J. Single-Mitochondrion Sequencing Uncovers Distinct Mutational Patterns and Heteroplasmy Landscape in Mouse Astrocytes and Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598906. [PMID: 38915628 PMCID: PMC11195285 DOI: 10.1101/2024.06.13.598906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Background Mitochondrial (mt) heteroplasmy can cause adverse biological consequences when deleterious mtDNA mutations accumulate disrupting 'normal' mt-driven processes and cellular functions. To investigate the heteroplasmy of such mtDNA changes we developed a moderate throughput mt isolation procedure to quantify the mt single-nucleotide variant (SNV) landscape in individual mouse neurons and astrocytes In this study we amplified mt-genomes from 1,645 single mitochondria (mts) isolated from mouse single astrocytes and neurons to 1. determine the distribution and proportion of mt-SNVs as well as mutation pattern in specific target regions across the mt-genome, 2. assess differences in mtDNA SNVs between neurons and astrocytes, and 3. Study cosegregation of variants in the mouse mtDNA. Results 1. The data show that specific sites of the mt-genome are permissive to SNV presentation while others appear to be under stringent purifying selection. Nested hierarchical analysis at the levels of mitochondrion, cell, and mouse reveals distinct patterns of inter- and intra-cellular variation for mt-SNVs at different sites. 2. Further, differences in the SNV incidence were observed between mouse neurons and astrocytes for two mt-SNV 9027:G>A and 9419:C>T showing variation in the mutational propensity between these cell types. Purifying selection was observed in neurons as shown by the Ka/Ks statistic, suggesting that neurons are under stronger evolutionary constraint as compared to astrocytes. 3. Intriguingly, these data show strong linkage between the SNV sites at nucleotide positions 9027 and 9461. Conclusion This study suggests that segregation as well as clonal expansion of mt-SNVs is specific to individual genomic loci, which is important foundational data in understanding of heteroplasmy and disease thresholds for mutation of pathogenic variants.
Collapse
Affiliation(s)
- Parnika S Kadam
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zijian Yang
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Youtao Lu
- Department of Biology, School of Arts and Sciences; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hua Zhu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yasemin Atiyas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nishal Shah
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Fisher
- Department of Biology, School of Arts and Sciences; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erik Nordgren
- Department of Biology, School of Arts and Sciences; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Issadore
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Eberwine
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Ichegiri A, Kodolikar K, Bagade V, Selukar M, Dey T. Mitochondria: A source of potential biomarkers for non-communicable diseases. Adv Clin Chem 2024; 121:334-365. [PMID: 38797544 DOI: 10.1016/bs.acc.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mitochondria, as an endosymbiont of eukaryotic cells, controls multiple cellular activities, including respiration, reactive oxygen species production, fatty acid synthesis, and death. Though the majority of functional mitochondrial proteins are translated through a nucleus-controlled process, very few of them (∼10%) are translated within mitochondria through their own machinery. Germline and somatic mutations in mitochondrial and nuclear DNA significantly impact mitochondrial homeostasis and function. Such modifications disturbing mitochondrial biogenesis, metabolism, or mitophagy eventually resulted in cellular pathophysiology. In this chapter, we discussed the impact of mitochondria and its dysfunction on several non-communicable diseases like cancer, diabetes, neurodegenerative, and cardiovascular problems. Mitochondrial dysfunction and its outcome could be screened by currently available omics-based techniques, flow cytometry, and high-resolution imaging. Such characterization could be evaluated as potential biomarkers to assess the disease burden and prognosis.
Collapse
Affiliation(s)
- Amulya Ichegiri
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Kshitij Kodolikar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Vaibhavi Bagade
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Mrunal Selukar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Tuli Dey
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
8
|
Moore R, Wang T, Macêdo MB, Lood C. Reply. Arthritis Rheumatol 2024; 76:489-490. [PMID: 37830244 DOI: 10.1002/art.42727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Affiliation(s)
| | - Ting Wang
- University of Washington, Seattle, WA
| | | | | |
Collapse
|
9
|
Suh J, Lee YS. Mitochondria as secretory organelles and therapeutic cargos. Exp Mol Med 2024; 56:66-85. [PMID: 38172601 PMCID: PMC10834547 DOI: 10.1038/s12276-023-01141-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondria have been primarily considered intracellular organelles that are responsible for generating energy for cell survival. However, accumulating evidence suggests that mitochondria are secreted into the extracellular space under physiological and pathological conditions, and these secreted mitochondria play diverse roles by regulating metabolism, the immune response, or the differentiation/maturation in target cells. Furthermore, increasing amount of research shows the therapeutic effects of local or systemic administration of mitochondria in various disease models. These findings have led to growing interest in exploring mitochondria as potential therapeutic agents. Here, we discuss the emerging roles of mitochondria as extracellularly secreted organelles to shed light on their functions beyond energy production. Additionally, we provide information on therapeutic outcomes of mitochondrial transplantation in animal models of diseases and an update on ongoing clinical trials, underscoring the potential of using mitochondria as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Dasgupta SK, Gollamudi J, Rivera S, Poche RA, Rumbaut RE, Thiagarajan P. β2-glycoprotein I promotes the clearance of circulating mitochondria. PLoS One 2024; 19:e0293304. [PMID: 38271349 PMCID: PMC10810532 DOI: 10.1371/journal.pone.0293304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/10/2023] [Indexed: 01/27/2024] Open
Abstract
β2-glycoprotein I (β2-Gp1) is a cardiolipin-binding plasma glycoprotein. It is evolutionarily conserved from invertebrates, and cardiolipin-bound β2-Gp1 is a major target of antiphospholipid antibodies seen in autoimmune disorders. Cardiolipin is almost exclusively present in mitochondria, and mitochondria are present in circulating blood. We show that β2-Gp1 binds to cell-free mitochondria (CFM) in the circulation and promotes its phagocytosis by macrophages at physiological plasma concentrations. Exogenous CFM had a short circulation time of less than 10 minutes in mice. Following infusion of CFM, β2-Gp1-deficient mice had significantly higher levels of transfused mitochondria at 5 minutes (9.9 ± 6.4 pg/ml versus 4.0 ± 2.3 pg/ml in wildtype, p = 0.01) and at 10 minutes (3.0 ± 3.6 pg/ml versus 1.0 ± 0.06 pg/ml in wild-type, p = 0.033, n = 10). In addition, the splenic macrophages had less phagocytosed CFM in β2-Gp1-deficient mice (24.4 ± 2.72% versus 35.6 ± 3.5 in wild-type, p = 0.001, n = 5). A patient with abnormal β2-Gp1, unable to bind cardiolipin, has increased CFM in blood (5.09 pg/ml versus 1.26 ± 1.35 in normal) and his plasma induced less phagocytosis of CFM by macrophages (47.3 ± 1.6% versus 54.3 ± 1.3, p = 0.01) compared to normal plasma. These results show the evolutionarily conserved β2-Gp1 is one of the mediators of the clearance of CFM in circulation.
Collapse
Affiliation(s)
- Swapan Kumar Dasgupta
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center and Departments of Pathology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jahnavi Gollamudi
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Stefanie Rivera
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center and Departments of Pathology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ross A. Poche
- Department of Medicine Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rolando E. Rumbaut
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Perumal Thiagarajan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center and Departments of Pathology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
11
|
Nusir A, Sinclair P, Kabbani N. Mitochondrial Proteomes in Neural Cells: A Systematic Review. Biomolecules 2023; 13:1638. [PMID: 38002320 PMCID: PMC10669788 DOI: 10.3390/biom13111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondria are ancient endosymbiotic double membrane organelles that support a wide range of eukaryotic cell functions through energy, metabolism, and cellular control. There are over 1000 known proteins that either reside within the mitochondria or are transiently associated with it. These mitochondrial proteins represent a functional subcellular protein network (mtProteome) that is encoded by mitochondrial and nuclear genomes and significantly varies between cell types and conditions. In neurons, the high metabolic demand and differential energy requirements at the synapses are met by specific modifications to the mtProteome, resulting in alterations in the expression and functional properties of the proteins involved in energy production and quality control, including fission and fusion. The composition of mtProteomes also impacts the localization of mitochondria in axons and dendrites with a growing number of neurodegenerative diseases associated with changes in mitochondrial proteins. This review summarizes the findings on the composition and properties of mtProteomes important for mitochondrial energy production, calcium and lipid signaling, and quality control in neural cells. We highlight strategies in mass spectrometry (MS) proteomic analysis of mtProteomes from cultured cells and tissue. The research into mtProteome composition and function provides opportunities in biomarker discovery and drug development for the treatment of metabolic and neurodegenerative disease.
Collapse
Affiliation(s)
- Aya Nusir
- Interdisciplinary Program in Neuroscience, School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| | - Patricia Sinclair
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| |
Collapse
|
12
|
de Mello NP, Fecher C, Pastor AM, Perocchi F, Misgeld T. Ex vivo immunocapture and functional characterization of cell-type-specific mitochondria using MitoTag mice. Nat Protoc 2023:10.1038/s41596-023-00831-w. [PMID: 37328604 DOI: 10.1038/s41596-023-00831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Mitochondria are key bioenergetic organelles involved in many biosynthetic and signaling pathways. However, their differential contribution to specific functions of cells within complex tissues is difficult to dissect with current methods. The present protocol addresses this need by enabling the ex vivo immunocapture of cell-type-specific mitochondria directly from their tissue context through a MitoTag reporter mouse. While other available methods were developed for bulk mitochondria isolation or more abundant cell-type-specific mitochondria, this protocol was optimized for the selective isolation of functional mitochondria from medium-to-low-abundant cell types in a heterogeneous tissue, such as the central nervous system. The protocol has three major parts: First, mitochondria of a cell type of interest are tagged via an outer mitochondrial membrane eGFP by crossing MitoTag mice to a cell-type-specific Cre-driver line or by delivery of viral vectors for Cre expression. Second, homogenates are prepared from relevant tissues by nitrogen cavitation, from which tagged organelles are immunocaptured using magnetic microbeads. Third, immunocaptured mitochondria are used for downstream assays, e.g., to probe respiratory capacity or calcium handling, revealing cell-type-specific mitochondrial diversity in molecular composition and function. The MitoTag approach enables the identification of marker proteins to label cell-type-specific organelle populations in situ, elucidates cell-type-enriched mitochondrial metabolic and signaling pathways, and reveals functional mitochondrial diversity between adjacent cell types in complex tissues, such as the brain. Apart from establishing the mouse colony (6-8 weeks without import), the immunocapture protocol takes 2 h and functional assays require 1-2 h.
Collapse
Affiliation(s)
- Natalia Prudente de Mello
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians Universität München, Munich, Germany
| | - Caroline Fecher
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians Universität München, Munich, Germany
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Adrian Marti Pastor
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Fabiana Perocchi
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Munich, Germany.
- Munich Cluster for Systems Neurology, Munich, Germany.
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.
- Munich Cluster for Systems Neurology, Munich, Germany.
- German Center for Neurodegenerative Diseases, Munich, Germany.
| |
Collapse
|
13
|
Capelluto F, Alberico H, Ledo-Hopgood P, Tilly JL, Woods DC. Lineage-Mismatched Mitochondrial Replacement in an Inducible Mitochondrial Depletion Model Effectively Restores the Original Proteomic Landscape of Recipient Cells. Adv Biol (Weinh) 2023; 7:e2200246. [PMID: 36651121 DOI: 10.1002/adbi.202200246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/21/2022] [Indexed: 01/19/2023]
Abstract
In addition to critical roles in bioenergetics, mitochondria are key contributors to the regulation of many other functions in cells, ranging from steroidogenesis to apoptosis. Numerous studies further demonstrate that cell type-specific differences exist in mitochondria, with cells of a given lineage tailoring their endogenous mitochondrial population to suit specific functional needs. These findings, coupled with studies of the therapeutic potential of mitochondrial transplantation, provide a strong impetus to better understand how mitochondria can influence cell function or fate. Here an inducible mitochondrial depletion modelis used to study how cells lacking endogenous mitochondria respond, on a global protein expression level, to transplantation with lineage-mismatched (LM) mitochondria. It is shown that LM mitochondrial transplantation does not alter the proteomic profile in nonmitochondria-depleted recipient cells; however, enforced depletion of endogenous mitochondria results in dramatic changes in the proteomic landscape, which returns to the predepletion state following internalization of LM mitochondria. These data, derived from a cell system that can be rendered free of influence by endogenous mitochondria, indicate that transplantation of mitochondria-even from a source that differs significantly from the recipient cell population, effectively restores a normal proteomic landscape to cells lacking their own mitochondria.
Collapse
Affiliation(s)
- Fausto Capelluto
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Hannah Alberico
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Paula Ledo-Hopgood
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Jonathan L Tilly
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Dori C Woods
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Sheehan HC, Tilly JL, Woods DC. Assaying Mitochondrial Function by Multiparametric Flow Cytometry. Methods Mol Biol 2023; 2644:65-80. [PMID: 37142916 DOI: 10.1007/978-1-0716-3052-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Flow cytometry has been a vital tool in cell biology for decades based on its versatile ability to detect and quantifiably measure both physical and chemical attributes of individual cells within a larger population. More recently, advances in flow cytometry have enabled nanoparticle detection. This is particularly applicable to mitochondria, which, as intracellular organelles have distinct subpopulations that can be evaluated based on differences in functional, physical, and chemical attributes, in a manner analogous to cells. This includes distinctions based on size, mitochondrial membrane potential (ΔΨm), chemical properties, and protein expression on the outer mitochondrial membrane in intact, functional organelles and internally in fixed samples. This method allows for multiparametric analysis of subpopulations of mitochondria, as well as collection for downstream analysis down to the level of a single organelle. The present protocol describes a framework for analysis and sorting mitochondria by flow cytometry, termed fluorescence activated mitochondrial sorting (FAMS), based on the separation of individual mitochondria belonging to subpopulations of interest using fluorescent dyes and antibody labeling.
Collapse
Affiliation(s)
- Hannah C Sheehan
- Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University, Boston, MA, USA
| | - Jonathan L Tilly
- Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University, Boston, MA, USA
| | - Dori C Woods
- Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University, Boston, MA, USA.
| |
Collapse
|
15
|
Chlamydia trachomatis Alters Mitochondrial Protein Composition and Secretes Effector Proteins That Target Mitochondria. mSphere 2022; 7:e0042322. [PMID: 36286535 PMCID: PMC9769516 DOI: 10.1128/msphere.00423-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitochondria are critical cellular organelles that perform a wide variety of functions, including energy production and immune regulation. To perform these functions, mitochondria contain approximately 1,500 proteins, the majority of which are encoded in the nuclear genome, translated in the cytoplasm, and translocated to the mitochondria using distinct mitochondrial targeting sequences (MTS). Bacterial proteins can also contain MTS and localize to the mitochondria. For the obligate intracellular human pathogen Chlamydia trachomatis, interaction with various host cell organelles promotes intracellular replication. However, the extent and mechanisms through which Chlamydia cells interact directly with mitochondria remain unclear. We investigated the presence of MTS in the C. trachomatis genome and discovered 30 genes encoding proteins with around 70% or greater probability of mitochondrial localization. Five are translocated to the mitochondria upon ectopic expression in HeLa cells. Mass spectrometry of isolated mitochondria from infected cells revealed that two of these proteins localize to the mitochondria during infection. Comparison of mitochondria from infected and uninfected cells suggests that chlamydial infection affects the mitochondrial protein composition. Around 125 host proteins were significantly decreased or absent in mitochondria from infected cells. Among these were proapoptotic factors and those related to mitochondrial fission/fusion dynamics. Conversely, 82 host proteins were increased in or specific to mitochondria of infected cells, many of which act as antiapoptotic factors and upregulators of cellular metabolism. These data support the notion that C. trachomatis specifically targets host mitochondria to manipulate cell fate decisions and metabolic function to support pathogen survival and replication. IMPORTANCE Obligate intracellular bacteria have evolved multiple means to promote their intracellular survival and replication within the otherwise harsh environment of the eukaryotic cell. Nutrient acquisition and avoidance of cellular defense mechanisms are critical to an intracellular lifestyle. Mitochondria are critical organelles that produce energy in the form of ATP and regulate programmed cell death responses to invasive pathogenic microbes. Cell death prior to completion of replication would be detrimental to the pathogen. C. trachomatis produces at least two and possibly more proteins that target the mitochondria. Collectively, C. trachomatis infection modulates the mitochondrial protein composition, favoring a profile suggestive of downregulation of apoptosis.
Collapse
|
16
|
Peña FJ, Ortiz-Rodríguez JM, Gaitskell-Phillips GL, Gil MC, Ortega-Ferrusola C, Martín-Cano FE. An integrated overview on the regulation of sperm metabolism (glycolysis-Krebs cycle-oxidative phosphorylation). Anim Reprod Sci 2022; 246:106805. [PMID: 34275685 DOI: 10.1016/j.anireprosci.2021.106805] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
An overview of the sperm metabolism is presented; using the stallion as a model we review glycolysis, Krebs Cycle and oxidative phosphorylation, paying special attention to the interactions among them. In addition, metabolism implies a series of coordinated oxidation-reduction reactions and in the course of these reactions reactive oxygen species (ROS) and reactive oxoaldehydes are produced ; the electron transport chain (ETC) in the mitochondria is the main source of the anion superoxide and hydrogen peroxide, while glycolysis produces 2-oxoaldehydes such as methylglyoxal as byproducts; due to the adjacent carbonyl groups are strong electrophiles (steal electrons oxidizing other compounds). Sophisticated mechanisms exist to maintain redox homeostasis, because ROS under controlled production also have important regulatory functions in the spermatozoa. The interactions between metabolism and production of reactive oxygen species are essential for proper sperm function, and deregulation of these processes rapidly leads to sperm malfunction and finally death. Lastly, we briefly describe two techniques that will expand our knowledge on sperm metabolism in the coming decades, metabolic flow cytometry and the use of the "omics" technologies, proteomics and metabolomics, specifically the micro and nano proteomics/metabolomics. A better understanding of the metabolism of the spermatozoa will lead to big improvements in sperm technologies and the diagnosis and treatment of male factor infertility.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| | - José M Ortiz-Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma L Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Maria C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
17
|
Morales RTT, Ko J. Future of Digital Assays to Resolve Clinical Heterogeneity of Single Extracellular Vesicles. ACS NANO 2022; 16:11619-11645. [PMID: 35904433 PMCID: PMC10174080 DOI: 10.1021/acsnano.2c04337] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Extracellular vesicles (EVs) are complex lipid membrane vehicles with variable expressions of molecular cargo, composed of diverse subpopulations that participate in the intercellular signaling of biological responses in disease. EV-based liquid biopsies demonstrate invaluable clinical potential for overhauling current practices of disease management. Yet, EV heterogeneity is a major needle-in-a-haystack challenge to translate their use into clinical practice. In this review, existing digital assays will be discussed to analyze EVs at a single vesicle resolution, and future opportunities to optimize the throughput, multiplexing, and sensitivity of current digital EV assays will be highlighted. Furthermore, this review will outline the challenges and opportunities that impact the clinical translation of single EV technologies for disease diagnostics and treatment monitoring.
Collapse
Affiliation(s)
- Renee-Tyler T Morales
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jina Ko
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
18
|
Weindel CG, Martinez EL, Zhao X, Mabry CJ, Bell SL, Vail KJ, Coleman AK, VanPortfliet JJ, Zhao B, Wagner AR, Azam S, Scott HM, Li P, West AP, Karpac J, Patrick KL, Watson RO. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell 2022; 185:3214-3231.e23. [PMID: 35907404 PMCID: PMC9531054 DOI: 10.1016/j.cell.2022.06.038] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/05/2022] [Accepted: 06/18/2022] [Indexed: 10/16/2022]
Abstract
Although mutations in mitochondrial-associated genes are linked to inflammation and susceptibility to infection, their mechanistic contributions to immune outcomes remain ill-defined. We discovered that the disease-associated gain-of-function allele Lrrk2G2019S (leucine-rich repeat kinase 2) perturbs mitochondrial homeostasis and reprograms cell death pathways in macrophages. When the inflammasome is activated in Lrrk2G2019S macrophages, elevated mitochondrial ROS (mtROS) directs association of the pore-forming protein gasdermin D (GSDMD) to mitochondrial membranes. Mitochondrial GSDMD pore formation then releases mtROS, promoting a switch to RIPK1/RIPK3/MLKL-dependent necroptosis. Consistent with enhanced necroptosis, infection of Lrrk2G2019S mice with Mycobacterium tuberculosis elicits hyperinflammation and severe immunopathology. Our findings suggest a pivotal role for GSDMD as an executer of multiple cell death pathways and demonstrate that mitochondrial dysfunction can direct immune outcomes via cell death modality switching. This work provides insights into how LRRK2 mutations manifest or exacerbate human diseases and identifies GSDMD-dependent necroptosis as a potential target to limit Lrrk2G2019S-mediated immunopathology.
Collapse
Affiliation(s)
- Chi G Weindel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Eduardo L Martinez
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Xiao Zhao
- Department of Molecular and Cellular Medicine, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Cory J Mabry
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Samantha L Bell
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA; Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Krystal J Vail
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA; Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Aja K Coleman
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Jordyn J VanPortfliet
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Baoyu Zhao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Allison R Wagner
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Sikandar Azam
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Haley M Scott
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Jason Karpac
- Department of Molecular and Cellular Medicine, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA.
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
19
|
Patel SB, Nemkov T, D'Alessandro A, Welner RS. Deciphering Metabolic Adaptability of Leukemic Stem Cells. Front Oncol 2022; 12:846149. [PMID: 35756656 PMCID: PMC9213881 DOI: 10.3389/fonc.2022.846149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic targeting of leukemic stem cells is widely studied to control leukemia. An emerging approach gaining popularity is altering metabolism as a potential therapeutic opportunity. Studies have been carried out on hematopoietic and leukemic stem cells to identify vulnerable pathways without impacting the non-transformed, healthy counterparts. While many metabolic studies have been conducted using stem cells, most have been carried out in vitro or on a larger population of progenitor cells due to challenges imposed by the low frequency of stem cells found in vivo. This creates artifacts in the studies carried out, making it difficult to interpret and correlate the findings to stem cells directly. This review discusses the metabolic difference seen between hematopoietic stem cells and leukemic stem cells across different leukemic models. Moreover, we also shed light on the advancements of metabolic techniques and current limitations and areas for additional research of the field to study stem cell metabolism.
Collapse
Affiliation(s)
- Sweta B Patel
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at, Birmingham, AL, United States.,Divison of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Robert S Welner
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at, Birmingham, AL, United States
| |
Collapse
|
20
|
Harbauer AB, Schneider A, Wohlleber D. Analysis of Mitochondria by Single-Organelle Resolution. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:1-16. [PMID: 35303775 DOI: 10.1146/annurev-anchem-061020-111722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cellular organelles are highly specialized compartments with distinct functions. With the increasing resolution of detection methods, it is becoming clearer that same organelles may have different functions or properties not only within different cell populations of a tissue but also within the same cell. Dysfunction or altered function affects the organelle itself and may also lead to malignancies or undesirable cell death. To understand cellular function or dysfunction, it is therefore necessary to analyze cellular components at the single-organelle level. Here, we review the recent advances in analyzing cellular function at single-organelle resolution using high-parameter flow cytometry or multicolor confocal microscopy. We focus on the analysis of mitochondria, as they are organelles at the crossroads of various cellular signaling pathways and functions. However, most of the applied methods/technologies are transferable to any other organelle, such as the endoplasmic reticulum, lysosomes, or peroxisomes.
Collapse
Affiliation(s)
- Angelika B Harbauer
- Max Planck Institute of Neurobiology, Martinsried, Germany;
- Institute of Neuronal Cell Biology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Annika Schneider
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany; ,
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany; ,
| |
Collapse
|
21
|
Internalization of Polymeric Bacterial Peptidoglycan Occurs through Either Actin or Dynamin Dependent Pathways. Microorganisms 2022; 10:microorganisms10030552. [PMID: 35336127 PMCID: PMC8951193 DOI: 10.3390/microorganisms10030552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Peptidoglycan (PGN), a polymeric glycan macromolecule, is a major constituent of the bacterial cell wall and a conserved pathogen-associated molecular pattern (PAMP) that triggers immune responses through cytosolic sensors. Immune cells encounter both PGN polymers and hydrolyzed muropeptides during infections, and primary human innate immune cells respond better to polymeric PGN than the minimal bioactive subunit muramyl dipeptide (MDP). While MDP is internalized through macropinocytosis and/or clathrin-mediated endocytosis, the internalization of particulate polymeric PGN is unresolved. We show here that PGN macromolecules isolated from Bacillus anthracis display a broad range of sizes, making them amenable for multiple internalization pathways. Pharmacologic inhibition indicates that PGN primarily, but not exclusively, is internalized by actin-dependent endocytosis. An alternate clathrin-independent but dynamin dependent pathway supports 20–30% of PGN uptake. In primary monocytes, this alternate pathway does not require activities of RhoA, Cdc42 or Arf6 small GTPases. Selective inhibition of PGN uptake shows that phagolysosomal trafficking, processing and downstream immune responses are drastically affected by actin depolymerization, while dynamin inhibition has a smaller effect. Overall, we show that polymeric PGN internalization occurs through two endocytic pathways with distinct potentials to trigger immune responses.
Collapse
|
22
|
Wang X, Yin L, Wen Y, Yuan S. Mitochondrial regulation during male germ cell development. Cell Mol Life Sci 2022; 79:91. [PMID: 35072818 PMCID: PMC11072027 DOI: 10.1007/s00018-022-04134-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Mitochondria tailor their morphology to execute their specialized functions in different cell types and/or different environments. During spermatogenesis, mitochondria undergo continuous morphological and distributional changes with germ cell development. Deficiencies in these processes lead to mitochondrial dysfunction and abnormal spermatogenesis, thereby causing male infertility. In recent years, mitochondria have attracted considerable attention because of their unique role in the regulation of piRNA biogenesis in male germ cells. In this review, we describe the varied characters of mitochondria and focus on key mitochondrial factors that play pivotal roles in the regulation of spermatogenesis, from primordial germ cells to spermatozoa, especially concerning metabolic shift, stemness and reprogramming, mitochondrial transformation and rearrangement, and mitochondrial defects in human sperm. Further, we discuss the molecular mechanisms underlying these processes.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lisha Yin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
23
|
Singh LN, Kao SH, Wallace DC. Unlocking the Complexity of Mitochondrial DNA: A Key to Understanding Neurodegenerative Disease Caused by Injury. Cells 2021; 10:cells10123460. [PMID: 34943968 PMCID: PMC8715673 DOI: 10.3390/cells10123460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders that are triggered by injury typically have variable and unpredictable outcomes due to the complex and multifactorial cascade of events following the injury and during recovery. Hence, several factors beyond the initial injury likely contribute to the disease progression and pathology, and among these are genetic factors. Genetics is a recognized factor in determining the outcome of common neurodegenerative diseases. The role of mitochondrial genetics and function in traditional neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, is well-established. Much less is known about mitochondrial genetics, however, regarding neurodegenerative diseases that result from injuries such as traumatic brain injury and ischaemic stroke. We discuss the potential role of mitochondrial DNA genetics in the progression and outcome of injury-related neurodegenerative diseases. We present a guide for understanding mitochondrial genetic variation, along with the nuances of quantifying mitochondrial DNA variation. Evidence supporting a role for mitochondrial DNA as a risk factor for neurodegenerative disease is also reviewed and examined. Further research into the impact of mitochondrial DNA on neurodegenerative disease resulting from injury will likely offer key insights into the genetic factors that determine the outcome of these diseases together with potential targets for treatment.
Collapse
Affiliation(s)
- Larry N. Singh
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Correspondence:
| | - Shih-Han Kao
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Jiang YF, Yu PH, Budi YP, Chiu CH, Fu CY. Dynamic changes in mitochondrial 3D structure during folliculogenesis and luteal formation in the goat large luteal cell lineage. Sci Rep 2021; 11:15564. [PMID: 34330986 PMCID: PMC8324910 DOI: 10.1038/s41598-021-95161-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
In mammalian ovaries, mitochondria are integral sites of energy production and steroidogenesis. While shifts in cellular activities and steroidogenesis are well characterized during the differentiation of large luteal cells in folliculogenesis and luteal formation, mitochondrial dynamics during this process have not been previously evaluated. In this study, we collected ovaries containing primordial follicles, mature follicles, corpus hemorrhagicum, or corpus luteum from goats at specific times in the estrous cycle. Enzyme histochemistry, ultrastructural observations, and 3D structural analysis of serial sections of mitochondria revealed that branched mitochondrial networks were predominant in follicles, while spherical and tubular mitochondria were typical in large luteal cells. Furthermore, the average mitochondrial diameter and volume increased from folliculogenesis to luteal formation. In primordial follicles, the signals of cytochrome c oxidase and ATP synthase were undetectable in most cells, and the large luteal cells from the corpus hemorrhagicum also showed low enzyme signals and content when compared with granulosa cells in mature follicles or large luteal cells from the corpus luteum. Our findings suggest that the mitochondrial enlargement could be an event during folliculogenesis and luteal formation, while the modulation of mitochondrial morphology and respiratory enzyme expressions may be related to tissue remodeling during luteal formation.
Collapse
Affiliation(s)
- Yi-Fan Jiang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Rm. 104-1, No.1, Sec. 4, Roosevelt Road, Taipei City, 10617, Taiwan, ROC.
| | - Pin-Huan Yu
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Yovita Permata Budi
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Rm. 104-1, No.1, Sec. 4, Roosevelt Road, Taipei City, 10617, Taiwan, ROC
| | - Chih-Hsien Chiu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Chi-Yu Fu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, ROC
| |
Collapse
|
25
|
Bury AG, Vincent AE, Turnbull DM, Actis P, Hudson G. Mitochondrial isolation: when size matters. Wellcome Open Res 2021; 5:226. [PMID: 33718619 PMCID: PMC7931255 DOI: 10.12688/wellcomeopenres.16300.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial vitality is critical to cellular function, with mitochondrial dysfunction linked to a growing number of human diseases. Tissue and cellular heterogeneity, in terms of genetics, dynamics and function means that increasingly mitochondrial research is conducted at the single cell level. Whilst there are several technologies that are currently available for single-cell analysis, each with their advantages, they cannot be easily adapted to study mitochondria with subcellular resolution. Here we review the current techniques and strategies for mitochondrial isolation, critically discussing each technology's limitations for future mitochondrial research. Finally, we highlight and discuss the recent breakthroughs in sub-cellular isolation techniques, with a particular focus on nanotechnologies that enable the isolation of mitochondria from subcellular compartments. This allows isolation of mitochondria with unprecedented spatial precision with minimal disruption to mitochondria and their immediate cellular environment.
Collapse
Affiliation(s)
- Alexander G Bury
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Biosciences Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Amy E Vincent
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Paolo Actis
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Gavin Hudson
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Biosciences Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| |
Collapse
|
26
|
Abstract
Flow cytometry (FCM) is a sophisticated technique that works on the principle of light scattering and fluorescence emission by the specific fluorescent probe-labeled cells as they pass through a laser beam. It offers several unique advantages as it allows fast, relatively quantitative, multiparametric analysis of cell populations at the single cell level. In addition, it also enables physical sorting of the cells to separate the subpopulations based on different parameters. In this constantly evolving field, innovative technologies such as imaging FCM, mass cytometry and Raman FCM are being developed in order to address limitations of traditional FCM. This review explains the general principles, main applications and recent advances in the field of FCM.
Collapse
|
27
|
Wei G, Xue L, Zhu Y, Qian X, Zou L, Jin Q, Wang D, Ge G. Differences in susceptibility of HT-29 and A549 cells to statin-induced toxicity: An investigation using high content screening. J Biochem Mol Toxicol 2021; 35:e22699. [PMID: 33398916 DOI: 10.1002/jbt.22699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 02/05/2023]
Abstract
Statins are a group of hydroxymethylglutaryl coenzyme A reductase inhibitors that are used in the treatment of cardiovascular diseases. However, statins have been found to be cytotoxic, and many unexpected side effects have been reported in clinical applications. The susceptibilities of different cell lines toward statins are diverse, and the mechanisms of cytotoxicity remain unknown. Therefore, the present study aimed to investigate differences in the susceptibility to and mechanisms of statin-induced cytotoxicity in two cell lines, HT-29 and A549, using a high content screening-based multiparametric toxicity assay panel. We found that the two cell types exhibited differing susceptibilities to the cytotoxic effects of the different statins. Additionally, the cytotoxicity was inconsistent between different statins in the two cell lines. Four statins with strong cytotoxicity decreased the viability of HT-29 cells via the mitochondrial pathway, as evidenced by decreased mitochondrial membrane potential, and elevated mitochondrial mass, calcium release and cell apoptosis, and reactive oxygen species. In contrast, these four statins only induced a decrease in the mitochondrial membrane potential in A549 cells. The above results provide an objective reason for future evaluations of cytotoxic differences in cell types and the underlying mechanisms of cytotoxicity in different statins, and provide a good scientific basis for further research on countermeasures against statin-induced cell injuries.
Collapse
Affiliation(s)
- Guilin Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijuan Xue
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yadi Zhu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingkai Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liwei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiang Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dandan Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
28
|
López-Pacheco C, Bedoya-López A, Olguín-Alor R, Soldevila G. Analysis of Tumor-Derived Exosomes by Nanoscale Flow Cytometry. Methods Mol Biol 2021; 2174:171-191. [PMID: 32813250 DOI: 10.1007/978-1-0716-0759-6_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The study of tumor exosomes has gained relevance in the last decades due to their potential use for therapeutic and diagnostic application. Although there is extensive knowledge of exosome biology, some biological samples like tumor-derived exosomes have been difficult to characterize due to their complexity and heterogeneity. This distinctive feature makes difficult the identification of specific exosome subpopulations with a shared molecular signature that could allow for targeting of exosomes with therapeutic and diagnostic potential use in cancer patients. Nanoscale flow cytometry has lately emerged as an alternative tool that can be adapted to the study of nanoparticles, such as exosomes. However, the physicochemical properties of these particles are an important issue to consider as nanoparticles need the application of specific settings which differ from those used in conventional flow cytometry of cells. Therefore, in the last few years, one of the main aims has been the optimization of technical and experimental protocols to improve exosome analysis. In this chapter, we discuss several aspects of cytometric systems with a special emphasis in technical considerations of samples and equipment.
Collapse
Affiliation(s)
- Cynthia López-Pacheco
- Departamento de Inmunología and Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Andrea Bedoya-López
- Departamento de Inmunología and Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Roxana Olguín-Alor
- Departamento de Inmunología and Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Soldevila
- Departamento de Inmunología and Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
29
|
Bury AG, Vincent AE, Turnbull DM, Actis P, Hudson G. Mitochondrial isolation: when size matters. Wellcome Open Res 2020; 5:226. [PMID: 33718619 PMCID: PMC7931255 DOI: 10.12688/wellcomeopenres.16300.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 01/31/2024] Open
Abstract
Mitochondrial vitality is critical to cellular function, with mitochondrial dysfunction linked to a growing number of human diseases. Tissue and cellular heterogeneity, in terms of genetics, dynamics and function means that increasingly mitochondrial research is conducted at the single cell level. Whilst there are several technologies that are currently available for single-cell analysis, each with their advantages, they cannot be easily adapted to study mitochondria with subcellular resolution. Here we review the current techniques and strategies for mitochondrial isolation, critically discussing each technology's limitations for future mitochondrial research. Finally, we highlight and discuss the recent breakthroughs in sub-cellular isolation techniques, with a particular focus on nanotechnologies that enable the isolation of mitochondria from subcellular compartments. This allows isolation of mitochondria with unprecedented spatial precision with minimal disruption to mitochondria and their immediate cellular environment.
Collapse
Affiliation(s)
- Alexander G. Bury
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Biosciences Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Amy E. Vincent
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Doug M. Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Paolo Actis
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Gavin Hudson
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Biosciences Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| |
Collapse
|
30
|
Ding M, Baker D. Recent advances in high-throughput flow cytometry for drug discovery. Expert Opin Drug Discov 2020; 16:303-317. [PMID: 33054417 DOI: 10.1080/17460441.2021.1826433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION High-throughput flow cytometry (HTFC) has proven to be an important technology in drug discovery. The use of HTFC enables multi-parametric screening of suspension cells containing heterogenous cell populations and coated particles for screening proteins of interest. Novel targets, novel cell markers and compound clusters for drug development have been identified from HTFC screens. AREAS COVERED In this article, the authors focus on reviewing the recent HTFC applications reported during the last 5-6 years, including drug discovery screens and studies for immune, immune-oncology, infectious and inflammatory diseases. The main HTFC approaches, development of HTFC systems, and automated sample preparation systems for HTFC are also discussed. EXPERT OPINION The advance of HTFC technology coupled with automated sample acquisition and sample preparation has demonstrated its utility in screening large numbers of compounds using suspension cells, facilitated screening of disease-relevant human primary cells, and enabled deep understanding of mechanism of action by analyzing multiple parameters. The authors see HTFC as a very valuable tool in immune, immune-oncology, infectious and inflammatory diseases where immune cells play essential roles.
Collapse
Affiliation(s)
- Mei Ding
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - David Baker
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
31
|
Tilly JL, Woods DC. The obligate need for accuracy in reporting preclinical studies relevant to clinical trials: autologous germline mitochondrial supplementation for assisted human reproduction as a case study. Ther Adv Reprod Health 2020; 14:2633494120917350. [PMID: 32518919 PMCID: PMC7254586 DOI: 10.1177/2633494120917350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/12/2020] [Indexed: 11/15/2022] Open
Abstract
A now large body of work has solidified the central role that mitochondria play in oocyte development, fertilization, and embryogenesis. From these studies, a new technology termed autologous germline mitochondrial energy transfer was developed for improving pregnancy success rates in assisted reproduction. Unlike prior clinical studies that relied on the use of donor, or nonautologous, mitochondria for microinjection into eggs of women with a history of repeated in vitro fertilization failure to enhance pregnancy success, autologous germline mitochondrial energy transfer uses autologous mitochondria collected from oogonial stem cells of the same woman undergoing the fertility treatment. Initial trials of autologous germline mitochondrial energy transfer during - in vitro fertilization at three different sites with a total of 104 patients indicated a benefit of the procedure for improving pregnancy success rates, with the birth of children conceived through the inclusion of autologous germline mitochondrial energy transfer during in vitro fertilization. However, a fourth clinical study, consisting of 57 patients, failed to show a benefit of autologous germline mitochondrial energy transfer-in vitro fertilization versus in vitro fertilization alone for improving cumulative live birth rates. Complicating this area of work further, a recent mouse study, which claimed to test the long-term safety of autologous mitochondrial supplementation during in vitro fertilization, raised concerns over the use of the procedure for reproduction. However, autologous mitochondria were not actually used for preclinical testing in this mouse study. The unwarranted fears that this new study's erroneous conclusions could cause in women who have become pregnant through the use of autologous germline mitochondrial energy transfer during-in vitro fertilization highlight the critical need for accurate reporting of preclinical work that has immediate bearing on human clinical studies.
Collapse
Affiliation(s)
- Jonathan L Tilly
- Laboratory for Aging and Infertility Research (LAIR), Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Dori C Woods
- Laboratory for Aging and Infertility Research (LAIR), Department of Biology, Northeastern University, Boston, MA, USA
| |
Collapse
|
32
|
Bothun AM, Woods DC. Inherent mitochondrial activity influences specification of the germ line in pluripotent stem cells. Heliyon 2020; 6:e03651. [PMID: 32258510 PMCID: PMC7118317 DOI: 10.1016/j.heliyon.2020.e03651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/12/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Herein we investigated whether inherent differences in mitochondrial activity in mouse pluripotent cells could be used to identify populations with an intrinsic ability to differentiate into primordial germ cells (PGCs). Notably, we determined that stem cells sorted based on differences in mitochondrial membrane activity exhibited altered germline differentiation capacity, with low-mitochondrial membrane potential associated with an increase in PGC-like cells. This specification was not further enhanced by hypoxia. We additionally noted differences between these populations in metabolism, transcriptome, and cell-cycle. These data contribute to a growing body of work demonstrating that pluripotent cells exhibit a large range of mitochondrial activity, which impacts cellular function and differentiation potential. Furthermore, pluripotent cells possess a subpopulation of cells with an improved ability to differentiate into the germ lineage that can be identified based on differences in mitochondrial membrane potential.
Collapse
Affiliation(s)
- Alisha M Bothun
- Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University, Boston, MA 02115, USA
| | - Dori C Woods
- Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
33
|
Okkelman IA, Neto N, Papkovsky DB, Monaghan MG, Dmitriev RI. A deeper understanding of intestinal organoid metabolism revealed by combining fluorescence lifetime imaging microscopy (FLIM) and extracellular flux analyses. Redox Biol 2020; 30:101420. [PMID: 31935648 PMCID: PMC6957829 DOI: 10.1016/j.redox.2019.101420] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/13/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Stem cells and the niche in which they reside feature a complex microenvironment with tightly regulated homeostasis, cell-cell interactions and dynamic regulation of metabolism. A significant number of organoid models has been described over the last decade, yet few methodologies can enable single cell level resolution analysis of the stem cell niche metabolic demands, in real-time and without perturbing integrity. Here, we studied the redox metabolism of Lgr5-GFP intestinal organoids by two emerging microscopy approaches based on luminescence lifetime measurement - fluorescence-based FLIM for NAD(P)H, and phosphorescence-based PLIM for real-time oxygenation. We found that exposure of stem (Lgr5-GFP) and differentiated (no GFP) cells to high and low glucose concentrations resulted in measurable shifts in oxygenation and redox status. NAD(P)H-FLIM and O2-PLIM both indicated that at high 'basal' glucose conditions, Lgr5-GFP cells had lower activity of oxidative phosphorylation when compared with cells lacking Lgr5. However, when exposed to low (0.5 mM) glucose, stem cells utilized oxidative metabolism more dynamically than non-stem cells. The high heterogeneity of complex 3D architecture and energy production pathways of Lgr5-GFP organoids were also confirmed by the extracellular flux (XF) analysis. Our data reveals that combined analysis of NAD(P)H-FLIM and organoid oxygenation by PLIM represents promising approach for studying stem cell niche metabolism in a live readout.
Collapse
Affiliation(s)
- Irina A Okkelman
- Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, T12 K8AF, Ireland
| | - Nuno Neto
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Ireland
| | - Dmitri B Papkovsky
- Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, T12 K8AF, Ireland
| | - Michael G Monaghan
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Ireland; Advanced Materials and BioEngineering Research (AMBER) Centre at Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Ruslan I Dmitriev
- Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, T12 K8AF, Ireland; Institute for Regenerative Medicine, I.M. Sechenov First Moscow State University, Moscow, Russian Federation.
| |
Collapse
|