1
|
Edwards M, Brockmann L. Microbiota-dependent modulation of intestinal anti-inflammatory CD4 + T cell responses. Semin Immunopathol 2025; 47:23. [PMID: 40167791 DOI: 10.1007/s00281-025-01049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/08/2025] [Indexed: 04/02/2025]
Abstract
Barrier organs such as the gastrointestinal tract, lungs, and skin are colonized by diverse microbial strains, including bacteria, viruses, and fungi. These microorganisms, collectively known as the commensal microbiota, play critical roles in maintaining health by defending against pathogens, metabolizing nutrients, and providing essential metabolites. In the gut, commensal-derived antigens are frequently sensed by the intestinal immune system. Maintaining tolerance toward these beneficial microbial species is crucial, as failure to do so can lead to chronic inflammatory conditions like inflammatory bowel disease (IBD) and can even affect systemic immune or metabolic health. The immune system carefully regulates responses to commensals through various mechanisms, including the induction of anti-inflammatory CD4⁺ T cell responses. Foxp3⁺ regulatory T cells (Foxp3+ Tregs) and Type 1 regulatory T cells (Tr1) play a major role in promoting tolerance, as both cell types can produce the anti-inflammatory cytokine IL-10. In addition to these regulatory T cells, effector T cell subsets, such as Th17 cells, also adopt anti-inflammatory functions within the intestine in response to the microbiota. This process of anti-inflammatory CD4+ T cell induction is heavily influenced by the microbiota and their metabolites. Microbial metabolites affect intestinal epithelial cells, promoting the secretion of anti-inflammatory mediators that create a tolerogenic environment. They also modulate intestinal dendritic cells (DCs) and macrophages, inducing a tolerogenic state, and can interact directly with T cells to drive anti-inflammatory CD4⁺ T cell functionality. The disrupted balance of these signals may result in chronic inflammation, with broader implications for systemic health. In this review, we highlight the intricate interplays between commensal microorganisms and the immune system in the gut. We discuss how the microbiota influences the differentiation of commensal-specific anti-inflammatory CD4⁺ T cells, such as Foxp3⁺ Tregs, Tr1 cells, and Th17 cells, and explore the mechanisms through which microbial metabolites modulate these processes. We further discuss the innate signals that prime and commit these cells to an anti-inflammatory fate.
Collapse
Affiliation(s)
- Madeline Edwards
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Leonie Brockmann
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, 108-8345, Japan.
| |
Collapse
|
2
|
Dunyach-Remy C, Pouget C, Pers YM, Gaujoux-Viala C, Demattei C, Salipante F, Grenga L, Armengaud J, Lavigne JP, Jorgensen C. Participation of gut microbiota and bacterial translocation in chronic systemic inflammation in recently diagnosed rheumatoid arthritis patients. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100366. [PMID: 40123592 PMCID: PMC11928969 DOI: 10.1016/j.crmicr.2025.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
The objective of this study was to investigate the link between gut microbiota (GM) dysbiosis, gut inflammation, and bacterial translocation (BT) in recently diagnosed rheumatoid arthritis (RA). This case-control, observational study prospectively recruited recently diagnosed (<12 months) RA patients and age-matched healthy controls (HC) from two French hospitals between July 2014 to March 2018. The primary objective was to investigate GM composition in each group using 16S rRNA sequencing and metaproteomics approaches. Three plasmatic BT markers (sCD14, LPS-binding protein, and number of 16S rRNA gene copies) and one intestinal permeability marker (I-FABP) were quantified in blood samples. Twenty-five were included in each group, and 50 stools and blood samples were analyzed. 16S rRNA gene analysis showed an decrease in Coprococcus in RA patients after Body Mass Index and HLA status. Circulating bacterial DNA (number of copies of the 16S rRNA gene) and plasmatic I-FABP were higher in RA patients compared to HCs (p < 0.01), indicating increased BT and intestinal permeability in these patients. Metaproteomics from stool samples highlighted an increased host humoral immune response in RA, with elevated levels of inflammatory proteins (azurocidin, cathepsin G, neutrophil defensing 1). Gut inflammation may contribute to increased intestinal permeability, leading to BT into the systemic circulation and thus chronic inflammation.
Collapse
Affiliation(s)
- Catherine Dunyach-Remy
- Bacterial Virulence and Chronic Infections, INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Nîmes, France
| | - Cassandra Pouget
- Bacterial Virulence and Chronic Infections, INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Nîmes, France
| | - Yves-Marie Pers
- Department of Rheumatology, Stem cells, Cellular plasticity, Regenerative medicine and Immunotherapies, IRMB, INSERM UMR1183, University of Montpellier & University Hospital of Montpellier, Montpellier, France
| | - Cécile Gaujoux-Viala
- Desbrest Institute of Epidemiology and Public Health, University of Montpellier, INSERM, Department of Rheumatology, CHU Nîmes, Montpellier, France
| | - Christophe Demattei
- Department of Biostatistics, Epidemiology, Public Health and Innovation in Methodology (BESPIM), CHU Nîmes, Univ Montpellier, Nîmes, France
| | - Florian Salipante
- Department of Biostatistics, Epidemiology, Public Health and Innovation in Methodology (BESPIM), CHU Nîmes, Univ Montpellier, Nîmes, France
| | - Lucia Grenga
- Department of Medicines and Technologies for Health, Atomic Energy and Alternative Energies Commission (CEA), Paris-Saclay University, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Department of Medicines and Technologies for Health, Atomic Energy and Alternative Energies Commission (CEA), Paris-Saclay University, Bagnols-sur-Cèze, France
| | - Jean-Philippe Lavigne
- Bacterial Virulence and Chronic Infections, INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Nîmes, France
| | - Christian Jorgensen
- Department of Rheumatology, Stem cells, Cellular plasticity, Regenerative medicine and Immunotherapies, IRMB, INSERM UMR1183, University of Montpellier & University Hospital of Montpellier, Montpellier, France
| |
Collapse
|
3
|
Borrego A, Koury Cabrera WH, Souza AT, Eto SF, de Oliveira SL, Rodrigues J, Jensen JR. Microbiota transfer early after birth modulates genetic susceptibility to chronic arthritis in mice. Microbes Infect 2025; 27:105411. [PMID: 39216617 DOI: 10.1016/j.micinf.2024.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Genetics is central to the susceptibility or resistance to autoimmunity, and mounting evidence indicates that the intestinal microbiota also plays an essential role. In murine arthritis models, short-chain fat acid supplementation reduces disease severity by modulating tryptophan-metabolizing bacteria. Common microbiota transfer methods modulate arthritis severity, however, they are not practical for chronic models such as pristane-induced arthritis (PIA). PIA-resistant (HIII) and PIA-susceptible (LIII) mice harbor diverse intestinal microbiomes, which might be implicated in their divergent susceptibility. To investigate this hypothesis, we used cross-fostering to stably transfer the microbiota. In this study, we show that extreme susceptibility to arthritis can be modulated by early microbiota transfer, with long-lasting effects. HIII and LIII pups were cross-fostered and injected with pristane after weaning. PIA severity in cross-fostered LIII mice was significantly reduced in the chronic phase. Metagenomic analyses showed that HIII and LIII microbiomes were partly shifted by cross-fostering. Microbial groups whose abundance was associated with either HIII or LIII mice presented similar composition in cross-fostered mice of the opposite strains, suggesting a role in PIA susceptibility. Identification of bacterial groups that modulate chronic arthritis will contribute novel insights on the pathogenesis of human rheumatoid arthritis and targets for replication and functional studies.
Collapse
Affiliation(s)
- Andrea Borrego
- Laboratório de Imunogenética, Instituto Butantan, São Paulo, 05503-900, Brazil
| | | | - Alanis Tiozzo Souza
- Laboratório de Imunogenética, Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Silas Fernandes Eto
- Laboratório de Desenvolvimento e Inovação, Instituto Butantan, São Paulo, 05503-900, Brazil; Center of Excellence in New Target Discovery, Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Silvio Luis de Oliveira
- Setor de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, 18618-970, Brazil
| | - Josias Rodrigues
- Lab. de Microbioma e Genômica Bacteriana (LMGB), Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, 18618-970, Brazil
| | - José Ricardo Jensen
- Laboratório de Imunogenética, Instituto Butantan, São Paulo, 05503-900, Brazil.
| |
Collapse
|
4
|
Druszczynska M, Sadowska B, Kulesza J, Gąsienica-Gliwa N, Kulesza E, Fol M. The Intriguing Connection Between the Gut and Lung Microbiomes. Pathogens 2024; 13:1005. [PMID: 39599558 PMCID: PMC11597816 DOI: 10.3390/pathogens13111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Recent advances in microbiome research have uncovered a dynamic and complex connection between the gut and lungs, known as the gut-lung axis. This bidirectional communication network plays a critical role in modulating immune responses and maintaining respiratory health. Mediated by immune interactions, metabolic byproducts, and microbial communities in both organs, this axis demonstrates how gut-derived signals, such as metabolites and immune modulators, can reach the lung tissue via systemic circulation, influencing respiratory function and disease susceptibility. To explore the implications of this connection, we conducted a systematic review of studies published between 2001 and 2024 (with as much as nearly 60% covering the period 2020-2024), using keywords such as "gut-lung axis", "microbiome", "respiratory disease", and "immune signaling". Studies were selected based on their relevance to gut-lung communication mechanisms, the impact of dysbiosis, and the role of the gut microbiota in respiratory diseases. This review provides a comprehensive overview of the gut-lung microbiome axis, emphasizing its importance in regulating inflammatory and immune responses linked to respiratory health. Understanding this intricate pathway opens new avenues for microbiota-targeted therapeutic strategies, which could offer promising interventions for respiratory diseases like asthma, chronic obstructive pulmonary disease, and even infections. The insights gained through this research underscore the potential of the gut-lung axis as a novel target for preventative and therapeutic approaches in respiratory medicine, with implications for enhancing both gut and lung health.
Collapse
Affiliation(s)
- Magdalena Druszczynska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Beata Sadowska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Jakub Kulesza
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, 91-347 Lodz, Poland;
| | - Nikodem Gąsienica-Gliwa
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Ewelina Kulesza
- Department of Rheumatology and Internal Diseases, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Marek Fol
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| |
Collapse
|
5
|
Munoz-Pinto MF, Candeias E, Melo-Marques I, Esteves AR, Maranha A, Magalhães JD, Carneiro DR, Sant'Anna M, Pereira-Santos AR, Abreu AE, Nunes-Costa D, Alarico S, Tiago I, Morgadinho A, Lemos J, Figueiredo PN, Januário C, Empadinhas N, Cardoso SM. Gut-first Parkinson's disease is encoded by gut dysbiome. Mol Neurodegener 2024; 19:78. [PMID: 39449004 PMCID: PMC11515425 DOI: 10.1186/s13024-024-00766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND In Parkinson's patients, intestinal dysbiosis can occur years before clinical diagnosis, implicating the gut and its microbiota in the disease. Recent evidence suggests the gut microbiota may trigger body-first Parkinson Disease (PD), yet the underlying mechanisms remain unclear. This study aims to elucidate how a dysbiotic microbiome through intestinal immune alterations triggers PD-related neurodegeneration. METHODS To determine the impact of gut dysbiosis on the development and progression of PD pathology, wild-type male C57BL/6 mice were transplanted with fecal material from PD patients and age-matched healthy donors to challenge the gut-immune-brain axis. RESULTS This study demonstrates that patient-derived intestinal microbiota caused midbrain tyrosine hydroxylase positive (TH +) cell loss and motor dysfunction. Ileum-associated microbiota remodeling correlates with a decrease in Th17 homeostatic cells. This event led to an increase in gut inflammation and intestinal barrier disruption. In this regard, we found a decrease in CD4 + cells and an increase in pro-inflammatory cytokines in the blood of PD transplanted mice that could contribute to an increase in the permeabilization of the blood-brain-barrier, observed by an increase in mesencephalic Ig-G-positive microvascular leaks and by an increase of mesencephalic IL-17 levels, compatible with systemic inflammation. Furthermore, alpha-synuclein aggregates can spread caudo-rostrally, causing fragmentation of neuronal mitochondria. This mitochondrial damage subsequently activates innate immune responses in neurons and triggers microglial activation. CONCLUSIONS We propose that the dysbiotic gut microbiome (dysbiome) in PD can disrupt a healthy microbiome and Th17 homeostatic immunity in the ileum mucosa, leading to a cascade effect that propagates to the brain, ultimately contributing to PD pathophysiology. Our landmark study has successfully identified new peripheral biomarkers that could be used to develop highly effective strategies to prevent the progression of PD into the brain.
Collapse
Affiliation(s)
- Mário F Munoz-Pinto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Present affiliation: Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Emanuel Candeias
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Inês Melo-Marques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - A Raquel Esteves
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Maranha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - João D Magalhães
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Diogo Reis Carneiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Neurology, CHUC - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Mariana Sant'Anna
- Department of Gastroenterogy, CHUC - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - A Raquel Pereira-Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - António E Abreu
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Daniela Nunes-Costa
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Susana Alarico
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Igor Tiago
- Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Ana Morgadinho
- Department of Neurology, CHUC - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - João Lemos
- Department of Neurology, CHUC - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro N Figueiredo
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Gastroenterogy, CHUC - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Cristina Januário
- Department of Neurology, CHUC - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - Sandra Morais Cardoso
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
6
|
Kumar A, Sun R, Habib B, Bencivenga-Barry NA, Ivanov II, Tamblyn R, Goodman AL. Impacts of Medications on Microbiome-mediated Protection against Enteric Pathogens. RESEARCH SQUARE 2024:rs.3.rs-5199936. [PMID: 39483881 PMCID: PMC11527249 DOI: 10.21203/rs.3.rs-5199936/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The majority of people in the U.S. manage health through at least one prescription drug. Drugs classified as non-antibiotics can adversely affect the gut microbiome and disrupt intestinal homeostasis. Here, we identified medications associated with an increased risk of GI infections across a population cohort of more than 1 million individuals monitored over 15 years. Notably, the cardiac glycoside digoxin and other drugs identified in this epidemiological study are sufficient to alter microbiome composition and risk of Salmonella enterica subsp. Typhimurium (S. Tm) infection in mice. The impact of digoxin treatment on S. Tm infection is transmissible via the microbiome, and characterization of this interaction highlights a digoxin-responsive β-defensin that alters microbiome composition and consequent immune surveillance of the invading pathogen. Combining epidemiological and experimental approaches thus provides an opportunity to uncover drug-host-microbiome-pathogen interactions that increase infection risk in humans.
Collapse
Affiliation(s)
- Aman Kumar
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Ruizheng Sun
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bettina Habib
- Clinical and Health Informatics Research Group, McGill University, Montreal, Canada
| | - Natasha A. Bencivenga-Barry
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Ivaylo I. Ivanov
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Diseases Research Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Robyn Tamblyn
- Clinical and Health Informatics Research Group, McGill University, Montreal, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
- Department of Medicine, McGill University Health Center, Montreal, Canada
| | - Andrew L. Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
Okolie MC, Edo GI, Ainyanbhor IE, Jikah AN, Akpoghelie PO, Yousif E, Zainulabdeen K, Isoje EF, Igbuku UA, Orogu JO, Owheruo JO, Essaghah AEA, Umar H. Gut microbiota and immunity in health and diseases: a review. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2024. [DOI: 10.1007/s43538-024-00355-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/24/2024] [Indexed: 01/03/2025]
|
8
|
Ngo VL, Wang Y, Wang Y, Shi Z, Britton R, Zou J, Ramani S, Jiang B, Gewirtz AT. Select Gut Microbiota Impede Rotavirus Vaccine Efficacy. Cell Mol Gastroenterol Hepatol 2024; 18:101393. [PMID: 39179176 PMCID: PMC11462264 DOI: 10.1016/j.jcmgh.2024.101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND & AIMS The protection provided by rotavirus (RV) vaccines is highly heterogeneous among individuals. We hypothesized that microbiota composition might influence RV vaccine efficacy. METHODS First, we examined the potential of segmented filamentous bacteria (SFB) colonization to influence RV vaccine efficacy in mice. Next, we probed the influence of human microbiomes on RV vaccination via administering mice fecal microbial transplants (FMTs) from children with robust or minimal RV vaccine responsiveness. Post-FMT, mice were subjected to RV vaccination followed by RV challenge. RESULTS SFB colonization induced a phenotype that was reminiscent of RV vaccine failure (ie, failure to generate RV antigens and, consequently, anti-RV antibodies following RV vaccination resulting in proneness to RV challenge after SFB levels diminished). FMTs from children to mice recapitulated donor vaccination phenotype. Specifically, mice receiving FMTs from high-responsive vaccinees copiously shed RV antigens and robustly generated anti-RV antibodies following RV vaccination. Concomitantly, such mice were impervious to RV challenge. In contrast, mice receiving FMTs from children who had not responded to RV vaccination exhibited only modest responses to RV vaccination and, concomitantly, remained prone to RV challenge. Microbiome analysis ruled out a role for SFB but suggested involvement of Clostridium perfringens. Oral administration of cultured C. perfringens to gnotobiotic mice partially recapitulated the RV vaccine non-responder phenotype. Analysis of published microbiome data found C. perfringens abundance in children modestly associated with RV vaccine failure. CONCLUSION Microbiota composition influences RV vaccine efficacy with C. perfringens being one, perhaps of many, potential contributing taxa.
Collapse
Affiliation(s)
- Vu L Ngo
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Yanling Wang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Yadong Wang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Zhenda Shi
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia; Cherokee Nation Operational Solutions, Cherokee Federal, Atlanta, Georgia and Tulsa, Oklahoma; Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Jun Zou
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | | | - Baoming Jiang
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Andrew T Gewirtz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
9
|
Akhlaghi E, Salari E, Mansouri M, Shafiei M, Kalantar-Neyestanaki D, Aghassi H, Fasihi Harandi M. Identification and comparison of intestinal microbial diversity in patients at different stages of hepatic cystic echinococcosis. Sci Rep 2024; 14:18912. [PMID: 39143364 PMCID: PMC11324937 DOI: 10.1038/s41598-024-70005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024] Open
Abstract
There is a significant focus on the role of the host microbiome in different outcomes of human parasitic diseases, including cystic echinococcosis (CE). This study was conducted to identify the intestinal microbiome of patients with CE at different stages of hydatid cyst compared to healthy individuals. Stool samples from CE patients as well as healthy individuals were collected. The samples were divided into three groups representing various stages of hepatic hydatid cyst: active (CE1 and CE2), transitional (CE3), and inactive (CE4 and CE5). One family member from each group was selected to serve as a control. The gut microbiome of patients with different stages of hydatid cysts was investigated using metagenomic next-generation amplicon sequencing of the V3-V4 region of the 16S rRNA gene. In this study, we identified 4862 Operational Taxonomic Units from three stages of hydatid cysts in CE patients and healthy individuals with a combined frequency of 2,955,291. The most abundant genera observed in all the subjects were Blautia, Agathobacter, Faecalibacterium, Bacteroides, Bifidobacterium, and Prevotella. The highest microbial frequency was related to inactive forms of CE, and the lowest frequency was observed in the group with active forms. However, the lowest OTU diversity was found in patients with inactive cysts compared with those with active and transitional cyst stages. The genus Agatobacter had the highest OTU frequency. Pseudomonas, Gemella, and Ligilactobacillus showed significant differences among the patients with different stages of hydatid cysts. Additionally, Anaerostipes and Candidatus showed significantly different reads in CE patients compared to healthy individuals. Our findings indicate that several bacterial genera can play a role in the fate of hydatid cysts in patients at different stages of the disease.
Collapse
Affiliation(s)
- Elham Akhlaghi
- Research Center for Hydatid Disease in Iran, Department of Medical Parasitology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Salari
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Shafiei
- Research Center for Hydatid Disease in Iran, Department of Surgery, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Aghassi
- Research Center for Hydatid Disease in Iran, Department of Medical Parasitology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Department of Medical Parasitology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
10
|
Ngo VL, Wang Y, Shi Z, Ramani S, Jiang B, T Gewirtz A. Gut-resident C. perfringens impedes rotavirus vaccine efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599343. [PMID: 38948828 PMCID: PMC11212864 DOI: 10.1101/2024.06.17.599343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background & Aims The extent to which live orally-administered rotavirus (RV) vaccines elicit protective immunity is highly heterogeneous. We hypothesized microbiota composition might influence vaccine efficacy. Methods We tested this concept by examining extent to which colonizing mice with segmented filamentous bacteria (SFB) influenced RV vaccine efficacy.Influence of human microbiomes on RV vaccination was studied via administering germ-free mice fecal microbial transplants (FMT) from children with robust or minimal RV vaccine responsiveness. Post-FMT, mice were subjected to vaccination and challenge doses of RV. Results SFB administration resulted in a phenotype reminiscent of RV vaccine failure, i.e. minimal generation of RV antigens and, consequently, lack of anti-RV antibodies resulting in proneness to RV challenge once SFB levels diminished. Transplant of microbiomes from children to mice recapitulated donor vaccination phenotype. Specifically, mice receiving FMT from high-responding children exhibited high levels of fecal RV antigen shedding and RV antibodies in response to RV vaccination and, concomitantly, were impervious to RV challenge. In contrast, mice receiving FMT from children who had not responded to RV vaccination exhibited only modest responses to RV challenge and, accordingly, remained prone to RV challenge. Microbiome analysis ruled out a role for SFB but suggested that RV vaccine failure might involve Clostridium perfringens . Oral administration of cultured C. perfringens to gnotobiotic mice partially recapitulated the RV vaccine non-responder phenotype. Analysis of previously-reported microbiome data found C. perfringens abundance in children associated with RV vaccine failure. Conclusion Microbiota composition influences RV vaccine virus infection and, consequently, protective immunity. C. perfringens may be one, perhaps of many, bacterial species harbored in the intestine of RV-vaccine non-responders that influences RV vaccine outcomes.
Collapse
|
11
|
Ngo VL, Lieber CM, Kang HJ, Sakamoto K, Kuczma M, Plemper RK, Gewirtz AT. Intestinal microbiota programming of alveolar macrophages influences severity of respiratory viral infection. Cell Host Microbe 2024; 32:335-348.e8. [PMID: 38295788 PMCID: PMC10942762 DOI: 10.1016/j.chom.2024.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AMs). In SFB-negative mice, AMs were quickly depleted as RVI progressed. In contrast, AMs from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AMs from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AMs into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity.
Collapse
Affiliation(s)
- Vu L Ngo
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Carolin M Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia College of Veterinary Science, Athens, GA 30602, USA
| | - Michal Kuczma
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Richard K Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA.
| | - Andrew T Gewirtz
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA.
| |
Collapse
|
12
|
Imdad S, So B, Jang J, Park J, Lee SJ, Kim JH, Kang C. Temporal variations in the gut microbial diversity in response to high-fat diet and exercise. Sci Rep 2024; 14:3282. [PMID: 38332014 PMCID: PMC10853223 DOI: 10.1038/s41598-024-52852-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
High-fat diet-induced obesity is a pandemic caused by an inactive lifestyle and increased consumption of Western diets and is a major risk factor for diabetes and cardiovascular diseases. In contrast, exercise can positively influence gut microbial diversity and is linked to a decreased inflammatory state. To understand the gut microbial variations associated with exercise and high-fat diet over time, we conducted a longitudinal study to examine the effect of covariates on gut microbial diversity and composition. Young mice were divided into four groups: Chow-diet (CHD), high-fat diet (HFD), high-fat diet + exercise (HFX), and exercise only (EXE) and underwent experimental intervention for 12 weeks. Fecal samples at week 0 and 12 were collected for DNA extraction, followed by 16S library preparation and sequencing. Data were analyzed using QIIME 2, R and MicrobiomeAnalyst. The Bacteroidetes-to-Firmicutes ratio decreased fivefold in the HFD and HFX groups compared to that in the CHD and EXE groups and increased in the EXE group over time. Alpha diversity was significantly increased in the EXE group longitudinally (p < 0.02), whereas diversity (Shannon, Faith's PD, and Fisher) and richness (ACE) was significantly reduced in the HFD (p < 0.005) and HFX (p < 0.03) groups over time. Beta diversity, based on the Jaccard, Bray-Curtis, and unweighted UniFrac distance metrics, was significant among the groups. Prevotella, Paraprevotella, Candidatus arthromitus, Lactobacillus salivarius, L. reuteri, Roseburia, Bacteroides uniformis, Sutterella, and Corynebacterium were differentially abundant in the chow-diet groups (CHD and EXE). Exercise significantly reduced the proportion of taxa characteristic of a high-fat diet, including Butyricimonas, Ruminococcus gnavus, and Mucispirillum schaedleri. Diet, age, and exercise significantly contributed to explaining the bacterial community structure and diversity in the gut microbiota. Modulating the gut microbiota and maintaining its stability can lead to targeted microbiome therapies to manage chronic and recurrent diseases and infections.
Collapse
Affiliation(s)
- Saba Imdad
- Molecular Metabolism in Health and Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon, 22212, South Korea
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, 28503, South Korea
| | - Byunghun So
- Molecular Metabolism in Health and Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon, 22212, South Korea
| | - Junho Jang
- Molecular Metabolism in Health and Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon, 22212, South Korea
| | - Jinhan Park
- Molecular Metabolism in Health and Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon, 22212, South Korea
| | - Sam-Jun Lee
- Department of Sport Rehabilitation, College of Health, Welfare, and Education, Tong Myong University, Busan, 48520, South Korea
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, 28503, South Korea.
| | - Chounghun Kang
- Molecular Metabolism in Health and Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon, 22212, South Korea.
- Department of Physical Education, College of Education, Inha University, Incheon, 22212, South Korea.
| |
Collapse
|
13
|
Ngo VL, Lieber CM, Kang HJ, Sakamoto K, Kuczma M, Plemper RK, Gewirtz AT. Intestinal microbiota programming of alveolar macrophages influences severity of respiratory viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558814. [PMID: 37790571 PMCID: PMC10542499 DOI: 10.1101/2023.09.21.558814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and SARS-CoV-2, was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AM). In SFB-negative mice, AM were quickly depleted as RVI progressed. In contrast, AM from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AM from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AM into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity. One sentence summary Intestinal segmented filamentous bacteria reprogram alveolar macrophages promoting nonphlogistic defense against respiratory viruses.
Collapse
|
14
|
Grion BAR, Fonseca PLC, Kato RB, García GJY, Vaz ABM, Jiménez BN, Dambolenea AL, Garcia-Etxebarria K, Brenig B, Azevedo V, Bujanda L, Banales JM, Góes-Neto A. Identification of taxonomic changes in the fecal bacteriome associated with colorectal polyps and cancer: potential biomarkers for early diagnosis. Front Microbiol 2024; 14:1292490. [PMID: 38293554 PMCID: PMC10827328 DOI: 10.3389/fmicb.2023.1292490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Colorectal cancer (CRC) commonly arises in individuals with premalignant colon lesions known as polyps, with both conditions being influenced by gut microbiota. Host-related factors and inherent characteristics of polyps and tumors may contribute to microbiome variability, potentially acting as confounding factors in the discovery of taxonomic biomarkers for both conditions. In this study we employed shotgun metagenomics to analyze the taxonomic diversity of bacteria present in fecal samples of 90 clinical subjects (comprising 30 CRC patients, 30 with polyps and 30 controls). Our findings revealed a decrease in taxonomic richness among individuals with polyps and CRC, with significant dissimilarities observed among the study groups. We identified significant alterations in the abundance of specific taxa associated with polyps (Streptococcaceae, Lachnoclostridium, and Ralstonia) and CRC (Lactobacillales, Clostridiaceae, Desulfovibrio, SFB, Ruminococcus, and Faecalibacterium). Clostridiaceae exhibited significantly lower abundance in the early stages of CRC. Additionally, our study revealed a positive co-occurrence among underrepresented genera in CRC, while demonstrating a negative co-occurrence between Faecalibacterium and Desulfovibrio, suggesting potential antagonistic relationships. Moreover, we observed variations in taxonomic richness and/or abundance within the polyp and CRC bacteriome linked to polyp size, tumor stage, dyslipidemia, diabetes with metformin use, sex, age, and family history of CRC. These findings provide potential new biomarkers to enhance early CRC diagnosis while also demonstrating how intrinsic host factors contribute to establishing a heterogeneous microbiome in patients with CRC and polyps.
Collapse
Affiliation(s)
- Beatriz Alessandra Rudi Grion
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Paula Luize Camargos Fonseca
- Integrative Biology Laboratory, Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Aline Bruna Martins Vaz
- Oswaldo Cruz Foundation (Fiocruz-MG), Minas Gerais, Brazil
- Medical School, Universidade José do Rosário Vellano (UNIFENAS), Belo Horizonte, Brazil
| | - Beatriz Nafría Jiménez
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Ainhoa Lapitz Dambolenea
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Koldo Garcia-Etxebarria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, Göttingen, Germany
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, Ikerbasque, San Sebastian, Spain
- CIBERehd, Madrid, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Aristóteles Góes-Neto
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Graduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
15
|
McKnight CA, Diehl LJ, Bergin IL. Digestive Tract and Salivary Glands. HASCHEK AND ROUSSEAUX' S HANDBOOK OF TOXICOLOGIC PATHOLOGY 2024:1-148. [DOI: 10.1016/b978-0-12-821046-8.00001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
16
|
Wang Q, Lei Y, Wang J, Xu X, Wang L, Zhou H, Guo Z. Expert consensus on the relevance of intestinal microecology and hematopoietic stem cell transplantation. Clin Transplant 2024; 38:e15186. [PMID: 37933619 DOI: 10.1111/ctr.15186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) affects gut microbial homeostasis, and intestinal microecology (IM) may also affect the prognosis of HSCT through multiple mechanisms. In order to further understand the key issues of the correlation between intestinal microecology and HSCT and to learn and absorb new research progress, the Tumor and Microecology Committee of China Anti-Cancer Association organized relevant experts to discuss together and propose the "Expert Consensus on the Relevance of Intestinal Microecology and Hematopoietic Stem Cell Transplantation" for clinicians' reference in their practical work. It is a reference for clinicians in practice and provides a basis for further in-depth research in the field of tumor and microecology.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Department of Hematology, Hongkong University Shenzhen Hospital, Shenzhen, China
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
17
|
Choi S, Kim EB. A comprehensive longitudinal study of gut microbiota dynamic changes in laying hens at four growth stages prior to egg production. Anim Biosci 2023; 36:1727-1737. [PMID: 37871901 PMCID: PMC10623045 DOI: 10.5713/ab.23.0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE The poultry industry is a primary source of animal protein worldwide. The gut microbiota of poultry birds, such as chickens and ducks, is critical in maintaining their health, growth, and productivity. This study aimed to identify longitudinal changes in the gut microbiota of laying hens from birth to the pre-laying stage. METHODS From a total of 80 Hy-Line Brown laying hens, birds were selected based on weight at equal intervals to collect feces (n = 20 per growth) and ileal contents (n = 10 per growth) for each growth stage (days 10, 21, 58, and 101). The V4 regions of the 16S rRNA gene were amplified after extracting DNA from feces and ileal contents. Amplicon sequencing was performed using Illumina, followed by analysis. RESULTS Microbial diversity increased with growth stages, regardless of sampling sites. Microbial community analysis indicated that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla in the feces and ileal. The abundance of Lactobacillus was highest on day 10, and that of Escherichia-shigella was higher on day 21 than those at the other stages at the genus level (for the feces and ileal contents; p<0.05). Furthermore, Turicibacter was the most abundant genus after changing feed (for the feces and ileal contents; p<0.05). The fecal Ruminococcus torques and ileal Lysinibacillus were negatively correlated with the body weights of chickens (p<0.05). CONCLUSION The gut microbiota of laying hens changes during the four growth stages, and interactions between microbiota and feed may be present. Our findings provide valuable data for understanding the gut microbiota of laying hens at various growth stages and future applied studies.
Collapse
Affiliation(s)
- Seojin Choi
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341,
Korea
| | - Eun Bae Kim
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341,
Korea
- Institute of Animal Life Science, Kangwon National University, Chuncheon, 24341,
Korea
| |
Collapse
|
18
|
Metwaly A, Jovic J, Waldschmitt N, Khaloian S, Heimes H, Häcker D, Ahmed M, Hammoudi N, Le Bourhis L, Mayorgas A, Siebert K, Basic M, Schwerd T, Allez M, Panes J, Salas A, Bleich A, Zeissig S, Schnupf P, Cominelli F, Haller D. Diet prevents the expansion of segmented filamentous bacteria and ileo-colonic inflammation in a model of Crohn's disease. MICROBIOME 2023; 11:66. [PMID: 37004103 PMCID: PMC10064692 DOI: 10.1186/s40168-023-01508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/25/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Crohn's disease (CD) is associated with changes in the microbiota, and murine models of CD-like ileo-colonic inflammation depend on the presence of microbial triggers. Increased abundance of unknown Clostridiales and the microscopic detection of filamentous structures close to the epithelium of Tnf ΔARE mice, a mouse model of CD-like ileitis pointed towards segmented filamentous bacteria (SFB), a commensal mucosal adherent bacterium involved in ileal inflammation. RESULTS We show that the abundance of SFB strongly correlates with the severity of CD-like ileal inflammation in two mouse models of ileal inflammation, including Tnf ΔARE and SAMP/Yit mice. SFB mono-colonization of germ-free Tnf ΔARE mice confirmed the causal link and resulted in severe ileo-colonic inflammation, characterized by elevated tissue levels of Tnf and Il-17A, neutrophil infiltration and loss of Paneth and goblet cell function. Co-colonization of SFB in human-microbiota associated Tnf ΔARE mice confirmed that SFB presence is indispensable for disease development. Screening of 468 ileal and colonic mucosal biopsies from adult and pediatric IBD patients, using previously published and newly designed human SFB-specific primer sets, showed no presence of SFB in human tissue samples, suggesting a species-specific functionality of the pathobiont. Simulating the human relevant therapeutic effect of exclusive enteral nutrition (EEN), EEN-like purified diet antagonized SFB colonization and prevented disease development in Tnf ΔARE mice, providing functional evidence for the protective mechanism of diet in modulating microbiota-dependent inflammation in IBD. CONCLUSIONS We identified a novel pathogenic role of SFB in driving severe CD-like ileo-colonic inflammation characterized by loss of Paneth and goblet cell functions in Tnf ΔARE mice. A purified diet antagonized SFB colonization and prevented disease development in Tnf ΔARE mice in contrast to a fiber-containing chow diet, clearly demonstrating the important role of diet in modulating a novel IBD-relevant pathobiont and supporting a direct link between diet and microbial communities in mediating protective functions. Video Abstract.
Collapse
Affiliation(s)
- Amira Metwaly
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Jelena Jovic
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Nadine Waldschmitt
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Sevana Khaloian
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Helena Heimes
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Deborah Häcker
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Mohamed Ahmed
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Nassim Hammoudi
- APHP, Hôpital Saint Louis, Department of Gastroenterology, INSERM UMRS 1160, Paris Diderot, Sorbonne Paris-Cité University, Paris, France
- Université Paris Cité, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Lionel Le Bourhis
- Université Paris Cité, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Aida Mayorgas
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona CSIC, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Kolja Siebert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Marijana Basic
- Hannover Medical School, Institute for Laboratory Animal Science, Hannover, Germany
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Matthieu Allez
- APHP, Hôpital Saint Louis, Department of Gastroenterology, INSERM UMRS 1160, Paris Diderot, Sorbonne Paris-Cité University, Paris, France
- Université Paris Cité, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Julian Panes
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona CSIC, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Azucena Salas
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona CSIC, IDIBAPS, CIBERehd, Barcelona, Spain
| | - André Bleich
- Hannover Medical School, Institute for Laboratory Animal Science, Hannover, Germany
| | - Sebastian Zeissig
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Pamela Schnupf
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany.
- ZIEL-Institute for Food and Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
19
|
Ratiner K, Fachler-Sharp T, Elinav E. Small Intestinal Microbiota Oscillations, Host Effects and Regulation-A Zoom into Three Key Effector Molecules. BIOLOGY 2023; 12:142. [PMID: 36671834 PMCID: PMC9855434 DOI: 10.3390/biology12010142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
The gut microbiota features a unique diurnal rhythmicity which contributes to modulation of host physiology and homeostasis. The composition and activity of the microbiota and its secreted molecules influence the intestinal milieu and neighboring organs, such as the liver. Multiple immune-related molecules have been linked to the diurnal microbiota-host interaction, including Reg3γ, IgA, and MHCII, which are secreted or expressed on the gut surface and directly interact with intestinal bacteria. These molecules are also strongly influenced by dietary patterns, such as high-fat diet and time-restricted feeding, which are already known to modulate microbial rhythms and peripheral clocks. Herein, we use Reg3γ, IgA, and MHCII as test cases to highlight the divergent effects mediated by the diurnal activity of the gut microbiota and their downstream host effects. We further highlight current challenges and conflicts, remaining questions, and perspectives toward a holistic understanding of the microbiome's impacts on circadian human behavior.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology Department, Weisman Institute of Science, Rehovot 7610001, Israel
| | - Tahel Fachler-Sharp
- Systems Immunology Department, Weisman Institute of Science, Rehovot 7610001, Israel
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem 9987500, Israel
| | - Eran Elinav
- Systems Immunology Department, Weisman Institute of Science, Rehovot 7610001, Israel
- Microbiota & Cancer Division, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Ngo VL, Shi Z, Jiang B, Gewirtz AT. Segmented filamentous bacteria impede rotavirus infection via retinoic acid receptor-mediated signaling. Gut Microbes 2023; 15:2174407. [PMID: 36740862 PMCID: PMC9904313 DOI: 10.1080/19490976.2023.2174407] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prevention of rotavirus (RV) infection by gut-resident segmented filamentous bacteria (SFB) is an example of the influence of gut microbiota composition on enteric viral infection. Yet, the mechanism by which SFB prevents RV infection is poorly understood. A recent report that SFB colonization of germfree mice generates retinoic acid (RA) thus activating RA receptor (RAR) signaling, which protected against Citrobacter rodentium infection, prompted us to investigate whether this pathway might contribute to SFB's protection against RV infection. Colonization of conventional mice by SFB indeed increased intestinal RA levels and direct administration of RA partially mimicked the protection against RV infection conferred by SFB. Moreover, blockade of RAR signaling eliminated SFB's protection against RV infection. Blockade of RAR signaling did not impact RV infection in the absence of SFB, nor did it alter the protection against RV infection conferred by bacterial flagellin, which in contrast to SFB, is dependent upon IL-22 signaling. SFB/RA-mediated prevention of RV infection was associated with an RA-dependent increase in enterocyte migration, consistent with the notion that enhanced anoikis is the ultimate means by which SFB, IL-22, and RA impede RV infection.
Collapse
Affiliation(s)
- Vu L. Ngo
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, US
| | - Zhenda Shi
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Baoming Jiang
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Andrew T. Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, US,CONTACT Andrew T. Gewirtz Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, US
| |
Collapse
|
21
|
Aggor FE, Bertolini M, Zhou C, Taylor TC, Abbott DA, Musgrove J, Bruno VM, Hand TW, Gaffen SL. A gut-oral microbiome-driven axis controls oropharyngeal candidiasis through retinoic acid. JCI Insight 2022; 7:e160348. [PMID: 36134659 PMCID: PMC9675558 DOI: 10.1172/jci.insight.160348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 01/28/2023] Open
Abstract
A side effect of antibiotics is outgrowth of the opportunistic fungus Candida albicans in the oropharynx (oropharyngeal candidiasis, OPC). IL-17 signaling is vital for immunity to OPC, but how the microbiome impacts antifungal immunity is not well understood. Mice in standard specific pathogen-free (SPF) conditions are resistant to OPC, whereas we show that germ-free (GF) or antibiotic-treated mice are susceptible. Oral type 17 cells and IL-17-dependent responses were impaired in antibiotic-treated and GF mice. Susceptibility could be rescued in GF mice by mono-colonization with segmented filamentous bacterium (SFB), an intestine-specific constituent of the microbiota. SFB protection was accompanied by restoration of oral IL-17+CD4+ T cells and gene signatures characteristic of IL-17 signaling. Additionally, RNA-Seq revealed induction of genes in the retinoic acid (RA) and RA receptor-α (RARα) pathway. Administration of RA rescued immunity to OPC in microbiome-depleted or GF mice, while RAR inhibition caused susceptibility in immunocompetent animals. Surprisingly, immunity to OPC was independent of serum amyloids. Moreover, RAR inhibition did not alter oral type 17 cytokine levels. Thus, mono-colonization with a component of the intestinal microflora confers protection against OPC by type 17 and RA/RARα, which act in parallel to promote antifungal immunity. In principle, manipulation of the microbiome could be harnessed to maintain antifungal immunity.
Collapse
Affiliation(s)
- Felix E.Y. Aggor
- Division of Rheumatology & Clinical Immunology, Department of Medicine, and
| | - Martinna Bertolini
- Division of Rheumatology & Clinical Immunology, Department of Medicine, and
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chunsheng Zhou
- Division of Rheumatology & Clinical Immunology, Department of Medicine, and
| | - Tiffany C. Taylor
- Division of Rheumatology & Clinical Immunology, Department of Medicine, and
| | - Darryl A. Abbott
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Javonn Musgrove
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vincent M. Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Timothy W. Hand
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah L. Gaffen
- Division of Rheumatology & Clinical Immunology, Department of Medicine, and
| |
Collapse
|
22
|
Nyongesa S, Weber PM, Bernet È, Pulido F, Nieves C, Nieckarz M, Delaby M, Viehboeck T, Krause N, Rivera-Millot A, Nakamura A, Vischer NOE, vanNieuwenhze M, Brun YV, Cava F, Bulgheresi S, Veyrier FJ. Evolution of longitudinal division in multicellular bacteria of the Neisseriaceae family. Nat Commun 2022; 13:4853. [PMID: 35995772 PMCID: PMC9395523 DOI: 10.1038/s41467-022-32260-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Rod-shaped bacteria typically elongate and divide by transverse fission. However, several bacterial species can form rod-shaped cells that divide longitudinally. Here, we study the evolution of cell shape and division mode within the family Neisseriaceae, which includes Gram-negative coccoid and rod-shaped species. In particular, bacteria of the genera Alysiella, Simonsiella and Conchiformibius, which can be found in the oral cavity of mammals, are multicellular and divide longitudinally. We use comparative genomics and ultrastructural microscopy to infer that longitudinal division within Neisseriaceae evolved from a rod-shaped ancestor. In multicellular longitudinally-dividing species, neighbouring cells within multicellular filaments are attached by their lateral peptidoglycan. In these bacteria, peptidoglycan insertion does not appear concentric, i.e. from the cell periphery to its centre, but as a medial sheet guillotining each cell. Finally, we identify genes and alleles associated with multicellularity and longitudinal division, including the acquisition of amidase-encoding gene amiC2, and amino acid changes in proteins including MreB and FtsA. Introduction of amiC2 and allelic substitution of mreB in a rod-shaped species that divides by transverse fission results in shorter cells with longer septa. Our work sheds light on the evolution of multicellularity and longitudinal division in bacteria, and suggests that members of the Neisseriaceae family may be good models to study these processes due to their morphological plasticity and genetic tractability.
Collapse
Affiliation(s)
- Sammy Nyongesa
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Philipp M Weber
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- University of Vienna, Vienna Doctoral School of Ecology and Evolution, Vienna, Austria
| | - Ève Bernet
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Francisco Pulido
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Cecilia Nieves
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Marta Nieckarz
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, SE-90187, Sweden
| | - Marie Delaby
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Tobias Viehboeck
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- University of Vienna, Vienna Doctoral School of Ecology and Evolution, Vienna, Austria
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, , University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Nicole Krause
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- University of Vienna, Vienna Doctoral School of Ecology and Evolution, Vienna, Austria
| | - Alex Rivera-Millot
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Arnaldo Nakamura
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Norbert O E Vischer
- Bacterial Cell Biology & Physiology, Swammerdam Institute of Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098, Amsterdam, the Netherlands
| | | | - Yves V Brun
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, SE-90187, Sweden
| | - Silvia Bulgheresi
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Frédéric J Veyrier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
23
|
Petakh P, Kamyshna I, Nykyforuk A, Yao R, Imbery JF, Oksenych V, Korda M, Kamyshnyi A. Immunoregulatory Intestinal Microbiota and COVID-19 in Patients with Type Two Diabetes: A Double-Edged Sword. Viruses 2022; 14:477. [PMID: 35336884 PMCID: PMC8955861 DOI: 10.3390/v14030477] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
Coronavirus disease 2019, or COVID-19, is a major challenge facing scientists worldwide. Alongside the lungs, the system of organs comprising the GI tract is commonly targeted by COVID-19. The dysbiotic modulations in the intestine influence the disease severity, potentially due to the ability of the intestinal microbiota to modulate T lymphocyte functions, i.e., to suppress or activate T cell subpopulations. The interplay between the lungs and intestinal microbiota is named the gut-lung axis. One of the most usual comorbidities in COVID-19 patients is type 2 diabetes, which induces changes in intestinal microbiota, resulting in a pro-inflammatory immune response, and consequently, a more severe course of COVID-19. However, changes in the microbiota in this comorbid pathology remain unclear. Metformin is used as a medication to treat type 2 diabetes. The use of the type 2 diabetes drug metformin is a promising treatment for this comorbidity because, in addition to its hypoglycemic action, it can increase amount of intestinal bacteria that induce regulatory T cell response. This dual activity of metformin can reduce lung damage and improve the course of the COVID-19 disease.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine; (P.P.); (A.N.)
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, 46001 Ternopil, Ukraine;
| | - Andriy Nykyforuk
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine; (P.P.); (A.N.)
| | - Rouan Yao
- Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - John F. Imbery
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway;
| | - Valentyn Oksenych
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway;
| | - Mykhaylo Korda
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
24
|
Bhardwaj A, Sapra L, Tiwari A, Mishra PK, Sharma S, Srivastava RK. "Osteomicrobiology": The Nexus Between Bone and Bugs. Front Microbiol 2022; 12:812466. [PMID: 35145499 PMCID: PMC8822158 DOI: 10.3389/fmicb.2021.812466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
A growing body of scientific evidence supports the notion that gut microbiota plays a key role in the regulation of various physiological and pathological processes related to human health. Recent findings have now established that gut microbiota also contributes to the regulation of bone homeostasis. Studies on animal models have unraveled various underlying mechanisms responsible for gut microbiota-mediated bone regulation. Normal gut microbiota is thus required for the maintenance of bone homeostasis. However, dysbiosis of gut microbiota communities is reported to be associated with several bone-related ailments such as osteoporosis, rheumatoid arthritis, osteoarthritis, and periodontitis. Dietary interventions in the form of probiotics, prebiotics, synbiotics, and postbiotics have been reported in restoring the dysbiotic gut microbiota composition and thus could provide various health benefits to the host including bone health. These dietary interventions prevent bone loss through several mechanisms and thus could act as potential therapies for the treatment of bone pathologies. In the present review, we summarize the current knowledge of how gut microbiota and its derived microbial compounds are associated with bone metabolism and their roles in ameliorating bone health. In addition to this, we also highlight the role of various dietary supplements like probiotics, prebiotics, synbiotics, and postbiotics as promising microbiota targeted interventions with the clinical application for leveraging treatment modalities in various inflammatory bone pathologies.
Collapse
Affiliation(s)
- Asha Bhardwaj
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Abhay Tiwari
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, India
| | - Pradyumna K. Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Satyawati Sharma
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
25
|
Jensen SK, Pærregaard SI, Brandum EP, Jørgensen AS, Hjortø GM, Jensen BAH. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac008. [PMID: 35291443 PMCID: PMC8915887 DOI: 10.1093/gastro/goac008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/07/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Organismal survival depends on a well-balanced immune system and maintenance of host–microbe mutualism. The fine-tuned relationship between the gut microbiota and host immunity is constantly challenged by opportunistic bacteria testing the integrity of gastrointestinal (GI) barrier defenses. Barrier dysfunction reduces immunological tolerance towards otherwise innocuous microbes; it is a process that may instigate chronic inflammation. Paradoxically, sustained inflammation further diminishes barrier function, enabling bacterial translocation to extra-intestinal tissues. Once translocated, these bacteria stimulate systemic inflammation, thereby compromising organ function. While genetic risk alleles associate with barrier dysfunction, environmental stressors are key triggers of GI inflammation and associated breakdown in immune tolerance towards resident gut microbes. As dietary components dictate substrate availability, they also orchestrate microbiota composition and function, including migratory and pro-inflammatory potential, thus holding the capacity to fuel both GI and extra-intestinal inflammation. Additionally, Western diet consumption may weaken barrier defenses via curbed Paneth cell function and diminished host-defense peptide secretion. This review focuses on intervenable niches of host–microbe interactions and mucosal immunity with the ambition to provide a framework of plausible strategies to improve barrier function and regain tolerance in the inflamed mucosa via nutritional intervention.
Collapse
Affiliation(s)
- Sune K Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simone I Pærregaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emma P Brandum
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid S Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin A H Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Corresponding author. Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Build. 22.5.39, Copenhagen N 2200, Denmark. Tel: +45-35330188;
| |
Collapse
|
26
|
Oemcke LA, Anderson RC, Altermann E, Roy NC, McNabb WC. The Role of Segmented Filamentous Bacteria in Immune Barrier Maturation of the Small Intestine at Weaning. Front Nutr 2021; 8:759137. [PMID: 34869529 PMCID: PMC8637878 DOI: 10.3389/fnut.2021.759137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
The microbiological, physical, chemical, and immunological barriers of the gastrointestinal tract (GIT) begin developing in utero and finish maturing postnatally. Maturation of these barriers is essential for the proper functioning of the GIT. Maturation, particularly of the immunological barrier, involves stimulation by bacteria. Segmented filamentous bacteria (SFB) which are anaerobic, spore-forming commensals have been linked to immune activation. The presence and changes in SFB abundance have been positively correlated to immune markers (cytokines and immunoglobulins) in the rat ileum and stool samples, pre- and post-weaning. The abundance of SFB in infant stool increases from 6 months, peaks around 12 months and plateaus 25 months post-weaning. Changes in SFB abundance at these times correlate positively and negatively with the production of interleukin 17 (IL 17) and immunoglobulin A (IgA), respectively, indicating involvement in immune function and maturation. Additionally, the peak in SFB abundance when a human milk diet was complemented by solid foods hints at a diet effect. SFB genome analysis revealed enzymes involved in metabolic pathways for survival, growth and development, host mucosal attachment and substrate acquisition. This narrative review discusses the current knowledge of SFB and their suggested effects on the small intestine immune system. Referencing the published genomes of rat and mouse SFB, the use of food substrates to modulate SFB abundance is proposed while considering their effects on other microbes. Changes in the immune response caused by the interaction of food substrate with SFB may provide insight into their role in infant immunological barrier maturation.
Collapse
Affiliation(s)
- Linda A Oemcke
- Riddet Institute, Massey University, Palmerston North, New Zealand.,School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand
| | - Rachel C Anderson
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand
| | - Eric Altermann
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Consumer Interface Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
27
|
Woo V, Eshleman EM, Hashimoto-Hill S, Whitt J, Wu SE, Engleman L, Rice T, Karns R, Qualls JE, Haslam DB, Vallance BA, Alenghat T. Commensal segmented filamentous bacteria-derived retinoic acid primes host defense to intestinal infection. Cell Host Microbe 2021; 29:1744-1756.e5. [PMID: 34678170 DOI: 10.1016/j.chom.2021.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/14/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022]
Abstract
Interactions between the microbiota and mammalian host are essential for defense against infection, but the microbial-derived cues that mediate this relationship remain unclear. Here, we find that intestinal epithelial cell (IEC)-associated commensal bacteria, segmented filamentous bacteria (SFB), promote early protection against the pathogen Citrobacter rodentium, independent of CD4+ T cells. SFB induced histone modifications in IECs at sites enriched for retinoic acid receptor motifs, suggesting that SFB may enhance defense through retinoic acid (RA). Consistent with this, inhibiting RA signaling suppressed SFB-induced protection. Intestinal RA levels were elevated in SFB mice, despite the inhibition of mammalian RA production, indicating that SFB directly modulate RA. Interestingly, RA was produced by intestinal bacteria, and the loss of bacterial-intrinsic aldehyde dehydrogenase activity decreased the RA levels and increased infection. These data reveal RA as an unexpected microbiota-derived metabolite that primes innate defense and suggests that pre- and probiotic approaches to elevate RA could prevent or combat infections.
Collapse
Affiliation(s)
- Vivienne Woo
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Emily M Eshleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Seika Hashimoto-Hill
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jordan Whitt
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Shu-En Wu
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Laura Engleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Taylor Rice
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Joseph E Qualls
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - David B Haslam
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Bruce A Vallance
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
28
|
Sano T, Kageyama T, Fang V, Kedmi R, Martinez CS, Talbot J, Chen A, Cabrera I, Gorshko O, Kurakake R, Yang Y, Ng C, Schwab SR, Littman DR. Redundant cytokine requirement for intestinal microbiota-induced Th17 cell differentiation in draining lymph nodes. Cell Rep 2021; 36:109608. [PMID: 34433045 DOI: 10.1016/j.celrep.2021.109608] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/18/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023] Open
Abstract
Differentiation of intestinal T helper 17 (Th17) cells, which contribute to mucosal barrier protection from invasive pathogens, is dependent on colonization with distinct commensal bacteria. Segmented filamentous bacteria (SFB) are sufficient to support Th17 cell differentiation in mouse, but the molecular and cellular requirements for this process remain incompletely characterized. Here, we show that intestine-draining mesenteric lymph nodes (MLNs), not intestine proper, are the dominant site of SFB-induced intestinal Th17 cell differentiation. Subsequent migration of these cells to the intestinal lamina propria is dependent on their upregulation of integrin β7. Stat3-dependent induction of RORγt, the Th17 cell-specifying transcription factor, largely depends on IL-6, but signaling through the receptors for IL-21 and IL-23 can compensate for absence of IL-6 to promote SFB-directed Th17 cell differentiation. These results indicate that redundant cytokine signals guide commensal microbe-dependent Th17 cell differentiation in the MLNs and accumulation of the cells in the lamina propria.
Collapse
Affiliation(s)
- Teruyuki Sano
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA.
| | - Takahiro Kageyama
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | - Victoria Fang
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Ranit Kedmi
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Carlos Serafin Martinez
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | - Jhimmy Talbot
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Alessandra Chen
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; The Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Ivan Cabrera
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | - Oleksandra Gorshko
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | - Reina Kurakake
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | - Yi Yang
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Charles Ng
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Susan R Schwab
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Dan R Littman
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; The Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
29
|
Brooks JF, Behrendt CL, Ruhn KA, Lee S, Raj P, Takahashi JS, Hooper LV. The microbiota coordinates diurnal rhythms in innate immunity with the circadian clock. Cell 2021; 184:4154-4167.e12. [PMID: 34324837 PMCID: PMC8967342 DOI: 10.1016/j.cell.2021.07.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023]
Abstract
Environmental light cycles entrain circadian feeding behaviors in animals that produce rhythms in exposure to foodborne bacteria. Here, we show that the intestinal microbiota generates diurnal rhythms in innate immunity that synchronize with feeding rhythms to anticipate microbial exposure. Rhythmic expression of antimicrobial proteins was driven by daily rhythms in epithelial attachment by segmented filamentous bacteria (SFB), members of the mouse intestinal microbiota. Rhythmic SFB attachment was driven by the circadian clock through control of feeding rhythms. Mechanistically, rhythmic SFB attachment activated an immunological circuit involving group 3 innate lymphoid cells. This circuit triggered oscillations in epithelial STAT3 expression and activation that produced rhythmic antimicrobial protein expression and caused resistance to Salmonella Typhimurium infection to vary across the day-night cycle. Thus, host feeding rhythms synchronize with the microbiota to promote rhythms in intestinal innate immunity that anticipate exogenous microbial exposure.
Collapse
Affiliation(s)
- John F Brooks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cassie L Behrendt
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kelly A Ruhn
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Syann Lee
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lora V Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
30
|
Kononova S, Litvinova E, Vakhitov T, Skalinskaya M, Sitkin S. Acceptive Immunity: The Role of Fucosylated Glycans in Human Host-Microbiome Interactions. Int J Mol Sci 2021; 22:3854. [PMID: 33917768 PMCID: PMC8068183 DOI: 10.3390/ijms22083854] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
The growth in the number of chronic non-communicable diseases in the second half of the past century and in the first two decades of the new century is largely due to the disruption of the relationship between the human body and its symbiotic microbiota, and not pathogens. The interaction of the human immune system with symbionts is not accompanied by inflammation, but is a physiological norm. This is achieved via microbiota control by the immune system through a complex balance of pro-inflammatory and suppressive responses, and only a disturbance of this balance can trigger pathophysiological mechanisms. This review discusses the establishment of homeostatic relationships during immune system development and intestinal bacterial colonization through the interaction of milk glycans, mucins, and secretory immunoglobulins. In particular, the role of fucose and fucosylated glycans in the mechanism of interactions between host epithelial and immune cells is discussed.
Collapse
Affiliation(s)
- Svetlana Kononova
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.V.); (M.S.); (S.S.)
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Ekaterina Litvinova
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
- Siberian Federal Scientific Center of Agro-BioTechnologies, Russian Academy of Sciences, Krasnoobsk, 633501 Novosibirsk, Russia
| | - Timur Vakhitov
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.V.); (M.S.); (S.S.)
| | - Maria Skalinskaya
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.V.); (M.S.); (S.S.)
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia
| | - Stanislav Sitkin
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.V.); (M.S.); (S.S.)
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| |
Collapse
|
31
|
Oemcke LA, Anderson RC, Rakonjac J, McNabb WC, Roy NC. Whole tissue homogenization preferable to mucosal scraping in determining the temporal profile of segmented filamentous bacteria in the ileum of weanling rats. Access Microbiol 2021; 3:000218. [PMID: 34151170 PMCID: PMC8209713 DOI: 10.1099/acmi.0.000218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/04/2021] [Indexed: 01/12/2023] Open
Abstract
Segmented filamentous bacteria (SFB) are thought to play a role in small intestine immunological maturation. Studies in weanling mice have shown a positive correlation between ileal SFB abundance and plasma and faecal interleukin 17 (IL-17) and immunoglobulin A (IgA) concentrations. Although the first observation of SFB presence was reported in rats, most studies use mice. The size of the mouse ileum is a limitation whereas the rat could be a suitable alternative for sufficient samples. Changes in SFB abundance over time in rats were hypothesized to follow the pattern reported in mice and infants. We characterized the profile of SFB colonization in the ileum tissue and contents and its correlation with two immune markers of gastrointestinal tract (GIT) maturation. We also compared two published ileum collection techniques to determine which yields data on SFB abundance with least variability. Whole ileal tissue and ileal mucosal scrapings were collected from 20- to 32-day-old Sprague-Dawley rats. SFB abundance was quantified from proximal, middle and distal ileal tissues, contents and faeces by quantitative PCR using SFB-specific primers. Antibody-specific ELISAs were used to determine IL-17 and IgA concentrations. Significant differences in SFB abundance were observed from whole and scraped tissues peaking at day 22. Variability in whole ileum data was less, favouring it as a better collection technique. A similar pattern of SFB abundance was observed in ileum contents and faeces peaking at day 24, suggesting faeces can be a proxy for ileal SFB abundance. SFB abundance at day 26 was higher in females than males across all samples. There were significant differences in IgA concentration between days 20, 30 and 32 and none in IL-17 concentration, which was different from reports in mice and infants.
Collapse
Affiliation(s)
- Linda A. Oemcke
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Rachel C. Anderson
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Jasna Rakonjac
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Warren C. McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C. Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Robust microbe immune recognition in the intestinal mucosa. Genes Immun 2021; 22:268-275. [PMID: 33958733 PMCID: PMC8497264 DOI: 10.1038/s41435-021-00131-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 02/01/2023]
Abstract
The mammalian mucosal immune system acts as a multitasking mediator between bodily function and a vast diversity of microbial colonists. Depending on host-microbial interaction type, mucosal immune responses have distinct functions. Immunity to pathogen infection functions to limit tissue damage, clear or contain primary infection, and prevent or lower the severity of a secondary infection by conferring specific long-term adaptive immunity. Responses to nonpathogenic commensal or mutualistic microbes instead function to tolerate continuous colonization. Mucosal innate immune and epithelial cells employ a limited repertoire of innate receptors to program the adaptive immune response accordingly. Pathogen versus nonpathogen immune discrimination appears to be very robust, as most individuals successfully maintain life-long mutualism with their nonpathogenic microbiota, while mounting immune defense to pathogenic microbe infection specifically. However, the process is imperfect, which can have immunopathological consequences, but may also be exploited medically. Normally innocuous intestinal commensals in some individuals may drive serious inflammatory autoimmunity, whereas harmless vaccines can be used to fool the immune system into mounting a protective anti-pathogen immune response. In this article, we review the current knowledge on mucosal intestinal bacterial immune recognition focusing on TH17 responses and identify commonalities between intestinal pathobiont and vaccine-induced TH17 responses.
Collapse
|