1
|
Rossy T, Schwendeman L, Kohli S, Bawa M, Umashankar P, Habba R, Tchaicheeyan O, Lesman A, Raman R. Leveraging microtopography to pattern multi-oriented muscle actuators. Biomater Sci 2025; 13:2891-2907. [PMID: 40084556 PMCID: PMC11907412 DOI: 10.1039/d4bm01017e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/20/2025] [Indexed: 03/16/2025]
Abstract
Engineering skeletal muscle tissue with precisely defined alignment is of significant importance for applications ranging from drug screening to biohybrid robotics. Aligning 2D contractile muscle monolayers, which are compatible with high-content imaging and can be deployed in planar soft robots, typically requires micropatterned cues. However, current protocols for integrating microscale topographical features in extracellular matrix hydrogels require expensive microfabrication equipment and multi-step procedures involving error-prone manual handling steps. To address this challenge, we present STAMP (simple templating of actuators via micro-topographical patterning), an easily accessible and cost-effective one-step method to pattern microtopography of various sizes and configurations on the surface of hydrogels using reusable 3D printed stamps. We demonstrate that STAMP enables precisely controlling the alignment of mouse and human skeletal muscle fibers without negatively impacting their maturation or function. To showcase the versatility of our technique, we designed a planar soft robot inspired by the iris, which leverages spatially segregated regions of concentric and radial muscle fibers to control pupil dilation. Optogenetic skeletal muscle fibers grown on a STAMPed iris substrates formed a multi-oriented actuator, and selective light stimulation of the radial and concentric fibers was used to control the function of the iris, including pupil constriction. Computational modeling of the biohybrid robot as an active bilayer matched experimental outcomes, showcasing the robustness of our STAMP method for designing, fabricating, and testing planar biohybrid robots capable of complex multi-DOF motion.
Collapse
Affiliation(s)
- Tamara Rossy
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Laura Schwendeman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Sonika Kohli
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Maheera Bawa
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Pavankumar Umashankar
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Roi Habba
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Oren Tchaicheeyan
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Li M, Zhu Q, Yang H, Hu Y, Zhao L, Zhao Y. Identification of key genes regulating brown adipose tissue thermogenesis in goat kids ( Capra hircus) by using weighted gene co-expression network analysis. Front Vet Sci 2025; 12:1525437. [PMID: 40438410 PMCID: PMC12116553 DOI: 10.3389/fvets.2025.1525437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/28/2025] [Indexed: 06/01/2025] Open
Abstract
Brown adipose tissue (BAT) is crucial for the maintenance of body temperature in newborn animals through non-shivering thermogenesis (NST). However, which kind key genes involved in the regulation of BAT thermogenesis and the internal regulation mechanism of heat production in goat BAT were still unclear. In this study, we analyzed the perirenal adipose tissue transcriptome of Dazu black goats from 0, 7, 14, 21 and 28 days after birth using weighted gene co-expression network analysis (WGCNA) to identify key genes involved in the thermogenesis of BAT. Genes were classified into 22 co-expression modules by WGCNA. The turquoise module exhibited high gene expression in D0, with generally lower expression in the later dates. This pattern is consistent with the rapid color, morphological, and thermogenic changes observed in perirenal adipose tissue shortly after birth. GO functional annotation revealed that the genes in the turquoise module were significantly enriched in the mitochondrion, mitochondrial protein-containing complex, cytoplasm, and mitochondrial inner membrane. KEGG pathway enrichment analysis indicated that these genes were predominantly enriched in the signaling pathways of oxidative phosphorylation, thermogenesis, and TCA cycle. By combining the gene co-expression network analysis of the turquoise module genes and the differentially expression genes (DEG) analysis, we identified 5 candidate key genes (ACO2, MRPS27, IMMT, MRPL12, and TUFM) involved in regulation of perirenal adipose tissue thermogenesis. This finding offer candidate genes that in the regulation of BAT thermogenesis and body temperature maintenance in goat kids.
Collapse
Affiliation(s)
| | | | | | | | - Le Zhao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yongju Zhao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Scott TA, Baker KS, Trotter C, Jenkins C, Mostowy S, Hawkey J, Schmidt H, Holt KE, Thomson NR, Baker S. Shigella sonnei: epidemiology, evolution, pathogenesis, resistance and host interactions. Nat Rev Microbiol 2025; 23:303-317. [PMID: 39604656 DOI: 10.1038/s41579-024-01126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Shigella sonnei is a major cause of diarrhoea globally and is increasing in prevalence relative to other Shigella because of multiple demographic and environmental influences. This single-serotype species has traditionally received less attention in comparison to Shigella flexneri and Shigella dysenteriae, which were more common in low-income countries and more tractable in the laboratory. In recent years, we have learned that Shigella are highly complex and highly susceptible to environmental change, as exemplified by epidemiological trends and increasing relevance of S. sonnei. Ultimately, methods, tools and data generated from decades of detailed research into S. flexneri have been used to gain new insights into the epidemiology, microbiology and pathogenesis of S. sonnei. In parallel, widespread adoption of genomic surveillance has yielded insights into antimicrobial resistance, evolution and organism transmission. In this Review, we provide an overview of current knowledge of S. sonnei, highlighting recent insights into this globally disseminated antimicrobial-resistant pathogen and assessing how novel data may impact future vaccine development and implementation.
Collapse
Affiliation(s)
- Timothy A Scott
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
| | - Kate S Baker
- Department of Clinical Microbiology, Immunology and Infection, University of Liverpool, Liverpool, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Caroline Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Serge Mostowy
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jane Hawkey
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Hayden Schmidt
- Neutralizing Antibody Center, International AIDS Vaccine Initiative, San Diego, CA, USA
| | - Kathryn E Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Nicholas R Thomson
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Stephen Baker
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- International AIDS Vaccine Initiative, London, UK.
| |
Collapse
|
4
|
De Paolis ML, Loffredo G, Krashia P, La Barbera L, Nobili A, Cauzzi E, Babicola L, Di Segni M, Coccurello R, Puglisi-Allegra S, Latagliata EC, D'Amelio M. Repetitive prefrontal tDCS activates VTA dopaminergic neurons, resulting in attenuation of Alzheimer's Disease-like deficits in Tg2576 mice. Alzheimers Res Ther 2025; 17:94. [PMID: 40301905 PMCID: PMC12039073 DOI: 10.1186/s13195-025-01736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND Emerging evidence implicates early dysfunction of dopaminergic neurons in the Ventral Tegmental Area (VTA) as a key contributor to Alzheimer's Disease (AD) pathophysiology. Specifically, the VTA dopaminergic neurodegeneration and the consequent reduction of dopamine (DA) in mesocorticolimbic targets are associated with the onset of cognitive impairments and neuropsychiatric-like manifestations in AD animal models. Moreover, decreased midbrain volume and functional VTA disconnection are identified as predictors of accelerated progression from Mild Cognitive Impairment to AD-dementia in clinical populations. Given these findings, interventions capable of directly modulating VTA activity and augmenting DA release, despite the ongoing neurodegeneration, may hold therapeutic potential for mitigating DA-related deficits in AD. This study aims at evaluating the therapeutic potential of prefrontal transcranial Direct Current Stimulation (tDCS) in the Tg2576 mouse model of AD, exhibiting early VTA dopaminergic neurodegeneration. METHODS Repeated tDCS was applied to assess its ability to activate VTA DA neurons. We also evaluated tDCS effects on synaptic plasticity, cognitive and non-cognitive behaviours and AD-related pathology. Hippocampal DA release and Nucleus Accumbens (NAc) DA transporter (DAT) expression were measured. With immunohistochemistry we examined microglial density and morphological complexity at different disease stages. Additionally, intracellular amyloid-β (Aβ) levels and plaque burden were evaluated to determine the impact of tDCS on AD pathology. RESULTS Prefrontal tDCS enhanced the activity of VTA dopaminergic neurons, leading to increased hippocampal DA release and higher DAT levels in the NAc. The enhanced DA outflow is associated with restored CA3-CA1 synaptic plasticity and improvements in recognition memory and motivational behaviours. tDCS reduced microglial numbers and morphological complexity in Tg2576 mice at both pre-plaque stage (7-months) and at an advanced stage characterized by plaque accumulation (12-months). Notably, tDCS also decreased Aβ plaque burden, although no changes in intracellular Aβ levels were observed in younger Tg2576 mice. CONCLUSIONS These findings highlight the multifaceted therapeutic potential of prefrontal tDCS in targeting key AD pathophysiological hallmarks, including dopaminergic dysfunction, synaptic impairments, neuroinflammation and plaque deposition. As a non-invasive neuromodulatory approach, prefrontal tDCS emerges as a promising early intervention strategy to complement existing AD treatments, with the potential to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Gilda Loffredo
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Paraskevi Krashia
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy
| | - Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy
| | - Annalisa Nobili
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy
| | - Emma Cauzzi
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Lucy Babicola
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy
- Department of Psychology, Sapienza University of Rome, P.Le Aldo Moro, 5, 00185, Rome, Italy
| | - Matteo Di Segni
- Child Psychopathology Unit, IRCCS Eugenio Medea, Via Don Luigi Monza, 20, 23842, Bosisio Parini, Italy
| | - Roberto Coccurello
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy
- National Research Council (CNR), Institute for Complex System (ISC), Via Dei Taurini, 19, 00185, Rome, Italy
| | - Stefano Puglisi-Allegra
- Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense, 18, 86077, Pozzilli, Italy
| | - Emanuele Claudio Latagliata
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy.
- Department of Psychology, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
5
|
Horie T, Kuwano A, Sakamoto T, Nakamura Y, Yamaguchi K, Tanida I, Osawa S, Yasumoto K, Ishigaki Y. In silico-based analysis and in vitro experiments identify SIGMAR1 as a potential marker of putative lung cancer stem cells. Discov Oncol 2025; 16:620. [PMID: 40285994 PMCID: PMC12033142 DOI: 10.1007/s12672-025-02394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related mortality worldwide; however, despite the development and clinical application of various drugs, the prognosis remains poor. One reason for this is the high rate of recurrence and metastasis. The cancer stem cell (CSC) theory has been proposed to explain their root cause, and removal of CSCs is necessary to cure cancer completely; however, detailed profiles of lung CSCs have not been clarified. Here, we used single-cell RNA sequencing (scRNA-seq) data to identify novel markers for lung CSCs and validated their expression and function in vitro. METHODS A549-derived tumorspheres were used as a model for lung CSCs. To identify genes upregulated in CSC-like cells, we reanalyzed two publicly available scRNA-seq datasets from human lung cancer tissues. Additionally, trajectory analysis was performed to examine changes in candidate gene expression during CSC differentiation. The role of these candidate genes in CSC regulation was further investigated through functional assays. RESULTS Tumorspheres exhibited increased expression of well-established CSC markers. scRNA-seq analysis suggested that SIGMAR1 expression was significantly upregulated in CSC-like cells and decreased with differentiation. Furthermore, siRNA-mediated SIGMAR1 knockdown suppressed tumorsphere self-renewal capacity and reduced CSC marker expression. CONCLUSIONS We propose that SIGMAR1 serves as a potential functional marker of CSCs and plays a crucial role in regulating self-renewal capacity. Targeting SIGMAR1 may provide a novel therapeutic strategy for preventing metastasis and recurrence-major clinical challenges in lung cancer treatment. Future studies should investigate the underlying mechanisms by which SIGMAR1 modulates CSC properties.
Collapse
Affiliation(s)
- Tetsuhiro Horie
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Kahoku, Ishikawa, 920-0293, Japan
| | - Ayane Kuwano
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Ishikawa, 924-0838, Japan
| | - Takuya Sakamoto
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Kahoku, Ishikawa, 920-0293, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Kayoko Yamaguchi
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Kahoku, Ishikawa, 920-0293, Japan
| | - Ikuhiro Tanida
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Ishikawa, 924-0838, Japan
| | - Satoshi Osawa
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Ishikawa, 924-0838, Japan
| | - Kazuo Yasumoto
- Department of Medical Oncology, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan.
| |
Collapse
|
6
|
Weinhaeusel A, Huber J, Schoenthaler S, Beigel F, Noehammer C, Vierlinger K, Siebeck M, Gropp R. Autoantibody Profiling in Ulcerative Colitis: Identification of Early Immune Signatures and Disease-Associated Antigens for Improved Diagnosis and Monitoring. Int J Mol Sci 2025; 26:4086. [PMID: 40362323 PMCID: PMC12072058 DOI: 10.3390/ijms26094086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Ulcerative colitis (UC) is a major form of inflammatory bowel disease (IBD) characterised by chronic immune-mediated inflammation. While serological biomarkers for IBD diagnosis and differentiation have been explored, autoantibody-based profiling remains underdeveloped. This study aimed to elucidate antibody signatures in manifested and pre-diagnostic UC patients compared to controls using a high-content protein microarray. Serum and plasma samples from manifested and pre-diagnostic UC cohorts were analysed using AIT's 16k protein microarray, presenting 6369 human proteins. The pre-diagnostic cohort, consisting of 33 UC cases and 33 controls, included longitudinal samples collected before diagnosis, while the severe UC cohort, comprising 49 severe UC patients and 23 controls, included individuals undergoing treatment. Immunoglobulin G (IgG) autoantibody reactivity was assessed to identify differentially reactive antigens (DIRAGs) linked to UC onset, disease progression, and activity. In manifested UC, 691 DIRAGs showed higher reactivity in cases. In the pre-diagnostic cohort, 966 DIRAGs were identified, with 803 antigens exhibiting increased reactivity in cases. Longitudinal analysis revealed 1371 DIRAGs, with 1185 showing increased reactivity closer to diagnosis when comparing samples collected 4-11 months before UC diagnosis to earlier time points 9-24 months prior, highlighting potential early biomarkers. A significant overlap of 286 antigens, corresponding to 41 percent of identified DIRAGs, was observed between severe and pre-diagnostic UC datasets, with an odds ratio of 3.8 and a p-value below 2.2 × 10-16, confirming reliability and biological relevance. Additionally, 21 antigens correlated with simple clinical colitis activity index (SCCAI) scores. Reactome pathway analysis identified 49 pathways associated with DIRAGs in pre-diagnostic UC, distinct from 24 pathways in manifested UC, with an overlap of five key pathways related to protein folding, immune regulation, and viral infection, reflecting differences in disease onset and manifestation. Autoantibody profiling reveals early immune signatures in UC, offering novel biomarkers for preclinical diagnosis and disease monitoring. The overlap between pre-diagnostic and manifested UC antigenic profiles reinforces their biological relevance, linking them to molecular pathology. These findings highlight antibody profiling as an additional omics layer, paving the way for new diagnostic and therapeutic strategies in UC management.
Collapse
Affiliation(s)
- Andreas Weinhaeusel
- Austrian Institute of Technology GmbH (AIT), Giefinggasse, 1210 Vienna, Austria; (J.H.); (S.S.); (C.N.); (K.V.)
| | - Jasmin Huber
- Austrian Institute of Technology GmbH (AIT), Giefinggasse, 1210 Vienna, Austria; (J.H.); (S.S.); (C.N.); (K.V.)
| | - Silvia Schoenthaler
- Austrian Institute of Technology GmbH (AIT), Giefinggasse, 1210 Vienna, Austria; (J.H.); (S.S.); (C.N.); (K.V.)
| | - Florian Beigel
- Department of Medicine II, Hospital of the Ludwig-Maximilian University Munich, 81377 Munich, Germany;
| | - Christa Noehammer
- Austrian Institute of Technology GmbH (AIT), Giefinggasse, 1210 Vienna, Austria; (J.H.); (S.S.); (C.N.); (K.V.)
| | - Klemens Vierlinger
- Austrian Institute of Technology GmbH (AIT), Giefinggasse, 1210 Vienna, Austria; (J.H.); (S.S.); (C.N.); (K.V.)
| | - Matthias Siebeck
- Department of General, Visceral und Transplantation Surgery, Hospital of the Ludwig-Maximilian University Munich, 80336 Munich, Germany; (M.S.); (R.G.)
| | - Roswitha Gropp
- Department of General, Visceral und Transplantation Surgery, Hospital of the Ludwig-Maximilian University Munich, 80336 Munich, Germany; (M.S.); (R.G.)
| |
Collapse
|
7
|
Sharma H, Robea MA, McGrory NH, Bazan DC, Burton EA, Burgess HA. Functional interrogation of neuronal connections by chemoptogenetic presynaptic ablation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647277. [PMID: 40236196 PMCID: PMC11996543 DOI: 10.1101/2025.04.04.647277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Most neurons are embedded in multiple circuits, with signaling to distinct postsynaptic partners playing functionally different roles. The function of specific connections can be interrogated using synaptically localized optogenetic effectors, however these tools are often experimentally difficult to validate or produce paradoxical outcomes. We have developed a system for photoablation of synaptic connections originating from genetically defined neurons, based on presynaptic localization of the fluorogen activating protein dL5** that acts as a photosensitizer when bound to a cell-permeable dye. Using the well mapped zebrafish escape circuit as a readout, we first show that cytoplasmically expressed dL5** enables efficient spatially targeted neuronal ablation using near infra-red light. We then demonstrate that spatially patterned illumination of presynaptically localized dL5** can effectively disconnect neurons from selected downstream partners, producing precise behavioral deficits. This technique should be applicable to almost any genetically tractable neuronal circuit, enabling precise manipulation of functional connectivity within the nervous system.
Collapse
|
8
|
Yuan Y, Biswas P, Zemke NR, Dang K, Wu Y, D’Antonio M, Xie Y, Yang Q, Dong K, Lau PK, Li D, Seng C, Bartosik W, Buchanan J, Lin L, Lancione R, Wang K, Lee S, Gibbs Z, Ecker J, Frazer K, Wang T, Preissl S, Wang A, Ayyagari R, Ren B. Single-cell analysis of the epigenome and 3D chromatin architecture in the human retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.28.630634. [PMID: 39764062 PMCID: PMC11703273 DOI: 10.1101/2024.12.28.630634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Most genetic risk variants linked to ocular diseases are non-protein coding and presumably contribute to disease through dysregulation of gene expression, however, deeper understanding of their mechanisms of action has been impeded by an incomplete annotation of the transcriptional regulatory elements across different retinal cell types. To address this knowledge gap, we carried out single-cell multiomics assays to investigate gene expression, chromatin accessibility, DNA methylome and 3D chromatin architecture in human retina, macula, and retinal pigment epithelium (RPE)/choroid. We identified 420,824 unique candidate regulatory elements and characterized their chromatin states in 23 sub-classes of retinal cells. Comparative analysis of chromatin landscapes between human and mouse retina cells further revealed both evolutionarily conserved and divergent retinal gene-regulatory programs. Leveraging the rapid advancements in deep-learning techniques, we developed sequence-based predictors to interpret non-coding risk variants of retina diseases. Our study establishes retina-wide, single-cell transcriptome, epigenome, and 3D genome atlases, and provides a resource for studying the gene regulatory programs of the human retina and relevant diseases.
Collapse
Affiliation(s)
- Ying Yuan
- Department of Material Science, UC San Diego, La Jolla, CA 92037, USA
| | - Pooja Biswas
- Ophthalmology, Shiley Eye Institute, UC San Diego, La Jolla, CA 92037, USA
| | - Nathan R. Zemke
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Kelsey Dang
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Yue Wu
- Department of Biological Science, UC San Diego, La Jolla, CA 92037, USA
| | - Matteo D’Antonio
- Department of Biomedical Informatics, UC San Diego, La Jolla, CA 92037, USA
| | - Yang Xie
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92037, USA
| | - Qian Yang
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Keyi Dong
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Pik Ki Lau
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine in St.Louis, St. Louis, MO 63130, USA
| | - Chad Seng
- Department of Genetics, Washington University School of Medicine in St.Louis, St. Louis, MO 63130, USA
| | | | - Justin Buchanan
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Lin Lin
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Ryan Lancione
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Kangli Wang
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92037, USA
| | - Seoyeon Lee
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92037, USA
| | - Zane Gibbs
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92037, USA
| | - Joseph Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA,USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kelly Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine in St.Louis, St. Louis, MO 63130, USA
| | | | - Allen Wang
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| | - Radha Ayyagari
- Ophthalmology, Shiley Eye Institute, UC San Diego, La Jolla, CA 92037, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92037, USA
- Center for Epigenomics, UC San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Legrand TPRA, Alexandre PA, Wilson A, Farr RJ, Reverter A, Denman SE. Genome-centric metagenomics reveals uncharacterised microbiomes in Angus cattle. Sci Data 2025; 12:547. [PMID: 40169660 PMCID: PMC11961633 DOI: 10.1038/s41597-025-04919-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025] Open
Abstract
Understanding the intricate nexus between cattle health and microbiome dynamics holds profound implications for enhancing animal productivity and welfare. However, our understanding of the role of these microbial communities is limited in beef cattle, especially in understudied body sites such as the oral and nasal microbiome. Here, using a genome-centric metagenomics approach, we recovered substantial metagenome-assembled genomes (MAGs) from the faecal, oral and nasal microbiome of Australian Angus cattle from different herds and life stages. The MAGs recovered from faecal samples were dominated by Bacillota and Bacteroidota, while the MAGs from saliva and nasal mucus samples were mainly associated with Pseudomonadota, Actinomycetota and Bacteroidota. Functional annotation of the MAGs revealed enriched pathways involved in the production of some amino acids, nucleic acids and short chain fatty acids (SCFA). The metabolic capacities of the MAGs were correlated with their taxonomy, notably at the phylum level. Overall, this study provides a comprehensive catalogue of MAGs to further our understanding of their role in the health and fitness of beef cattle.
Collapse
Affiliation(s)
| | | | | | - Ryan J Farr
- CSIRO Health & Biosecurity, Geelong, Victoria, Australia
| | | | | |
Collapse
|
10
|
Shanto PC, Park S, Fahad MAA, Park M, Lee BT. 3D bio-printed proteinaceous bioactive scaffold loaded with dual growth factor enhanced chondrogenesis and in situ cartilage regeneration. Bioact Mater 2025; 46:365-385. [PMID: 39845130 PMCID: PMC11751550 DOI: 10.1016/j.bioactmat.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Articular cartilage has a limited self-healing capacity, leading to joint degeneration and osteoarthritis over time. Therefore, bioactive scaffolds are gaining attention as a promising approach to regenerating and repairing damaged articular cartilage through tissue engineering. In this study, we reported on a novel 3D bio-printed proteinaceous bioactive scaffolds combined with natural porcine cancellous bone dECM, tempo-oxidized cellulose nanofiber (TOCN), and alginate carriers for TGF-β1, FGF-18, and ADSCs to repair cartilage defects. The characterization results demonstrate that the 3D scaffolds are physically stable and facilitate a controlled dual release of TGF-β1 and FGF-18. Moreover, the key biological proteins within the bioactive scaffold actively interact with the biological systems to create a favorable microenvironment for cartilage regeneration. Importantly, the in vitro, in vivo, and in silico simulation showed that the scaffolds promote stem cell recruitment, migration, proliferation, and ECM deposition, and synergistic effects of TGF-β1/FGF-18 with the bioactive scaffolds significantly regulate stem cell chondrogenesis by activating the PI3K/AKT and TGFβ1/Smad4 signaling pathways. After implantation, the proteinaceous bioactive scaffold led to the regeneration of mechanically robust, full-thickness cartilage tissue that closely resembles native cartilage. Thus, these findings may provide a promising approach for regulating stem cell chondrogenesis and treating in situ cartilage regeneration.
Collapse
Affiliation(s)
- Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Seongsu Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
11
|
Paranjapye A, Ahmad RI, Su S, Waldman AJ, Philips-Cremins J, Zhang S, Korb E. Autism spectrum disorder risk genes have convergent effects on transcription and neuronal firing patterns in primary neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645337. [PMID: 40196547 PMCID: PMC11974841 DOI: 10.1101/2025.03.25.645337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Autism spectrum disorder (ASD) is a highly heterogenous neurodevelopmental disorder with numerous genetic risk factors. Notably, a disproportionate number of risk genes encode transcription regulators including transcription factors and proteins that regulate chromatin. Here, we tested the function of nine such ASD-linked transcription regulators by depleting them in primary cultured neurons. We then defined the resulting gene expression disruptions using RNA-sequencing and tested effects on neuronal firing using multielectrode array recordings. We identified shared gene expression signatures across many ASD risk genes that converged on disruption of critical synaptic genes. Fitting with this, we detected drastic disruptions to neuronal firing throughout neuronal maturation. Together, these findings provide evidence that multiple ASD-linked transcriptional regulators disrupt transcription of synaptic genes and have convergent effects on neuronal firing that may contribute to enhanced ASD risk.
Collapse
Affiliation(s)
- Alekh Paranjapye
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - RIli Ahmad
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Steven Su
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Abraham J. Waldman
- Department of Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Philips-Cremins
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuo Zhang
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Erica Korb
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
12
|
Mazza F, Guet-McCreight A, Prevot TD, Valiante T, Sibille E, Hay E. Electroencephalography Biomarkers of α5-GABA Positive Allosteric Modulators in Rodents. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100435. [PMID: 39990628 PMCID: PMC11846935 DOI: 10.1016/j.bpsgos.2024.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 02/25/2025] Open
Abstract
Background Reduced cortical inhibition mediated by GABA (gamma-aminobutyric acid) is reported in depression, anxiety disorders, and aging. A novel positive allosteric modulator that specifically targets the α5-GABAA receptor subunit (α5-PAM), ligand GL-II-73 shows anxiolytic, antidepressant, and procognitive effects without the common side effects associated with nonspecific modulation by benzodiazepines such as diazepam, thus suggesting novel therapeutic potential. However, it is unknown whether α5-PAM has detectable signatures in clinically relevant brain electroencephalography (EEG). Methods We analyzed EEG in 10 freely moving rats at baseline and following injections of α5-PAM (GL-II-73) and diazepam. Results We showed that α5-PAM specifically decreased theta peak power, whereas diazepam shifted peak power from high to low theta while increasing beta and gamma power. EEG decomposition showed that these effects were periodic and corresponded to changes in theta oscillation event duration. Conclusions Thus, our study shows that α5-PAM has robust and distinct EEG biomarkers in rodents, indicating that EEG could enable noninvasive monitoring of α5-PAM treatment efficacy.
Collapse
Affiliation(s)
- Frank Mazza
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Guet-McCreight
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Thomas D. Prevot
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Taufik Valiante
- Krembil Brain Institute, University Healthy Network, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Center for Advancing Neurotechnological Innovation to Application, Toronto, Ontario, Canada
- Max Planck-University of Toronto Center for Neural Science and Technology, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Etienne Sibille
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Etay Hay
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Baker DV, Bernal-Escalante J, Traaseth C, Wang Y, Tran MV, Keenan S, Algar WR. Smartphones as a platform for molecular analysis: concepts, methods, devices and future potential. LAB ON A CHIP 2025; 25:884-955. [PMID: 39918205 DOI: 10.1039/d4lc00966e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Over the past 15 years, smartphones have had a transformative effect on everyday life. These devices also have the potential to transform molecular analysis over the next 15 years. The cameras of a smartphone, and its many additional onboard features, support optical detection and other aspects of engineering an analytical device. This article reviews the development of smartphones as platforms for portable chemical and biological analysis. It is equal parts conceptual overview, technical tutorial, critical summary of the state of the art, and outlook on how to advance smartphones as a tool for analysis. It further discusses the motivations for adopting smartphones as a portable platform, summarizes their enabling features and relevant optical detection methods, then highlights complementary technologies and materials such as 3D printing, microfluidics, optoelectronics, microelectronics, and nanoparticles. The broad scope of research and key advances from the past 7 years are reviewed as a prelude to a perspective on the challenges and opportunities for translating smartphone-based lab-on-a-chip devices from prototypes to authentic applications in health, food and water safety, environmental monitoring, and beyond. The convergence of smartphones with smart assays and smart apps powered by machine learning and artificial intelligence holds immense promise for realizing a future for molecular analysis that is powerful, versatile, democratized, and no longer just the stuff of science fiction.
Collapse
Affiliation(s)
- Daina V Baker
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Jasmine Bernal-Escalante
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Christine Traaseth
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Yihao Wang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Seth Keenan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
14
|
Maharramov E, Czikkely MS, Szili P, Farkas Z, Grézal G, Daruka L, Kurkó E, Mészáros L, Daraba A, Kovács T, Bognár B, Juhász S, Papp B, Lázár V, Pál C. Exploring the principles behind antibiotics with limited resistance. Nat Commun 2025; 16:1842. [PMID: 39984459 PMCID: PMC11845477 DOI: 10.1038/s41467-025-56934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/05/2025] [Indexed: 02/23/2025] Open
Abstract
Antibiotics that target multiple cellular functions are anticipated to be less prone to bacterial resistance. Here we hypothesize that while dual targeting is crucial, it is not sufficient in preventing resistance. Only those antibiotics that simultaneously target membrane integrity and block another cellular pathway display reduced resistance development. To test the hypothesis, we focus on three antibiotic candidates, POL7306, Tridecaptin M152-P3 and SCH79797, all of which fulfill the above criteria. Here we show that resistance evolution against these antibiotics is limited in ESKAPE pathogens, including Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa, while dual-target topoisomerase antibiotics are prone to resistance. We discover several mechanisms restricting resistance. First, de novo mutations result in only a limited elevation in resistance, including those affecting the molecular targets and efflux pumps. Second, resistance is inaccessible through gene amplification. Third, functional metagenomics reveal that mobile resistance genes are rare in human gut, soil and clinical microbiomes. Finally, we detect rapid eradication of bacterial populations upon toxic exposure to membrane targeting antibiotics. We conclude that resistance mechanisms commonly found in natural bacterial pathogens provide only limited protection to these antibiotics. Our work provides guidelines for the future development of antibiotics.
Collapse
Grants
- This work was supported by: National Academy of Scientist Education Program of the National Biomedical Foundation under the sponsorship of the Hungarian Ministry of Culture and Innovation (CzM, LM) Cooperative Doctoral Program Scholarship of the Hungarian Ministry of Culture and Innovation (CzM, BB) The National Research, Development and Innovation Office, Hungary (NKFIH) grant FK-131961 (SJ) H2020-WIDESPREA-01-2016-2017-TeamingPhase2, GA:739593-HCEMM, EU’s Horizon 2020 research and innovation program under grant agreement No. 739593 (SJ) Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP-2021-EGA-05 funding scheme (SJ) Lendulet “Momentum” program of the Hungarian Academy of Sciences (grant agreement LP2022-12/2022) (VL) EMBO Installation Grant (grant number 5709_2024) (VL) National Laboratory for Health Security Grant RRF-2.3.1-21-2022-00006 (BP) The European Union’s Horizon 2020 Research and Innovation Programme no. 739593 (BP) National Research Development and Innovation Office grants: ‘Élvonal’ Programme KKP 129814 (BP) ERA-NET JPIAMR-ACTION (BP) National Laboratory of Biotechnology Grant 2022-2.1.1-NL-2022-00008 (CP, BP) National Research, Development and Innovation Office K146323 (CP) The European Research Council ERC-2023-ADG 101142626 FutureAntibiotics (CP)
Collapse
Affiliation(s)
- Elvin Maharramov
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Márton Simon Czikkely
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
- Department of Forensic Medicine, Albert-Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Petra Szili
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
| | - Zoltán Farkas
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Group, Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
| | - Eszter Kurkó
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
| | - Léna Mészáros
- Hungarian Centre of Excellence for Molecular Medicine, Cancer Microbiome Core Group, Budapesti út 9, Szeged, Hungary
| | - Andreea Daraba
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
| | - Terézia Kovács
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
| | - Bence Bognár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
- HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
| | - Szilvia Juhász
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Cancer Microbiome Core Group, Budapesti út 9, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Group, Szeged, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary.
| |
Collapse
|
15
|
Carlot J, Galobart C, Gómez-Gras D, Santamaría J, Golo R, Sini M, Cebrian E, Gerovasileiou V, Ponti M, Turicchia E, Comeau S, Rilov G, Tamburello L, Pulido Mantas T, Cerrano C, Ledoux JB, Gattuso JP, Ramirez-Calero S, Millan L, Montefalcone M, Katsanevakis S, Bensoussan N, Garrabou J, Teixidó N. Vulnerability of benthic trait diversity across the Mediterranean Sea following mass mortality events. Nat Commun 2025; 16:1571. [PMID: 39939588 PMCID: PMC11821827 DOI: 10.1038/s41467-025-55949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/06/2025] [Indexed: 02/14/2025] Open
Abstract
Unraveling the functional future of marine ecosystems amid global change poses a pressing challenge. This is particularly critical in the Mediterranean Sea, which is highly impacted by global and local drivers. Utilizing extensive mass mortality events (MMEs) datasets spanning from 1986 to 2020 across the Mediterranean Sea, we investigated the trait vulnerability of benthic species that suffered from MMEs induced by nine distinct mortality drivers. By analyzing changes in ten ecological traits across 389 benthic species-constituting an extensive compendium of Mediterranean ecological traits to date-we identified 228 functional entities (FEs), defined as groups of species sharing the same trait values. Our findings indicate that of these 55 FEs were impacted by MMEs, accentuating a heightened vulnerability within specific trait categories. Notably, more than half of the mortality records showed severe impacts on calcifying and larger species with slower growth which mostly account for tree-like and massive forms. Altogether, we highlight that 29 FEs suffered extreme mortality, leading to a maximum increase of 19.1% of the global trait volume vulnerability over 35 years. We also reveal that 10.8% of the trait volume may have been temporarily lost over the last five years, emphasizing the risk of a rapid ecological transformation in the Mediterranean Sea.
Collapse
Affiliation(s)
- J Carlot
- Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-mer, France.
| | - C Galobart
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Girona, Spain
| | - D Gómez-Gras
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, HI, USA
- Facultat de Biologia, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona, Barcelona, Spain
| | - J Santamaría
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Girona, Spain
| | - R Golo
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Girona, Spain
| | - M Sini
- Department of Marine Sciences, University of the Aegean, University Hill, Mytilene, Lesvos Island, Greece
| | - E Cebrian
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Girona, Spain
| | - V Gerovasileiou
- Faculty of Environment, Department of Environment, Ionian University, Zakynthos, Greece
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece
| | - M Ponti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| | - E Turicchia
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| | - S Comeau
- Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - G Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, Israel
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - L Tamburello
- Department of Integrative Marine Ecology, Sicily, Stazione Zoologica Anton Dohrn, Palermo, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - T Pulido Mantas
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - C Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - J-P Gattuso
- Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-mer, France
- Institute for Sustainable Development and International Relations, Paris, France
| | - S Ramirez-Calero
- Facultat de Biologia, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona, Barcelona, Spain
- Institute of Marine Sciences-CSIC (ICM-CSIC), Barcelona, Spain
| | - L Millan
- Institute of Marine Sciences-CSIC (ICM-CSIC), Barcelona, Spain
| | - M Montefalcone
- Department of Earth, Environment, and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - S Katsanevakis
- Department of Marine Sciences, University of the Aegean, University Hill, Mytilene, Lesvos Island, Greece
| | - N Bensoussan
- Institute of Marine Sciences-CSIC (ICM-CSIC), Barcelona, Spain
| | - J Garrabou
- Institute of Marine Sciences-CSIC (ICM-CSIC), Barcelona, Spain
| | - N Teixidó
- Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-mer, France.
- Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Ischia Marine Center, Ischia, Italy.
| |
Collapse
|
16
|
Misra J, Pessoa L. Brain dynamics and spatiotemporal trajectories during threat processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.06.588389. [PMID: 38617278 PMCID: PMC11014591 DOI: 10.1101/2024.04.06.588389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In the past decades, functional MRI research has investigated task processing in a largely static fashion based on evoked responses during blocked and event-related designs. Despite some progress in naturalistic designs, our understanding of threat processing remains largely limited to those obtained with standard paradigms with limited dynamics. In the present paper, we applied Switching Linear Dynamical Systems to uncover the dynamics of threat processing during a continuous threat-of-shock paradigm. First, we demonstrated that the SLDS model learned the regularities of the experimental paradigm, such that states and state transitions estimated from fMRI time series data from 85 regions of interest reflected threat proximity and threat approach vs. retreat. After establishing that the model captured key properties of threat-related processing, we characterized the dynamics of the states and their transitions. Importantly, we characterized both endogenous and exogenous contributions to dynamics. The results revealed how threat processing can be viewed in terms of dynamic multivariate patterns whose trajectories are a combination of intrinsic and extrinsic factors that jointly determine how the brain temporally evolves during dynamic threat. Furthermore, we developed a measure of region importance that quantifies the contributions of an individual brain region to system dynamics, which complements the system-level characterization that is obtained with the state-space SLDS formalism. Finally, we investigated the generalizability of the modelling approach. The successful application of the SLDS model trained on one paradigm to a separate experiment illustrates the potential of this approach to capture fMRI dynamics that generalize across related but distinct threat-processing tasks. We propose that viewing threat processing through the lens of dynamical systems offers important avenues to uncover properties of the dynamics of threat that are not unveiled with standard experimental designs and analyses.
Collapse
Affiliation(s)
- Joyneel Misra
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States of America
| | - Luiz Pessoa
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States of America
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
- Maryland Neuroimaging Center, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
17
|
Michelucci A, Sforna L, Focaia R, Leonardi MV, Di Battista A, Rastelli G, Vespa S, Boncompagni S, Di Cristina M, Catacuzzeno L. SARS-CoV-2 ORF3a accessory protein is a water-permeable channel that induces lysosome swelling. Commun Biol 2025; 8:170. [PMID: 39905220 PMCID: PMC11794868 DOI: 10.1038/s42003-024-07442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025] Open
Abstract
ORF3a, the most abundantly expressed accessory protein of SARS-CoV-2, plays an essential role in virus egress by inactivating lysosomes through their deacidification. However, the mechanism underlying this process remains unclear. While seminal studies suggested ORF3a being a cation-selective channel (i.e., viroporin), recent works disproved this conclusion. To unravel the potential function of ORF3a, here we employed a multidisciplinary approach including patch-clamp electrophysiology, videoimaging, molecular dynamics (MD) simulations, and electron microscopy. Preliminary structural analyses and patch-clamp recordings in HEK293 cells rule out ORF3a functioning as either viroporin or proton (H+) channel. Conversely, videoimaging experiments demonstrate that ORF3a mediates the transmembrane transport of water. MD simulations identify the tetrameric assembly of ORF3a as the functional water transporter, with a putative selectivity filter for water permeation that includes two essential asparagines, N82 and N119. Consistent with this, N82L and N82W mutations abolish ORF3a-mediated water permeation. Finally, ORF3a expression in HEK293 cells leads to lysosomal volume increase, mitochondrial damage, and accumulation of intracellular membranes, all alterations reverted by the N82W mutation. We propose a novel function for ORF3a as a lysosomal water-permeable channel, essential for lysosome deacidification and inactivation, key steps to promote virus egress.
Collapse
Affiliation(s)
- Antonio Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| | - Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Riccardo Focaia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | | | - Angela Di Battista
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Giorgia Rastelli
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Simone Vespa
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Simona Boncompagni
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Manlio Di Cristina
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| |
Collapse
|
18
|
Wolber A, Schmidt SNL, Rockstroh B, Mier D. Are You Safe or Should I Go? How Perceived Trustworthiness and Probability of a Sexual Transmittable Infection Impact Activation of the Salience Network. eNeuro 2025; 12:ENEURO.0258-24.2024. [PMID: 39929673 PMCID: PMC11839089 DOI: 10.1523/eneuro.0258-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025] Open
Abstract
Functional imaging studies indicate that both the assessment of a person as untrustworthy and the assumption that a person has a sexually transmitted infection are associated with activation in regions of the salience network. However, studies are missing that combine these aspects and investigate the perceived trustworthiness of individuals previously assessed with high or low probability of a sexually transmitted infection. During fMRI measurements, 25 participants viewed photographs of people preclassified as having high or low HIV probability and judged their trustworthiness. In a postrating, stimuli were rated for trustworthiness, attractiveness, and HIV probability. Persons preclassified as HIV- in contrast to those preclassified as HIV+ were rated more trustworthy and with lower HIV probability. Activation in medial orbitofrontal cortex was higher for those rated and preclassified as HIV- than HIV+. Based on the individual ratings, but not the preclassification, there was significantly higher activation in the insula, amygdala, anterior cingulate cortex, and nucleus accumbens in response to untrustworthy than to trustworthy faces. Activation of the salience network occurred when a person was judged as untrustworthy, but not according to a preclassification. Activation in the medial orbitofrontal cortex, a structure associated with reward, was enhanced when a person was perceived as trustworthy and also when a person was preclassified with low HIV probability. Our findings suggest that trustworthiness and HIV- perception have consistency across samples, while the perception of risk and associated activation of the salience network has restricted cross-sample consistency.
Collapse
Affiliation(s)
- Alexander Wolber
- Department of Psychology, University of Konstanz, Konstanz 78457, Germany
| | | | - Brigitte Rockstroh
- Department of Psychology, University of Konstanz, Konstanz 78457, Germany
| | - Daniela Mier
- Department of Psychology, University of Konstanz, Konstanz 78457, Germany
| |
Collapse
|
19
|
Mistry PK, Chang H, El-Said D, Menon V. Unraveling latent cognitive, metacognitive, strategic, and affective processes underlying children's problem-solving using Bayesian cognitive modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635409. [PMID: 39975184 PMCID: PMC11838325 DOI: 10.1101/2025.01.29.635409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Children exhibit remarkable variability in their mathematical problem-solving abilities, yet the cognitive, metacognitive and affective mechanisms underlying these individual differences remain poorly understood. We developed a novel Bayesian model of arithmetic problem-solving (BMAPS) to uncover the latent processes governing children's arithmetic strategy choice and efficiency. BMAPS inferred cognitive parameters related to strategy execution and metacognitive parameters related to strategy selection, revealing key mechanisms of adaptive problem solving. BMAPS parameters collectively explained individual differences in problem-solving performance, predicted longitudinal gains in arithmetic fluency and mathematical reasoning, and mediated the effects of anxiety and attitudes on performance. Clustering analyses using BMAPS parameters revealed distinct profiles of strategy use, metacognitive efficiency, and developmental change. By quantifying the fine-grained dynamics of strategy selection and execution and their relation to affective factors and academic outcomes, BMAPS provides new insights into the cognitive and metacognitive underpinnings of children's mathematical learning. This work advances powerful computational methods for uncovering latent mechanisms of complex cognition in children.
Collapse
Affiliation(s)
- Percy K Mistry
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine Stanford, CA 94305, US
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine Stanford, CA 94305, US
- Wu Tsai Neuroscience Institute, Stanford University School of Medicine Stanford, CA 94305, US
- Symbolic Systems Program, Stanford University School of Medicine Stanford, CA 94305, US
| | - Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine Stanford, CA 94305, US
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine Stanford, CA 94305, US
- Wu Tsai Neuroscience Institute, Stanford University School of Medicine Stanford, CA 94305, US
- Symbolic Systems Program, Stanford University School of Medicine Stanford, CA 94305, US
| | - Dawlat El-Said
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine Stanford, CA 94305, US
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine Stanford, CA 94305, US
- Wu Tsai Neuroscience Institute, Stanford University School of Medicine Stanford, CA 94305, US
- Symbolic Systems Program, Stanford University School of Medicine Stanford, CA 94305, US
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine Stanford, CA 94305, US
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine Stanford, CA 94305, US
- Wu Tsai Neuroscience Institute, Stanford University School of Medicine Stanford, CA 94305, US
- Symbolic Systems Program, Stanford University School of Medicine Stanford, CA 94305, US
| |
Collapse
|
20
|
Padilla MS, Mrksich K, Wang Y, Haley RM, Li JJ, Han EL, El-Mayta R, Kim EH, Dias S, Gong N, Teerdhala SV, Han X, Chowdhary V, Xue L, Siddiqui Z, Yamagata HM, Kim D, Yoon IC, Wilson JM, Radhakrishnan R, Mitchell MJ. Branched endosomal disruptor (BEND) lipids mediate delivery of mRNA and CRISPR-Cas9 ribonucleoprotein complex for hepatic gene editing and T cell engineering. Nat Commun 2025; 16:996. [PMID: 39856035 PMCID: PMC11759712 DOI: 10.1038/s41467-024-55137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/27/2024] [Indexed: 01/30/2025] Open
Abstract
Lipid nanoparticles (LNPs) are the preeminent non-viral drug delivery vehicle for mRNA-based therapies. Immense effort has been placed on optimizing the ionizable lipid (IL) structure, which contains an amine core conjugated to lipid tails, as small molecular adjustments can result in substantial changes in the overall efficacy of the resulting LNPs. However, despite some advancements, a major barrier for LNP delivery is endosomal escape. Here, we develop a platform for synthesizing a class of branched ILs that improve endosomal escape. These compounds incorporate terminally branched groups that increase hepatic mRNA and ribonucleoprotein complex delivery and gene editing efficiency as well as T cell transfection compared to non-branched lipids. Through an array of complementary experiments, we determine that our lipid architecture induces greater endosomal penetration and disruption. This work provides a scheme to generate a class of ILs for both mRNA and protein delivery.
Collapse
Affiliation(s)
- Marshall S Padilla
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kaitlin Mrksich
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yiming Wang
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rebecca M Haley
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacqueline J Li
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emily L Han
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rakan El-Mayta
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal
| | - Emily H Kim
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sofia Dias
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, 4200-135, Portugal
| | - Ningqiang Gong
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sridatta V Teerdhala
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xuexiang Han
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivek Chowdhary
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lulu Xue
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zain Siddiqui
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hannah M Yamagata
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dongyoon Kim
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Il-Chul Yoon
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James M Wilson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ravi Radhakrishnan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Fitzgerald LS, Reynoso Spurrier CS, Lau NJ, Melamed MD, Burnett LA, Meyer GA, Gui C, Hevener AL, Sanford JA, Schenk S. Markers of mitochondrial function and oxidative metabolism in female skeletal muscle do not display intrinsic circadian regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631231. [PMID: 39868315 PMCID: PMC11761028 DOI: 10.1101/2025.01.08.631231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Mitochondria are key regulators of metabolism and ATP supply in skeletal muscle, while circadian rhythms influence many physiological processes. However, whether mitochondrial function is intrinsically regulated in a circadian manner in mouse skeletal muscle is inadequately understood. Accordingly, we measured post-absorptive transcript abundance of markers of mitochondrial biogenesis, dynamics, and metabolism (extensor digitorum longus [EDL], soleus, gastrocnemius), protein abundance of electron transport chain complexes (EDL and soleus), enzymatic activity of SDH (tibialis anterior and plantaris), and maximum uncoupled respiration (tibialis anterior) in different skeletal muscles from female C57BL/6NJ mice at four zeitgeber times (ZT), ZT 1, 7, 13, and 19. Our findings demonstrate that markers of mitochondrial function and oxidative metabolism do not display intrinsic time-of-day regulation at the gene, protein, enzymatic, or functional level. The core-clock genes Bmal1 and Dbp exhibited intrinsic circadian rhythmicity in skeletal muscle (i.e., EDL, soleus, gastrocnemius) and circadian amplitude varied by muscle type. These findings demonstrate that female mouse skeletal muscle does not display circadian regulation of markers of mitochondrial function or oxidative metabolism over 24 hours.
Collapse
|
22
|
Wright ZM, Butay KJ, Krahn JM, Wilson IM, Gabel SA, DeRose EF, Hissein IS, Williams JG, Borgnia MJ, Frazier MN, Mueller GA, Stanley RE. Spontaneous base flipping helps drive Nsp15's preferences in double stranded RNA substrates. Nat Commun 2025; 16:391. [PMID: 39755678 DOI: 10.1038/s41467-024-55682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
Coronaviruses evade detection by the host immune system with the help of the endoribonuclease Nsp15, which regulates levels of viral double stranded RNA by cleaving 3' of uridine (U). While prior structural data shows that to cleave double stranded RNA, Nsp15's target U must be flipped out of the helix, it is not yet understood whether Nsp15 initiates flipping or captures spontaneously flipped bases. We address this gap by designing fluorinated double stranded RNA substrates that allow us to directly relate a U's sequence context to both its tendency to spontaneously flip and its susceptibility to cleavage by Nsp15. Through a combination of nuclease assays, 19F NMR spectroscopy, mass spectrometry, and single particle cryo-EM, we determine that Nsp15 acts most efficiently on unpaired Us, particularly those that are already flipped. Across sequence contexts, we find Nsp15's cleavage efficiency to be directly related to that U's tendency to spontaneously flip. Overall, our findings unify previous characterizations of Nsp15's cleavage preferences, and suggest that activity of Nsp15 during infection is partially driven by bulged or otherwise relatively accessible Us that appear at strategic positions in the viral RNA.
Collapse
Affiliation(s)
- Zoe M Wright
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Kevin John Butay
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Isha M Wilson
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
- Howard University College of Medicine, Washington, DC, 20059, USA
| | - Scott A Gabel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Israa S Hissein
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Jason G Williams
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Meredith N Frazier
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
- Department of Chemistry and Biochemistry, College of Charleston, 66 George St, Charleston, SC, 29424, USA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Robin E Stanley
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
23
|
Parreira BR, Gopalakrishnan S, Chikhi L. Effects of Social Structure on Effective Population Size Change Estimates. Evol Appl 2025; 18:e70063. [PMID: 39816161 PMCID: PMC11732743 DOI: 10.1111/eva.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025] Open
Abstract
Most methods currently used to infer the "demographic history of species" interpret this expression as a history of population size changes. The detection, quantification, and dating of demographic changes often rely on the assumption that population structure can be neglected. However, most vertebrates are typically organized in populations subdivided into social groups that are usually ignored in the interpretation of genetic data. This could be problematic since an increasing number of studies have shown that population structure can generate spurious signatures of population size change. Here, we simulate microsatellite data from a species subdivided into social groups where reproduction occurs according to different mating systems (monogamy, polygynandry, and polygyny). We estimate the effective population size (N e) and quantify the effect of social structure on estimates of changes in N e. We analyze the simulated data with two widely used methods for demographic inference. The first approach, BOTTLENECK, tests whether the samples are at mutation-drift equilibrium and thus whether a single N e can be estimated. The second approach, msvar, aims at quantifying and dating changes in N e. We find that social structure may lead to signals of departure from mutation-drift equilibrium including signals of expansion and bottlenecks. We also find that expansion signals may be observed under simple stationary Wright-Fisher models with low diversity. Since small populations tend to characterize many endangered species, we stress that methods trying to infer N e should be interpreted with care and validated with simulated data incorporating information about structure. Spurious expansion signals due to social structure can mask critical population size changes. These can obscure true bottleneck events and be particularly problematic in endangered species.
Collapse
Affiliation(s)
- Bárbara Ribeiro Parreira
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Shyam Gopalakrishnan
- Center for Evolutionary HologenomicsGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Lounès Chikhi
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE) UMR 5300Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3)ToulouseFrance
- Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de Ciências da Universidade de LisboaLisboaPortugal
| |
Collapse
|
24
|
DeLuca S, Strash N, Chen Y, Patsy M, Myers A, Tejeda L, Broders S, Miranda A, Jiang X, Bursac N. Engineered Cardiac Tissues as a Platform for CRISPR-Based Mitogen Discovery. Adv Healthc Mater 2025; 14:e2402201. [PMID: 39508305 PMCID: PMC11695184 DOI: 10.1002/adhm.202402201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/23/2024] [Indexed: 11/15/2024]
Abstract
Improved understanding of cardiomyocyte (CM) cell cycle regulation may allow researchers to stimulate pro-regenerative effects in injured hearts or promote maturation of human stem cell-derived CMs. Gene therapies, in particular, hold promise to induce controlled proliferation of endogenous or transplanted CMs via transient activation of mitogenic processes. Methods to identify and characterize candidate cardiac mitogens in vitro can accelerate translational efforts and contribute to the understanding of the complex regulatory landscape of CM proliferation and postnatal maturation. In this study, A CRISPR knockout-based screening strategy using in vitro neonatal rat ventricular myocyte (NRVM) monolayers is established, followed by candidate mitogen validation in mature 3-D engineered cardiac tissues (ECTs). This screen identified knockout of the purine metabolism enzyme adenosine deaminase (ADA-KO) as an effective pro-mitogenic stimulus. RNA-sequencing of ECTs further reveals increased pentose phosphate pathway (PPP) activity as the primary driver of ADA-KO-induced CM cycling. Inhibition of the pathway's rate limiting enzyme, glucose-6-phosphate dehydrogenase (G6PD), prevented ADA-KO induced CM cycling, while increasing PPP activity via G6PD overexpression increased CM cycling. Together, this study demonstrates the development and application of a genetic/tissue engineering platform for in vitro discovery and validation of new candidate mitogens affecting regenerative or maturation states of cardiomyocytes.
Collapse
Affiliation(s)
- Sophia DeLuca
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Nicholas Strash
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | | | | | | | | | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
25
|
Fu X, Zhang F, Dong X, Pu L, Feng Y, Xu Y, Gao F, Liang T, Kang J, Sun H, Hong T, Liu Y, Zhou H, Jiang J, Yin D, Hu X, Wang DZ, Ding J, Chen J. Adapting cytoskeleton-mitochondria patterning with myocyte differentiation by promyogenic PRR33. Cell Death Differ 2025; 32:177-193. [PMID: 39147882 PMCID: PMC11742405 DOI: 10.1038/s41418-024-01363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Coordinated cytoskeleton-mitochondria organization during myogenesis is crucial for muscle development and function. Our understanding of the underlying regulatory mechanisms remains inadequate. Here, we identified a novel muscle-enriched protein, PRR33, which is upregulated during myogenesis and acts as a promyogenic factor. Depletion of Prr33 in C2C12 represses myoblast differentiation. Genetic deletion of Prr33 in mice reduces myofiber size and decreases muscle strength. The Prr33 mutant mice also exhibit impaired myogenesis and defects in muscle regeneration in response to injury. Interactome and transcriptome analyses reveal that PRR33 regulates cytoskeleton and mitochondrial function. Remarkably, PRR33 interacts with DESMIN, a key regulator of cytoskeleton-mitochondria organization in muscle cells. Abrogation of PRR33 in myocytes substantially abolishes the interaction of DESMIN filaments with mitochondria, leading to abnormal intracellular accumulation of DESMIN and mitochondrial disorganization/dysfunction in myofibers. Together, our findings demonstrate that PRR33 and DESMIN constitute an important regulatory module coordinating mitochondrial organization with muscle differentiation.
Collapse
Affiliation(s)
- Xuyang Fu
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Feng Zhang
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Xiaoxuan Dong
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Linbin Pu
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yan Feng
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yang Xu
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Gao
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tian Liang
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Jianmeng Kang
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Hongke Sun
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tingting Hong
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yunxia Liu
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hongmei Zhou
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun Jiang
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Deling Yin
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xinyang Hu
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Da-Zhi Wang
- University of South Florida Health Heart Institute, Center for Regenerative Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33602, USA
| | - Jian Ding
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jinghai Chen
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| |
Collapse
|
26
|
Nikolaou PE, Konijnenberg LS, Kostopoulos IV, Miliotis M, Mylonas N, Georgoulis A, Pavlidis G, Kuster CT, van Reijmersdal VP, Luiken TT, Agapaki A, Roverts R, Orologas N, Grigoriadis D, Pallot G, Boucher P, Kostomitsopoulos N, Pieper MP, Germain S, Loukas Y, Dotsikas Y, Ikonomidis I, Hatzigeorgiou AG, Tsitsilonis O, Zuurbier CJ, Nijveldt R, van Royen N, Andreadou I. Empagliflozin in Acute Myocardial Infarction Reduces No-Reflow and Preserves Cardiac Function by Preventing Endothelial Damage. JACC Basic Transl Sci 2025; 10:43-61. [PMID: 39958474 PMCID: PMC11830260 DOI: 10.1016/j.jacbts.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 02/18/2025]
Abstract
Empagliflozin treatment before acute myocardial infarction mainly targets the endothelial cell transcriptome. Empagliflozin treatment before and after myocardial infarction decreased no reflow and microvascular injury, leading to reduced infiltration of inflammatory cells, reduced infarct size, and improved cardiac function in mice. In diabetic patients receiving empagliflozin after myocardial infarction, perfused boundary region, flow-mediated dilation, and global longitudinal strain were improved.
Collapse
Affiliation(s)
- Panagiota Efstathia Nikolaou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Ioannis V. Kostopoulos
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios Miliotis
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Nikolaos Mylonas
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Georgoulis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - George Pavlidis
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Carolien T.A. Kuster
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Tom T.J. Luiken
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anna Agapaki
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Rona Roverts
- Electron Microscopy Center, Radboud UMC Technology Center, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nikolaos Orologas
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Grigoriadis
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Gaëtan Pallot
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Pierre Boucher
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facilities, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Stéphane Germain
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Yannis Loukas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Yannis Dotsikas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ignatios Ikonomidis
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Artemis G. Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Ourania Tsitsilonis
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Coert J. Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Niels van Royen
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
27
|
Kedir WM, Li L, Tan YS, Bajalovic N, Loke DK. Nanomaterials and methods for cancer therapy: 2D materials, biomolecules, and molecular dynamics simulations. J Mater Chem B 2024; 12:12141-12173. [PMID: 39502031 DOI: 10.1039/d4tb01667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This review explores the potential of biomolecule-based nanomaterials, i.e., protein, peptide, nucleic acid, and polysaccharide-based nanomaterials, in cancer nanomedicine. It highlights the wide range of design possibilities for creating multifunctional nanomedicines using these biomolecule-based nanomaterials. This review also analyzes the primary obstacles in cancer nanomedicine that can be resolved through the usage of nanomaterials based on biomolecules. It also examines the unique in vivo characteristics, programmability, and biological functionalities of these biomolecule-based nanomaterials. This summary outlines the most recent advancements in the development of two-dimensional semiconductor-based nanomaterials for cancer theranostic purposes. It focuses on the latest developments in molecular simulations and modelling to provide a clear understanding of important uses, techniques, and concepts of nanomaterials in drug delivery and synthesis processes. Finally, the review addresses the challenges in molecular simulations, and generating, analyzing, and developing biomolecule-based and two-dimensional semiconductor-based nanomaterials, and highlights the barriers that must be overcome to facilitate their application in clinical settings.
Collapse
Affiliation(s)
- Welela M Kedir
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Lunna Li
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Natasa Bajalovic
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Desmond K Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| |
Collapse
|
28
|
Kenny TC, Birsoy K. Mitochondria and Cancer. Cold Spring Harb Perspect Med 2024; 14:a041534. [PMID: 38692736 PMCID: PMC11610758 DOI: 10.1101/cshperspect.a041534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mitochondria are semiautonomous organelles with diverse metabolic and cellular functions including anabolism and energy production through oxidative phosphorylation. Following the pioneering observations of Otto Warburg nearly a century ago, an immense body of work has examined the role of mitochondria in cancer pathogenesis and progression. Here, we summarize the current state of the field, which has coalesced around the position that functional mitochondria are required for cancer cell proliferation. In this review, we discuss how mitochondria influence tumorigenesis by impacting anabolism, intracellular signaling, and the tumor microenvironment. Consistent with their critical functions in tumor formation, mitochondria have become an attractive target for cancer therapy. We provide a comprehensive update on the numerous therapeutic modalities targeting the mitochondria of cancer cells making their way through clinical trials.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
29
|
Werner JM, Gillis J. Meta-analysis of single-cell RNA sequencing co-expression in human neural organoids reveals their high variability in recapitulating primary tissue. PLoS Biol 2024; 22:e3002912. [PMID: 39621752 PMCID: PMC11637388 DOI: 10.1371/journal.pbio.3002912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2024] [Accepted: 10/24/2024] [Indexed: 12/14/2024] Open
Abstract
Human neural organoids offer an exciting opportunity for studying inaccessible human-specific brain development; however, it remains unclear how precisely organoids recapitulate fetal/primary tissue biology. We characterize field-wide replicability and biological fidelity through a meta-analysis of single-cell RNA-sequencing data for first and second trimester human primary brain (2.95 million cells, 51 data sets) and neural organoids (1.59 million cells, 173 data sets). We quantify the degree primary tissue cell type marker expression and co-expression are recapitulated in organoids across 10 different protocol types. By quantifying gene-level preservation of primary tissue co-expression, we show neural organoids lie on a spectrum ranging from virtually no signal to co-expression indistinguishable from primary tissue, demonstrating a high degree of variability in biological fidelity among organoid systems. Our preserved co-expression framework provides cell type-specific measures of fidelity applicable to diverse neural organoids, offering a powerful tool for uncovering unifying axes of variation across heterogeneous neural organoid experiments.
Collapse
Affiliation(s)
- Jonathan M. Werner
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jesse Gillis
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
30
|
Xie M, Ye L, Chen K, Xu Q, Yang C, Chen X, Chan EWC, Li F, Chen S. Clinical use of tigecycline may contribute to the widespread dissemination of carbapenem-resistant hypervirulent Klebsiella pneumoniae strains. Emerg Microbes Infect 2024; 13:2306957. [PMID: 38240375 PMCID: PMC10829843 DOI: 10.1080/22221751.2024.2306957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) poses grave threats to human health. These strains increased dramatically in clinical settings in China in the past few years but not in other parts of the world. Four isogenic K. pneumoniae strains, including classical K. pneumoniae, carbapenem-resistant K. pneumoniae (CRKP), hypervirulent K. pneumoniae (hvKP) and CR-hvKP, were created and subjected to phenotypic characterization, competition assays, mouse sepsis model and rat colonization tests to investigate the mechanisms underlying the widespread nature of CR-hvKP in China. Acquisition of virulence plasmid led to reduced fitness and abolishment of colonization in the gastrointestinal tract, which may explain why hvKP is not clinically prevalent after its emergence for a long time. However, tigecycline treatment facilitated the colonization of hvKP and CR-hvKP and reduced the population of Lactobacillus spp. in animal gut microbiome. Feeding with Lactobacillus spp. could significantly reduce the colonization of hvKP and CR-hvKP in the animal gastrointestinal tract. Our data implied that the clinical use of tigecycline to treat carbapenem-resistant K. pneumoniae infections facilitated the high spread of CR-hvKP in clinical settings in China and demonstrated that Lactobacillus spp. was a potential candidate for anticolonization strategy against CR-hvKP.
Collapse
Affiliation(s)
- Miaomiao Xie
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kaichao Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Qi Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Chen Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Xiangnan Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Fuyong Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
31
|
Ko M, Kim J, Lazim R, Lee JY, Kim JY, Gosu V, Lee Y, Choi S, Kwon HJ. The anticancer effect of metformin targets VDAC1 via ER-mitochondria interactions-mediated autophagy in HCC. Exp Mol Med 2024; 56:2714-2725. [PMID: 39627451 DOI: 10.1038/s12276-024-01357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 12/28/2024] Open
Abstract
Metformin (MetF) is used worldwide as a first-line therapy for type 2 diabetes. Recently, interest in the pleiotropic effects of MetF, such as its anticancer and antiaging properties, has increased. However, the molecular target of MetF and the detailed mechanism underlying its ability to inhibit cell growth through autophagy induction remain incompletely understood. In this study, using an innovative label-free drug affinity responsive target stability (DARTS)-LC-MS/MS method, we discovered that mitochondrial voltage-dependent anion channel 1 (VDAC1) is a novel binding protein involved in the induction of autophagy-related cell death by high-dose MetF in hepatocellular carcinoma (HCC). Computational alanine scanning mutagenesis revealed that MetF and VDAC1 (D9, E203) interact electrostatically. MetF disrupts the IP3R-GRP75-VDAC1 complex, which plays a key role in stabilizing mitochondria-associated ER membranes (MAMs), by binding to VDAC1. This disruption leads to increased cytosolic calcium levels, thereby contributing to autophagy induction. MetF also decreased the AMP/ATP ratio and activated the AMPK pathway. Cells with genetic knockdown of VDAC1 mimicked the activity of MetF. In conclusion, this study provides new insights into the involvement of MetF in ionic interactions with VDAC1, contributing to its anticancer effects in HCC. These findings help elucidate the diverse biological and pharmacological effects of MetF, particularly its influence on autophagy, as well as the potential of MetF as a therapeutic agent for diseases characterized by VDAC1 overexpression.
Collapse
Affiliation(s)
- Minjeong Ko
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jiho Kim
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Raudah Lazim
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Ju Yeon Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Vijayakumar Gosu
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Yoonji Lee
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.
| | - Ho Jeong Kwon
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Hsieh PN, Singh JP. Rhythm-Ready: Harnessing Smart Devices to Detect and Manage Arrhythmias. Curr Cardiol Rep 2024; 26:1385-1391. [PMID: 39422821 DOI: 10.1007/s11886-024-02135-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE OF REVIEW To survey recent progress in the application of implantable and wearable sensors to detection and management of cardiac arrhythmias. RECENT FINDINGS Sensor-enabled strategies are critical for the detection, prediction and management of arrhythmias. In the last several years, great innovation has occurred in the types of devices (implanted and wearable) that are available and the data they collect. The integration of artificial intelligence solutions into sensor-enabled strategies has set the stage for a new generation of smart devices that augment the human clinician. Smart devices enhanced by new sensor technologies and Artificial Intelligence (AI) algorithms promise to reshape the care of cardiac arrhythmias.
Collapse
Affiliation(s)
- Paishiun Nelson Hsieh
- Massachusetts General Hospital, Demoulas Center for Cardiac Arrhythmias, Harvard Medical School, 55 Fruit Street, GRB 8-842, Boston, MA, 02114, USA
| | - Jagmeet P Singh
- Massachusetts General Hospital, Demoulas Center for Cardiac Arrhythmias, Harvard Medical School, 55 Fruit Street, GRB 8-842, Boston, MA, 02114, USA.
| |
Collapse
|
33
|
Diamond B, Chahar D, Jain MD, Poos AM, Durante M, Ziccheddu B, Kaddoura M, Papadimitriou M, Maclachlan K, Jelinek T, Davies F, Figura NB, Morgan G, Mai E, Weisel KC, Fenk R, Raab MS, Usmani S, Landgren O, Locke FL, Goldschmidt H, Schatz JH, Weinhold N, Maura F. Mutagenic impact and evolutionary influence of radiotherapy in hematologic malignancies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623836. [PMID: 39605649 PMCID: PMC11601314 DOI: 10.1101/2024.11.15.623836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Ionizing radiotherapy (RT) is a widely used palliative and curative treatment strategy for malignancies. In solid tumors, RT-induced double strand breaks lead to the accumulation of indels, and their repair by non-homologous end-joining has been linked to the ID8 mutational signature in resistant cells. However, the extent of RT-induced DNA damage in hematologic malignancies and its impact on their evolution and interplay with commonly used chemotherapies has not yet been explored. Here, we interrogated 580 whole genome sequencing (WGS) from patients with large B-cell lymphoma, multiple myeloma, and myeloid neoplasms and identified ID8 only in relapsed disease. Yet, it was detected after exposure to both RT and mutagenic chemotherapy (i.e., platinum). Using WGS of single-cell colonies derived from treated lymphoma cells, we revealed a dose-response relationship between RT and platinum and ID8. Finally, using ID8 as a genomic barcode we demonstrate that a single RT-resistant cell may seed systemic relapse.
Collapse
Affiliation(s)
- Benjamin Diamond
- Myeloma Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Dhanvantri Chahar
- Lymphoma Service, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | | | - Alexandra M. Poos
- Heidelberg Myeloma Center, Department of Internal Medicine V, Heidelberg University Hospital, Medical Faculty, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg University, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Durante
- Myeloma Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Bachisio Ziccheddu
- Myeloma Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Marcella Kaddoura
- Myeloma Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Marios Papadimitriou
- Myeloma Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Kylee Maclachlan
- Myeloma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tomas Jelinek
- Department of Hemato-Oncology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Czech Republic
| | - Faith Davies
- Myeloma Research Program, NYU Langone, Perlmutter Cancer Center, New York, NY, USA
| | - Nicholas B Figura
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Gareth Morgan
- Myeloma Research Program, NYU Langone, Perlmutter Cancer Center, New York, NY, USA
| | - Elias Mai
- Heidelberg Myeloma Center, Department of Internal Medicine V, Heidelberg University Hospital, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Katja C. Weisel
- Department of Oncology, Hematology and Blood and Marrow Transplant, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, University-Hospital Duesseldorf, Duesseldorf, Germany
| | - Marc S. Raab
- Heidelberg Myeloma Center, Department of Internal Medicine V, Heidelberg University Hospital, Medical Faculty, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg University, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Saad Usmani
- Myeloma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ola Landgren
- Myeloma Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | | | - Hartmut Goldschmidt
- Heidelberg Myeloma Center, Department of Internal Medicine V, Heidelberg University Hospital, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | | | - Niels Weinhold
- Heidelberg Myeloma Center, Department of Internal Medicine V, Heidelberg University Hospital, Medical Faculty, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg University, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Francesco Maura
- Myeloma Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
34
|
Arnold CRK, Bharti N, Exten C, Small M, Srinivasan S, Kuchipudi SV, Kapur V, Ferrari MJ. The Maximal Expected Benefit of SARS-CoV-2 Interventions Among University Students: A Simulation Study Using Latent Class Analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.04.24316707. [PMID: 39606397 PMCID: PMC11601753 DOI: 10.1101/2024.11.04.24316707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Non-pharmaceutical public health measures (PHMs) were central to pre-vaccination efforts to reduce Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) exposure risk; heterogeneity in adherence placed bounds on their potential effectiveness, and correlation in their adoption makes assessing the impact attributable to an individual PHM difficult. During the Fall 2020 semester, we used a longitudinal cohort design in a university student population to conduct a behavioral survey of intention to adhere to PHMs, paired with an IgG serosurvey to quantify SARS-CoV-2 exposure at the end of the semester. Using Latent Class Analysis on behavioral survey responses, we identified three distinct groups among the 673 students with IgG samples: 256 (38.04%) students were in the most adherent group, intending to follow all guidelines, 306 (46.21%) in the moderately-adherent group, and 111 (15.75%) in the least-adherent group, rarely intending to follow any measure, with adherence negatively correlated with seropositivity of 25.4%, 32.2% and 37.7%, respectively. Moving all individuals in an SIR model into the most adherent group resulted in a 76-93% reduction in seroprevalence, dependent on assumed assortativity. The potential impact of increasing PHM adherence was limited by the substantial exposure risk in the large proportion of students already following all PHMs.
Collapse
|
35
|
Sievert MA, Singh PP, Shoue DA, Checkley LA, Brenneman KM, Qahash T, Cassady Z, Kumar S, Li X, Nosten FH, Anderson TJ, Vaughan AM, Romero-Severson J, Ferdig MT. Measuring Growth, Resistance, and Recovery after Artemisinin Treatment of Plasmodium falciparum in a single semi-high-throughput Assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623064. [PMID: 39605531 PMCID: PMC11601240 DOI: 10.1101/2024.11.11.623064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Artemisinin partial resistance (ART-R) has spread throughout Southeast Asia and mutations in pfKelch13, the molecular marker of resistance, are widely reported in East Africa. Effective in vitro assays and robust phenotypes are crucial for monitoring populations for the emergence and spread of resistance. The recently developed extended Recovery Ring-stage Survival Assay used a qPCR-based readout to reduce the labor intensiveness for in vitro phenotyping of ART-R and improved correlation with the clinical phenotype of ART-R. Here, we extend and refine this assay to include measurements of parasite growth and recovery after drug exposure. Clinical isolates and progeny from two genetic crosses were used to optimize and validate the reliability of a straight-from-blood, SYBR Green-based qPCR protocol in a 96-well plate format to accurately measure phenotypes for Growth, Resistance, and Recovery. Results The assay determined growth between 6 h and 96 h, resistance at 120 h, and recovery from 120 h and 192 h. Growth can be accurately captured by qPCR and is shown by reproduction of previous growth phenotypes from HB3 × Dd2. Resistance measured at 120 h continually shows the most consistent phenotype for ring stage susceptibility. Recovery identifies an additional response to drug than parasites that are determined sensitive by Fold Change at 120 h. Comparison of progeny phenotypes for Growth vs Resistance showed a minor but significant correlation, whereas Growth vs Recovery and Resistance vs Recovery showed no significant correlation. Additionally, dried blood spot (DBS) samples matched Fold Change measured from liquid samples demonstrating Resistance can be easily quantified using either storage method. Conclusions The qPCR-based methodology provides the throughput needed to quickly measure large numbers of parasites for multiple relevant phenotypes. Growth can reveal fitness defects and illuminate relationships between proliferation rates and drug response. Recovery serves as a complementary phenotype to resistance that quantifies the ability of sensitive parasites to tolerate drug exposure. All three phenotypes offer a comprehensive assessment of parasite-drug interaction each with independent genetic determinants of main effect and overlapping secondary effects that should be further. By adapting our method to include DBS, readouts can be easily extended to ex vivo surveillance applications.
Collapse
Affiliation(s)
- Mackenzie A.C. Sievert
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Puspendra P. Singh
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Douglas A. Shoue
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lisa A. Checkley
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Katelyn M. Brenneman
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Tarrick Qahash
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zione Cassady
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Xue Li
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - François H. Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | | | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jeanne Romero-Severson
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Michael T. Ferdig
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
36
|
Mohanty SK, Chiaromonte F, Makova KD. Evolutionary Dynamics of G-Quadruplexes in Human and Other Great Ape Telomere-to-Telomere Genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.621973. [PMID: 39574740 PMCID: PMC11580976 DOI: 10.1101/2024.11.05.621973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
G-quadruplexes (G4s) are non-canonical DNA structures that can form at approximately 1% of the human genome. G4s contribute to point mutations and structural variation and thus facilitate genomic instability. They play important roles in regulating replication, transcription, and telomere maintenance, and some of them evolve under purifying selection. Nevertheless, the evolutionary dynamics of G4s has remained underexplored. Here we conducted a comprehensive analysis of predicted G4s (pG4s) in the recently released, telomere-to-telomere (T2T) genomes of human and other great apes-bonobo, chimpanzee, gorilla, Bornean orangutan, and Sumatran orangutan. We annotated tens of thousands of new pG4s in T2T compared to previous ape genome assemblies, including 41,236 in the human genome. Analyzing species alignments, we found approximately one-third of pG4s shared by all apes studied and identified thousands of species- and genus-specific pG4s. pG4s accumulated and diverged at rates consistent with divergence times between the studied species. We observed a significant enrichment and hypomethylation of pG4 shared across species at regulatory regions, including promoters, 5' and 3'UTRs, and origins of replication, strongly suggesting their formation and functional role in these regions. pG4s shared among great apes displayed lower methylation levels compared to species-specific pG4s, suggesting evolutionary conservation of functional roles of the former. Many species-specific pG4s were located in the repetitive and satellite regions deciphered in the T2T genomes. Our findings illuminate the evolutionary dynamics of G4s, their role in gene regulation, and their potential contribution to species-specific adaptations in great apes, emphasizing the utility of high-resolution T2T genomes in uncovering previously elusive genomic features.
Collapse
Affiliation(s)
- Saswat K. Mohanty
- Molecular, Cellular, and Integrative Biosciences, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Francesca Chiaromonte
- Department of Statistics, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
- EMbeDS, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Kateryna D. Makova
- Department of Biology, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
| |
Collapse
|
37
|
Lanters LR, Öhlmann H, Langhorst J, Theysohn N, Engler H, Icenhour A, Elsenbruch S. Disease-specific alterations in central fear network engagement during acquisition and extinction of conditioned interoceptive fear in inflammatory bowel disease. Mol Psychiatry 2024; 29:3527-3536. [PMID: 38802508 PMCID: PMC11541002 DOI: 10.1038/s41380-024-02612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Interoceptive fear, which is shaped by associative threat learning and memory processes, plays a central role in abnormal interoception and psychiatric comorbidity in conditions of the gut-brain axis. Although animal and human studies support that acute inflammation induces brain alterations in the central fear network, mechanistic knowledge in patients with chronic inflammatory conditions remains sparse. We implemented a translational fear conditioning paradigm to elucidate central fear network reactivity in patients with quiescent inflammatory bowel disease (IBD), compared to patients with irritable bowel syndrome (IBS) and healthy controls (HC). Using functional magnetic resonance imaging, conditioned differential neural responses within regions of the fear network were analyzed during acquisition and extinction learning. In contrast to HC and IBS, IBD patients demonstrated distinctly altered engagement of key regions of the central fear network, including amygdala and hippocampus, during differential interoceptive fear learning, with more pronounced responses to conditioned safety relative to pain-predictive cues. Aberrant hippocampal responses correlated with chronic stress exclusively in IBD. During extinction, differential engagement was observed in IBD compared to IBS patients within amygdala, ventral anterior insula, and thalamus. No group differences were found in changes of cue valence as a behavioral measure of fear acquisition and extinction. Together, the disease-specific alterations in neural responses during interoceptive fear conditioning in quiescent IBD suggest persisting effects of recurring intestinal inflammation on central fear network reactivity. Given the crucial role of interoceptive fear in abnormal interoception, these findings point towards inflammation-related brain alterations as one trajectory to bodily symptom chronicity and psychiatric comorbidity. Patients with inflammatory conditions of the gut-brain axis may benefit from tailored treatment approaches targeting maladaptive interoceptive fear.
Collapse
Affiliation(s)
- Laura R Lanters
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hanna Öhlmann
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Jost Langhorst
- Department for Internal and Integrative Medicine, Sozialstiftung Bamberg, Bamberg, Germany
- Department for Integrative Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Nina Theysohn
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Adriane Icenhour
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Sigrid Elsenbruch
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
38
|
McCoy BM, Mariner BL, Cheng CF, Slikas E, Adjangba C, Greenier A, Brassington L, Marye A, Harrison BR, Partida-Aguilar M, Bamberger T, Algavi Y, Muller E, Harris A, Rout E, Avery A, Borenstein E, Promislow D, Snyder-Mackler N. Aging at scale: Younger dogs and larger breeds from the Dog Aging Project show accelerated epigenetic aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.03.616519. [PMID: 39553930 PMCID: PMC11565713 DOI: 10.1101/2024.10.03.616519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Dogs exhibit striking within-species variability in lifespan, with smaller breeds often living more than twice as long as larger breeds. This longevity discrepancy also extends to health and aging-larger dogs show higher rates of age-related diseases. Despite this well-established phenomenon, we still know little about the biomarkers and molecular mechanisms that might underlie breed differences in aging and survival. To address this gap, we generated an epigenetic clock using DNA methylation from over 3 million CpG sites in a deeply phenotyped cohort of 864 companion dogs from the Dog Aging Project, including some dogs sampled annually for 2-3 years. We found that the largest breed size tends to have epigenomes that are, on average, 0.37 years older per chronological year compared to the smallest breed size. We also found that higher residual epigenetic age was significantly associated with increased mortality risk, with dogs experiencing a 34% higher risk of death for each year increase in residual epigenetic age. These findings not only broaden our understanding of how aging manifests within a diverse species but also highlight the significant role that demographic factors play in modulating the biological mechanisms underlying aging. Additionally, they highlight the utility of DNA methylation as both a biomarker for healthspan-extending interventions, a mortality predictor, and a mechanism for understanding inter-individual variation in aging in dogs.
Collapse
|
39
|
Xu X, Zhang M, Zhan S, Chen Y, Wei C, Cao J, Guo J, Dai D, Wang L, Zhong T, Zhang H, Li L. Global A-to-I RNA editing during myogenic differentiation of goat MuSCs. Front Vet Sci 2024; 11:1439029. [PMID: 39444736 PMCID: PMC11496035 DOI: 10.3389/fvets.2024.1439029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Background RNA editing, especially A-to-I editing sites, is a common RNA modification critical for stem cell differentiation, muscle development, and disease occurrence. Unveiling comprehensive RNA A-to-I editing events associated with myogenesis of the skeletal muscle satellite cells (MuSCs) is essential for extending our knowledge of the mechanism underpinning muscle development. Results A total of 9,632 RNA editing sites (RESs) were screened in the myoblasts (GM), myocytes (DM1), and myotubes (DM5) samples. Among these sites, 4,559 A-to-I edits were classified and further analyzed. There were 3,266 A-to-I sites in the protein-coding region, out of which 113 missense sites recoded protein. Notably, five A-to-I sites in the 3' UTR of four genes (TRAF6, NALF1, SLC38A1, ENSCHIG00000019092) altered their targeted miRNAs. Furthermore, a total of 370 A-to-I sites with different editing levels were detected, including FBN1, MYH10, GSK3B, CSNK1D, and PRKACB genes. These genes were predominantly enriched in the cytoskeleton in muscle cells, the hippo signaling pathway, and the tight junction. Furthermore, we identified 14 hub genes (TUFM, GSK3B, JAK2, RPSA, YARS1, CDH2, PRKACB, RUNX1, NOTCH2, CDC23, VCP, FBN1, RARS1, MEF2C) that potentially related to muscle development. Additionally, 123 stage-specific A-to-I editing sites were identified, with 43 sites in GM, 25 in DM1, and 55 in DM5 samples. These stage-specific edited genes significantly enriched essential biological pathways, including the cell cycle, oocyte meiosis, motor proteins, and hedgehog signaling pathway. Conclusion We systematically identified the RNA editing events in proliferating and differentiating goat MuSCs, which was crucial for expanding our understanding of the regulatory mechanisms of muscle development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hongping Zhang
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
40
|
Shrivastav AM, Abutoama M, Abdulhalim I. 3D nanoplasmonic structure for ultrahigh enhanced SERS with less variability, polarization independence, and multimodal sensing applied to picric acid detection. NANOSCALE ADVANCES 2024:d4na00387j. [PMID: 39309513 PMCID: PMC11413731 DOI: 10.1039/d4na00387j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is recognized as a powerful analytical method. However, its efficacy is hindered by considerable signal variability stemming from factors like surface irregularities, temporal instability of the substrate, interference with substrate signal, polarization sensitivity and uneven molecular distribution. To address these challenges, a new strategy is employed to enhance the reproducibility of SERS signals. Initially, a periodic 3D metallic structure is utilized to achieve polarization-independent ultrahigh enhancement. Additionally, signal averaging over multiple points and normalization are implemented. The integration of these techniques enables multimodal sensing (SERS, SEF, SPR) using a plasmonic chip, demonstrating ultrahigh enhancement through the interaction of extended and localized plasmons alongside nanoantenna-type resonances. The chip comprises a periodic silver 2D grating adorned with Au nanocubes, behaving as a 3D metasurface to amplify plasmonic local fields, thus facilitating SERS. Its uniformity and polarization independence together with signal averaging and normalization mitigate signal variability. Fabricated via electron beam lithography, the chip's performance is evaluated for surface-enhanced fluorescence (SEF) and SERS using Rhodamine 6G as the target molecule. Results exhibit two orders of magnitude enhancement factor for SEF and 2.5 × 107 for SERS. For chemical sensing, the chip is tested for picric acid detection across a concentration range from nanomolar to millimolar, demonstrating a detection limit of approximately 3 nM.
Collapse
Affiliation(s)
- Anand M Shrivastav
- Department of Electro-Optics and Photonics Engineering, School of Electrical and Computer Engineering and The Ilse-Katz Institute for Nano-scale Science and Technology, Ben Gurion University Beer Sheva 84105 Israel
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology Kattankulathur Chennai Tamil Nadu 603203 India
| | - Mohammad Abutoama
- Department of Electro-Optics and Photonics Engineering, School of Electrical and Computer Engineering and The Ilse-Katz Institute for Nano-scale Science and Technology, Ben Gurion University Beer Sheva 84105 Israel
- DTU Electro, Technical University of Denmark Ørsteds Plads, Building 343 2800 Kgs Lyngby Denmark
- NanoPhoton - Center for Nanonphotonics Ørsteds Plads, Building 345A 2800 Kgs Lyngby Denmark
| | - Ibrahim Abdulhalim
- Department of Electro-Optics and Photonics Engineering, School of Electrical and Computer Engineering and The Ilse-Katz Institute for Nano-scale Science and Technology, Ben Gurion University Beer Sheva 84105 Israel
| |
Collapse
|
41
|
Akter M, Moghimianavval H, Luker GD, Liu AP. Light-triggered protease-mediated release of actin-bound cargo from synthetic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613133. [PMID: 39314483 PMCID: PMC11419145 DOI: 10.1101/2024.09.15.613133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion. Here, we designed and constructed a protein-based platform termed TEV Protease-mediated Releasable Actin-binding protein (TRAP) for selective, rapid, and triggerable secretion in synthetic cells. TRAP is designed to bind tightly to reconstituted actin networks and is proteolytically released from bound actin, followed by secretion via cell-penetrating peptide membrane translocation. We demonstrated TRAP's efficacy in facilitating light-activated secretion of both fluorescent and luminescent proteins. By equipping synthetic cells with a controlled secretion mechanism, TRAP paves the way for the development of stimuli-responsive biomaterials, versatile synthetic cell-based biosensing systems, and therapeutic applications through the integration of synthetic cells with living cells for targeted delivery of protein therapeutics.
Collapse
Affiliation(s)
- Mousumi Akter
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Gary D. Luker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
42
|
Schilling L, Singleton SP, Tozlu C, Hédo M, Zhao Q, Pohl KM, Jamison K, Kuceyeski A. Sex-specific differences in brain activity dynamics of youth with a family history of substance use disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610959. [PMID: 39282344 PMCID: PMC11398379 DOI: 10.1101/2024.09.03.610959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
An individual's risk of substance use disorder (SUD) is shaped by a complex interplay of potent biosocial factors. Current neurodevelopmental models posit vulnerability to SUD in youth is due to an overreactive reward system and reduced inhibitory control. Having a family history of SUD is a particularly strong risk factor, yet few studies have explored its impact on brain function and structure prior to substance exposure. Herein, we utilized a network control theory approach to quantify sex-specific differences in brain activity dynamics in youth with and without a family history of SUD, drawn from a large cohort of substance-naïve youth from the Adolescent Brain Cognitive Development Study. We summarize brain dynamics by calculating transition energy, which probes the ease with which a whole brain, region or network drives the brain towards a specific spatial pattern of activation (i.e., brain state). Our findings reveal that a family history of SUD is associated with alterations in the brain's dynamics wherein: i) independent of sex, certain regions' transition energies are higher in those with a family history of SUD and ii) there exist sex-specific differences in SUD family history groups at multiple levels of transition energy (global, network, and regional). Family history-by-sex effects reveal that energetic demand is increased in females with a family history of SUD and decreased in males with a family history of SUD, compared to their same-sex counterparts with no SUD family history. Specifically, we localize these effects to higher energetic demands of the default mode network in females with a family history of SUD and lower energetic demands of attention networks in males with a family history of SUD. These results suggest a family history of SUD may increase reward saliency in males and decrease efficiency of top-down inhibitory control in females. This work could be used to inform personalized intervention strategies that may target differing cognitive mechanisms that predispose individuals to the development of SUD.
Collapse
Affiliation(s)
- Louisa Schilling
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Marie Hédo
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Qingyu Zhao
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Kilian M Pohl
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Keith Jamison
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
43
|
Berry JA, Guhle DC, Davis RL. Active forgetting and neuropsychiatric diseases. Mol Psychiatry 2024; 29:2810-2820. [PMID: 38532011 PMCID: PMC11420092 DOI: 10.1038/s41380-024-02521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Recent and pioneering animal research has revealed the brain utilizes a variety of molecular, cellular, and network-level mechanisms used to forget memories in a process referred to as "active forgetting". Active forgetting increases behavioral flexibility and removes irrelevant information. Individuals with impaired active forgetting mechanisms can experience intrusive memories, distressing thoughts, and unwanted impulses that occur in neuropsychiatric diseases. The current evidence indicates that active forgetting mechanisms degrade, or mask, molecular and cellular memory traces created in synaptic connections of "engram cells" that are specific for a given memory. Combined molecular genetic/behavioral studies using Drosophila have uncovered a complex system of cellular active-forgetting pathways within engram cells that is regulated by dopamine neurons and involves dopamine-nitric oxide co-transmission and reception, endoplasmic reticulum Ca2+ signaling, and cytoskeletal remodeling machinery regulated by small GTPases. Some of these molecular cellular mechanisms have already been found to be conserved in mammals. Interestingly, some pathways independently regulate forgetting of distinct memory types and temporal phases, suggesting a multi-layering organization of forgetting systems. In mammals, active forgetting also involves modulation of memory trace synaptic strength by altering AMPA receptor trafficking. Furthermore, active-forgetting employs network level mechanisms wherein non-engram neurons, newly born-engram neurons, and glial cells regulate engram synapses in a state and experience dependent manner. Remarkably, there is evidence for potential coordination between the network and cellular level forgetting mechanisms. Finally, subjects with several neuropsychiatric diseases have been tested and shown to be impaired in active forgetting. Insights obtained from research on active forgetting in animal models will continue to enrich our understanding of the brain dysfunctions that occur in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jacob A Berry
- Department of Biological Sciences, University of Alberta, Edmonton, AL, T6G 2E9, Canada.
| | - Dana C Guhle
- Department of Biological Sciences, University of Alberta, Edmonton, AL, T6G 2E9, Canada
| | - Ronald L Davis
- Department of Neuroscience, UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA.
| |
Collapse
|
44
|
Graham A, Thompson C, Flynn D, Elchos H, Gibson J, Priddy LB, Priddy MW. Design and construction of a low-cost compressive loading and perfusion flow bioreactor. HARDWAREX 2024; 19:e00565. [PMID: 39687305 PMCID: PMC11647964 DOI: 10.1016/j.ohx.2024.e00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 12/18/2024]
Abstract
This article reports the design and construction of an open-source compressive loading and perfusion flow bioreactor for under $4000, as well as validation of the device and an example use-application. The bioreactor is capable of recording applied force and displacement as well as regulating media flow rate. This bioreactor was built to be user friendly, widely adaptable for modular changes, and made of readily available materials.
Collapse
Affiliation(s)
- Alexis Graham
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Charlotte Thompson
- Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Darrock Flynn
- Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Honor Elchos
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Jaydon Gibson
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Lauren B. Priddy
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Matthew W. Priddy
- Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS 39762, United States of America
| |
Collapse
|
45
|
Li T, Aziz T, Li G, Zhang L, Yao J, Jia S. A zebrafish tufm mutant model for the COXPD4 syndrome of aberrant mitochondrial function. J Genet Genomics 2024; 51:922-933. [PMID: 38825039 DOI: 10.1016/j.jgg.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
Mitochondrial dysfunction is a critical factor leading to a wide range of clinically heterogeneous and often severe disorders due to its central role in generating cellular energy. Mutations in the TUFM gene are known to cause combined oxidative phosphorylation deficiency 4 (COXPD4), a rare mitochondrial disorder characterized by a comprehensive quantitative deficiency in mitochondrial respiratory chain (MRC) complexes. The development of a reliable animal model for COXPD4 is crucial for elucidating the roles and mechanisms of TUFM in disease pathogenesis and benefiting its medical management. In this study, we construct a zebrafish tufm-/- mutant that closely resembles the COXPD4 syndrome, exhibiting compromised mitochondrial protein translation, dysfunctional mitochondria with oxidative phosphorylation defects, and significant metabolic suppression of the tricarboxylic acid cycle. Leveraging this COXPD4 zebrafish model, we comprehensively validate the clinical relevance of TUFM mutations and identify probucol as a promising therapeutic approach for managing COXPD4. Our data offer valuable insights for understanding mitochondrial diseases and developing effective treatments.
Collapse
Affiliation(s)
- Ting Li
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tursunjan Aziz
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangyuan Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lin Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jihua Yao
- School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Shunji Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
46
|
Anandakrishnan R, Shahidi R, Dai A, Antony V, Zyvoloski IJ. An approach for developing a blood-based screening panel for lung cancer based on clonal hematopoietic mutations. PLoS One 2024; 19:e0307232. [PMID: 39172974 PMCID: PMC11341013 DOI: 10.1371/journal.pone.0307232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
Early detection can significantly reduce mortality due to lung cancer. Presented here is an approach for developing a blood-based screening panel based on clonal hematopoietic mutations. Animal model studies suggest that clonal hematopoietic mutations in tumor infiltrating immune cells can modulate cancer progression, representing potential predictive biomarkers. The goal of this study was to determine if the clonal expansion of these mutations in blood samples could predict the occurrence of lung cancer. A set of 98 potentially pathogenic clonal hematopoietic mutations in tumor infiltrating immune cells were identified using sequencing data from lung cancer samples. These mutations were used as predictors to develop a logistic regression machine learning model. The model was tested on sequencing data from a separate set of 578 lung cancer and 545 non-cancer samples from 18 different cohorts. The logistic regression model correctly classified lung cancer and non-cancer blood samples with 94.12% sensitivity (95% Confidence Interval: 92.20-96.04%) and 85.96% specificity (95% Confidence Interval: 82.98-88.95%). Our results suggest that it may be possible to develop an accurate blood-based lung cancer screening panel using this approach. Unlike most other "liquid biopsies" currently under development, the approach presented here is based on standard sequencing protocols and uses a relatively small number of rationally selected mutations as predictors.
Collapse
Affiliation(s)
- Ramu Anandakrishnan
- Edward Via College of Osteopathic Medicine, Biomedical Sciences, Blacksburg, Virginia, United States of America
- Maryland-Virginia College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ryan Shahidi
- Edward Via College of Osteopathic Medicine, Biomedical Sciences, Blacksburg, Virginia, United States of America
| | - Andrew Dai
- Edward Via College of Osteopathic Medicine, Biomedical Sciences, Blacksburg, Virginia, United States of America
| | - Veneeth Antony
- Edward Via College of Osteopathic Medicine, Biomedical Sciences, Blacksburg, Virginia, United States of America
| | - Ian J. Zyvoloski
- University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
47
|
Ehrlich F, Sehr T, Brandt M, Schmidt M, Malberg H, Sedlmayr M, Goldammer M. State-of-the-art sleep arousal detection evaluated on a comprehensive clinical dataset. Sci Rep 2024; 14:16239. [PMID: 39004643 PMCID: PMC11247076 DOI: 10.1038/s41598-024-67022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Aiming to apply automatic arousal detection to support sleep laboratories, we evaluated an optimized, state-of-the-art approach using data from daily work in our university hospital sleep laboratory. Therefore, a machine learning algorithm was trained and evaluated on 3423 polysomnograms of people with various sleep disorders. The model architecture is a U-net that accepts 50 Hz signals as input. We compared this algorithm with models trained on publicly available datasets, and evaluated these models using our clinical dataset, particularly with regard to the effects of different sleep disorders. In an effort to evaluate clinical relevance, we designed a metric based on the error of the predicted arousal index. Our models achieve an area under the precision recall curve (AUPRC) of up to 0.83 and F1 scores of up to 0.81. The model trained on our data showed no age or gender bias and no significant negative effect regarding sleep disorders on model performance compared to healthy sleep. In contrast, models trained on public datasets showed a small to moderate negative effect (calculated using Cohen's d) of sleep disorders on model performance. Therefore, we conclude that state-of-the-art arousal detection on our clinical data is possible with our model architecture. Thus, our results support the general recommendation to use a clinical dataset for training if the model is to be applied to clinical data.
Collapse
Affiliation(s)
- Franz Ehrlich
- Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
- Institute of Biomedical Engineering, TUD Dresden University of Technology, Dresden, Germany.
| | - Tony Sehr
- Department of Neurology, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Moritz Brandt
- Department of Neurology, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Martin Schmidt
- Institute of Biomedical Engineering, TUD Dresden University of Technology, Dresden, Germany
| | - Hagen Malberg
- Institute of Biomedical Engineering, TUD Dresden University of Technology, Dresden, Germany
| | - Martin Sedlmayr
- Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Miriam Goldammer
- Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| |
Collapse
|
48
|
Mukalel AJ, Hamilton AG, Billingsley MM, Li J, Thatte AS, Han X, Safford HC, Padilla MS, Papp T, Parhiz H, Weissman D, Mitchell MJ. Oxidized mRNA Lipid Nanoparticles for In Situ Chimeric Antigen Receptor Monocyte Engineering. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2312038. [PMID: 39628840 PMCID: PMC11611297 DOI: 10.1002/adfm.202312038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 12/06/2024]
Abstract
Chimeric antigen receptor (CAR) monocyte and macrophage therapies are promising solid tumor immunotherapies that can overcome the challenges facing conventional CAR T cell therapy. mRNA lipid nanoparticles (mRNA-LNPs) offer a viable platform for in situ engineering of CAR monocytes with transient and tunable CAR expression to reduce off-tumor toxicity and streamline cell manufacturing. However, identifying LNPs with monocyte tropism and intracellular delivery potency is difficult using traditional screening techniques. Here, ionizable lipid design and high-throughput in vivo screening are utilized to identify a new class of oxidized LNPs with innate tropism and mRNA delivery to monocytes. A library of oxidized (oLNPs) and unoxidized LNPs (uLNPs) is synthesized to evaluate mRNA delivery to immune cells. oLNPs demonstrate notable differences in morphology, ionization energy, and pKa, therefore enhancing delivery to human macrophages, but not T cells. Subsequently, in vivo library screening with DNA barcodes identifies an oLNP formulation, C14-O2, with innate tropism to monocytes. In a proof-of-concept study, the C14-O2 LNP is used to engineer functional CD19-CAR monocytes in situ for robust B cell aplasia (45%) in healthy mice. This work highlights the utility of oxidized LNPs as a promising platform for engineering CAR macrophages/monocytes for solid tumor CAR monocyte therapy.
Collapse
Affiliation(s)
- Alvin J. Mukalel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alex G. Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Margaret M. Billingsley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jacqueline Li
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ajay S. Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hannah C. Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marshall S. Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tyler Papp
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hamideh Parhiz
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
49
|
Liu N, Pang B, Kang L, Li D, Jiang X, Zhou CM. TUFM in health and disease: exploring its multifaceted roles. Front Immunol 2024; 15:1424385. [PMID: 38868764 PMCID: PMC11167084 DOI: 10.3389/fimmu.2024.1424385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
The nuclear-encoded mitochondrial protein Tu translation elongation factor, mitochondrial (TUFM) is well-known for its role in mitochondrial protein translation. Originally discovered in yeast, TUFM demonstrates significant evolutionary conservation from prokaryotes to eukaryotes. Dysregulation of TUFM has been associated with mitochondrial disorders. Although early hypothesis suggests that TUFM is localized within mitochondria, recent studies identify its presence in the cytoplasm, with this subcellular distribution being linked to distinct functions of TUFM. Significantly, in addition to its established function in mitochondrial protein quality control, recent research indicates a broader involvement of TUFM in the regulation of programmed cell death processes (e.g., autophagy, apoptosis, necroptosis, and pyroptosis) and its diverse roles in viral infection, cancer, and other disease conditions. This review seeks to offer a current summary of TUFM's biological functions and its complex regulatory mechanisms in human health and disease. Insight into these intricate pathways controlled by TUFM may lead to the potential development of targeted therapies for a range of human diseases.
Collapse
Affiliation(s)
- Ning Liu
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo Pang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Longfei Kang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dongyun Li
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xia Jiang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuan-min Zhou
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
50
|
Amichay G, Li L, Nagy M, Couzin ID. Revealing the mechanism and function underlying pairwise temporal coupling in collective motion. Nat Commun 2024; 15:4356. [PMID: 38778073 PMCID: PMC11111445 DOI: 10.1038/s41467-024-48458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Coordinated motion in animal groups has predominantly been studied with a focus on spatial interactions, such as how individuals position and orient themselves relative to one another. Temporal aspects have, by contrast, received much less attention. Here, by studying pairwise interactions in juvenile zebrafish (Danio rerio)-including using immersive volumetric virtual reality (VR) with which we can directly test models of social interactions in situ-we reveal that there exists a rhythmic out-of-phase (i.e., an alternating) temporal coordination dynamic. We find that reciprocal (bi-directional) feedback is both necessary and sufficient to explain this emergent coupling. Beyond a mechanistic understanding, we find, both from VR experiments and analysis of freely swimming pairs, that temporal coordination considerably improves spatial responsiveness, such as to changes in the direction of motion of a partner. Our findings highlight the synergistic role of spatial and temporal coupling in facilitating effective communication between individuals on the move.
Collapse
Affiliation(s)
- Guy Amichay
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.
- Department of Collective Behaviour, Max-Planck Institute of Animal Behavior, Konstanz, Germany.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA.
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, USA.
| | - Liang Li
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- Department of Collective Behaviour, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Máté Nagy
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.
- Department of Collective Behaviour, Max-Planck Institute of Animal Behavior, Konstanz, Germany.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- MTA-ELTE Lendület Collective Behaviour Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
- ELTE Eötvös Loránd University, Department of Biological Physics, Budapest, Hungary.
| | - Iain D Couzin
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.
- Department of Collective Behaviour, Max-Planck Institute of Animal Behavior, Konstanz, Germany.
- Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|