1
|
Petrov GV, Koldina AM, Ledenev OV, Tumasov VN, Nazarov AA, Syroeshkin AV. Nanoparticles and Nanomaterials: A Review from the Standpoint of Pharmacy and Medicine. Pharmaceutics 2025; 17:655. [PMID: 40430945 PMCID: PMC12114779 DOI: 10.3390/pharmaceutics17050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Nanoparticles (NPs) represent a unique class of structures in the modern world. In comparison to macro- and microparticles, NPs exhibit advantages due to their physicochemical properties. This has resulted in their extensive application not only in technical and engineering sciences, but also in pharmacy and medicine. A recent analysis of the scientific literature revealed that the number of articles related to the search term "nanoparticle drugs" has exceeded 65,000 in the last decade alone, according to PubMed. The growth of scientific publications on NPs and nanomaterials (NMs) in pharmacy demonstrates the rapidly developing interest of scientists in exploring alternative ways to deliver drugs, thereby improving their pharmacokinetic and pharmacodynamic properties, and the increased biocompatibility of many nanopharmaceuticals is a unique key to two mandatory pharmaceutical requirements-drug efficacy and safety. A comprehensive review of the literature indicates that the modern pharmaceutical industry is increasingly employing nanostructures. The exploration of their physicochemical properties with a subsequent modern approach to quality control remains the main task of modern pharmaceutical chemistry. The primary objective of this review is to provide a comprehensive overview of data on NPs, their physicochemical properties, and modern approaches to their synthesis, modification of their surface, and application in pharmacy.
Collapse
Affiliation(s)
- Gleb V. Petrov
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.M.K.); (A.V.S.)
| | - Alena M. Koldina
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.M.K.); (A.V.S.)
| | - Oleg V. Ledenev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia;
| | - Vladimir N. Tumasov
- Department of Pharmaceutical Chemistry and Organization of Pharmaceutical Business, Faculty of Medicine, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia;
| | - Aleksandr A. Nazarov
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.M.K.); (A.V.S.)
| | - Anton V. Syroeshkin
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.M.K.); (A.V.S.)
| |
Collapse
|
2
|
Mondal S, Karmakar T. Unveiling Interactions of a Peptide-Bound Monolayer-Protected Metal Nanocluster with a Lipid Bilayer. J Phys Chem Lett 2025; 16:3351-3358. [PMID: 40131821 DOI: 10.1021/acs.jpclett.5c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Monolayer-protected atomically precise nanoclusters (MPCs) are potential candidates for drug delivery because of their unique, versatile, and tunable physiochemical properties. The rational design of nanosized drug carriers relies on a deep understanding of their molecular-level interactions with cell membranes and other biological entities. In this work, we applied coarse-grained molecular dynamics and umbrella sampling simulations to investigate the interactions between the magainin 2 (MG2)-loaded Au144(MPA)60 (MPA = 5-mercaptopentanoic acid) nanocluster (MG2-MPC) and a model anionic tumor cell membrane. Electrostatic interactions between MPC ligands and MG2's positively charged residues with the polar headgroups of lipids play a crucial role in the adhesion of the MG2-MPC complex to the membrane surface. Furthermore, MG2-MPCs self-assemble in the linear trimeric supramolecular aggregate on the bilayer surface, indicating a possible mechanism of MPC's action in peptide delivery to the membrane.
Collapse
Affiliation(s)
- Soumya Mondal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
3
|
Vu TH, An HR, Nguyen PT, Seo J, Kim CY, Park JI, Son B, Kim H, Lee HU, Kim MI. Large-sized and highly crystalline ceria nanorods with abundant Ce 3+ species achieve efficient intracellular ROS scavenging. NANOSCALE HORIZONS 2025; 10:791-802. [PMID: 39949300 DOI: 10.1039/d4nh00639a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Intracellular reactive oxygen species (ROS) are associated with various inflammatory physiological processes and diseases, highlighting the need for their regulation to mitigate the detrimental effects of oxidative stress and to reduce cellular damage and disease progression. Here, we demonstrate cerium oxide (ceria) nanorods synthesized using a sol-gel method followed by heat treatment, called "AHT-CeNRs", as an efficient intracellular ROS scavenger. The synthesized AHT-CeNRs exhibited exceptional superoxide dismutase (SOD) and catalase (CAT)-like activities, both of which are crucial for converting ROS into harmless products. This was attributed to their high crystallinity, large surface area, numerous defects including oxygen vacancies, and abundant Ce3+ species. AHT-CeNRs exhibited higher CAT-like activities than natural CAT and conventional nanozymes, with a more than five-fold lower Km. When tested on HaCaT human keratinocyte cells, AHT-CeNRs primarily localized to the membrane but effectively scavenged intracellular ROS, potentially through their transmembrane catalytic action without disrupting the membrane. This contrasts with conventional antioxidant nanoparticles that act within the cytosol after penetrating the plasma membrane. AHT-CeNRs maintained cell viability by efficiently scavenging ROS, resulting in approximately 4-fold and 2-fold lower levels of inducible nitric oxide synthase (iNOS) and lactate dehydrogenase (LDH) compared to those in ROS-induced inflammation-stimulator lipopolysaccharide (LPS)-treated control groups, respectively. This simple yet effective method for intracellular ROS scavenging using AHT-CeNRs holds great potential for applications in cell and in vivo therapeutics to regulate intracellular ROS levels.
Collapse
Affiliation(s)
- Trung Hieu Vu
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea.
| | - Ha-Rim An
- Division of Material Analysis and Research, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea.
| | - Phuong Thy Nguyen
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea.
| | - Jiwon Seo
- Division of Material Analysis and Research, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea.
| | - Chang Yeon Kim
- Division of Material Analysis and Research, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea.
| | - Ji-In Park
- Division of Material Analysis and Research, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea.
| | - Byoungchul Son
- Division of Material Analysis and Research, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea.
| | - Hyeran Kim
- Division of Material Analysis and Research, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea.
| | - Hyun Uk Lee
- Division of Material Analysis and Research, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea.
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea.
| |
Collapse
|
4
|
Xiang L, Qin Y, Li L, Xiang X, Zhang W, Jiao Q, Shao Y, Huang X, Wu M, Zhou T, Lin Y, Chen Y. Targeting hyperactive mitochondria in activated HSCs and inhibition of liver fibrogenesis in mice using sorafenib complex micelles. Int J Pharm 2025; 669:125058. [PMID: 39653289 DOI: 10.1016/j.ijpharm.2024.125058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Liver fibrosis is a pathological condition marked by the excessive buildup of extracellular matrix primarily resulting from the transformation of quiescent hepatic stellate cells (HSCs) to myofibroblastic (MF) phenotype and their resultant over-expansion. Activated HSCs completely rely on their hyperactive mitochondria to supply the energy and biomass for their rapid proliferation and collagen secretion, so an intervention targeting their mitochondria can effectively restrict their pathological amplification and contribution to liver fibrosis. Here we tried sorafenib, a drug that plays anticancer roles by inducing the disruption and loss of mitochondrial functions, to reach an antifibrotic goal. And a complex micellar system, VA-PEG-PCL/TPGS (VPP/TPGS), was specifically designed and fabricated to encapsulate and deliver sorafenib selectively to activated HSCs to overcome its application limitations in bioavailability, toxicity and intracellular stay, and eventually maximize its induction of mitochondrial dysfunction and therapeutically antifibrotic efficacy. The prepared sorafenib complex micelles not only exhibited a suitable particle size, uniform morphology, and nice stability, but also performed excellently in the biosafety and HSCs-targetability in vitro and in vivo. In human active HSC cell lines, they markedly attenuated mitochondrial hyperactivity, induced apoptosis, and downregulated fibrosis markers as expected; while in a CCl4-induced murine model of hepatic fibrosis, they effectively restricted the expansion of MF-HSCs, reduced collagen deposition, and promoted the healing of liver damage, showing a good potential in fibrosis curation. Collectively, our VPP/TPGS complex micelles provide an ideal drug delivery platform that has the potential to revolutionize the treatment of liver fibrosis via addressing its cellular and metabolic underpinnings and thus improve patient outcomes.
Collapse
Affiliation(s)
- Li Xiang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China; Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| | - Yuting Qin
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Lei Li
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| | - Xianjing Xiang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Wenhui Zhang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Qiangqiang Jiao
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yaru Shao
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Xinqiong Huang
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| | - Meichun Wu
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| | - Tianle Zhou
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yukang Lin
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yuping Chen
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China; Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China; MOE Key Laboratory of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China.
| |
Collapse
|
5
|
Sikora J, Błaszkiewicz P, Dudkowiak A, Jagielska J, Żurawski J. Cytotoxicity of gold nanoparticles to human lymphocytes: a comparison between rod-shaped and spherical nanoparticles. Contemp Oncol (Pozn) 2025; 28:326-334. [PMID: 39935760 PMCID: PMC11809566 DOI: 10.5114/wo.2024.146995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/28/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction Gold nanoparticles (AuNPs) have unique properties that promise new and improved methods for targeting cancer treatment and diagnosis. However, despite their relatively high biocompatibility, AuNPs can negatively affect cell viability. Research indicates that the interactions with the plasma membrane and cellular uptake of AuNPs depend significantly on size, shape, and surface modifications. Material and methods We evaluated the use of human lymphocyte primary culture as a model for assessing the to-xicity of AuNPs in proliferating cells. We compared the toxicity of rod-shaped, PEGylated AuNPs (gold nanorods, AuNRs) of two different sizes and gold nanospheres (AuNSs). Results Our results show that at high concentrations, both AuNSs and AuNRs negatively affect the viability of activated human lymphocytes in vitro. The cytotoxic effect varies with size and concentration, with larger AuNRs (approx. 22 × 50 nm) being more toxic than smaller ones (approx. 20 × 40 nm) and 15 nm AuNSs exhibiting the lowest toxicity. Conclusions Our results confirm that the application of AuNPs in cancer the-rapy and diagnostics must be accompanied by a thorough cytotoxicity assessment. Despite certain limitations, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction test for viability assessment of proliferating cells proves to be a simple and cost-effective method useful in nanoparticle toxicity studies.
Collapse
Affiliation(s)
- Jacek Sikora
- Department of Immunobiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Paulina Błaszkiewicz
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Poznan, Poland
| | - Alina Dudkowiak
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Poznan, Poland
| | - Joanna Jagielska
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jakub Żurawski
- Department of Immunobiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
6
|
Munyayi TA, Crous A. Advancing Cancer Drug Delivery with Nanoparticles: Challenges and Prospects in Mathematical Modeling for In Vivo and In Vitro Systems. Cancers (Basel) 2025; 17:198. [PMID: 39857980 PMCID: PMC11763932 DOI: 10.3390/cancers17020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Mathematical models are crucial for predicting the behavior of drug conjugate nanoparticles and optimizing drug delivery systems in cancer therapy. These models simulate interactions among nanoparticle properties, tumor characteristics, and physiological conditions, including drug resistance and targeting specificity. However, they often rely on assumptions that may not accurately reflect in vivo conditions. In vitro studies, while useful, may not fully capture the complexities of the in vivo environment, leading to an overestimation of nanoparticle-based therapy effectiveness. Advancements in mathematical modeling, supported by preclinical data and artificial intelligence, are vital for refining nanoparticle-based therapies and improving their translation into effective clinical treatments.
Collapse
Affiliation(s)
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
7
|
Glader C, Jeitler R, Stanzer S, Harbusch N, Prietl B, El-Heliebi A, Selmani A, Fröhlich E, Mussbacher M, Roblegg E. Investigation of nanostructured lipid carriers for fast intracellular localization screening using the Echo liquid handler. Int J Pharm 2024; 665:124698. [PMID: 39277150 DOI: 10.1016/j.ijpharm.2024.124698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
In the field of precision medicine, therapy is optimized individually for each patient, enhancing efficacy while reducing side effects. This involves the identification of promising drug candidates through high-throughput screening on human derived cells in culture. However, screening of drugs which have poor solubility or permeability remains challenging, especially when targeting intracellular components. Therefore, encapsulation of drugs into advanced delivery systems such as nanostructured lipid carries (NLC) becomes necessary. Here we show that the cellular uptake of NLC with different matrix compositions can be assessed in a high-throughput screening system based on acoustic droplet ejection (ADE) technology (Echo liquid handler). Our findings indicate that surface tension and viscosity of the NLC dispersions need to be tailored to enable a reliable ADE transfer. The automated NLC uptake studies indicated that the composition of the matrix, more specifically the amount of oleic acid, significantly influenced cellular uptake. The data obtained were corroborated by imaging based and spectral flow cytometry cellular uptake studies. These findings thus not only provide the basis for a screening tool to rapidly identify the efficacy of NLC uptake but also enable a next step toward precision high-throughput drug screening under consideration of an optimized drug delivery system.
Collapse
Affiliation(s)
- Christina Glader
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria.
| | - Ramona Jeitler
- University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria.
| | - Stefanie Stanzer
- CBmed GmbH Stiftingtalstraße 5, 8010 Graz, Austria; Medical University of Graz, Division of Oncology, Department of Internal Medicine, Auenbruggerplatz 15, 8036 Graz, Austria.
| | | | - Barbara Prietl
- CBmed GmbH Stiftingtalstraße 5, 8010 Graz, Austria; Medical University of Graz, Division of Endocrinology and Diabetology, Department of Internal Medicine, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Amin El-Heliebi
- CBmed GmbH Stiftingtalstraße 5, 8010 Graz, Austria; Medical University of Graz, Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Atida Selmani
- University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria.
| | - Eleonore Fröhlich
- Medical University of Graz, Center for Medical Research, Stiftingtalstraße 24, 8010 Graz, Austria.
| | - Marion Mussbacher
- University of Graz, Institute of Pharmaceutical Sciences, Pharmacology & Toxicology, Humboldtstraße 46, 8010 Graz, Austria.
| | - Eva Roblegg
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria.
| |
Collapse
|
8
|
Mostafa EM, Badr Y, Hashem MM, Abo-El-Sooud K, Faid AH. Reducing the effective dose of doxycycline using chitosan silver nanocomposite as a carriers on gram positive and gram-negative bacteria. Sci Rep 2024; 14:27819. [PMID: 39537761 PMCID: PMC11561361 DOI: 10.1038/s41598-024-78326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Doxycycline (Doxy) is a tetracycline antibiotic with a potent antibacterial activity against a broad range of bacteria. Using nanotechnology is one feasible way to increase the antibiotics' ability to penetrate the body and increase their antibacterial effectiveness. In this work, we report the formation of a stable green synthesized silver nanoparticles (AgNPs) by chitosan with Doxy nanocomposite for the first time. The obtained nanoparticles were characterized by transmission electron microscopy (TEM), zeta-potential, UV-Visible spectroscopy and four transform infrared spectroscopy (FTIRs). The antibacterial effect of doxy, AgNPs and doxy/AgNPs were determined on Gram-positive Staphylococcus aureus, Streptococcus mutans and Gram-negative Escherichia coli, Klebsiella pneumonia. This combined therapeutic agent restored the susceptibility of doxy and showed an antibacterial activity against tested bacteria. AgNPs has absorption peak at 445 nm, mixing of Doxy with AgNPs causes all doxy absorptions to red shift and a broadening in surface plasmon resonance (SPR) for AgNPs and show a slight increase in particle size of AgNPs from 12 ± 2 nm to 14 ± 2 nm with high stability as zeta potential was 29 mv and 48.5mv for AgNPs and Doxy/AgNPs respectively. The antibacterial effect of Doxy/AgNPs nanocomposite was found to be twice effect of free doxy, suggesting a synergistic interaction between the two components. In conclusion, synergy of doxy with AgNPs is quite promising for antibiotic resistant strains. These results highlight the ability of AgNPs to boost the efficacy of the doxycycline.
Collapse
Affiliation(s)
- Elham M Mostafa
- Department of Laser Sciences and Interactions, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, Egypt
| | - Y Badr
- Department of Laser Sciences and Interactions, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, Egypt
| | - M M Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - K Abo-El-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Amna H Faid
- Department of Laser Sciences and Interactions, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, Egypt.
| |
Collapse
|
9
|
Mneimneh AT, Darwiche N, Mehanna MM. Investigating the therapeutic promise of drug-repurposed-loaded nanocarriers: A pioneering strategy in advancing colorectal cancer treatment. Int J Pharm 2024; 664:124473. [PMID: 39025341 DOI: 10.1016/j.ijpharm.2024.124473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Globally, colorectal cancer is a major health problem that ranks in third place in terms of occurrence and second in terms of mortality worldwide. New cases increase annually, with the absence of effective therapies, especially for metastatic colorectal cancer, emphasizing the need for novel therapeutic approaches. Although conventional treatments are commonly used in oncotherapy, their success rate is low, which leads to the exploration of novel technologies. Recent efforts have focused on developing safe and efficient cancer nanocarriers. With their nanoscale properties, nanocarriers have the potential to utilize internal metabolic modifications amid cancer and healthy cells. Drug repurposing is an emerging strategy in cancer management as it is a faster, cheaper, and safer method than conventional drug development. However, most repurposed drugs are characterized by low-key pharmacokinetic characteristics, such as poor aqueous solubility, permeability, retention, and bioavailability. Nanoparticles formulations and delivery have expanded over the past few decades, creating opportunities for drug repurposing and promises as an advanced cancer modality. This review provides a concise and updated overview of colorectal cancer treatment regimens and their therapeutic limitations. Furthermore, the chemotherapeutic effect of various FDA-approved medications, including statins, non-steroidal anti-inflammatory drugs, antidiabetic and anthelmintic agents, and their significance in colorectal cancer management. Along with the role of various nanocarrier systems in achieving the desired therapeutic outcomes of employing these redefined drugs.
Collapse
Affiliation(s)
- Amina T Mneimneh
- Pharmaceutical Nanotechnology Research lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
10
|
Li M, Sui J, Wang X, Song C, Cao X, Sun X, Zhao R, Wang S, Qin L, Wang Y, Liu K, Zhao S, Huo N. Single-walled carbon nanotube-protein complex: A strategy to improve the immune response to protein in mice. Vaccine 2024; 42:126013. [PMID: 38834429 DOI: 10.1016/j.vaccine.2024.05.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/30/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Vaccines represent an effective tool for controlling disease infection. As a key component of vaccines, many types of adjuvants have been developed and used today. This study is designed to investigate the efficacy of single-walled carbon nanotubes (SWCNTs) as a new adjuvant. The results showed that SWCNT could adsorb the antigen by intermolecular action, and the adsorption rate was significantly higher after dispersion of the SWCNTs in a sonic bath. The titer of specific antibody of mice in the SWCNTs group was higher than that of the mice in the antigen control group, confirming the adjuvant efficacy of SWCNTs. During immunisation, the specific antibody was detected earlier in the mice of the SWCNTs group, especially when the amount of antigen was reduced. And it was proved that the titer of antibodies was higher after subcutaneous and intraperitoneal injection compared to intramuscular injection. Most importantly, the mice immunised with SWCNTs showed almost the same level of immunity as the mice in the FCA (Freund's complete adjuvant) group, indicating that the SWCNTs were an effective adjuvant. In addition, the mice in the SWCNT group maintained antibody levels for 90 days after the last booster vaccination and showed a good state of health during the observed period. We also found that the SWCNTs were able to induce macrophages activation and enhance antigen uptake by mouse peritoneal macrophages.
Collapse
Affiliation(s)
- Muzi Li
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Jinyu Sui
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Xiaoyin Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Cuiping Song
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Xumin Cao
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Xiaoliang Sun
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Ruimin Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Shuting Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Lide Qin
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Yudong Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Kun Liu
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Sijun Zhao
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Nairui Huo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030800, China.
| |
Collapse
|
11
|
Koh JYC, Chen L, Gong L, Tan SJ, Hou HW, Tay CY. Lost in Rotation: How TiO 2 and ZnO Nanoparticles Disrupt Coordinated Epithelial Cell Rotation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312007. [PMID: 38708799 DOI: 10.1002/smll.202312007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Coordinated cell movement is a cardinal feature in tissue organization that highlights the importance of cells working together as a collective unit. Disruptions to this synchronization can have far-reaching pathological consequences, ranging from developmental disorders to tissue repair impairment. Herein, it is shown that metal oxide nanoparticles (NPs), even at low and non-toxic doses (1 and 10 µg mL-1), can perturb the coordinated epithelial cell rotation (CECR) in micropatterned human epithelial cell clusters via distinct nanoparticle-specific mechanisms. Zinc oxide (ZnO) NPs are found to induce significant levels of intracellular reactive oxygen species (ROS) to promote mitogenic activity. Generation of a new localized force field through changes in the cytoskeleton organization and an increase in cell density leads to the arrest of CECR. Conversely, epithelial cell clusters exposed to titanium dioxide (TiO2) NPs maintain their CECR directionality but display suppressed rotational speed in an autophagy-dependent manner. Thus, these findings reveal that nanoparticles can actively hijack the nano-adaptive responses of epithelial cells to disrupt the fundamental mechanics of cooperation and communication in a collective setting.
Collapse
Affiliation(s)
- Jie Yan Cheryl Koh
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637141, Singapore
| | - Liuying Chen
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shao Jie Tan
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Chor Yong Tay
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| |
Collapse
|
12
|
Madlala NC, Khanyile N, Masenya A. Examining the Correlation between the Inorganic Nano-Fertilizer Physical Properties and Their Impact on Crop Performance and Nutrient Uptake Efficiency. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1263. [PMID: 39120369 PMCID: PMC11314324 DOI: 10.3390/nano14151263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
The physical properties of nano-fertilizers (NFs) are important in determining their performance, efficacy, and environmental interactions. Nano-fertilizers, due to their small size and high surface area-to-volume ratio, enhance plant metabolic reactions, resulting in higher crop yields. The properties of nano-fertilizers depend on the synthesis methods used. The nanoparticle's nutrient use efficiency (NUE) varies among plant species. This review aims to analyze the relationship between the physical properties of NF and their influence on crop performance and nutrient uptake efficiency. The review focuses on the physical properties of NFs, specifically their size, shape, crystallinity, and agglomeration. This review found that smaller particle-sized nanoparticles exhibit higher nutrient use efficiency than larger particles. Nano-fertilizer-coated additives gradually release nutrients, reducing the need for frequent application and addressing limitations associated with chemical fertilizer utilization. The shapes of nano-fertilizers have varying effects on the overall performance of plants. The crystalline structure of nanoparticles promotes a slow release of nutrients. Amorphous nano-fertilizers improve the NUE and, ultimately, crop yield. Agglomeration results in nanoparticles losing their nanoscale size, accumulating on the outer surface, and becoming unavailable to plants. Understanding the physical properties of nano-fertilizers is crucial for optimizing their performance in agricultural applications.
Collapse
Affiliation(s)
| | - Nokuthula Khanyile
- School of Chemical and Physical Sciences, University of Mpumalanga, Mbombela 1200, South Africa
| | - Absalom Masenya
- School of Agricultural Sciences, University of Mpumalanga, Mbombela 1200, South Africa (A.M.)
| |
Collapse
|
13
|
Balog S, de Almeida MS, Taladriz-Blanco P, Rothen-Rutishauser B, Petri-Fink A. Does the surface charge of the nanoparticles drive nanoparticle-cell membrane interactions? Curr Opin Biotechnol 2024; 87:103128. [PMID: 38581743 DOI: 10.1016/j.copbio.2024.103128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Classical Coulombic interaction, characterized by electrostatic interactions mediated through surface charges, is often regarded as the primary determinant in nanoparticles' (NPs) cellular association and internalization. However, the intricate physicochemical properties of particle surfaces, biomolecular coronas, and cell surfaces defy this oversimplified perspective. Moreover, the nanometrological techniques employed to characterize NPs in complex physiological fluids often exhibit limited accuracy and reproducibility. A more comprehensive understanding of nanoparticle-cell membrane interactions, extending beyond attractive forces between oppositely charged surfaces, necessitates the establishment of databases through rigorous physical, chemical, and biological characterization supported by nanoscale analytics. Additionally, computational approaches, such as in silico modeling and machine learning, play a crucial role in unraveling the complexities of these interactions.
Collapse
Affiliation(s)
- Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, National Center of Competence in Research Bio-Inspired Materials, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of Fribourg, National Center of Competence in Research Bio-Inspired Materials, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Patricia Taladriz-Blanco
- Adolphe Merkle Institute, University of Fribourg, National Center of Competence in Research Bio-Inspired Materials, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, University of Fribourg, National Center of Competence in Research Bio-Inspired Materials, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, National Center of Competence in Research Bio-Inspired Materials, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
14
|
Jiang X, Xu S, Miao Y, Huang K, Wang B, Ding B, Zhang Z, Zhao Z, Zhang X, Shi X, Yu M, Tian F, Gan Y. Curvature-mediated rapid extravasation and penetration of nanoparticles against interstitial fluid pressure for improved drug delivery. Proc Natl Acad Sci U S A 2024; 121:e2319880121. [PMID: 38768353 PMCID: PMC11145294 DOI: 10.1073/pnas.2319880121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Elevated interstitial fluid pressure (IFP) within pathological tissues (e.g., tumors, obstructed kidneys, and cirrhotic livers) creates a significant hindrance to the transport of nanomedicine, ultimately impairing the therapeutic efficiency. Among these tissues, solid tumors present the most challenging scenario. While several strategies through reducing tumor IFP have been devised to enhance nanoparticle delivery, few approaches focus on modulating the intrinsic properties of nanoparticles to effectively counteract IFP during extravasation and penetration, which are precisely the stages obstructed by elevated IFP. Herein, we propose an innovative solution by engineering nanoparticles with a fusiform shape of high curvature, enabling efficient surmounting of IFP barriers during extravasation and penetration within tumor tissues. Through experimental and theoretical analyses, we demonstrate that the elongated nanoparticles with the highest mean curvature outperform spherical and rod-shaped counterparts against elevated IFP, leading to superior intratumoral accumulation and antitumor efficacy. Super-resolution microscopy and molecular dynamics simulations uncover the underlying mechanisms in which the high curvature contributes to diminished drag force in surmounting high-pressure differentials during extravasation. Simultaneously, the facilitated rotational movement augments the hopping frequency during penetration. This study effectively addresses the limitations posed by high-pressure impediments, uncovers the mutual interactions between the physical properties of NPs and their environment, and presents a promising avenue for advancing cancer treatment through nanomedicine.
Collapse
Affiliation(s)
- Xiaohe Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sai Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Sciences Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yunqiu Miao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kang Huang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Sciences Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
| | - Bingqi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingwen Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zitong Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xinxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinghua Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Sciences Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
| | - Miaorong Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Falin Tian
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Sciences Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Medical Products Administration Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
15
|
Nanda SS, Yi DK. Recent Advances in Synergistic Effect of Nanoparticles and Its Biomedical Application. Int J Mol Sci 2024; 25:3266. [PMID: 38542240 PMCID: PMC10969916 DOI: 10.3390/ijms25063266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
The synergistic impact of nanomaterials is critical for novel intracellular and/or subcellular drug delivery systems of minimal toxicity. This synergism results in a fundamental bio/nano interface interaction, which is discussed in terms of nanoparticle translocation, outer wrapping, embedding, and interior cellular attachment. The morphology, size, surface area, ligand chemistry and charge of nanoparticles all play a role in translocation. In this review, we suggest a generalized mechanism to characterize the bio/nano interface, as we discuss the synergistic interaction between nanoparticles and cells, tissues, and other biological systems. Novel perceptions are reviewed regarding the ability of nanoparticles to improve hybrid nanocarriers with homogeneous structures to enhance multifunctional biomedical applications, such as bioimaging, tissue engineering, immunotherapy, and phototherapy.
Collapse
Affiliation(s)
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin 17058, Republic of Korea;
| |
Collapse
|
16
|
Liu R, Wang D. Tunneling Electron Transfer across Cell Membrane via Au Nanoparticles in Single Living Cells. NANO LETTERS 2024; 24:2451-2456. [PMID: 38358313 DOI: 10.1021/acs.nanolett.3c03928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Herein, we present a new and simple electrochemical method to detect the intracellular electroactive substances by utilizing the electron tunnelling processes at the metal nanoparticles inside the cells. Intriguing discrete oxidation and reduction current spikes are obtained when testing the cells with loaded Au nanoparticles at the ultramicroelectrodes, which should come from reactive oxygen species (ROS) inside the single cell. The charges enclosed in the current spikes represent the ROS content inside the living cells, as confirmed by the fluorescence studies. As this simple electron tunnelling approach needs no nanoelectrodes or nanotip penetration processes, we believe it could have great potential applications in electrochemical analysis of single living cells.
Collapse
Affiliation(s)
- Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
17
|
Chatterjee P, Chauhan N, Jain U. Confronting antibiotic-resistant pathogens: Distinctive drug delivery potentials of progressive nanoparticles. Microb Pathog 2024; 187:106499. [PMID: 38097117 DOI: 10.1016/j.micpath.2023.106499] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
Antimicrobial resistance arises over time, usually due to genetic modifications. Global observations of high resistance rates to popular antibiotics used to treat common bacterial diseases, such as diarrhea, STIs, sepsis, and urinary tract infections, indicate that our supply of effective antibiotics is running low. The mechanisms of action of several antibiotic groups are covered in this review. Antimicrobials disrupt the development and metabolism of bacteria, leading to their eventual death. However, in recent years, microorganisms become resistant to the drugs. Bacteria encode resistant genes against antibiotics and inhibit the function of antibiotics by reducing the uptake of drugs, modifying the enzyme's active site, synthesizing enzymes to degrade antibiotics, and changing the structure of ribosomal subunits. Additionally, the methods of action of resistant bacteria against different kinds of antibiotics as well as their modes of action are discussed. Besides, the resistant pathogenic bacteria which get the most priority by World Health Organisation (WHO) for synthesizing new drugs, have also been incorporated. To overcome antimicrobial resistance, nanomaterials are used to increase the efficacy of antimicrobial drugs. Metallic, inorganic, and polymer-based nanoparticles once conjugated with antibacterial drugs, exhibit synergistic effects by increasing the efficacy of the drugs by inhibiting bacterial growth. Nanomaterial's toxic properties are proportional to their concentrations. Higher concentration nanomaterials are more toxic to the cells. In this review, the toxic properties of nanomaterials on lung cells, lymph nodes, and neuronal cells are also summarized.
Collapse
Affiliation(s)
- Pallabi Chatterjee
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, 248007, Dehradun, India
| | - Nidhi Chauhan
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, 248007, Dehradun, India
| | - Utkarsh Jain
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, 248007, Dehradun, India.
| |
Collapse
|
18
|
Scotland BL, Shaw JR, Dharmaraj S, Caprio N, Cottingham AL, Joy Martín Lasola J, Sung JJ, Pearson RM. Cell and biomaterial delivery strategies to induce immune tolerance. Adv Drug Deliv Rev 2023; 203:115141. [PMID: 37980950 PMCID: PMC10842132 DOI: 10.1016/j.addr.2023.115141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The prevalence of immune-mediated disorders, including autoimmune conditions and allergies, is steadily increasing. However, current therapeutic approaches are often non-specific and do not address the underlying pathogenic condition, often resulting in impaired immunity and a state of generalized immunosuppression. The emergence of technologies capable of selectively inhibiting aberrant immune activation in a targeted, antigen (Ag)-specific manner by exploiting the body's intrinsic tolerance pathways, all without inducing adverse side effects, holds significant promise to enhance patient outcomes. In this review, we will describe the body's natural mechanisms of central and peripheral tolerance as well as innovative delivery strategies using cells and biomaterials targeting innate and adaptive immune cells to promote Ag-specific immune tolerance. Additionally, we will discuss the challenges and future opportunities that warrant consideration as we navigate the path toward clinical implementation of tolerogenic strategies to treat immune-mediated diseases.
Collapse
Affiliation(s)
- Brianna L Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Jacob R Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Shruti Dharmaraj
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Nicholas Caprio
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Andrea L Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Jackline Joy Martín Lasola
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Junsik J Sung
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States.
| |
Collapse
|
19
|
Ma L, Yu M, Ma Y, Gao L, Pan S, Li X, Wu X, Xu Y, Pang S, Wang P. Ascendancy of pyraclostrobin nanocapsule formulation against Rhizoctonia solani: From a perspective of fungus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105682. [PMID: 38072539 DOI: 10.1016/j.pestbp.2023.105682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
High-performance pesticide formulations are essential for sustainable agriculture. Among these, nano-pesticides exhibit great advantages in pest control because of their unique size effects. However, the direct effects of nano-formulation fungicides on fungal pathogens remain largely unexplored. In this study, three qualified formulations, suspension concentrate (SC), microcapsules (CS), and nanocapsules (NCS) of pyraclostrobin (PYR) were prepared and utilized to reveal their biocontrol activities against Rhizoctonia solani. Among these three formulations, NCS exhibited notable biocontrol efficacy against R. solani exemplified by an EC50 of 0.319 mg/L for mycelia, distortion of mycelia and abnormalities in cell ultrastructure. Moreover, NCS displayed excellent internalization within R. solani mycelia, contributing to severe damage to cell membrane permeability. Importantly, an equivalent quantity of NCS-PYR showed potent inhibitory effects on the target pathogen, as indicated by reduced adenosine triphosphate (ATP) content and mitochondrial Complex III activity. The NCS consistently exhibited superior in vivo protective and curative activities against R. solani compared to those of CS and SC in rice and faba bean. In summary, we uncovered the strength of rapid efficacy and biocontrol activity of NCS against R. solani and elucidated the advantages of NCS-PYR from the perspective of the target pathogen in agriculture.
Collapse
Affiliation(s)
- Li Ma
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Meng Yu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Yingjian Ma
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Linying Gao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Shouhe Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Xuefeng Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Xuemin Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Sen Pang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Ping Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Stan D, Ruta LL, Bocancia-Mateescu LA, Mirica AC, Stan D, Micutz M, Brincoveanu O, Enciu AM, Codrici E, Popescu ID, Popa ML, Rotaru F, Tanase C. Formulation and Comprehensive Evaluation of Biohybrid Hydrogel Membranes Containing Doxycycline or Silver Nanoparticles. Pharmaceutics 2023; 15:2696. [PMID: 38140037 PMCID: PMC10747233 DOI: 10.3390/pharmaceutics15122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Complicated wounds often require specialized medical treatments, and hydrogels have emerged as a popular choice for wound dressings in such cases due to their unique properties and the ability to incorporate and release therapeutic agents. Our focus was to develop and characterize a new optimized formula for biohybrid hydrogel membranes, which combine natural and synthetic polymers, bioactive natural compounds, like collagen and hyaluronic acid, and pharmacologically active substances (doxycycline or npAg). Dynamic (oscillatory) rheometry confirmed the strong gel-like properties of the obtained hydrogel membranes. Samples containing low-dose DOXY showed a swelling index of 285.68 ± 6.99%, a degradation rate of 71.6 ± 0.91% at 20 h, and achieved a cumulative drug release of approximately 90% at pH 7.4 and 80% at pH 8.3 within 12 h. The addition of npAg influenced the physical properties of the hydrogel membranes. Furthermore, the samples containing DOXY demonstrated exceptional antimicrobial efficacy against seven selected bacterial strains commonly associated with wound infections and complications. Biocompatibility assessments revealed that the samples exhibited over 80% cell viability. However, the addition of smaller-sized nanoparticles led to decreased cellular viability. The obtained biohybrid hydrogel membranes show favorable properties that render them suitable for application as wound dressings.
Collapse
Affiliation(s)
- Diana Stan
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
- Doctoral School of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Lavinia Liliana Ruta
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
- Department of Inorganic, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., 050663 Bucharest, Romania
| | | | - Andreea-Cristina Mirica
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
| | - Dana Stan
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
| | - Marin Micutz
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania;
| | - Oana Brincoveanu
- National Institute for R&D in Microtechnology, 077190 Bucharest, Romania;
- Research Institute, The University of Bucharest, 060102 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
| | - Maria Linda Popa
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Flaviana Rotaru
- Polytechnic University of Bucharest, Splaiul Independenței 54, 030167 Bucharest, Romania;
- Rohealth—Health and Bioeconomy Cluster, Calea Griviţei 6-8, 010731 Bucharest, Romania
- Frontier Management Consulting, Calea Griviţei6-8, 010731 Bucharest, Romania
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
- Department of Cell Biology and Clinical Biochemistry, Titu Maiorescu University, 031593 Bucharest, Romania
| |
Collapse
|
21
|
Nguyen D, Wu J, Corrigan P, Li Y. Computational investigation on lipid bilayer disruption induced by amphiphilic Janus nanoparticles: combined effect of Janus balance and charged lipid concentration. NANOSCALE 2023; 15:16112-16130. [PMID: 37753922 DOI: 10.1039/d3nr00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Janus nanoparticles (NPs) with charged/hydrophobic compartments have garnered attention for their potential antimicrobial activity. These NPs have been shown to disrupt lipid bilayers in experimental studies, yet the underlying mechanisms of this disruption at the particle-membrane interface remain unclear. To address this knowledge gap, the present study conducts a computational investigation to systematically examine the disruption of lipid bilayers induced by amphiphilic Janus NPs. The focus of this study is on the combined effects of the hydrophobicity of the Janus NP, referred to as the Janus balance, defined as the ratio of hydrophilic to hydrophobic surface coverage, and the concentration of charged phospholipids on the interactions between Janus NPs and lipid bilayers. Computational simulations were conducted using a coarse-grained molecular dynamics (MD) approach. The results of these MD simulations reveal that while the area change of the bilayer increases monotonically with the Janus balance, the effect of charged lipid concentration in the membrane is not easy to be predicted. Specifically, it was found that the concentration of negatively charged lipids is directly proportional to the intensity of membrane disruption. Conversely, positively charged lipids have a negligible effect on membrane defects. This study provides molecular insights into the significant role of Janus balance in the disruption of lipid bilayers by Janus NPs and supports the selectivity of Janus NPs for negatively charged lipid membranes. Furthermore, the anisotropic properties of Janus NPs were found to play a crucial role in their ability to disrupt the membrane via the combination of hydrophobic and electrostatic interactions. This finding is validated by testing the current Janus NP design on a bacterial membrane-mimicking model. This computational study may serve as a foundation for further studies aimed at optimizing the properties of Janus NPs for specific antimicrobial applications.
Collapse
Affiliation(s)
- Danh Nguyen
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - James Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Patrick Corrigan
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
22
|
Abdullah JAA, Díaz-García Á, Law JY, Romero A, Franco V, Guerrero A. Sustainable Nanomagnetism: Investigating the Influence of Green Synthesis and pH on Iron Oxide Nanoparticles for Enhanced Biomedical Applications. Polymers (Basel) 2023; 15:3850. [PMID: 37765704 PMCID: PMC10536420 DOI: 10.3390/polym15183850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
This study comprehensively analyzed green nanomagnetic iron oxide particles (GNMIOPs) synthesized using a green method, investigating their size, shape, crystallinity, aggregation, phase portions, stability, and magnetism. The influence of pH and washing solvents on the magnetic properties of the nanoparticles and their incorporation into PCL membranes was examined for biomedical applications. Polyphenols were utilized at different pH values (1.2, 7.5, and 12.5), with washing being performed using either ethanol or water. Characterization techniques, including XRD, SEM, TEM, FTIR, and VSM, were employed, along with evaluations of stability, magnetic properties, and antioxidant activity. The findings indicate that both pH levels and the washing process exert a substantial influence on several properties of NMIOPs. The particle sizes ranged from 6.6 to 23.5 nm, with the smallest size being observed for GNMIOPs prepared at pH 12.5. Higher pH values led to increased crystallinity, cubic Fe3O4 fractions, and reduced crystalline anisotropy. SEM and TEM analyses showed pH-dependent morphological variations, with increased aggregation being observed at lower pH values. GNMIOPs displayed exceptional magnetic behavior, with the highest saturation magnetization being observed in GNMIOPs prepared at pH 7.5 and 12.5 and subsequently washed with ethanol. The zeta potential measurements indicated a stability range for GNMIOPs spanning from -31.8 to -41.6 mV, while GNMIOPs synthesized under high-pH conditions demonstrated noteworthy antioxidant activity. Furthermore, it was explored how pH and washing solvent affected the morphology, roughness, and magnetic properties of GNMIOP-infused nanofiber membranes. SEM showed irregularities and roughness due to GNMIOPs, varying with pH and washing solvent. TEM confirmed better dispersion with ethanol washing. The magnetic response was stronger with ethanol-washed GNMIOPs, highlighting the influence of pH and washing solvent on membrane characteristics.
Collapse
Affiliation(s)
- Johar Amin Ahmed Abdullah
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| | - Álvaro Díaz-García
- Departamento de Física de Materia Condensada, ICMS-CSIC, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.D.-G.); (J.Y.L.); (V.F.)
| | - Jia Yan Law
- Departamento de Física de Materia Condensada, ICMS-CSIC, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.D.-G.); (J.Y.L.); (V.F.)
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Victorino Franco
- Departamento de Física de Materia Condensada, ICMS-CSIC, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.D.-G.); (J.Y.L.); (V.F.)
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| |
Collapse
|
23
|
Zhang J, Tang W, Zhang X, Song Z, Tong T. An Overview of Stimuli-Responsive Intelligent Antibacterial Nanomaterials. Pharmaceutics 2023; 15:2113. [PMID: 37631327 PMCID: PMC10458108 DOI: 10.3390/pharmaceutics15082113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Drug-resistant bacteria and infectious diseases associated with biofilms pose a significant global health threat. The integration and advancement of nanotechnology in antibacterial research offer a promising avenue to combat bacterial resistance. Nanomaterials possess numerous advantages, such as customizable designs, adjustable shapes and sizes, and the ability to synergistically utilize multiple active components, allowing for precise targeting based on specific microenvironmental variations. They serve as a promising alternative to antibiotics with diverse medical applications. Here, we discuss the formation of bacterial resistance and antibacterial strategies, and focuses on utilizing the distinctive physicochemical properties of nanomaterials to achieve inherent antibacterial effects by investigating the mechanisms of bacterial resistance. Additionally, we discuss the advancements in developing intelligent nanoscale antibacterial agents that exhibit responsiveness to both endogenous and exogenous responsive stimuli. These nanomaterials hold potential for enhanced antibacterial efficacy by utilizing stimuli such as pH, temperature, light, or ultrasound. Finally, we provide a comprehensive outlook on the existing challenges and future clinical prospects, offering valuable insights for the development of safer and more effective antibacterial nanomaterials.
Collapse
Affiliation(s)
- Jinqiao Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (J.Z.); (X.Z.)
| | - Wantao Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
| | - Xinyi Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (J.Z.); (X.Z.)
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Tong
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (J.Z.); (X.Z.)
| |
Collapse
|
24
|
Giráldez-Pérez RM, Grueso EM, Carbonero A, Álvarez Márquez J, Gordillo M, Kuliszewska E, Prado-Gotor R. Synergistic Antibacterial Effects of Amoxicillin and Gold Nanoparticles: A Therapeutic Option to Combat Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1275. [PMID: 37627696 PMCID: PMC10451730 DOI: 10.3390/antibiotics12081275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Compacted Au@16-mph-16/DNA-AMOX (NSi) nanosystems were prepared from amoxicillin (AMOX) and precursor Au@16-mph-16 gold nanoparticles (Ni) using a Deoxyribonucleic acid (DNA) biopolymer as a glue. The synthesized nanocarrier was tested on different bacterial strains of Escherichia coli, Staphylococcus aureus, and Streptococcus pneumoniae to evaluate its effectiveness as an antibiotic as well as its internalization. Synthesis of the nanosystems required previous structural and thermodynamic studies using circular dichroism (CD) and UV-visible techniques to guarantee optimal complex formation and maximal DNA compaction, characteristics which facilitate the correct uptake of the nanocarrier. Two nanocomplexes with different compositions and structures, denoted NS1 and NS2, were prepared, the first involving external Au@16-mph-16 binding and the second partial intercalation. The Ni and NSi nanosystems obtained were characterized via transmission electron microscopy (TEM), zeta potential, and dynamic light scattering (DLS) techniques to measure their charge, aggregation state and hydrodynamic size, and to verify their presence inside the bacteria. From these studies, it was concluded that the zeta potential values for gold nanoparticles, NS1, and NS2 nanosystems were 67.8, -36.7, and -45.1 mV. Moreover, the particle size distribution of the Au@16-mph-16 gold nanoparticles and NS2 nanoformulation was found to be 2.6 nm and 69.0 nm, respectively. However, for NS1 nanoformulation, a bimodal size distribution of 44 nm (95.5%) and 205 nm (4.5%) was found. Minimal inhibitory concentration (MIC) values were determined for the bacteria studied using a microdilution plates assay. The effect on Escherichia coli bacteria was notable, with MIC values of 17 µM for both the NS1 and NS2 nanosystems. The Staphylococcus aureus chart shows a greater inhibition effect of NS2 and NP2 in non-diluted wells, and clearly reveals a great effect on Streptococcus pneumoniae, reaching MIC values of 0.53 µM in more diluted wells. These results are in good agreement with TEM internalization studies of bacteria that reveal significant internalization and damage in Streptococcus pneumoniae. In all the treatments carried out, the antibiotic capacity of gold nanosystems as enhancers of amoxicillin was demonstrated, causing both the precursors and the nanosystems to act very quickly, and thus favoring microbial death with a small amount of antibiotic. Therefore, these gold nanosystems may constitute an effective therapy to combat resistance to antibiotics, in addition to avoiding the secondary effects derived from the administration of high doses of antibiotics.
Collapse
Affiliation(s)
- Rosa M. Giráldez-Pérez
- Department of Cell Biology, Physiology and Immunology, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain;
| | - Elia M. Grueso
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain;
| | - Alfonso Carbonero
- Department of Animal Health, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain; (A.C.); (M.G.)
| | - Juan Álvarez Márquez
- Department of Cell Biology, Physiology and Immunology, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain;
| | - Mirian Gordillo
- Department of Animal Health, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain; (A.C.); (M.G.)
| | | | - Rafael Prado-Gotor
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain;
| |
Collapse
|
25
|
Wen X, Ou L, Cutshaw G, Uthaman S, Ou YC, Zhu T, Szakas S, Carney B, Houghton J, Gundlach-Graham A, Rafat M, Yang K, Bardhan R. Physicochemical Properties and Route of Systemic Delivery Control the In Vivo Dynamics and Breakdown of Radiolabeled Gold Nanostars. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204293. [PMID: 36965074 PMCID: PMC10518372 DOI: 10.1002/smll.202204293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The in vivo dynamics of nanoparticles requires a mechanistic understanding of multiple factors. Here, for the first time, the surprising breakdown of functionalized gold nanostars (F-AuNSs) conjugated with antibodies and 64 Cu radiolabels in vivo and in artificial lysosomal fluid ex vivo, is shown. The short-term biodistribution of F-AuNSs is driven by the route of systemic delivery (intravenous vs intraperitoneal) and long-term fate is controlled by the tissue type in vivo. In vitro studies including endocytosis pathways, intracellular trafficking, and opsonization, are combined with in vivo studies integrating a milieu of spectroscopy and microcopy techniques that show F-AuNSs dynamics is driven by their physicochemical properties and route of delivery. F-AuNSs break down into sub-20 nm broken nanoparticles as early as 7 days postinjection. Martini coarse-grained simulations are performed to support the in vivo findings. Simulations suggest that shape, size, and charge of the broken nanoparticles, and composition of the lipid membrane depicting various tissues govern the interaction of the nanoparticles with the membrane, and the rate of translocation across the membrane to ultimately enable tissue clearance. The fundamental study addresses critical gaps in the knowledge regarding the fate of nanoparticles in vivo that remain a bottleneck in their clinical translation.
Collapse
Affiliation(s)
- Xiaona Wen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, 50012, USA
| | - Luping Ou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| | - Gabriel Cutshaw
- Nanovaccine Institute, Iowa State University, Ames, IA, 50012, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50012, USA
| | - Saji Uthaman
- Nanovaccine Institute, Iowa State University, Ames, IA, 50012, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50012, USA
| | - Yu-Chuan Ou
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Tian Zhu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Sarah Szakas
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Brandon Carney
- Department of Radiology, Stony Brook University, Stony Brook, New York, NY, 11794, USA
| | - Jacob Houghton
- Department of Radiology, Stony Brook University, Stony Brook, New York, NY, 11794, USA
| | | | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| | - Rizia Bardhan
- Nanovaccine Institute, Iowa State University, Ames, IA, 50012, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50012, USA
| |
Collapse
|
26
|
Yan X, Yue T, Winkler DA, Yin Y, Zhu H, Jiang G, Yan B. Converting Nanotoxicity Data to Information Using Artificial Intelligence and Simulation. Chem Rev 2023. [PMID: 37262026 DOI: 10.1021/acs.chemrev.3c00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Decades of nanotoxicology research have generated extensive and diverse data sets. However, data is not equal to information. The question is how to extract critical information buried in vast data streams. Here we show that artificial intelligence (AI) and molecular simulation play key roles in transforming nanotoxicity data into critical information, i.e., constructing the quantitative nanostructure (physicochemical properties)-toxicity relationships, and elucidating the toxicity-related molecular mechanisms. For AI and molecular simulation to realize their full impacts in this mission, several obstacles must be overcome. These include the paucity of high-quality nanomaterials (NMs) and standardized nanotoxicity data, the lack of model-friendly databases, the scarcity of specific and universal nanodescriptors, and the inability to simulate NMs at realistic spatial and temporal scales. This review provides a comprehensive and representative, but not exhaustive, summary of the current capability gaps and tools required to fill these formidable gaps. Specifically, we discuss the applications of AI and molecular simulation, which can address the large-scale data challenge for nanotoxicology research. The need for model-friendly nanotoxicity databases, powerful nanodescriptors, new modeling approaches, molecular mechanism analysis, and design of the next-generation NMs are also critically discussed. Finally, we provide a perspective on future trends and challenges.
Collapse
Affiliation(s)
- Xiliang Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tongtao Yue
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266100, China
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- School of Pharmacy, University of Nottingham, Nottingham NG7 2QL, U.K
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hao Zhu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
27
|
Solanki R, Shankar A, Modi U, Patel S. New insights from nanotechnology in SARS-CoV-2 detection, treatment strategy, and prevention. MATERIALS TODAY. CHEMISTRY 2023; 29:101478. [PMID: 36950312 PMCID: PMC9981536 DOI: 10.1016/j.mtchem.2023.101478] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/25/2023] [Indexed: 05/14/2023]
Abstract
The recent outbreak of SARS-CoV-2 resulted into the deadly COVID-19 pandemic, which has made a profound impact on mankind and the world health care system. SARS-CoV-2 is mainly transmitted within the population via symptomatic carriers, enters the host cell via ACE2 and TMPSSR2 receptors and damages the organs. The standard diagnostic tests and treatment methods implemented lack required efficiency to beat SARS-CoV-2 in the race of its spreading. The most prominently used diagnostic test,reverse transcription-polymerase chain reaction (a nucleic acid-based method), has limitations including a prolonged time taken to reveal results, limited sensitivity, a high rate of false negative results, and lacking specificity due to a homology with other viruses. Furthermore, as part of the treatment, antiviral drugs such as remdesivir, favipiravir, lopinavir/ritonavir, chloroquine, daclatasvir, atazanavir, and many more have been tested clinically to check their potency for the treatment of SARS-CoV-2 but none of these antiviral drugs are the definitive cure or suitable prophylaxis. Thus, it is always required to combat SARS-CoV-2 spread and infection for a better and precise prognosis. This review answers the above mentioned challenges by employing nanomedicine for the development of improved detection, treatment, and prevention strategies for SARS-CoV-2. In this review, nanotechnology-based detection methods such as colorimetric assays, photothermal biosensors, molecularly imprinted nanoparticles sensors, electrochemical nanoimmunosensors, aptamer-based biosensors have been discussed. Furthermore, nanotechnology-based treatment strategies involving polymeric nanoparticles, metallic nanoparticles, lipid nanoparticles, and nanocarrier-based antiviral siRNA delivery have been depicted. Moreover, SARS-CoV-2 prevention strategies, which include the nanotechnology for upgrading personal protective equipment, facemasks, ocular protection gears, and nanopolymer-based disinfectants, have been also reviewed. This review will provide a one-site informative platform for researchers to explore the crucial role of nanomedicine in managing the COVID-19 curse more effectively.
Collapse
Affiliation(s)
- R Solanki
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, India
| | - A Shankar
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, India
| | - U Modi
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, India
| | - S Patel
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, India
| |
Collapse
|
28
|
Bhushan NP, Stack T, Scott EA, Shull KR, Mathew B, Bijukumar D. In vitro assessment of varying peptide surface density on the suppression of angiogenesis by micelles displaying αvβ3 blocking peptides. J Biomed Mater Res B Appl Biomater 2023; 111:343-353. [PMID: 36054456 PMCID: PMC9771939 DOI: 10.1002/jbm.b.35154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022]
Abstract
Ligand targeted therapy (LTT) is a precision medicine strategy that can selectively target diseased cells while minimizing off-target effects on healthy cells. Integrin-targeted LTT has been developed recently for angiogenesis-related diseases. However, the clinical success is based on the optimal design of the nanoparticles for inducing receptor clustering within the cell membrane. The current study focused on determining the surface density of Ser-Asp-Val containing anti-integrin heptapeptide on poly (ethylene glycol)-b-poly(propylene sulfide) micelles (MC) required for anti-angiogenic effects on HUVECs. Varying peptide density on PEG-b-PPS/Pep-PA MCs (Pep-PA-Peptide-palmitoleic acid) was used in comparison to a random peptide (SGV) and cRGD (cyclic-Arginine-Glycine-Aspartic acid) construct at 5%-density on MCs. Immunocytochemistry using CD51/CD31 antibody was performed to study the integrin blocking by MCs. In addition, the expression of VWF and PECAM-1, cell migration and tube formation was evaluated in the presence of PEG-b-PPS/Pep-PA MCs. The results show PEG-b-PPS/SDV-PA MCs with 5%-peptide density to achieve significantly higher αvβ3 blocking compared to random peptide as well as cRGD. In addition, αvβ3 blocking via MCs further reduced the expression of vWF and PECAM-1 angiogenesis protein expression in HUVECs. Although a significant level of integrin blocking was observed for 1%-peptide density on MCs, the cell migration and tube formation were not significantly affected. In conclusion, the results of this study demonstrate that the peptide surface density on PEG-b-PPS/Pep-PA MCs has a significant impact in integrin blocking as well as inhibiting angiogenesis during LTT. The outcomes of this study provides insight into the design of ligand targeted nanocarriers for various disease conditions.
Collapse
Affiliation(s)
- Neha Phani Bhushan
- Department of Biomedical SciencesUniversity of Illinois College of Medicine at RockfordRockfordIllinoisUSA
| | - Trevor Stack
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Evan A. Scott
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Kenneth R. Shull
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Benjamin Mathew
- Department of Ophthalmology and Visual SciencesUniversity of IllinoisChicagoIllinoisUSA
| | - Divya Bijukumar
- Department of Biomedical SciencesUniversity of Illinois College of Medicine at RockfordRockfordIllinoisUSA
| |
Collapse
|
29
|
Deng F, Bae YH. Effect of modification of polystyrene nanoparticles with different bile acids on their oral transport. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102629. [PMID: 36410698 PMCID: PMC9918699 DOI: 10.1016/j.nano.2022.102629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Bile acid-modified nanomedicine is a promising strategy to improve oral bioavailability. However, the efficiencies of different bile acids have not been clarified. To clarify this issue, deoxycholic acid (DCA) and cholic acid (CA) and glycocholic acid (GCA) were conjugated to carboxylated polystyrene nanoparticle (CPN). The endocytosis, intracellular and transcellular transport among the NPs were compared in Caco-2 cells, and their oral pharmacokinetics profiles were studied in C57BL/6 J mice. It was found that DCPN demonstrated higher uptake and transcytosis rate. With modification by different bile acids, the transport pathways of the NPs were altered. In mice, GCPN showed the highest absorption speed and oral bioavailability. It was found that the synergic effect of hydrophobicity and ASBT affinity might lead to the difference between in vitro and in vivo transport. This study will build a basis for the rational design of bile acid-modified nanomedicines.
Collapse
Affiliation(s)
- Feiyang Deng
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, USA
| | - You Han Bae
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
30
|
Yadav A, Kelich P, Kallmyer NE, Reuel NF, VukoviÄ L. Characterizing the Interactions of Cell Membrane-Disrupting Peptides with Lipid-Functionalized Single-Walled Carbon Nanotube Systems for Antimicrobial Screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525557. [PMID: 36747775 PMCID: PMC9900920 DOI: 10.1101/2023.01.25.525557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lipid-functionalized single-walled carbon nanotubes (SWNTs) have garnered significant interest for their potential use in a wide range of biomedical applications. In this work, we used molecular dynamics simulations to study the equilibrium properties of SWNTs surrounded by the phosphatidylcholine (POPC) corona phase, and their interactions with three cell membrane disruptor peptides: colistin, TAT peptide, and crotamine-derived peptide. Our results show that SWNTs favor asymmetrical positioning within the POPC corona, so that one side of the SWNT, covered by the thinnest part of the corona, comes in contact with charged and polar functional groups of POPC and water. We also observed that colistin and TAT insert deeply into POPC corona, while crotamine-derived peptide only adsorbs to the corona surface. Compared to crotamine-derived peptide, colistin and TAT also induce larger perturbations in the thinnest region of the corona, by allowing more water molecules to directly contact the SWNT surface. In separate simulations, we show that three examined peptides exhibit similar insertion and adsorption behaviors when interacting with POPC bilayers, confirming that peptide-induced perturbations to POPC in conjugates and bilayers are similar in nature and magnitude. Furthermore, we observed correlations between the peptide-induced structural perturbations and the near-infrared emission of the lipid-functionalized SWNTs, which suggest that the optical signal of the conjugates transduces the morphological changes in the lipid corona. Overall, our findings indicate that lipid-functionalized SWNTs could serve as simplified cell membrane model systems for pre-screening of new antimicrobial compounds that disrupt cell membranes.
Collapse
|
31
|
Pradhan R, Dey A, Taliyan R, Puri A, Kharavtekar S, Dubey SK. Recent Advances in Targeted Nanocarriers for the Management of Triple Negative Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15010246. [PMID: 36678877 PMCID: PMC9866847 DOI: 10.3390/pharmaceutics15010246] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a life-threatening form of breast cancer which has been found to account for 15% of all the subtypes of breast cancer. Currently available treatments are significantly less effective in TNBC management because of several factors such as poor bioavailability, low specificity, multidrug resistance, poor cellular uptake, and unwanted side effects being the major ones. As a rapidly growing field, nano-therapeutics offers promising alternatives for breast cancer treatment. This platform provides a suitable pathway for crossing biological barriers and allowing sustained systemic circulation time and an improved pharmacokinetic profile of the drug. Apart from this, it also provides an optimized target-specific drug delivery system and improves drug accumulation in tumor cells. This review provides insights into the molecular mechanisms associated with the pathogenesis of TNBC, along with summarizing the conventional therapy and recent advances of different nano-carriers for the management of TNBC.
Collapse
Affiliation(s)
- Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Anuradha Dey
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute—Frederick, Frederick, MD 21702, USA
| | - Sanskruti Kharavtekar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| |
Collapse
|
32
|
Quagliarini E, Wang J, Renzi S, Cui L, Digiacomo L, Ferri G, Pesce L, De Lorenzi V, Matteoli G, Amenitsch H, Masuelli L, Bei R, Pozzi D, Amici A, Cardarelli F, Marchini C, Caracciolo G. Mechanistic Insights into the Superior DNA Delivery Efficiency of Multicomponent Lipid Nanoparticles: An In Vitro and In Vivo Study. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56666-56677. [PMID: 36524967 DOI: 10.1021/acsami.2c20019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lipid nanoparticles (LNPs) are currently having an increasing impact on nanomedicines as delivery agents, among others, of RNA molecules (e.g., short interfering RNA for the treatment of hereditary diseases or messenger RNA for the development of COVID-19 vaccines). Despite this, the delivery of plasmid DNA (pDNA) by LNPs in preclinical studies is still unsatisfactory, mainly due to the lack of systematic structural and functional studies on DNA-loaded LNPs. To tackle this issue, we developed, characterized, and tested a library of 16 multicomponent DNA-loaded LNPs which were prepared by microfluidics and differed in lipid composition, surface functionalization, and manufacturing factors. 8 out of 16 formulations exhibited proper size and zeta potential and passed to the validation step, that is, the simultaneous quantification of transfection efficiency and cell viability in human embryonic kidney cells (HEK-293). The most efficient formulation (LNP15) was then successfully validated both in vitro, in an immortalized adult keratinocyte cell line (HaCaT) and in an epidermoid cervical cancer cell line (CaSki), and in vivo as a nanocarrier to deliver a cancer vaccine against the benchmark target tyrosine-kinase receptor HER2 in C57BL/6 mice. Finally, by a combination of confocal microscopy, transmission electron microscopy and synchrotron small-angle X-ray scattering, we were able to show that the superior efficiency of LNP15 can be linked to its disordered nanostructure consisting of small-size unoriented layers of pDNA sandwiched between closely apposed lipid membranes that undergo massive destabilization upon interaction with cellular lipids. Our results provide new insights into the structure-activity relationship of pDNA-loaded LNPs and pave the way to the clinical translation of this gene delivery technology.
Collapse
Affiliation(s)
- Erica Quagliarini
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161Rome, Italy
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032Camerino, Italy
| | - Serena Renzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161Rome, Italy
| | - Lishan Cui
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032Camerino, Italy
| | - Luca Digiacomo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161Rome, Italy
| | - Gianmarco Ferri
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127Pisa, Italy
| | - Luca Pesce
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127Pisa, Italy
| | - Valentina De Lorenzi
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127Pisa, Italy
| | - Giulia Matteoli
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127Pisa, Italy
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, 8010Graz, Austria
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", 00161Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133Rome, Italy
| | - Daniela Pozzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161Rome, Italy
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032Camerino, Italy
| | - Francesco Cardarelli
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127Pisa, Italy
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032Camerino, Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161Rome, Italy
| |
Collapse
|
33
|
Giráldez-Pérez RM, Grueso E, Montero-Hidalgo AJ, Luque RM, Carnerero JM, Kuliszewska E, Prado-Gotor R. Gold Nanosystems Covered with Doxorubicin/DNA Complexes: A Therapeutic Target for Prostate and Liver Cancer. Int J Mol Sci 2022; 23:ijms232415575. [PMID: 36555216 PMCID: PMC9779246 DOI: 10.3390/ijms232415575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Different gold nanosystems covered with DNA and doxorubicin (Doxo) were designed and synthesized for cancer therapy, starting from Au@16-Ph-16 cationic nanoparticles and DNA-Doxo complexes prepared under saturation conditions. For the preparation of stable, biocompatible, and small-sized compacted Au@16-Ph-16/DNA-Doxo nanotransporters, the conditions for the DNA-Doxo compaction process induced by gold nanoparticles were first explored using fluorescence spectroscopy, circular dichroism and atomic force microscopy techniques. The reverse process, which is fundamental for Doxo liberation at the site of action, was found to occur at higher CAu@16-Ph-16 concentrations using these techniques. Zeta potential, dynamic light scattering and UV-visible spectroscopy reveal that the prepared compacted nanosystems are stable, highly charged and of adequate size for the effective delivery of Doxo to the cell. This fact is verified by in vitro biocompatibility and internalization studies using two prostate cancer-derived cell lines (LNCaP and DU145) and one hepatocellular carcinoma-derived cell line (SNU-387), as well as a non-tumor prostate (PNT2) cell line and a non-hepatocarcinoma hepatoblastoma cell line (Hep-G2) model used as a control in liver cells. However, the most outstanding results of this work are derived from the use of the CI+NI combined treatments which present strong action in cancer-derived cell lines, while a protective effect is observed in non-tumor cell lines. Hence, novel therapeutic targets based on gold nanoparticles denote high selectivity compared to conventional treatment based on free Doxo at the same concentration. The results obtained show the viability of both the proposed methodology for internalization of compacted nanocomplexes inside the cell and the effectiveness of the possible treatment and minimization of side effects in prostate and liver cancer.
Collapse
Affiliation(s)
- Rosa M. Giráldez-Pérez
- Department of Cell Biology, Physiology and Immunology, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain
- Correspondence: (R.M.G.-P.); (E.G.)
| | - Elia Grueso
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain
- Correspondence: (R.M.G.-P.); (E.G.)
| | - Antonio J. Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital (HURS), Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital (HURS), Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - José M. Carnerero
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain
| | | | - Rafael Prado-Gotor
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain
| |
Collapse
|
34
|
McCourt KM, Cochran J, Abdelbasir SM, Carraway ER, Tzeng TRJ, Tsyusko OV, Vanegas DC. Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. BIOSENSORS 2022; 12:1082. [PMID: 36551049 PMCID: PMC9775545 DOI: 10.3390/bios12121082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Biosensors often combine biological recognition elements with nanomaterials of varying compositions and dimensions to facilitate or enhance the operating mechanism of the device. While incorporating nanomaterials is beneficial to developing high-performance biosensors, at the stages of scale-up and disposal, it may lead to the unmanaged release of toxic nanomaterials. Here we attempt to foster connections between the domains of biosensors development and human and environmental toxicology to encourage a holistic approach to the development and scale-up of biosensors. We begin by exploring the toxicity of nanomaterials commonly used in biosensor design. From our analysis, we introduce five factors with a role in nanotoxicity that should be considered at the biosensor development stages to better manage toxicity. Finally, we contextualize the discussion by presenting the relevant stages and routes of exposure in the biosensor life cycle. Our review found little consensus on how the factors presented govern nanomaterial toxicity, especially in composite and alloyed nanomaterials. To bridge the current gap in understanding and mitigate the risks of uncontrolled nanomaterial release, we advocate for greater collaboration through a precautionary One Health approach to future development and a movement towards a circular approach to biosensor use and disposal.
Collapse
Affiliation(s)
- Kelli M McCourt
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
| | - Jarad Cochran
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Sabah M Abdelbasir
- Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan 11421, Egypt
| | - Elizabeth R Carraway
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Tzuen-Rong J Tzeng
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Diana C Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
- Interdisciplinary Group for Biotechnology Innovation and Ecosocial Change (BioNovo), Universidad del Valle, Cali 76001, Colombia
| |
Collapse
|
35
|
Pyo K, Matus MF, Malola S, Hulkko E, Alaranta J, Lahtinen T, Häkkinen H, Pettersson M. Tailoring the interaction between a gold nanocluster and a fluorescent dye by cluster size: creating a toolbox of range-adjustable pH sensors. NANOSCALE ADVANCES 2022; 4:4579-4588. [PMID: 36425249 PMCID: PMC9606730 DOI: 10.1039/d2na00487a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
We present a novel strategy for tailoring the fluorescent azadioxatriangulenium (KU) dye-based pH sensor to the target pH range by regulating the pK a value of the gold nanoclusters. Based on the correlation between the pK a and surface curvature of ligand-protected nanoparticles, the pK a value of the gold nanoclusters was controlled by size. In particular, three different-sized para-mercaptobenzoic acid (p-MBA) protected gold nanoclusters, Au25(p-MBA)18, Au102(p-MBA)44, and Au210-230(p-MBA)70-80 were used as the regulator for the pH range of the KU response. The negatively charged gold nanoclusters enabled the positively charged KU to bind to the surface, forming a complex and quenching the fluorescence of the KU by the energy transfer process. The fluorescence was restored after adjusting the surface charge of the gold nanocluster by controlling the solution pH. In addition, the KU exhibited a significantly different pH response behaviour for each gold nanocluster. Au210-230(p-MBA)70-80 showed a higher pH response range than Au102(p-MBA)44, which was intuitive. However, Au25(p-MBA)18 showed an unexpectedly high pH response behaviour. pK a titration measurement, molecular dynamics simulations, and essential dynamics analysis showed that small nanoclusters do not follow the scaling between the curvature and the pK a value. Instead, the behaviour is governed by the distribution and interaction of p-MBA ligands on the nanocluster surface. This work presents an effective design strategy for fabricating a range adjustable pH sensor by understanding the protonation behaviour of the ultrasmall gold nanoclusters in an atomic range.
Collapse
Affiliation(s)
- Kyunglim Pyo
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
| | - María Francisca Matus
- Department of Physics, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
| | - Sami Malola
- Department of Physics, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
| | - Eero Hulkko
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
| | - Johanna Alaranta
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
| | - Tanja Lahtinen
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
| | - Hannu Häkkinen
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
- Department of Physics, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
| | - Mika Pettersson
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
| |
Collapse
|
36
|
Tim B, Rojewska M, Prochaska K. Effect of Silica Microparticles on Interactions in Mono- and Multicomponent Membranes. Int J Mol Sci 2022; 23:ijms232112822. [PMID: 36361613 PMCID: PMC9654498 DOI: 10.3390/ijms232112822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 12/01/2022] Open
Abstract
Advancing our understanding of the mechanism of the interaction between inhaled pollutant microparticles and cell membrane components is useful to study the impact of fine particulate matter on human health. In this paper, we focus on the effect of cholesterol (Chol) molecules on the surface properties of a model membrane in the presence of silica microparticles (MPs). Mixed monolayers containing phospholipid-dipalmitoylphosphatidylcholine (DPPC), Chol and silica particle dispersions (MPs; 0.033% w/w, 0.33% w/w and 0.83% w/w) were formed and studied using the Langmuir monolayer technique complemented by Brewster Angle Microscopy (BAM) images. It was shown that Chol caused a condensation of the DPPC monolayer, which influenced the penetration of MPs and their interactions with the model membrane. The relaxation experiments of the lipid–MP monolayer proved that the presence of Chol molecules in the monolayer led to the formation of lipid and MP complexes. Strong interactions between Chol and MPs contributed to the formation of more stable monolayers. The presented results can be useful to better comprehend the interaction between particulate materials and the lipid components of biomembranes.
Collapse
Affiliation(s)
- Beata Tim
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Ul. Piotrowo 3, 60-965 Poznan, Poland
| | - Monika Rojewska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Ul. Berdychowo 4, 60-965 Poznan, Poland
- Correspondence: ; Tel.: +48-61-665-3772; Fax: +48-61-665-3649
| | - Krystyna Prochaska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Ul. Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
37
|
Jo Y, Woo JS, Lee AR, Lee SY, Shin Y, Lee LP, Cho ML, Kang T. Inner-Membrane-Bound Gold Nanoparticles as Efficient Electron Transfer Mediators for Enhanced Mitochondrial Electron Transport Chain Activity. NANO LETTERS 2022; 22:7927-7935. [PMID: 36137175 DOI: 10.1021/acs.nanolett.2c02957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electron transfer through the mitochondrial electron transport chain (ETC) can be critically blocked by the dysfunction of protein complexes. Redox-active molecules have been used to mediate the electron transfer in place of the dysfunctional complexes; however, they are limited to replacing complex I and are known to be toxic. Here we report artificial mitochondrial electron transfer pathways that enhance ETC activity by exploiting inner-membrane-bound gold nanoparticles (GNPs) as efficient electron transfer mediators. The hybridization of mitochondria with GNPs, driven by electrostatic interaction, is successfully visualized in real time at the level of a single mitochondrion. By observing quantized quenching dips via plasmon resonance energy transfer, we reveal that the hybridized GNPs are bound to the inner membrane of mitochondria irrespective of the presence of the outer membrane. The ETC activity of mitochondria with GNPs such as membrane potential, oxygen consumption, and ATP production is remarkably increased in vitro.
Collapse
Affiliation(s)
- Yuseung Jo
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Jin Seok Woo
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
| | - A Ram Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seon-Yeong Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
| | - Yonghee Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Luke P Lee
- Harvard Medical School, Harvard University; Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Bioengineering, and Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, California 94720, United States
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Mi-La Cho
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Medical Life Scieneces, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| |
Collapse
|
38
|
de Carvalho Lima EN, Barros Martins GL, Diaz RS, Schechter M, Piqueira JRC, Justo JF. Effects of Carbon Nanomaterials and Aloe vera on Melanomas-Where Are We? Recent Updates. Pharmaceutics 2022; 14:2004. [PMID: 36297440 PMCID: PMC9607275 DOI: 10.3390/pharmaceutics14102004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is an aggressive skin cancer that affects approximately 140,000 people worldwide each year, with a high fatality rate. Available treatment modalities show limited efficacy in more severe cases. Hence, the search for new treatment modalities, including immunotherapies, for curing, mitigating, and/or preventing cancer is important and urgently needed. Carbon nanoparticles associated with some plant materials, such as Aloe vera, have shown appealing antineoplastic activity, derived mainly from the compounds aloin, aloe-emodin, barbaloin acemannan, and octapeptide, thus representing new possibilities as antitumor agents. This systematic review aims to arouse interest and present the possibilities of using Aloe vera combined with carbon-based nanomaterials as an antineoplastic agent in the treatment and prevention of melanoma. Limitations and advances in melanoma treatment using functionalized carbon nanomaterials are discussed here. Moreover, this review provides the basis for further studies designed to fully explore the potential of carbon nanomaterials associated with Aloe vera in the treatment of various cancers, with a focus on melanoma.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| | - Guilherme Leão Barros Martins
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Mauro Schechter
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| |
Collapse
|
39
|
Marrink SJ, Monticelli L, Melo MN, Alessandri R, Tieleman DP, Souza PCT. Two decades of Martini: Better beads, broader scope. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials University of Groningen Groningen The Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras Portugal
| | - Riccardo Alessandri
- Pritzker School of Molecular Engineering University of Chicago Chicago Illinois USA
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences University of Calgary Alberta Canada
| | - Paulo C. T. Souza
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| |
Collapse
|
40
|
Hamadani CM, Chandrasiri I, Yaddehige ML, Dasanayake GS, Owolabi I, Flynt A, Hossain M, Liberman L, Lodge TP, Werfel TA, Watkins DL, Tanner EEL. Improved nanoformulation and bio-functionalization of linear-dendritic block copolymers with biocompatible ionic liquids. NANOSCALE 2022; 14:6021-6036. [PMID: 35362493 DOI: 10.1039/d2nr00538g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Linear-dendritic block copolymers (LDBCs) have emerged as promising materials for drug delivery applications, with their hybrid structure exploiting advantageous properties of both linear and dendritic polymers. LDBCs have promising encapsulation efficiencies that can be used to encapsulate both hydrophobic and hydrophilic dyes for bioimaging, cancer therapeutics, and small biomolecules. Additionally, LDBCS can be readily functionalized with varying terminal groups for more efficient targeted delivery. However, depending on structural composition and surface properties, LDBCs also exhibit high dispersities (Đ), poor shelf-life, and potentially high cytotoxicity to non-target interfacing blood cells during intravenous drug delivery. Here, we show that choline carboxylic acid-based ionic liquids (ILs) electrostatically solvate LDBCs by direct dissolution and form stable and biocompatible IL-integrated LDBC nano-assemblies. These nano-assemblies are endowed with red blood cell-hitchhiking capabilities and show altered cellular uptake behavior ex vivo. When modified with choline and trans-2-hexenoic acid, IL-LDBC dispersity dropped by half compared to bare LDBCs, and showed a significant shift of the cationic surface charge towards neutrality. Proton nuclear magnetic resonance spectroscopy evidenced twice the total amount of IL on the LDBCs relative to an established IL-linear PLGA platform. Transmission electron microscopy suggested the formation of a nanoparticle surface coating, which acted as a protective agent against RBC hemolysis, reducing hemolysis from 73% (LDBC) to 25% (IL-LDBC). However, dramatically different uptake behavior of IL-LDBCs vs. IL-PLGA NPs in RAW 264.7 macrophage cells suggests a different conformational IL-NP surface assembly on the linear versus the linear-dendritic nanoparticles. These results suggest that by controlling the physical chemistry of polymer-IL interactions and assembly on the nanoscale, biological function can be tailored toward the development of more effective and more precisely targeted therapies.
Collapse
Affiliation(s)
- Christine M Hamadani
- Department of Chemistry & Biochemistry, The University of Mississippi, University, MS 38677, USA.
| | - Indika Chandrasiri
- Department of Chemistry & Biochemistry, The University of Mississippi, University, MS 38677, USA.
| | - Mahesh Loku Yaddehige
- Department of Chemistry & Biochemistry, The University of Mississippi, University, MS 38677, USA.
| | - Gaya S Dasanayake
- Department of Chemistry & Biochemistry, The University of Mississippi, University, MS 38677, USA.
| | - Iyanuoluwani Owolabi
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, 39406, USA
| | - Alex Flynt
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, 39406, USA
| | - Mehjabeen Hossain
- Department of BioMolecular Sciences, The University of Mississippi, University, MS 38677, USA
| | - Lucy Liberman
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Timothy P Lodge
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Thomas A Werfel
- Department of Biomedical Engineering, The University of Mississippi, University, MS 38677, USA
- Department of Chemical Engineering, The University of Mississippi, University, MS 38677, USA
- Department of BioMolecular Sciences, The University of Mississippi, University, MS 38677, USA
| | - Davita L Watkins
- Department of Chemistry & Biochemistry, The University of Mississippi, University, MS 38677, USA.
| | - Eden E L Tanner
- Department of Chemistry & Biochemistry, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
41
|
Hoti G, Matencio A, Rubin Pedrazzo A, Cecone C, Appleton SL, Khazaei Monfared Y, Caldera F, Trotta F. Nutraceutical Concepts and Dextrin-Based Delivery Systems. Int J Mol Sci 2022; 23:4102. [PMID: 35456919 PMCID: PMC9031143 DOI: 10.3390/ijms23084102] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nutraceuticals are bioactive or chemical compounds acclaimed for their valuable biological activities and health-promoting effects. The global community is faced with many health concerns such as cancers, cardiovascular and neurodegenerative diseases, diabetes, arthritis, osteoporosis, etc. The effect of nutraceuticals is similar to pharmaceuticals, even though the term nutraceutical has no regulatory definition. The usage of nutraceuticals, to prevent and treat the aforementioned diseases, is limited by several features such as poor water solubility, low bioavailability, low stability, low permeability, low efficacy, etc. These downsides can be overcome by the application of the field of nanotechnology manipulating the properties and structures of materials at the nanometer scale. In this review, the linear and cyclic dextrin, formed during the enzymatic degradation of starch, are highlighted as highly promising nanomaterials- based drug delivery systems. The modified cyclic dextrin, cyclodextrin (CD)-based nanosponges (NSs), are well-known delivery systems of several nutraceuticals such as quercetin, curcumin, resveratrol, thyme essential oil, melatonin, and appear as a more advanced drug delivery system than modified linear dextrin. CD-based NSs prolong and control the nutraceuticals release, and display higher biocompatibility, stability, and solubility of poorly water-soluble nutraceuticals than the CD-inclusion complexes, or uncomplexed nutraceuticals. In addition, the well-explored CD-based NSs pathways, as drug delivery systems, are described. Although important progress is made in drug delivery, all the findings will serve as a source for the use of CD-based nanosystems for nutraceutical delivery. To sum up, our review introduces the extensive literature about the nutraceutical concepts, synthesis, characterization, and applications of the CD-based nano delivery systems that will further contribute to the nutraceutical delivery with more potent nanosystems based on linear dextrins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Francesco Trotta
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (G.H.); (A.M.); (A.R.P.); (C.C.); (S.L.A.); (Y.K.M.); (F.C.)
| |
Collapse
|
42
|
Nishida K, Nishimura SN, Tanaka M. Selective Accumulation to Tumor Cells with Coacervate Droplets Formed from a Water-Insoluble Acrylate Polymer. Biomacromolecules 2022; 23:1569-1580. [PMID: 35089709 DOI: 10.1021/acs.biomac.1c01343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Selective targeting of specific cells without the use of biological ligands has not been achieved. In the present study, we revealed that the coacervate droplets formed from poly(2-methoxyethyl acrylate) (PMEA) and its derivatives selectively accumulated to tumor cells. PMEA derivatives, which are insoluble acrylate polymers, induced coacervation in water to form polymer-dense droplets via hydrophobic interaction. Interestingly, the accumulation of coacervate droplets to tumor cells was involved in the bound water content of PMEA derivatives. Coacervate droplets with a high bound water content accumulated and internalized up to 36.6-fold higher in HeLa cervical tumor cells than in normal human fibroblasts (NHDF). Moreover, the interactions between coacervate droplets and plasma membrane components such as CD44 played a key role in this accumulation process. Therefore, coacervate droplets formed from PMEA derivatives have great clinical potential in tumor cell detection, development of alternative tumor-targeting ligands, and optimization of drug delivery carriers.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shin-Nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
43
|
Rojewska M, Tim B, Prochaska K. Interactions between silica particles and model phospholipid monolayers. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.116999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Khan ZU, Uchiyama MK, Khan LU, Araki K, Goto H, Felinto MCFC, de Souza AO, de Brito HF, Gidlund M. Wide visible-range activatable fluorescence ZnSe:Eu 3+/Mn 2+@ZnS quantum dots: local atomic structure order and application as a nanoprobe for bioimaging. J Mater Chem B 2021; 10:247-261. [PMID: 34878486 DOI: 10.1039/d1tb01870a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of QDs-based fluorescent bionanoprobe for cellular imaging fundamentally relies upon the precise knowledge of particle-cell interaction, optical properties of QDs inside and outside of the cell, movement of a particle in and out of the cell, and the fate of particle. We reported engineering and physicochemical characterization of water-dispersible Eu3+/Mn2+ co-doped ZnSe@ZnS core/shell QDs and studied their potential as a bionanoprobe for biomedical applications, evaluating their biocompatibility, fluorescence behaviour by CytoViva dual mode fluorescence imaging, time-dependent uptake, endocytosis and exocytosis in RAW 264.7 macrophages. The oxidation state and local atomic structure of the Eu dopant studied by X-ray absorption fine structure (XAFS) analysis manifested that the Eu3+ ions occupied sites in both ZnSe and ZnS lattices for the core/shell QDs. A novel approach was developed to relieve the excitation constraint of wide bandgap ZnSe by co-incorporation of Eu3+/Mn2+ codopants, enabling the QDs to be excited at a wide UV-visible range. The QDs displayed tunable emission colors by a gradual increase in Eu3+ concentration at a fixed amount of Mn2+, systematically enhancing the Mn2+ emission intensity via energy transfer from the Eu3+ to Mn2+ ion. The ZnSe:Eu3+/Mn2+@ZnS QDs presented high cell viability above 85% and induced no cell activation. The detailed analyses of QDs-treated cells by dual mode fluorescence CytoViva microscopy confirmed the systematic color-tunable fluorescence and its intensity enhances as a function of incubation time. The QDs were internalized by the cells predominantly via macropinocytosis and other lipid raft-mediated endocytic pathways, retaining an efficient amount for 24 h. The unique color tunability and consistent high intensity emission make these QDs useful for developing a multiplex fluorescent bionanoprobe, activatable in wide-visible region.
Collapse
Affiliation(s)
- Zahid Ullah Khan
- Department of Immunology, Institute of Biomedical Sciences-IV, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil.,Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil
| | - Mayara Klimuk Uchiyama
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil
| | - Latif Ullah Khan
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil.,Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME), P.O. Box 7, Allan 19252, Jordan.
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil
| | - Hiro Goto
- Faculty of Medicine, University of São Paulo (USP), Zip Code 05403-000, São Paulo, SP, Brazil
| | | | - Ana Olivia de Souza
- Development and Innovation Laboratory, Butantan Institute, Zip Code 05503-900, São Paulo, SP, Brazil
| | - Hermi Felinto de Brito
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil
| | - Magnus Gidlund
- Department of Immunology, Institute of Biomedical Sciences-IV, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
45
|
Liao Z, Tu L, Li X, Liang XJ, Huo S. Virus-inspired nanosystems for drug delivery. NANOSCALE 2021; 13:18912-18924. [PMID: 34757354 DOI: 10.1039/d1nr05872j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With over millions of years of evolution, viruses can infect cells efficiently by utilizing their unique structures. Similarly, the drug delivery process is designed to imitate the viral infection stages for maximizing the therapeutic effect. From drug administration to therapeutic effect, nanocarriers must evade the host's immune system, break through multiple barriers, enter the cell, and release their payload by endosomal escape or nuclear targeting. Inspired by the virus infection process, a number of virus-like nanosystems have been designed and constructed for drug delivery. This review aims to present a comprehensive summary of the current understanding of the drug delivery process inspired by the viral infection stages. The most recent construction of virus-inspired nanosystems (VINs) for drug delivery is sorted, emphasizing their novelty and design principles, as well as highlighting the mechanism of these nanosystems for overcoming each biological barrier during drug delivery. A perspective on the VINs for therapeutic applications is provided in the end.
Collapse
Affiliation(s)
- Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Li Tu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xuejian Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xing-Jie Liang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
46
|
Wu D, Zhu X, Ao J, Song E, Song Y. Delivery of Ultrasmall Nanoparticles to the Cytosolic Compartment of Pyroptotic J774A.1 Macrophages via GSDMD Nterm Membrane Pores. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50823-50835. [PMID: 34689556 DOI: 10.1021/acsami.1c17382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Endosome capture is a major physiological barrier to the successful delivery of nanomedicine. Here, we found a strategy to deliver ultrasmall nanoparticles (<10 nm) to the cytosolic compartment of pyroptotic cells with spontaneous endosomal escape. To mimic pathological pyroptotic cells, J774A.1 macrophages were stimulated with lipopolysaccharide (LPS) plus nigericin (Nig) or adenosine triphosphate (ATP) to form specific gasdermin D protein-driven membrane pores at an N-terminal domain (GSDMDNterm). Through GSDMDNterm membrane pores, both anionic and cationic nanoparticles (NPs) with diameters less than 10 nm were accessed into the cytosolic compartment of pyroptotic cells in an energy- and receptor-independent manner, while NPs larger than the size of GSDMDNterm membrane pores failed to enter pyroptotic cells. NPs pass through GSDMDNterm membrane pores via free diffusion and then access into the cytoplasm of pyroptotic cells in a microtubule-independent manner. Interestingly, we found that LPS-primed NPs may act as Trojan horse, deliver extracellular LPS into normal cells through endocytosis, and in turn induce GSDMDNterm membrane pores, which facilitate further internalization of NPs. This study presented a straightforward method of distinguishing normal and pyroptotic cells through GSDMD membrane pores, implicating their potential application in monitoring the delivery of desired nanomedicines in pyroptosis-related diseases and conditions.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400715, China
- School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Xinpu District, Zunyi 563003, China
| | - Xiangyu Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Jian Ao
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan 430072, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400715, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| |
Collapse
|
47
|
de Carvalho Lima EN, Diaz RS, Justo JF, Castilho Piqueira JR. Advances and Perspectives in the Use of Carbon Nanotubes in Vaccine Development. Int J Nanomedicine 2021; 16:5411-5435. [PMID: 34408416 PMCID: PMC8367085 DOI: 10.2147/ijn.s314308] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Advances in nanobiotechnology have allowed the utilization of nanotechnology through nanovaccines. Nanovaccines are powerful tools for enhancing the immunogenicity of a specific antigen and exhibit advantages over other adjuvant approaches, with features such as expanded stability, prolonged release, decreased immunotoxicity, and immunogenic selectivity. We introduce recent advances in carbon nanotubes (CNTs) to induce either a carrier effect as a nanoplatform or an immunostimulatory effect. Several studies of CNT-based nanovaccines revealed that due to the ability of CNTs to carry immunogenic molecules, they can act as nonclassical vaccines, a quality not possessed by vaccines with traditional formulations. Therefore, adapting and modifying the physicochemical properties of CNTs for use in vaccines may additionally enhance their efficacy in inducing a T cell-based immune response. Accordingly, the purpose of this study is to renew and awaken interest in and knowledge of the safe use of CNTs as adjuvants and carriers in vaccines.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
Functionalized Chitosan Nanomaterials: A Jammer for Quorum Sensing. Polymers (Basel) 2021; 13:polym13152533. [PMID: 34372136 PMCID: PMC8348235 DOI: 10.3390/polym13152533] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/02/2022] Open
Abstract
The biggest challenge in the present-day healthcare scenario is the rapid emergence and spread of antimicrobial resistance due to the rampant use of antibiotics in daily therapeutics. Such drug resistance is associated with the enhancement of microbial virulence and the acquisition of the ability to evade the host’s immune response under the shelter of a biofilm. Quorum sensing (QS) is the mechanism by which the microbial colonies in a biofilm modulate and intercept communication without direct interaction. Hence, the eradication of biofilms through hindering this communication will lead to the successful management of drug resistance and may be a novel target for antimicrobial chemotherapy. Chitosan shows microbicidal activities by acting electrostatically with its positively charged amino groups, which interact with anionic moieties on microbial species, causing enhanced membrane permeability and eventual cell death. Therefore, nanoparticles (NPs) prepared with chitosan possess a positive surface charge and mucoadhesive properties that can adhere to microbial mucus membranes and release their drug load in a constant release manner. As the success in therapeutics depends on the targeted delivery of drugs, chitosan nanomaterial, which displays low toxicity, can be safely used for eradicating a biofilm through attenuating the quorum sensing (QS). Since the anti-biofilm potential of chitosan and its nano-derivatives are reported for various microorganisms, these can be used as attractive tools for combating chronic infections and for the preparation of functionalized nanomaterials for different medical devices, such as orthodontic appliances. This mini-review focuses on the mechanism of the downregulation of quorum sensing using functionalized chitosan nanomaterials and the future prospects of its applications.
Collapse
|
49
|
Franco-Ulloa S, Guarnieri D, Riccardi L, Pompa PP, De Vivo M. Association Mechanism of Peptide-Coated Metal Nanoparticles with Model Membranes: A Coarse-Grained Study. J Chem Theory Comput 2021; 17:4512-4523. [PMID: 34077229 PMCID: PMC8280734 DOI: 10.1021/acs.jctc.1c00127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/28/2022]
Abstract
Functionalized metal nanoparticles (NPs) hold great promise as innovative tools in nanomedicine. However, one of the main challenges is how to optimize their association with the cell membrane, which is critical for their effective delivery. Recent findings show high cellular uptake rates for NPs coated with the polycationic cell-penetrating peptide gH625-644 (gH), although the underlying internalization mechanism is poorly understood. Here, we use extended coarse-grained simulations and free energy calculations to study systems that simultaneously include metal NPs, peptides, lipids, and sterols. In particular, we investigate the first encounter between multicomponent model membranes and 2.5 nm metal NPs coated with gH (gHNPs), based on the evidence from scanning transmission electron microscopy. By comparing multiple membrane and (membranotropic) NP models, we found that gHNP internalization occurs by forming an intermediate state characterized by specific stabilizing interactions formed by peptide-coated nanoparticles with multicomponent model membranes. This association mechanism is mainly characterized by interactions of gH with the extracellular solvent and the polar membrane surface. At the same time, the NP core interacts with the transmembrane (cholesterol-rich) fatty phase.
Collapse
Affiliation(s)
- Sebastian Franco-Ulloa
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Daniela Guarnieri
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, l-84084 Salerno, Italy
| | - Laura Riccardi
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Marco De Vivo
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
50
|
Morillas-Becerril L, Franco-Ulloa S, Fortunati I, Marotta R, Sun X, Zanoni G, De Vivo M, Mancin F. Specific and nondisruptive interaction of guanidium-functionalized gold nanoparticles with neutral phospholipid bilayers. Commun Chem 2021; 4:93. [PMID: 36697571 PMCID: PMC9814519 DOI: 10.1038/s42004-021-00526-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/05/2021] [Indexed: 01/28/2023] Open
Abstract
Understanding and controlling the interaction between nanoparticles and biological entities is fundamental to the development of nanomedicine applications. In particular, the possibility to realize nanoparticles capable of directly targeting neutral lipid membranes would be advantageous to numerous applications aiming at delivering nanoparticles and their cargos into cells and biological vesicles. Here, we use experimental and computational methodologies to analyze the interaction between liposomes and gold nanoparticles (AuNPs) featuring cationic headgroups in their protecting monolayer. We find that in contrast to nanoparticles decorated with other positively charged headgroups, guanidinium-coated AuNPs can bind to neutral phosphatidylcholine liposomes, inducing nondisruptive membrane permeabilization. Atomistic molecular simulations reveal that this ability is due to the multivalent H-bonding interaction between the phosphate residues of the liposome's phospholipids and the guanidinium groups. Our results demonstrate that the peculiar properties of arginine magic, an effect responsible for the membranotropic properties of some naturally occurring peptides, are also displayed by guanidinium-bearing functionalized AuNPs.
Collapse
Affiliation(s)
- Lucía Morillas-Becerril
- grid.5608.b0000 0004 1757 3470Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, Italy
| | - Sebastian Franco-Ulloa
- grid.25786.3e0000 0004 1764 2907Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, Italy ,Present Address: Expert Analytics. Møllergata 8, Oslo, Norway
| | - Ilaria Fortunati
- grid.5608.b0000 0004 1757 3470Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, Italy
| | - Roberto Marotta
- grid.25786.3e0000 0004 1764 2907Electron Microscopy Facility (EMF), Istituto Italiano di Tecnologia, Via Morego 30, Genoa, Italy
| | - Xiaohuan Sun
- grid.268415.cSchool of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu People’s Republic of China
| | - Giordano Zanoni
- grid.5608.b0000 0004 1757 3470Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, Italy
| | - Marco De Vivo
- grid.25786.3e0000 0004 1764 2907Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, Italy
| | - Fabrizio Mancin
- grid.5608.b0000 0004 1757 3470Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, Italy
| |
Collapse
|