1
|
McGrail K, Granado-Martínez P, Orsenigo R, Caratù G, Nieto P, Heyn H, Ferrer B, Hernández-Losa J, Muñoz-Couselo E, García-Patos V, Recio JA. Transcriptional reprogramming triggered by neonatal UV radiation or Lkb1 loss prevents BRAF V600E-induced growth arrest in melanocytes. Oncogene 2025; 44:1592-1608. [PMID: 40057604 PMCID: PMC12095085 DOI: 10.1038/s41388-025-03339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 05/23/2025]
Abstract
The mechanisms behind UVB-initiated, neonatal-specific melanoma linked to BRAFV600E are not well understood, particularly regarding its role in growth arrest. We found that, beyond mutations, neonatal UV irradiation or Lkb1 loss promotes a cell-autonomous transcriptional reprogramming that prevents BRAFV600E-induced growth arrest, leading to melanoma development. Using UVB-dependent and independent mouse models, genomic analyses, clinical data, and single-cell transcriptomics, we identified a transcriptional program that bypasses growth arrest, promoting melanoma. In humans, many of these genes are linked to poor survival and are upregulated in melanoma progression and other RAS pathway-driven tumors. Reconstitution experiments showed these genes cooperate with BRAFV600E in melanocyte transformation, dedifferentiation, and drug resistance. Depleting gene products like UPP1 highlights their potential as therapeutic targets. Our findings reveal that BRAFV600E-mutated melanomas can develop independently of nevus progression and identify novel targets for treatment.
Collapse
Affiliation(s)
- Kimberley McGrail
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory-Vall d´Hebron Research Institute VHIR-Vall d'Hebron Hospital-UAB, Barcelona, Spain
| | - Paula Granado-Martínez
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory-Vall d´Hebron Research Institute VHIR-Vall d'Hebron Hospital-UAB, Barcelona, Spain
| | - Roberto Orsenigo
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory-Vall d´Hebron Research Institute VHIR-Vall d'Hebron Hospital-UAB, Barcelona, Spain
| | - Ginevra Caratù
- Single Cell Genomics Group at the Spanish National Centre for Genomic Analysis (CNAG), Barcelona, Spain
| | - Paula Nieto
- Single Cell Genomics Group at the Spanish National Centre for Genomic Analysis (CNAG), Barcelona, Spain
| | - Holger Heyn
- Single Cell Genomics Group at the Spanish National Centre for Genomic Analysis (CNAG), Barcelona, Spain
| | - Berta Ferrer
- Anatomy Pathology Department, Vall d'Hebron Hospital-UAB, Barcelona, Spain
| | | | - Eva Muñoz-Couselo
- Clinical Oncology Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital-UAB, Barcelona, Spain
| | | | - Juan A Recio
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory-Vall d´Hebron Research Institute VHIR-Vall d'Hebron Hospital-UAB, Barcelona, Spain.
| |
Collapse
|
2
|
Dal Maso A, Ferrarini F, Esposito G, Minuzzo SA, Puggia AM, Pezzuto F, Zulato E, Bao LC, De Nuzzo M, Ferro A, Frega S, Pasello G, Calabrese F, Fassan M, Rea F, Guarneri V, Indraccolo S, Bonanno L. Liver kinase B1 expression is associated with improved prognosis and tumor immune microenvironment features in small cell lung cancer. Front Oncol 2025; 15:1552506. [PMID: 40255421 PMCID: PMC12006004 DOI: 10.3389/fonc.2025.1552506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Background Small cell lung cancer (SCLC) is characterized by early metastatic potential and poor prognosis. Liver kinase B1 (LKB1) is a tumor suppressor and a cell metabolism regulator. LKB1 downregulation has been associated with a cold tumor immune microenvironment (TIME). We aimed to analyze the role of LKB1 in SCLC in relation to its association with overall survival (OS) and TIME components. Methods We retrospectively evaluated SCLC patients consecutively treated at our institution from 1996 to 2020 with available tissue. LKB1, PD-L1 on tumor cells and on tumor immune-infiltrating cells, CD8, and FOXP3 were evaluated by immunohistochemistry (IHC), categorized according to predefined cutoffs. The primary endpoint was the description of LKB1 expression, and the secondary endpoints were the association with prognosis and TIME features. Results Tissue samples of 138 out of 481 SCLCs were adequate for molecular analyses. Eighty patients had limited stage (LS) at diagnosis and 58 had extended stage (ES). The median LKB1 IHC score was 4. Patients with IHC score >4 (n = 67) were classified as LKB1-positive. The probability of LKB1 positivity was higher in LS [odds ratio 2.78, 95% confidence interval (95% CI) 1.18-7.14]. At the data cutoff (2 January 2024), 123 patients died. The median OS (mOS) was 14.0 months (95% CI 11.5-19.4). mOS was significantly longer in patients with LKB1-positive expression [32.4 months (95% CI 13.6-62.4) vs. 11.2 months (95% CI 8.7-14.7); p < 0.001]. At multivariate analysis, positive LKB1 expression, LS, and no weight loss at diagnosis were confirmed as independent positive prognostic factors. TIME features were evaluated in 70 patients. Unexpectedly, LKB1-negative samples were more likely to show CD8+ tumor-infiltrating lymphocytes (TILs; p = 0.013). No association with PD-L1 expression nor the presence of FOXP3+ TILs was found. Conclusion LKB1 expression is a potential positive prognostic marker in SCLC. In this series, LKB1 expression was negatively associated with the presence of CD8+ TILs.
Collapse
Affiliation(s)
| | - Federica Ferrarini
- Basic and Translational Oncology, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Giovanni Esposito
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Sonia Anna Minuzzo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Anna Maria Puggia
- Anatomy and Pathological Histology, Veneto Institute of Oncology IOV - IRCCS, Castelfranco Veneto, Italy
| | - Federica Pezzuto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisabetta Zulato
- Basic and Translational Oncology, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Loc Carlo Bao
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Mattia De Nuzzo
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Alessandra Ferro
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Stefano Frega
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Giulia Pasello
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Matteo Fassan
- Department of Medicine, University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Federico Rea
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Thoracic Surgery Unit, Padova University Hospital, Padova, Italy
| | - Valentina Guarneri
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Stefano Indraccolo
- Basic and Translational Oncology, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Laura Bonanno
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Tedeschi A, Schischlik F, Rocchetti F, Popow J, Ebner F, Gerlach D, Geyer A, Santoro V, Boghossian AS, Rees MG, Ronan MM, Roth JA, Lipp J, Samwer M, Gmachl M, Kraut N, Pearson M, Rudolph D. Pan-KRAS Inhibitors BI-2493 and BI-2865 Display Potent Antitumor Activity in Tumors with KRAS Wild-type Allele Amplification. Mol Cancer Ther 2025; 24:550-562. [PMID: 39711431 PMCID: PMC11962398 DOI: 10.1158/1535-7163.mct-24-0386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
KRASG12C selective inhibitors, such as sotorasib and adagrasib, have raised hopes of targeting other KRAS-mutant alleles in patients with cancer. We report that KRAS wild-type (WT)-amplified tumor models are sensitive to treatment with the small-molecule KRAS inhibitors BI-2493 and BI-2865. These pan-KRAS inhibitors directly target the "OFF" state of KRAS and result in potent antitumor activity in preclinical models of cancers driven by KRAS-mutant proteins. In this study, we used the high-throughput cellular viability Profiling Relative Inhibition Simultaneously in Mixtures assay to assess the antiproliferative activity of BI-2493 in a 900+ cancer cell line panel, expanding on our previous work. KRAS WT-amplified cancer cell lines, with a copy number >7, were identified as the most sensitive, across cell lines with any KRAS alterations, to our pan-KRAS inhibitors. Importantly, our data suggest that a KRAS "OFF" inhibitor is better suited to treat KRAS WT-amplified tumors than a KRAS "ON" inhibitor. KRAS WT amplification is common in patients with gastroesophageal cancers in which it has been shown to act as a unique cancer driver with little overlap to other actionable mutations. The pan-KRAS inhibitors BI-2493 and BI-2865 show potent antitumor activity in vitro and in vivo in KRAS WT-amplified cell lines from this and other tumor types. In conclusion, this is the first study to demonstrate that direct pharmacologic inhibition of KRAS shows antitumor activity in preclinical models of cancer with KRAS WT amplification, suggesting a novel therapeutic concept for patients with cancers bearing this KRAS alteration.
Collapse
Affiliation(s)
| | | | | | | | - Florian Ebner
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Antonia Geyer
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Matthew G. Rees
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | - Jesse Lipp
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Mark Pearson
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | |
Collapse
|
4
|
Yin D, Lu X, Liang X, Lu Y, Xiong L, Wu P, Wang T, Chen J. STK11 genetic alterations in metastatic EGFR mutant lung cancer. Sci Rep 2025; 15:5729. [PMID: 39962098 PMCID: PMC11832735 DOI: 10.1038/s41598-024-74779-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/30/2024] [Indexed: 02/20/2025] Open
Abstract
This study was conducted to investigate the relationship between STK11 genetic alterations and the outcomes of patients with metastatic EGFR mutant lung cancer. Clinical characteristics and genomic data were downloaded from the cBioPortal database. The information of the case with STK11 mutation was collected from Jiangyin People's Hospital. Univariate and multivariate analyses were performed to distinguish the prognostic differences. Outcomes were analyzed before and after propensity score matching (PSM). A patient with STK11 mutation was insensitive to osimertinib and had an extremely poor prognosis. Further analysis showed that STK11 mutations had a strong mutual exclusion with EGFR mutations. A total of 960 patients with metastatic EGFR mutant lung adenocarcinoma were enrolled in the prognostic analysis. STK11 alternation was a significant predictor of worse outcomes in univariate or multivariate analyses. After PSM, patients with STK11 alternations still exhibited poor prognoses. Cell culture experiments also showed that the loss of STK11 could contribute to the resistance of osimertinib. Functionally, STK11 mutation was positively associated with metabolic signaling pathways and immune infiltrates negatively. Through drug screening, trametinib was identified to sensitize osimertinib in the STK11-deficient cell. This study found that STK11 genetic alterations portend a worse prognosis for patients with metastatic EGFR mutant lung cancer and led to osimertinib resistance potentially. MEK inhibitors could sensitize osimertinib in the STK11-deficient cell.
Collapse
Affiliation(s)
- Dandan Yin
- The Second Hospital of Nanjing, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, People's Republic of China
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, Jiangsu, People's Republic of China
| | - Xiyi Lu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiao Liang
- Department of Oncology, The Affiliated Jiangyin Hospital of Nantong University, Wuxi, Jiangsu, People's Republic of China
| | - Yiting Lu
- Department of Radiology, The Affiliated Jiangyin Hospital of Nantong University, Wuxi, Jiangsu, People's Republic of China
| | - Lei Xiong
- Department of Cardiothoracic Surgery, Jinling Hospital, Jinling Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| | - Pingping Wu
- Department of Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, Jiangsu, People's Republic of China.
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, People's Republic of China.
- Medical School, Nanjing University, Nanjing, People's Republic of China.
| | - Jinfei Chen
- Medical School, Nanjing University, Nanjing, People's Republic of China.
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
McGrail K, González‐Sánchez E, Granado‐Martínez P, Orsenigo R, Ding Y, Ferrer B, Hernández‐Losa J, Ortega I, Martín‐Caballero J, Muñoz‐Couselo E, García‐Patos V, Recio JA. Loss of Lkb1 cooperates with Braf V600E and ultraviolet radiation, increasing melanoma multiplicity and neural-like dedifferentiation. Mol Oncol 2025; 19:329-343. [PMID: 39115053 PMCID: PMC11792986 DOI: 10.1002/1878-0261.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 02/05/2025] Open
Abstract
The mechanisms that work alongside BRAFV600E oncogene in melanoma development, in addition to ultraviolet (UV) radiation (UVR), are of great interest. Analysis of human melanoma tumors [data from The Cancer Genome Atlas (TCGA)] revealed that 50% or more of the samples expressed no or low amounts of serine/threonine protein kinase STK11 (also known as LKB1) protein. Here, we report that, in a mouse model, concomitant neonatal BrafV600E activation and Lkb1 tumor suppressor ablation in melanocytes led to full melanoma development. A single postnatal dose of UVB radiation had no effect on melanoma onset in Lkb1-depleted mice compared with BrafV600E-irradiated mice, but increased tumor multiplicity. In concordance with these findings and previous reports, Lkb1-null irradiated mice exhibited deficient DNA damage repair (DDR). Histologically, tumors lacking Lkb1 were enriched in neural-like tumor morphology. Genetic profiling and gene set enrichment analyses of tumor sample mutated genes indicated that loss of Lkb1 promoted the selection of altered genes associated with neural differentiation processes. Thus, these results suggest that the loss of Lkb1 cooperates with BrafV600E and UVR, impairing the DDR and increasing melanoma multiplicity and neural-like dedifferentiation.
Collapse
Affiliation(s)
- Kimberley McGrail
- Biomedical Research in Melanoma‐Animal Models and Cancer LaboratoryVall d'Hebron Research Institute VHIR, Vall d'Hebron Hospital‐UABBarcelonaSpain
| | - Elena González‐Sánchez
- Biomedical Research in Melanoma‐Animal Models and Cancer LaboratoryVall d'Hebron Research Institute VHIR, Vall d'Hebron Hospital‐UABBarcelonaSpain
- Present address:
Miltenyi Biotec S.L.MadridSpain
| | - Paula Granado‐Martínez
- Biomedical Research in Melanoma‐Animal Models and Cancer LaboratoryVall d'Hebron Research Institute VHIR, Vall d'Hebron Hospital‐UABBarcelonaSpain
| | - Roberto Orsenigo
- Biomedical Research in Melanoma‐Animal Models and Cancer LaboratoryVall d'Hebron Research Institute VHIR, Vall d'Hebron Hospital‐UABBarcelonaSpain
| | - Yuxin Ding
- Biomedical Research in Melanoma‐Animal Models and Cancer LaboratoryVall d'Hebron Research Institute VHIR, Vall d'Hebron Hospital‐UABBarcelonaSpain
| | - Berta Ferrer
- Anatomy Pathology DepartmentVall d'Hebron Hospital‐UABBarcelonaSpain
| | | | - Iván Ortega
- Animal Laboratory UnitBiomedical Research Park of Barcelona‐PRBBSpain
- Present address:
University of BarcelonaBellvitgeSpain
| | - Juan Martín‐Caballero
- Animal Laboratory UnitBiomedical Research Park of Barcelona‐PRBBSpain
- Present address:
Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Eva Muñoz‐Couselo
- Clinical Oncology Program, Vall d'Hebron Institute of Oncology (VHIO)Vall d'Hebron Hospital‐UABBarcelonaSpain
| | | | - Juan A. Recio
- Biomedical Research in Melanoma‐Animal Models and Cancer LaboratoryVall d'Hebron Research Institute VHIR, Vall d'Hebron Hospital‐UABBarcelonaSpain
| |
Collapse
|
6
|
Kang J, Gallucci S, Pan J, Oakhill JS, Sanij E. The role of STK11/LKB1 in cancer biology: implications for ovarian tumorigenesis and progression. Front Cell Dev Biol 2024; 12:1449543. [PMID: 39544365 PMCID: PMC11560430 DOI: 10.3389/fcell.2024.1449543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
STK11 (serine-threonine kinase 11), also known as LKB1 (liver kinase B1) is a highly conserved master kinase that regulates cellular metabolism and polarity through a complex signaling network involving AMPK and 12 other AMPK-related kinases. Germline mutations in LKB1 have been causatively linked to Peutz-Jeghers Syndrome (PJS), an autosomal dominant hereditary disease with high cancer susceptibility. The identification of inactivating somatic mutations in LKB1 in different types of cancer further supports its tumor suppressive role. Deleterious mutations in LKB1 are frequently observed in patients with epithelial ovarian cancer. However, its inconsistent effects on tumorigenesis and cancer progression suggest that its functional impact is genetic context-dependent, requiring cooperation with other oncogenic lesions. In this review, we summarize the pleiotropic functions of LKB1 and how its altered activity in cancer cells is linked to oncogenic proliferation and growth, metastasis, metabolic reprogramming, genomic instability, and immune modulation. We also review the current mechanistic understandings of this master kinase as well as therapeutic implications with particular focus on the effects of LKB1 deficiency in ovarian cancer pathogenesis. Lastly, we discuss whether LKB1 deficiency can be exploited as an Achilles heel in ovarian cancer.
Collapse
Affiliation(s)
- Jian Kang
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Stefano Gallucci
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Junqi Pan
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Jonathan S. Oakhill
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Elaine Sanij
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Haque M, Shyanti RK, Mishra MK. Targeted therapy approaches for epithelial-mesenchymal transition in triple negative breast cancer. Front Oncol 2024; 14:1431418. [PMID: 39450256 PMCID: PMC11499239 DOI: 10.3389/fonc.2024.1431418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is distinguished by negative expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), making it an aggressive subtype of breast cancer and contributes to 15-20% of the total incidence. TNBC is a diverse disease with various genetic variations and molecular subtypes. The tumor microenvironment involves multiple cells, including immune cells, fibroblast cells, extracellular matrix (ECM), and blood vessels that constantly interact with tumor cells and influence each other. The ECM undergoes significant structural changes, leading to induced cell proliferation, migration, adhesion, invasion, and epithelial-to-mesenchymal transition (EMT). The involvement of EMT in the occurrence and development of tumors through invasion and metastasis in TNBC has been a matter of concern. Therefore, EMT markers could be prognostic predictors and potential therapeutic targets in TNBC. Chemotherapy has been one of the primary options for treating patients with TNBC, but its efficacy against TNBC is still limited. Targeted therapy is a critical emerging option with enhanced efficacy and less adverse effects on patients. Various targeted therapy approaches have been developed based on the specific molecules and the signaling pathways involved in TNBC. These include inhibitors of signaling pathways such as TGF-β, Wnt/β-catenin, Notch, TNF-α/NF-κB and EGFR, as well as immune checkpoint inhibitors, such as pembrolizumab, 2laparib, and talazoparib have been widely explored. This article reviews recent developments in EMT in TNBC invasion and metastasis and potential targeted therapy strategies.
Collapse
Affiliation(s)
| | | | - Manoj K. Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State
University, Montgomery, AL, United States
| |
Collapse
|
8
|
Li G, Li Y, Tang X, Wang L, Yue S, He S, Li T. LKB1 suppresses KSHV reactivation and promotes primary effusion lymphoma progression. J Virol 2024; 98:e0060424. [PMID: 39194241 PMCID: PMC11406988 DOI: 10.1128/jvi.00604-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Viruses normally reprogram the host cell metabolic pathways as well as metabolic sensors to facilitate their persistence. The serine-threonine liver kinase B1 (LKB1) is a master upstream kinase of 5'-AMP-activated protein kinase (AMPK) that senses the energy status and therefore regulates the intracellular metabolic homeostasis. Previous studies showed that AMPK restricts Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication in endothelial cells during primary infection and promotes primary effusion lymphoma (PEL) cell survival. However, the role of LKB1 in KSHV lytic reactivation and KSHV-associated malignancies is unclear. In this study, we found that LKB1 is phosphorylated or activated in KSHV-positive PEL cells. Mechanistically, KSHV-encoded vCyclin mediated LKB1 activation in PEL cells, as vCyclin knockout ablated, while vCyclin overexpression enhanced LKB1 activation. Furthermore, knockdown of LKB1 inactivated AMPK and induced KSHV reactivation, as indicated by the increased expression of viral lytic genes and the increased virions in supernatants. Accordingly, AMPK inhibition by functional knockdown or a pharmacologic inhibitor, Compound C, promoted KSHV reactivation in PEL cells. Furthermore, inhibition of either LKB1 or AMPKα1 efficiently induced cell death by apoptosis of PEL cells both in vitro and in vivo. Together, these results identify LKB1 as a vulnerable target for PEL, which could be potentially exploited for treating other virus-associated diseases.IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus associated with several human cancers, such as primary effusion lymphoma (PEL). Here, we showed that serine-threonine liver kinase B1 (LKB1), upstream of 5' AMP-activated protein kinase (AMPK), is activated by KSHV-encoded vCyclin and maintains KSHV latency in PEL cells. Inhibition of either LKB1 or AMPK enhances KSHV lytic replication from latency, which at least partially accounts for PEL cell death by apoptosis. Compound C, a potent AMPK inhibitor, induced KSHV reactivation and efficiently inhibited PEL progression in vivo. Thus, our work revealed that LKB1 is a potential therapeutic target for KSHV-associated cancers.
Collapse
Affiliation(s)
- Guanya Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yinan Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xinyu Tang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Lijie Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shusheng Yue
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shanping He
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Tingting Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
9
|
Principe DR, Pasquinelli MM, Nguyen RH, Munshi HG, Hulbert A, Aissa AF, Weinberg F. Loss of STK11 Suppresses Lipid Metabolism and Attenuates KRAS-Induced Immunogenicity in Patients with Non-Small Cell Lung Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:2282-2294. [PMID: 39113608 PMCID: PMC11362717 DOI: 10.1158/2767-9764.crc-24-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/11/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024]
Abstract
As many as 30% of the patients with non-small cell lung cancer harbor oncogenic KRAS mutations, which leads to extensive remodeling of the tumor immune microenvironment. Although co-mutations in several genes have prognostic relevance in KRAS-mutated patients, their effect on tumor immunogenicity are poorly understood. In the present study, a total of 189 patients with non-small cell lung cancer underwent a standardized analysis including IHC, whole-exome DNA sequencing, and whole-transcriptome RNA sequencing. Patients with activating KRAS mutations demonstrated a significant increase in PDL1 expression and CD8+ T-cell infiltration. Both were increased in the presence of a co-occurring TP53 mutation and lost with STK11 co-mutation. Subsequent genomic analysis demonstrated that KRAS/TP53 co-mutated tumors had a significant decrease in the expression of glycolysis-associated genes and an increase in several genes involved in lipid metabolism, notably lipoprotein lipase, low-density lipoprotein receptor, and LDLRAD4. Conversely, in the immune-excluded KRAS/STK11 co-mutated group, we observed diminished lipid metabolism and no change in anaerobic glycolysis. Interestingly, in patients with low expression of lipoprotein lipase, low-density lipoprotein receptor, or LDLRAD4, KRAS mutations had no effect on tumor immunogenicity. However, in patients with robust expression of these genes, KRAS mutations were associated with increased immunogenicity and associated with improved overall survival. Our data further suggest that the loss of STK11 may function as a metabolic switch, suppressing lipid metabolism in favor of glycolysis, thereby negating KRAS-induced immunogenicity. Hence, this concept warrants continued exploration, both as a predictive biomarker and potential target for therapy in patients receiving ICI-based immunotherapy. SIGNIFICANCE In patients with lung cancer, we demonstrate that KRAS mutations increase tumor immunogenicity; however, KRAS/STK11 co-mutated patients display an immune-excluded phenotype. KRAS/STK11 co-mutated patients also demonstrated significant downregulation of several key lipid metabolism genes, many of which were associated with increased immunogenicity and improved overall survival in KRAS-mutated patients. Hence, alteration to lipid metabolism warrants further study as a potential biomarker and target for therapy in patients with KRAS-mutated lung cancer.
Collapse
Affiliation(s)
| | - Mary M. Pasquinelli
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois.
| | - Ryan H. Nguyen
- Division of Hematology and Oncology, University of Illinois Chicago and Translational Oncology Program, University of Illinois Cancer Center, Chicago, Illinois.
| | - Hidayatullah G. Munshi
- Division of Hematology and Oncology, University of Illinois Chicago and Translational Oncology Program, University of Illinois Cancer Center, Chicago, Illinois.
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
- Jesse Brown VA Medical Center, Chicago, Illinois.
| | - Alicia Hulbert
- Department of Surgery, University of Illinois Chicago, Chicago, Illinois.
| | - Alexandre F. Aissa
- Division of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil.
| | - Frank Weinberg
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois.
| |
Collapse
|
10
|
Tiwari P, Yadav A, Kaushik M, Dada R. Cancer risk and male Infertility: Unravelling predictive biomarkers and prognostic indicators. Clin Chim Acta 2024; 558:119670. [PMID: 38614420 DOI: 10.1016/j.cca.2024.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
In recent years, there has been a global increase in cases of male infertility. There are about 30 million cases of male infertility worldwide and male reproductive health is showing rapid decline in last few decades. It is now recognized as a potential risk factor for developing certain types of cancer, particularly genitourinary malignancies like testicular and prostate cancer. Male infertility is considered a potential indicator of overall health and an early biomarker for cancer. Cases of unexplained male factor infertility have high levels of oxidative stress and oxidative DNA damage and this induces both denovo germ line mutations and epimutations due to build up of 8-hydroxy 2 deoxygunaosine abase which is highly mutagenic and also induces hypomethylation and genomic instability. Consequently, there is growing evidence to explore the various factors contributing to an increased cancer risk. Currently, the available prognostic and predictive biomarkers associated with semen characteristics and cancer risk are limited but gaining significant attention in clinical research for the diagnosis and treatment of elevated cancer risk in the individual and in offspring. The male germ cell being transcriptionally and translationally inert has a highly truncated repair mechanism and has minimal antioxidants and thus most vulnerable to oxidative injury due to environmental factors and unhealthy lifestyle and social habits. Therefore, advancing our understanding requires a thorough evaluation of the pathophysiologic mechanisms at the DNA, RNA, protein, and metabolite levels to identify key biomarkers that may underlie the pathogenesis of male infertility and associated cancer. Advanced methodologies such as genomics, epigenetics, proteomics, transcriptomics, and metabolomics stand at the forefront of cutting-edge approaches for discovering novel biomarkers, spanning from infertility to associated cancer types. Henceforth, in this review, we aim to assess the role and potential of recently identified predictive and prognostic biomarkers, offering insights into the success of assisted reproductive technologies, causes of azoospermia and idiopathic infertility, the impact of integrated holistic approach and lifestyle modifications, and the monitoring of cancer susceptibility, initiation and progression. Comprehending these biomarkers is crucial for providing comprehensive counselling to infertile men and cancer patients, along with their families.
Collapse
Affiliation(s)
- Prabhakar Tiwari
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| | - Anjali Yadav
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Meenakshi Kaushik
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rima Dada
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
11
|
Lagoudaki ED, Koutsopoulos AV, Sfakianaki M, Papadaki C, Manikis GC, Voutsina A, Trypaki M, Tsakalaki E, Fiolitaki G, Hatzidaki D, Yiachnakis E, Koumaki D, Mavroudis D, Tzardi M, Stathopoulos EN, Marias K, Georgoulias V, Souglakos J. LKB1 Loss Correlates with STING Loss and, in Cooperation with β-Catenin Membranous Loss, Indicates Poor Prognosis in Patients with Operable Non-Small Cell Lung Cancer. Cancers (Basel) 2024; 16:1818. [PMID: 38791897 PMCID: PMC11120022 DOI: 10.3390/cancers16101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
To investigate the incidence and prognostically significant correlations and cooperations of LKB1 loss of expression in non-small cell lung cancer (NSCLC), surgical specimens from 188 metastatic and 60 non-metastatic operable stage I-IIIA NSCLC patients were analyzed to evaluate their expression of LKB1 and pAMPK proteins in relation to various processes. The investigated factors included antitumor immunity response regulators STING and PD-L1; pro-angiogenic, EMT and cell cycle targets, as well as metastasis-related (VEGFC, PDGFRα, PDGFRβ, p53, p16, Cyclin D1, ZEB1, CD24) targets; and cell adhesion (β-catenin) molecules. The protein expression levels were evaluated via immunohistochemistry; the RNA levels of LKB1 and NEDD9 were evaluated via PCR, while KRAS exon 2 and BRAFV600E mutations were evaluated by Sanger sequencing. Overall, loss of LKB1 protein expression was observed in 21% (51/248) patients and correlated significantly with histotype (p < 0.001), KRAS mutations (p < 0.001), KC status (concomitant KRAS mutation and p16 downregulation) (p < 0.001), STING loss (p < 0.001), and high CD24 expression (p < 0.001). STING loss also correlated significantly with loss of LKB1 expression in the metastatic setting both overall (p = 0.014) and in lung adenocarcinomas (LUACs) (p = 0.005). Additionally, LKB1 loss correlated significantly with a lack of or low β-catenin membranous expression exclusively in LUACs, both independently of the metastatic status (p = 0.019) and in the metastatic setting (p = 0.007). Patients with tumors yielding LKB1 loss and concomitant nonexistent or low β-catenin membrane expression experienced significantly inferior median overall survival of 20.50 vs. 52.99 months; p < 0.001 as well as significantly greater risk of death (HR: 3.32, 95% c.i.: 1.71-6.43; p <0.001). Our findings underscore the impact of the synergy of LKB1 with STING and β-catenin in NSCLC, in prognosis.
Collapse
Affiliation(s)
- Eleni D. Lagoudaki
- Department of Pathology, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.V.K.); (M.T.); (E.N.S.)
- School of Medicine, University of Crete, 70013 Heraklion, Greece; (D.M.); (V.G.); (J.S.)
| | - Anastasios V. Koutsopoulos
- Department of Pathology, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.V.K.); (M.T.); (E.N.S.)
- School of Medicine, University of Crete, 70013 Heraklion, Greece; (D.M.); (V.G.); (J.S.)
| | - Maria Sfakianaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
| | - Chara Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
| | - Georgios C. Manikis
- Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece; (G.C.M.); (K.M.)
| | - Alexandra Voutsina
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
| | - Maria Trypaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
| | - Eleftheria Tsakalaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
| | - Georgia Fiolitaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
| | - Dora Hatzidaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
| | - Emmanuel Yiachnakis
- Laboratory of Bio-Medical Data Analysis Digital Applications and Interdisciplinary Approaches, University of Crete, 71003 Heraklion, Greece;
| | - Dimitra Koumaki
- Department of Dermatology, University General Hospital of Heraklion, Voutes, 71500 Heraklion, Greece;
| | - Dimitrios Mavroudis
- School of Medicine, University of Crete, 70013 Heraklion, Greece; (D.M.); (V.G.); (J.S.)
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| | - Maria Tzardi
- Department of Pathology, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.V.K.); (M.T.); (E.N.S.)
- School of Medicine, University of Crete, 70013 Heraklion, Greece; (D.M.); (V.G.); (J.S.)
| | - Efstathios N. Stathopoulos
- Department of Pathology, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.V.K.); (M.T.); (E.N.S.)
- School of Medicine, University of Crete, 70013 Heraklion, Greece; (D.M.); (V.G.); (J.S.)
| | - Kostas Marias
- Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece; (G.C.M.); (K.M.)
| | - Vassilis Georgoulias
- School of Medicine, University of Crete, 70013 Heraklion, Greece; (D.M.); (V.G.); (J.S.)
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| | - John Souglakos
- School of Medicine, University of Crete, 70013 Heraklion, Greece; (D.M.); (V.G.); (J.S.)
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
12
|
Zheng J, Deng Y, Huang B, Chen X. Prognostic implications of STK11 with different mutation status and its relationship with tumor-infiltrating immune cells in non-small cell lung cancer. Front Immunol 2024; 15:1387896. [PMID: 38736875 PMCID: PMC11082287 DOI: 10.3389/fimmu.2024.1387896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Background Mutations in STK11 (STK11Mut) gene may present a negative impact on survival in Non-small Cell Lung Cancer (NSCLC) patients, however, its relationship with immune related genes remains unclear. This study is to unveil whether overexpressed- and mutated-STK11 impact survival in NSCLC and to explore whether immune related genes (IRGs) are involved in STK11 mutations. Methods 188 NSCLC patients with intact formalin-fixed paraffin-embedded (FFPE) tissue available for detecting STK11 protein expression were included in the analysis. After immunohistochemical detection of STK11 protein, patients were divided into high STK11 expression group (STK11High) and low STK11 expression group (STK11Low), and then Kaplan-Meier survival analysis and COX proportional hazards model were used to compare the overall survival (OS) and progression-free survival (PFS) of the two groups of patients. In addition, the mutation data from the TCGA database was used to categorize the NSCLC population, namely STK11 Mutated (STK11Mut) and wild-type (STK11Wt) subgroups. The difference in OS between STK11Mut and STK11Wt was compared. Finally, bioinformatics analysis was used to compare the differences in IRGs expression between STK11Mut and STK11Wt populations. Results The median follow-up time was 51.0 months (range 3.0 - 120.0 months) for real-life cohort. At the end of follow-up, 64.36% (121/188) of patients experienced recurrence or metastasis. 64.89% (122/188) of patients ended up in cancer-related death. High expression of STK11 was a significant protective factor for NSCLC patients, both in terms of PFS [HR=0.42, 95% CI= (0.29-0.61), P<0.001] and OS [HR=0.36, 95% CI= (0.25, 0.53), P<0.001], which was consistent with the finding in TCGA cohorts [HR=0.76, 95%CI= (0.65, 0.88), P<0.001 HR=0.76, 95%CI= (0.65, 0.88), P<0.001]. In TCGA cohort, STK11 mutation was a significant risk factor for NSCLC in both lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) histology in terms of OS [HR=6.81, 95%CI= (2.16, 21.53), P<0.001; HR=1.50, 95%CI= (1.00, 2.26), P=0.051, respectively]. Furthermore, 7 IRGs, namely CALCA, BMP6, S100P, THPO, CGA, PCSK1 and MUC5AC, were found significantly overexpressed in STK11-mutated NSCLC in both LUSC and LUAD histology. Conclusions Low STK11 expression at protein level and presence of STK11 mutation were associated with poor prognosis in NSCLC, and mutated STK11 might probably alter the expression IRGs profiling.
Collapse
Affiliation(s)
- Jianqing Zheng
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yujie Deng
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Bifen Huang
- Department of Obstetrics and Gynecology, Quanzhou Medical College People’s Hospital Affiliated, Quanzhou, Fujian, China
| | - Xiaohui Chen
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- Interdisciplinary Institute of Medical Engineering of Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
13
|
Hu L, Liu M, Tang B, Li Q, Pan BS, Xu C, Lin HK. Posttranslational regulation of liver kinase B1 (LKB1) in human cancer. J Biol Chem 2023; 299:104570. [PMID: 36870679 PMCID: PMC10068580 DOI: 10.1016/j.jbc.2023.104570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Liver kinase B1 (LKB1) is a serine-threonine kinase that participates in multiple cellular and biological processes, including energy metabolism, cell polarity, cell proliferation, cell migration, and many others. LKB1 is initially identified as a germline-mutated causative gene in Peutz-Jeghers syndrome (PJS) and is commonly regarded as a tumor suppressor due to frequent inactivation in a variety of cancers. LKB1 directly binds and activates its downstream kinases including the AMP-activated protein kinase (AMPK) and AMPK-related kinases by phosphorylation, which has been intensively investigated for the past decades. An increasing number of studies has uncovered the posttranslational modifications (PTMs) of LKB1 and consequent changes in its localization, activity, and interaction with substrates. The alteration in LKB1 function as a consequence of genetic mutations and aberrant upstream signaling regulation leads to tumor development and progression. Here, we review current knowledge about the mechanism of LKB1 in cancer and the contributions of PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, prenylation, and others, to the regulation of LKB1 function, offering new insights into the therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Lanlin Hu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxin Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Tang
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Li
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
14
|
Chen J, Wang J. STK11 loss and SMARCB1 deficiency mutation in a dedifferentiated lung cancer patient present response to neo-adjuvant treatment with pembrolizumab and platinum doublet: A case report. Front Oncol 2023; 13:1088534. [PMID: 36776287 PMCID: PMC9911826 DOI: 10.3389/fonc.2023.1088534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Cancers harboring serine threonine kinase (STK11) alteration or SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily B, member 1 (SMARCB1) mutation are conventionally considered as treatment-refractory to immune checkpoint inhibitors or chemotherapy, respectively. However in the present report, we demonstrated a case of dedifferentiated non-small cell lung cancer, characterized by STK11 loss (due to promoter loss) mutation co-mutated with SMARCB1 deficiency mutation, has achieved significantly partial response to neo-adjuvant treatment with pembrolizumab and platinum doublet regimen. Our case highlighted that either STK11 loss, or SMARCB1 deficiency mutation, might not be used to select patients for PD-(L)1 blockade therapy or chemotherapy, respectively. SKT11 loss accompanied with SMARCB1 deficiency mutation may benefit from immunotherapy combined with chemotherapy.
Collapse
|
15
|
Zhang Y, Shi J, Luo J, Liu C, Zhu L. Metabolic heterogeneity in early-stage lung adenocarcinoma revealed by RNA-seq and scRNA-seq. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1844-1855. [PMID: 36692643 DOI: 10.1007/s12094-023-03082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023]
Abstract
PURPOSE Cancer cells maintain cell growth, division, and survival through altered energy metabolism. However, research on metabolic reprogramming in lung adenocarcinoma (LUAD) is limited METHODS: We downloaded TCGA and GEO sequencing data. Consistent clustering with the ConsensusClusterPlus package was employed to detect the scores for four metabolism-related pathways. The LUAD samples in the TCGA dataset were clustered with ConsensusClusterPlus, and the optimal number of clusters was determined according to the cumulative distribution function (CDF). The cell score for each sample in the TCGA dataset was calculated using the MCPcounter estimate function of the MCPcounter package. RESULTS We identified two subtypes by scoring the samples based on the 4 metabolism-related pathways and cluster dimensionality reduction. The prognosis of cluster B was obviously poorer than that of cluster A in patients with LUAD. The analysis of single-nucleotide variation (SNV) data showed that the top 15 genes in the four metabolic pathways with the most mutations were TKTL2, PGK2, HK3, EHHADH, GLUD2, PKLR, TKTL1, HADHB, CPT1C, HK1, HK2, PFKL, SLC2A3, PFKFB1, and CPT1A. The IFNγ score of cluster B was significantly higher than that of cluster A. The immune T-cell lytic activity score of cluster B was significantly higher than that of cluster A. We further identified 5 immune cell subsets from single-cell sequencing data. The top 5 marker genes of B cells were IGHM, JCHAIN, IGLC3, IGHA1, and IGKC. The C0 subgroup of monocytes had a higher pentose phosphate pathway (PPP) score than the C6 subgroup. CONCLUSIONS Metabolism-related subtypes could be potential biomarkers in the prognosis prediction and treatment of LUAD.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Jiang Shi
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junfang Luo
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cong Liu
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lixu Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
16
|
Huang Y, Zhang H, Feng J, Tang B. STK11
mutation affects the killing effect of
NK
cells to promote the progression of lung adenocarcinoma. APMIS 2022; 130:647-656. [DOI: 10.1111/apm.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Yun Huang
- Division of Thoracic and Cardiovascular Surgery, Zigong Fourth People's Hospital Zigong Sichuan 643000 China
| | - Hui Zhang
- Division of Thoracic and Cardiovascular Surgery, Zigong Fourth People's Hospital Zigong Sichuan 643000 China
| | - Juan Feng
- Division of Thoracic and Cardiovascular Surgery, Zigong Fourth People's Hospital Zigong Sichuan 643000 China
| | - Bo Tang
- Division of Thoracic and Cardiovascular Surgery, Zigong Fourth People's Hospital Zigong Sichuan 643000 China
| |
Collapse
|
17
|
Integrative, In Silico and Comparative Analysis of Breast Cancer Secretome Highlights Invasive-Ductal-Carcinoma-Grade Progression Biomarkers. Cancers (Basel) 2022; 14:cancers14163854. [PMID: 36010848 PMCID: PMC9406168 DOI: 10.3390/cancers14163854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Globally, BC is the most frequently diagnosed cancer in women. The aim of this study was to identify novel secreted biomarkers that may indicate progression to high-grade BC malignancies and therefore predict metastatic potential. A total of 33 studies of breast cancer and 78 of other malignancies were screened via a systematic review for eligibility, yielding 26 datasets, 8 breast cancer secretome datasets, and 18 of other cancers that were included in the comparative secretome analysis. Sequential bioinformatic analysis using online resources enabled the identification of enriched GO_terms, overlapping clusters, and pathway reconstruction. This study identified putative predictors of IDC grade progression and their association with breast cancer patient mortality outcomes, namely, HSPG2, ACTG1, and LAMA5 as biomarkers of in silico pathway prediction, offering a putative approach by which the abovementioned proteins may mediate their effects, enabling disease progression. This study also identified ITGB1, FBN1, and THBS1 as putative pan-cancer detection biomarkers. The present study highlights novel, putative secretome biomarkers that may provide insight into the tumor biology and could inform clinical decision making in the context of IDC management in a non-invasive manner.
Collapse
|
18
|
Ndembe G, Intini I, Perin E, Marabese M, Caiola E, Mendogni P, Rosso L, Broggini M, Colombo M. LKB1: Can We Target an Hidden Target? Focus on NSCLC. Front Oncol 2022; 12:889826. [PMID: 35646638 PMCID: PMC9131655 DOI: 10.3389/fonc.2022.889826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
LKB1 (liver kinase B1) is a master regulator of several processes such as metabolism, proliferation, cell polarity and immunity. About one third of non-small cell lung cancers (NSCLCs) present LKB1 alterations, which almost invariably lead to protein loss, resulting in the absence of a potential druggable target. In addition, LKB1-null tumors are very aggressive and resistant to chemotherapy, targeted therapies and immune checkpoint inhibitors (ICIs). In this review, we report and comment strategies that exploit peculiar co-vulnerabilities to effectively treat this subgroup of NSCLCs. LKB1 loss leads to an enhanced metabolic avidity, and treatments inducing metabolic stress were successful in inhibiting tumor growth in several preclinical models. Biguanides, by compromising mitochondria and reducing systemic glucose availability, and the glutaminase inhibitor telaglenastat (CB-839), inhibiting glutamate production and reducing carbon intermediates essential for TCA cycle progression, have provided the most interesting results and entered different clinical trials enrolling also LKB1-null NSCLC patients. Nutrient deprivation has been investigated as an alternative therapeutic intervention, giving rise to interesting results exploitable to design specific dietetic regimens able to counteract cancer progression. Other strategies aimed at targeting LKB1-null NSCLCs exploit its pivotal role in modulating cell proliferation and cell invasion. Several inhibitors of LKB1 downstream proteins, such as mTOR, MEK, ERK and SRK/FAK, resulted specifically active on LKB1-mutated preclinical models and, being molecules already in clinical experimentation, could be soon proposed as a specific therapy for these patients. In particular, the rational use in combination of these inhibitors represents a very promising strategy to prevent the activation of collateral pathways and possibly avoid the potential emergence of resistance to these drugs. LKB1-null phenotype has been correlated to ICIs resistance but several studies have already proposed the mechanisms involved and potential interventions. Interestingly, emerging data highlighted that LKB1 alterations represent positive determinants to the new KRAS specific inhibitors response in KRAS co-mutated NSCLCs. In conclusion, the absence of the target did not block the development of treatments able to hit LKB1-mutated NSCLCs acting on several fronts. This will give patients a concrete chance to finally benefit from an effective therapy.
Collapse
Affiliation(s)
- Gloriana Ndembe
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilenia Intini
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Perin
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Caiola
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Paolo Mendogni
- Thoracic Surgery and Lung Transplantation Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Rosso
- Thoracic Surgery and Lung Transplantation Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marika Colombo
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
19
|
Palacios-Acedo AL, Langiu M, Crescence L, Mège D, Dubois C, Panicot-Dubois L. Platelet and Cancer-Cell Interactions Modulate Cancer-Associated Thrombosis Risk in Different Cancer Types. Cancers (Basel) 2022; 14:730. [PMID: 35159000 PMCID: PMC8833365 DOI: 10.3390/cancers14030730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
The first cause of death in cancer patients, after tumoral progression itself, is thrombo-embolic disease. This cancer-associated hypercoagulability state is known as Trousseau's syndrome, and the risk for developing thrombotic events differs according to cancer type and stage, as well as within patients. Massive platelet activation by tumor cells is the key mediator of thrombus formation in Trousseau's syndrome. In this literature review, we aimed to compare the interactions between cancer cells and platelets in three different cancer types, with low, medium and high thrombotic risk. We chose oral squamous cell carcinoma for the low-thrombotic-risk, colorectal adenocarcinoma for the medium-thrombotic-risk, and pancreatic carcinoma for the high-thrombotic-risk cancer type. We showcase that understanding these interactions is of the highest importance to find new biomarkers and therapeutic targets for cancer-associated thrombosis.
Collapse
Affiliation(s)
- Ana-Luisa Palacios-Acedo
- Aix Marseille University, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (A.-L.P.-A.); (M.L.); (L.C.); (D.M.); (L.P.-D.)
| | - Mélanie Langiu
- Aix Marseille University, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (A.-L.P.-A.); (M.L.); (L.C.); (D.M.); (L.P.-D.)
| | - Lydie Crescence
- Aix Marseille University, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (A.-L.P.-A.); (M.L.); (L.C.); (D.M.); (L.P.-D.)
- Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| | - Diane Mège
- Aix Marseille University, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (A.-L.P.-A.); (M.L.); (L.C.); (D.M.); (L.P.-D.)
- Department of Digestive Surgery, La Timone University Hospital, 13005 Marseille, France
| | - Christophe Dubois
- Aix Marseille University, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (A.-L.P.-A.); (M.L.); (L.C.); (D.M.); (L.P.-D.)
- Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| | - Laurence Panicot-Dubois
- Aix Marseille University, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (A.-L.P.-A.); (M.L.); (L.C.); (D.M.); (L.P.-D.)
- Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| |
Collapse
|
20
|
Lawlor RT, Mafficini A, Sciammarella C, Cantù C, Rusev BC, Piredda ML, Antonello D, Grimaldi S, Bonizzato G, Sperandio N, Marchegiani G, Malleo G, Pea A, Salvia R, Mombello A, Mazzoleni G, Nottegar A, Hanspeter E, Riva G, Tomezzoli A, Bencivenga M, de Manzoni G, Pedron S, Paolino G, Mattiolo P, Brosens LA, Silvestris N, Fassan M, Cooke SL, Beer PA, Milella M, Adsay VN, Cheng L, Scarpa A, Luchini C. Genomic characterization of hepatoid tumors: context matters. Hum Pathol 2021; 118:30-41. [PMID: 34562502 DOI: 10.1016/j.humpath.2021.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022]
Abstract
Hepatoid tumors (HT) are rare neoplasms morphologically resembling hepatocellular carcinoma, which arise in several organs other than the liver. A comprehensive molecular profile of this group of neoplasms is still lacking. Genomic characterization of 19 HTs from different organs (three colon HTs, four esophagogastric HTs, four biliary HTs, six genitourinary HTs, two lung HTs) was performed using a multigene next-generation sequencing panel. NGS unraveled a composite molecular profile of HT. Their genetic alterations were clearly clustered by tumor site: (i) colorectal HT displayed microsatellite instability, high tumor mutational burden, mutations in ARID1A/B genes and NCOA4-RET gene fusion (2/3 cases); (ii) gastric HT had TP53 mutations (2/4); (iii) biliary HT displayed loss of CDKN2A (3/4) and loss of chromosome 18 (2/4); (iv) genital HT showed gain of chromosome 12 (3/6); (v) lung HT had STK11 somatic mutations (2/2). The only commonly mutated gene occurring in HT of different sites was TP53 (8/19 cases: colon 2, esophagogastric 2, biliary 2, genital 1, lungs 1). This study shows that most genetic alterations of HT were clustered by site, indicating that context matters. The novel potential targets for HT precision oncology are also clustered based on the anatomic origin. This study shed light on the biology of these rare cancers and may have important consequences for treatment decisions and clinical trial selection for HT patients.
Collapse
Affiliation(s)
- Rita T Lawlor
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy
| | - Andrea Mafficini
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy; Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Concetta Sciammarella
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy
| | - Cinzia Cantù
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Borislav C Rusev
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy
| | - Maria L Piredda
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Davide Antonello
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Sonia Grimaldi
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy
| | - Giada Bonizzato
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy
| | - Nicola Sperandio
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy
| | - Giovanni Marchegiani
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Giuseppe Malleo
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Antonio Pea
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Roberto Salvia
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Aldo Mombello
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy
| | - Guido Mazzoleni
- Department of Pathology, Central Hospital of Bolzano, 39100 Bolzano, Italy
| | - Alessia Nottegar
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Esther Hanspeter
- Department of Pathology, Central Hospital of Bolzano, 39100 Bolzano, Italy
| | - Giulio Riva
- Department of Diagnostics, Pathology Unit, San Bortolo Hospital, 36100 Vicenza, Italy
| | - Anna Tomezzoli
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Maria Bencivenga
- Unit of General and Upper GI Surgery, University of Verona, 37134 Verona, Italy
| | - Giovanni de Manzoni
- Unit of General and Upper GI Surgery, University of Verona, 37134 Verona, Italy
| | - Serena Pedron
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Gaetano Paolino
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Lodewijk A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Department of Pathology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Nicola Silvestris
- IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, and Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy
| | - Susanna L Cooke
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, G61 1QH Glasgow, UK
| | - Philip A Beer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, G61 1QH Glasgow, UK; Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA Cambridge, UK
| | - Michele Milella
- Department of Medicine, Section of Oncology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Volkan N Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), 34010 Istanbul, Turkey
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 46202 Indianapolis, IN, USA
| | - Aldo Scarpa
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy; Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy.
| | - Claudio Luchini
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy; Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy.
| |
Collapse
|
21
|
Pons-Tostivint E, Lugat A, Fontenau JF, Denis MG, Bennouna J. STK11/LKB1 Modulation of the Immune Response in Lung Cancer: From Biology to Therapeutic Impact. Cells 2021; 10:cells10113129. [PMID: 34831355 PMCID: PMC8618117 DOI: 10.3390/cells10113129] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
The STK11/LKB1 gene codes for liver kinase B1 (STK11/LKB1), a highly conserved serine/threonine kinase involved in many energy-related cellular processes. The canonical tumor-suppressive role for STK11/LKB1 involves the activation of AMPK-related kinases, a master regulator of cell survival during stress conditions. In pre-clinical models, inactivation of STK11/LKB1 leads to the progression of lung cancer with the acquisition of metastatic properties. Moreover, preclinical and clinical data have shown that inactivation of STK11/LKB1 is associated with an inert tumor immune microenvironment, with a reduced density of infiltrating cytotoxic CD8+ T lymphocytes, a lower expression of PD-(L)1, and a neutrophil-enriched tumor microenvironment. In this review, we first describe the biological function of STK11/LKB1 and the role of its inactivation in cancer cells. We report descriptive epidemiology, co-occurring genomic alterations, and prognostic impact for lung cancer patients. Finally, we discuss recent data based on pre-clinical models and lung cancer cohorts analyzing the results of STK11/LKB1 alterations on the immune system and response or resistance to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Elvire Pons-Tostivint
- Medical Oncology Department, Nantes University Hospital, 44000 Nantes, France
- Center for Research in Cancerology and Immunology Nantes-Angers (CRCINA), University of Nantes, INSERM UMR 1232, 44000 Nantes, France; (A.L.); (J.-F.F.); (J.B.)
- Correspondence:
| | - Alexandre Lugat
- Center for Research in Cancerology and Immunology Nantes-Angers (CRCINA), University of Nantes, INSERM UMR 1232, 44000 Nantes, France; (A.L.); (J.-F.F.); (J.B.)
| | - Jean-François Fontenau
- Center for Research in Cancerology and Immunology Nantes-Angers (CRCINA), University of Nantes, INSERM UMR 1232, 44000 Nantes, France; (A.L.); (J.-F.F.); (J.B.)
| | | | - Jaafar Bennouna
- Center for Research in Cancerology and Immunology Nantes-Angers (CRCINA), University of Nantes, INSERM UMR 1232, 44000 Nantes, France; (A.L.); (J.-F.F.); (J.B.)
- Medical Oncology Department, Hopital Foch, 75073 Suresnes, France
| |
Collapse
|
22
|
Mazzaschi G, Leonetti A, Minari R, Gnetti L, Quaini F, Tiseo M, Facchinetti F. Modulating Tumor Microenvironment: A Review on STK11 Immune Properties and Predictive vs Prognostic Role for Non-small-cell Lung Cancer Immunotherapy. Curr Treat Options Oncol 2021; 22:96. [PMID: 34524570 DOI: 10.1007/s11864-021-00891-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 01/07/2023]
Abstract
The quest for immunotherapy (IT) biomarkers is an element of highest clinical interest in both solid and hematologic tumors. In non-small-cell lung cancer (NSCLC) patients, besides PD-L1 expression evaluation with its intrinsic limitations, tissue and circulating parameters, likely portraying the tumor and its stromal/immune counterparts, have been proposed as potential predictors of IT responsiveness. STK11 mutations have been globally labeled as markers of IT resistance. After a thorough literature review, STK11 mutations condition the prognosis of NSCLC patients receiving ICI-containing regimens, implying a relevant biological and clinical significance. On the other hand, waiting for prospective and solid data, the putative negative predictive value of STK11 inactivation towards IT is sustained by less evidence. The physiologic regulation of multiple cellular pathways performed by STK11 likely explains the multifaceted modifications in tumor cells, stroma, and tumor immune microenvironment (TIME) observed in STK11 mutant lung cancer, particularly explored in the molecular subgroup of KRAS co-mutation. IT approaches available thus far in NSCLC, mainly represented by anti-PD-1/PD-L1 inhibitors, are not promising in the case of STK11 inactivation. Perceptive strategies aimed at modulating the TIME, regardless of STK11 status or specifically addressed to STK11-mutated cases, will hopefully provide valid therapeutic options to be adopted in the clinical practice.
Collapse
Affiliation(s)
- Giulia Mazzaschi
- Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Alessandro Leonetti
- Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Letizia Gnetti
- Pathology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Federico Quaini
- Department of Medicine & Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy
- Department of Medicine & Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Francesco Facchinetti
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, 114 Rue Edouard Vaillant, 94800, Villejuif, France.
| |
Collapse
|
23
|
Pathak R, Salgia R. Near-Complete Response to Combined Pembrolizumab and Platinum-Doublet in a Patient With STK11/KRAS Mutated Advanced Lung Adenocarcinoma. Clin Lung Cancer 2021; 23:e137-e139. [PMID: 34419376 DOI: 10.1016/j.cllc.2021.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Ranjan Pathak
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA.
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA
| |
Collapse
|
24
|
Pore N, Wu S, Standifer N, Jure-Kunkel M, de Los Reyes M, Shrestha Y, Halpin R, Rothstein R, Mulgrew K, Blackmore S, Martin P, Meekin J, Griffin M, Bisha I, Proia TA, Miragaia RJ, Herbst R, Gupta A, Abdullah SE, Raja R, Frigault MM, Barrett JC, Dennis PA, Ascierto ML, Oberst MD. Resistance to durvalumab and durvalumab plus tremelimumab is associated with functional STK11 mutations in non-small-cell lung cancer patients and is reversed by STAT3 knockdown. Cancer Discov 2021; 11:2828-2845. [PMID: 34230008 DOI: 10.1158/2159-8290.cd-20-1543] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/30/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022]
Abstract
Mutations in the STK11 (LKB1) gene regulate resistance to PD-1/PD-L1 blockade. This study evaluated this association in patients with nonsquamous non-small-cell lung cancer enrolled in three Phase 1/2 trials. STK11 mutations were associated with resistance to the anti-PD-L1 antibody durvalumab (alone/with the anti-CTLA-4 antibody tremelimumab) independently of KRAS mutational status, highlighting STK11 as a potential driver of resistance to checkpoint blockade. Retrospective assessments of tumor tissue, whole blood and serum revealed a unique immune phenotype in patients with STK11 mutations, with increased expression of markers associated with neutrophils (i.e. CXCL2, IL6), Th17 contexture (i.e. IL17A) and immune checkpoints. Associated changes were observed in the periphery. Reduction of STAT3 in the tumor microenvironment using an antisense oligonucleotide reversed immunotherapy resistance in preclinical STK11 knockout models. These results suggest that STK11 mutations may hinder response to checkpoint blockade through mechanisms including suppressive myeloid cell biology, which could be reversed by STAT3-targeted therapy.
Collapse
Affiliation(s)
| | - Song Wu
- AstraZeneca, Gaithersburg, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lin X, Wang ZY, Xue G, Qin XJ, Wu JF, Zhang G. ADORA1 is a diagnostic-related biomarker and correlated with immune infiltrates in papillary thyroid carcinoma. J Cancer 2021; 12:3997-4010. [PMID: 34093805 PMCID: PMC8176250 DOI: 10.7150/jca.50743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Adenosine A1 Receptor (ADORA1) is an adenosine receptor particularly relevant to the immunomodulatory process of malignant tumors. There are growing evidences that dysregulated overexpression of ADORA1 can promote many types of tumorigenesis. However, the expression and prognostic value and mechanism of ADORA1 in thyroid papillary carcinoma have not been reported. Methods: TCGA, ONCOMINE, UALCAN, cBioPortal, GeneMANIA, LinkedOmics, TIMER, GSCALite, TISIDB and EPIC tools were used in this study. Results: ADORA1 was overexpressed in papillary thyroid carcinoma compared to paracancerous tissue. And ADORA1 was positively correlated with lymph node metastasis as well as pathological stage in PTC. ADORA1 had diagnostic and prognostic value for PTC. The functions of ADORA1 co-expressed genes were mainly enriched in immune response, immune response-regulation signaling pathway, regulation of leukocyte activation and cancer-related pathways. Besides, ADORA1 expression was significantly correlated with tumor-infiltrating cells and immune biomarkers in PTC. Finally, the high expression of ADORA1 was sensitive to JW-55 drug. Conclusion: ADORA1 is a diagnostic and a prognostic biomarker for PTC. The expression of ADORA1 is positively correlated with many immunoregulatory factors in PTC.
Collapse
Affiliation(s)
- Xu Lin
- Zhangjiakou Key Laboratory of Thyroid Cancer Precision Diagnosis, Hebei North University, Zhangjiakou, 075000, China.,Department of Histology and Embryology, Hebei North University, Zhangjiakou, 075000, China
| | - Zhi-Yong Wang
- Zhangjiakou Key Laboratory of Thyroid Cancer Precision Diagnosis, Hebei North University, Zhangjiakou, 075000, China.,Department of Histology and Embryology, Hebei North University, Zhangjiakou, 075000, China
| | - Gang Xue
- Zhangjiakou Key Laboratory of Thyroid Cancer Precision Diagnosis, Hebei North University, Zhangjiakou, 075000, China.,Department of Histology and Embryology, Hebei North University, Zhangjiakou, 075000, China.,Department of Otorhinolaryngology Head and Neck Surgery, Hebei North University, Zhangjiakou, 075000, China
| | - Xiao-Jing Qin
- Zhangjiakou Key Laboratory of Thyroid Cancer Precision Diagnosis, Hebei North University, Zhangjiakou, 075000, China.,Department of Histology and Embryology, Hebei North University, Zhangjiakou, 075000, China
| | - Jing-Fang Wu
- Zhangjiakou Key Laboratory of Thyroid Cancer Precision Diagnosis, Hebei North University, Zhangjiakou, 075000, China.,Department of Histology and Embryology, Hebei North University, Zhangjiakou, 075000, China
| | - Geng Zhang
- Zhangjiakou Key Laboratory of Thyroid Cancer Precision Diagnosis, Hebei North University, Zhangjiakou, 075000, China.,Department of Histology and Embryology, Hebei North University, Zhangjiakou, 075000, China
| |
Collapse
|
26
|
Han SY, Pandey A, Moore T, Galeone A, Duraine L, Cowan TM, Jafar-Nejad H. A conserved role for AMP-activated protein kinase in NGLY1 deficiency. PLoS Genet 2020; 16:e1009258. [PMID: 33315951 PMCID: PMC7769621 DOI: 10.1371/journal.pgen.1009258] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/28/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in human N-glycanase 1 (NGLY1) cause the first known congenital disorder of deglycosylation (CDDG). Patients with this rare disease, which is also known as NGLY1 deficiency, exhibit global developmental delay and other phenotypes including neuropathy, movement disorder, and constipation. NGLY1 is known to regulate proteasomal and mitophagy gene expression through activation of a transcription factor called "nuclear factor erythroid 2-like 1" (NFE2L1). Loss of NGLY1 has also been shown to impair energy metabolism, but the molecular basis for this phenotype and its in vivo consequences are not well understood. Using a combination of genetic studies, imaging, and biochemical assays, here we report that loss of NGLY1 in the visceral muscle of the Drosophila larval intestine results in a severe reduction in the level of AMP-activated protein kinase α (AMPKα), leading to energy metabolism defects, impaired gut peristalsis, failure to empty the gut, and animal lethality. Ngly1-/- mouse embryonic fibroblasts and NGLY1 deficiency patient fibroblasts also show reduced AMPKα levels. Moreover, pharmacological activation of AMPK signaling significantly suppressed the energy metabolism defects in these cells. Importantly, the reduced AMPKα level and impaired energy metabolism observed in NGLY1 deficiency models are not caused by the loss of NFE2L1 activity. Taken together, these observations identify reduced AMPK signaling as a conserved mediator of energy metabolism defects in NGLY1 deficiency and suggest AMPK signaling as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Seung Yeop Han
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tereza Moore
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Antonio Galeone
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lita Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Jan & Dan Duncan Neurological Research Institute Center, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Tina M. Cowan
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
27
|
Mamdani H, Schwartz AG. Genomic Characterization of NSCLC in African Americans: A Step Toward "Race-Aware" Precision Medicine. J Thorac Oncol 2020; 15:1800-1802. [PMID: 33246591 DOI: 10.1016/j.jtho.2020.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Hirva Mamdani
- Department of Oncology, Wayne State University School of Medicine and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Ann G Schwartz
- Department of Oncology, Wayne State University School of Medicine and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.
| |
Collapse
|
28
|
Beyond LKB1 Mutations in Non-Small Cell Lung Cancer: Defining LKB1less Phenotype to Optimize Patient Selection and Treatment. Pharmaceuticals (Basel) 2020; 13:ph13110385. [PMID: 33202760 PMCID: PMC7697441 DOI: 10.3390/ph13110385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023] Open
Abstract
LKB1 is frequently mutated in non-small cell lung cancer (NSCLC). LKB1-mutated NSCLCs often have a dismal prognosis and receive lower benefit from the currently available therapies. LKB1 acts as a cell emergency brake in low-energy conditions, by modulating the activity of crucial anabolic enzymes. Thus, loss of LKB1 activity leads to the enhancement of tumor cell proliferation also under conditions of energy shortage. This unrestrained growth may be exploited as an Achilles heel in NSCLC, i.e., by inhibiting mitochondrial respiration. Recently, clinical trials have started to investigate the efficacy of metabolism-based treatments in NSCLCs. To date, enrollment of patients within these trials is based on LKB1 loss of function status, defined by mutation in the gene or by complete absence of immunohistochemical staining. However, LKB1 impairment could be the consequence of epigenetic regulations that partially or completely abrogate protein expression. These epigenetic regulations result in LKB1 wild-type tumors with aggressiveness and vulnerabilities similar to those of LKB1-mutated ones. In this review, we introduced the definition of the “LKB1less phenotype”, and we summarized all currently known features linked to this status, in order to optimize selection and treatment of NSCLC patients with impaired LKB1 function.
Collapse
|