1
|
de Sousa Oliveira TC, Veenendaal E, Domingues TF. The thermal optimum of photosynthetic parameters is regulated by leaf nutrients in neotropical savannas. TREE PHYSIOLOGY 2025; 45:tpae163. [PMID: 39673198 DOI: 10.1093/treephys/tpae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Global warming significantly threatens species in the Cerrado, the world's largest savannah. Therefore, understanding how plants respond to temperature change, particularly in relation to leaf-level photosynthetic capacity, is crucial to understanding the future of Cerrado vegetation. Here, we determined the optimum temperature of the maximum rate of RuBP-carboxylation and maximum electron transport rate (TOptV and TOptJ, respectively) of 12 tree species in two opposite borders (northeastern and southeastern) of the Cerrado with distinct temperature regimes. We focused on four widespread species found in both sites, four restricted to the northeast, and four to the southeast. We compared TOptV and TOptJ between regions and between widespread species (co-occurring in both sites) and species restricted to each ecoregion. Additionally, we also explored the relationship between TOptV and TOptJ with leaf nitrogen (N), phosphorus (P) and potassium (K). As a result, we found that TOptV and TOptJ values were similar across species, regardless of the study region or species distribution range. The similarity of TOpt values among species suggests that photosynthetic performance is optimized to current temperatures. Additionally, we also observed that the TOptV and TOptJ were similar to the local maximum ambient temperatures. Therefore, if these species do not have enough plasticity, the increasing temperature predicted for this region may reduce their photosynthetic performance. Finally, the studied species exhibited general relationships between the TOptV and TOptJ and foliar key nutrients, particularly with P, suggesting the nutrient availability has an important role in the thermal acclimation of leaves. These findings offer valuable insights into physiological and ecological mechanisms in photosynthesis performance present in the Cerrado species.
Collapse
Affiliation(s)
- Tony César de Sousa Oliveira
- Plant Ecology and Nature Conservation Group, Wageningen University (WU), Droevendaalsesteeg 36708PB, Wageningen, The Netherlands
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP 14040-901, Brazil
- Institute of Biogeosciences, Forschungszentrum Jülich, Wilhelm-Johnen Strasse, Jülich, 52428, Germany
- Faculty of Communication and Environment, Hochschule Rhein-Waal, Südstr. 8 Kamp-lintfort, 47475, Germany
| | - Elmar Veenendaal
- Plant Ecology and Nature Conservation Group, Wageningen University (WU), Droevendaalsesteeg 36708PB, Wageningen, The Netherlands
| | - Tomas Ferreira Domingues
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|
2
|
Cheaib A, Waring EF, McNellis R, Perkowski EA, Martina JP, Seabloom EW, Borer ET, Wilfahrt PA, Dong N, Prentice IC, Wright IJ, Power SA, Hersch-Green EI, Risch AC, Caldeira MC, Nogueira C, Chen Q, Smith NG. Soil Nitrogen Supply Exerts Largest Influence on Leaf Nitrogen in Environments with the Greatest Leaf Nitrogen Demand. Ecol Lett 2025; 28:e70015. [PMID: 39824754 DOI: 10.1111/ele.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 01/20/2025]
Abstract
Accurately representing the relationships between nitrogen supply and photosynthesis is crucial for reliably predicting carbon-nitrogen cycle coupling in Earth System Models (ESMs). Most ESMs assume positive correlations amongst soil nitrogen supply, leaf nitrogen content, and photosynthetic capacity. However, leaf photosynthetic nitrogen demand may influence the leaf nitrogen response to soil nitrogen supply; thus, responses to nitrogen supply are expected to be the largest in environments where demand is the greatest. Using a nutrient addition experiment replicated across 26 sites spanning four continents, we demonstrated that climate variables were stronger predictors of leaf nitrogen content than soil nutrient supply. Leaf nitrogen increased more strongly with soil nitrogen supply in regions with the highest theoretical leaf nitrogen demand, increasing more in colder and drier environments than warmer and wetter environments. Thus, leaf nitrogen responses to nitrogen supply are primarily influenced by climatic gradients in photosynthetic nitrogen demand, an insight that could improve ESM predictions.
Collapse
Affiliation(s)
- Alissar Cheaib
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Elizabeth F Waring
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
- Department of Biological Sciences, Northeastern State University, Tahlequah, Oklahoma, USA
| | - Risa McNellis
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Evan A Perkowski
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Jason P Martina
- Department of Biology, Texas State University, San Marcos, Texas, USA
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Peter A Wilfahrt
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Ning Dong
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park, UK
- School of Natural Sciences, Macquarie University, North Ryde, Australia
| | - Iain Colin Prentice
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park, UK
- School of Natural Sciences, Macquarie University, North Ryde, Australia
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Ian J Wright
- School of Natural Sciences, Macquarie University, North Ryde, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Erika I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| | - Anita C Risch
- Snow and Landscape Research WSL, Community Ecology, Swiss Federal Institute for Forest, Birmensdorf, Switzerland
| | - Maria C Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Carla Nogueira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Qingqing Chen
- Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
3
|
Stocker BD, Dong N, Perkowski EA, Schneider PD, Xu H, de Boer HJ, Rebel KT, Smith NG, Van Sundert K, Wang H, Jones SE, Prentice IC, Harrison SP. Empirical evidence and theoretical understanding of ecosystem carbon and nitrogen cycle interactions. THE NEW PHYTOLOGIST 2025; 245:49-68. [PMID: 39444238 PMCID: PMC11617667 DOI: 10.1111/nph.20178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024]
Abstract
Interactions between carbon (C) and nitrogen (N) cycles in terrestrial ecosystems are simulated in advanced vegetation models, yet methodologies vary widely, leading to divergent simulations of past land C balance trends. This underscores the need to reassess our understanding of ecosystem processes, given recent theoretical advancements and empirical data. We review current knowledge, emphasising evidence from experiments and trait data compilations for vegetation responses to CO2 and N input, alongside theoretical and ecological principles for modelling. N fertilisation increases leaf N content but inconsistently enhances leaf-level photosynthetic capacity. Whole-plant responses include increased leaf area and biomass, with reduced root allocation and increased aboveground biomass. Elevated atmospheric CO2 also boosts leaf area and biomass but intensifies belowground allocation, depleting soil N and likely reducing N losses. Global leaf traits data confirm these findings, indicating that soil N availability influences leaf N content more than photosynthetic capacity. A demonstration model based on the functional balance hypothesis accurately predicts responses to N and CO2 fertilisation on tissue allocation, growth and biomass, offering a path to reduce uncertainty in global C cycle projections.
Collapse
Affiliation(s)
- Benjamin D. Stocker
- Institute of GeographyUniversity of BernHallerstrasse 12CH‐3012BernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernFalkenplatz 163012BernSwitzerland
| | - Ning Dong
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonSilwood Park Campus, Buckhurst RoadAscotSL5 7PYUK
| | - Evan A. Perkowski
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| | - Pascal D. Schneider
- Institute of GeographyUniversity of BernHallerstrasse 12CH‐3012BernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernFalkenplatz 163012BernSwitzerland
| | - Huiying Xu
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijing100084China
| | - Hugo J. de Boer
- Faculty of Geosciences, Copernicus Institute of Sustainable Development, Environmental SciencesUtrecht UniversityVening Meinesz Building, Princetonlaan 8aUtrecht3584 CBthe Netherlands
| | - Karin T. Rebel
- Faculty of Geosciences, Copernicus Institute of Sustainable Development, Environmental SciencesUtrecht UniversityVening Meinesz Building, Princetonlaan 8aUtrecht3584 CBthe Netherlands
| | - Nicholas G. Smith
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| | - Kevin Van Sundert
- Department of BiologyUniversity of AntwerpUniversiteitsplein 12610WilrijkBelgium
- Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 1712020AntwerpBelgium
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijing100084China
| | - Sarah E. Jones
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonSilwood Park Campus, Buckhurst RoadAscotSL5 7PYUK
| | - I. Colin Prentice
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonSilwood Park Campus, Buckhurst RoadAscotSL5 7PYUK
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijing100084China
| | - Sandy P. Harrison
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijing100084China
- Department of Geography and Environmental ScienceUniversity of ReadingReadingRG6 6ABUK
| |
Collapse
|
4
|
de la Fuente A, Youngentob KN, Marsh KJ, Krockenberger AK, Williams SE, Cernusak LA. Relationships between abiotic factors, foliage chemistry and herbivory in a tropical montane ecosystem. Oecologia 2024; 206:293-304. [PMID: 39453448 PMCID: PMC11599541 DOI: 10.1007/s00442-024-05630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Herbivore-plant interactions are fundamental processes shaping ecosystems, yet their study is challenged by their complex connections within broader ecosystem processes, requiring a nuanced understanding of ecosystem dynamics. This study investigated the relationship between nutrient availability and insect herbivory in the Australian Wet Tropics. Our objectives were threefold. Firstly, to understand what factors influence nutrient availability for plants and herbivores across the landscape; secondly, to investigate how trees of different species respond to nutrient availability; and thirdly, to unravel how the relationships between resources and plant chemistry affect herbivory. We established a network of 25 study sites covering important abiotic gradients, including temperature, precipitation, and geology. Employing a hierarchical modelling approach, we assessed the influence of climate and geology on resource availability for plants, primarily in the form of soil nutrients. Then, we explored the influence of the above factors on the interaction between herbivory and foliage chemistry across three widespread rainforest tree species, comparing how these relationships emerged across genera. Our findings suggest an overarching influence of climate and geology over soil chemistry, foliar nitrogen, and insect herbivory, both directly and indirectly. However, individual constituents of soil fertility showed equivocal influences on spatial patterns of foliage chemistry once site geological origin was accounted for, suggesting a questionable relationship between individual soil nutrients and foliar composition. We have demonstrated that herbivore-plant interactions are complex dynamics regulated by an intricate web of relationships spanning different biogeochemical processes. While our results provide some support to the notion that herbivory is affected by resource availability, different species growing under the same conditions can show differing responses to the same resources, highlighting the importance of identifying specific limiting factors rather than simpler proxies of resource availability.
Collapse
Affiliation(s)
| | - Kara N Youngentob
- The Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia
| | - Karen J Marsh
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Stephen E Williams
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
5
|
Li J, Prentice IC. Global patterns of plant functional traits and their relationships to climate. Commun Biol 2024; 7:1136. [PMID: 39271947 PMCID: PMC11399309 DOI: 10.1038/s42003-024-06777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Plant functional traits (FTs) determine growth, reproduction and survival strategies of plants adapted to their growth environment. Exploring global geographic patterns of FTs, their covariation and their relationships to climate are necessary steps towards better-founded predictions of how global environmental change will affect ecosystem composition. We compile an extensive global dataset for 16 FTs and characterise trait-trait and trait-climate relationships separately within non-woody, woody deciduous and woody evergreen plant groups, using multivariate analysis and generalised additive models (GAMs). Among the six major FTs considered, two dominant trait dimensions-representing plant size and the leaf economics spectrum (LES) respectively-are identified within all three groups. Size traits (plant height, diaspore mass) however are generally higher in warmer climates, while LES traits (leaf mass and nitrogen per area) are higher in drier climates. Larger leaves are associated principally with warmer winters in woody evergreens, but with wetter climates in non-woody plants. GAM-simulated global patterns for all 16 FTs explain up to three-quarters of global trait variation. Global maps obtained by upscaling GAMs are broadly in agreement with iNaturalist citizen-science FT data. This analysis contributes to the foundations for global trait-based ecosystem modelling by demonstrating universal relationships between FTs and climate.
Collapse
Affiliation(s)
- Jiaze Li
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK.
| | - Iain Colin Prentice
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Zhou X, Ouyang S, Saurer M, Feng M, Bose AK, Duan H, Tie L, Shen W, Gessler A. Species-specific responses of C and N allocation to N addition: evidence from dual 13C and 15N labeling in three tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172164. [PMID: 38580112 DOI: 10.1016/j.scitotenv.2024.172164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Soil nitrogen (N) availability affects plant carbon (C) utilization. However, it is unclear how various tree functional types respond to N addition in terms of C assimilation, allocation, and storage. Here, a microcosm experiment with dual 13C and 15N labeling was conducted to study the effects of N addition (i.e., control, 0 g N kg-1; moderate N addition, 1.68 g N kg-1; and high N addition, 3.36 g N kg-1 soil) on morphological traits, on changes in nonstructural carbohydrates (NSC) in different organs, as well as on C and N uptake and allocation in three European temperate forest tree species (i.e., Acer pseudoplatanus, Picea abies and Abies alba). Our results demonstrated that root N uptake rates of the three tree species increased by N addition. In A. pseudoplatanus, N uptake by roots, N allocation to aboveground organs, and aboveground biomass allocation significantly improved by moderate and high N addition. In A. alba, only the high N addition treatment considerably raised aboveground N and C allocation. In contrast, biomass as well as C and N allocation between above and belowground tissues were not altered by N addition in P. abies. Meanwhile, NSC content as well as C and N coupling (represented by the ratio of relative 13C and 15N allocation rates in organs) were affected by N addition in A. pseudoplantanus and P. abies but not in A. alba. Overall, A. pseudoplatanus displayed the highest sensitivity to N addition and the highest N requirement among the three species, while P. abies had a lower N demand than A. alba. Our findings highlight that the responses of C and N allocation to soil N availability are species-specific and vary with the amount of N addition.
Collapse
Affiliation(s)
- Xiaoqian Zhou
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Shengnan Ouyang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China; Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland.
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland
| | - Mei Feng
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Arun K Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland; Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Honglang Duan
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Liehua Tie
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Zurich 8902, Switzerland
| |
Collapse
|
7
|
Sang J, Zhao Y, Shen Y, Shurpali NJ, Li Y. Optimizing irrigation and nitrogen addition to balance grassland biomass production with greenhouse gas emissions: A mesocosm study. ENVIRONMENTAL RESEARCH 2024; 249:118387. [PMID: 38336162 DOI: 10.1016/j.envres.2024.118387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Achieving a balance between greenhouse gas mitigation and biomass production in grasslands necessitates optimizing irrigation frequency and nitrogen addition, which significantly influence grassland productivity and soil nitrous oxide emissions, and consequently impact the ecosystem carbon dioxide exchange. This study aimed to elucidate these influences using a controlled mesocosm experiment where bermudagrass (Cynodon dactylon L.) was cultivated under varied irrigation frequencies (daily and every 6 days) with (100 kg ha-1) or without nitrogen addition; measurements of net ecosystem carbon dioxide exchange, ecosystem respiration, soil respiration, and nitrous oxide emissions across two cutting events were performed as well. The findings revealed a critical interaction between water-filled pore space, regulated by irrigation, and nitrogen availability, with the latter exerting a more substantial influence on aboveground biomass growth and ecosystem carbon dioxide exchange than water availability. Moreover, the total dry matter was significantly higher with nitrogen addition compared to without nitrogen addition, irrespective of the irrigation frequency. In contrast, soil nitrous oxide emissions were observed to be significantly higher with increased irrigation frequency and nitrogen addition. The effects of nitrogen addition on soil respiration components appeared to depend on water availability, with autotrophic respiration seeing a significant rise with nitrogen addition under limited irrigation (5.4 ± 0.6 μmol m-2 s-1). Interestingly, the lower irrigation frequency did not result in water stress, suggesting resilience in bermudagrass. These findings highlight the importance of considering interactions between irrigation and nitrogen addition to optimize water and nitrogen input in grasslands for a synergistic balance between grassland biomass production and greenhouse gas emission mitigation.
Collapse
Affiliation(s)
- Jianhui Sang
- The State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Qingyang National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yixuan Zhao
- The State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Qingyang National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yuying Shen
- The State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Qingyang National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Narasinha J Shurpali
- Grasslands and Sustainable Farming, Production Systems Unit, Natural Resources Institute Finland, Halolantie 31A, Kuopio, FI-71750, Finland
| | - Yuan Li
- The State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Qingyang National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
8
|
Tu Y, Zhu Y, Yang X, Eldridge DJ. Predicted changes in distribution and grazing value of Stipa-based plant communities across the Eurasian steppe. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120757. [PMID: 38537472 DOI: 10.1016/j.jenvman.2024.120757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
The Eurasian steppe is one of the world's largest continuous areas of grassland and has an important role in supporting livestock grazing, the most ubiquitous land use on Earth. However, the Eurasian steppe is under threat, from irrational grazing utilization, climate change, and resource exploitation. We used an ensemble modeling approach to predict the current and future distribution of Stipa-dominated plant communities in three important steppe subregions; the Tibetan Alpine, Central Asian, and Black Sea-Kazakhstan subregions. We combined this with an assessment of the grazing value of 22 Stipa species, the dominant grassland species in the area, to predict how grazing value might change under future climate change predictions. We found that the effects of changing climates on grazing values differed across the three subregions. Grazing values increased in the Tibetan alpine steppe and to a lesser extent in Central Asia, but there were few changes in the Black Sea-Kazakhstan subregion. The response of different species to changing climates varied with environmental variables. Finally, our trait-based assessment of Stipa species revealed variations in grazing value, and this had major effects on the overall grazing value of the region. Our results reinforce the importance of trait-based characteristics of steppe plant species, how these traits affect grazing value, and how grazing values will change across different areas of the Eurasian steppe. Our work provides valuable insights into how different species will respond to changing climates and grazing, with important implications for sustainable management of different areas of the vast Eurasian steppe ecosystem.
Collapse
Affiliation(s)
- Ya Tu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yuanjun Zhu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China.
| | - Xiaohui Yang
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
9
|
Nazir MJ, Hussain MM, Albasher G, Iqbal B, Khan KA, Rahim R, Li G, Du D. Glucose input profit soil organic carbon mineralization and nitrogen dynamics in relation to nitrogen amended soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119715. [PMID: 38064981 DOI: 10.1016/j.jenvman.2023.119715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 01/14/2024]
Abstract
Exogenous carbon (C) inputs stimulate soil organic carbon (SOC) decomposition, strongly influencing atmospheric concentrations and climate dynamics. The direction and magnitude of C decomposition depend on the C and nitrogen (N) addition, types and pattern. Despite the importance of decomposition, it remains unclear whether organic C input affects the SOC decomposition under different N-types (Ammonium Nitrate; AN, Urea; U and Ammonium Sulfate; AS). Therefore, we conducted an incubation experiment to assess glucose impact on N-treated soils at various levels (High N; HN: 50 mg/m2, Low N; LN: 05 mg/m2). The glucose input increased SOC mineralization by 38% and 35% under HN and LN, respectively. Moreover, it suppressed the concentration of NO3--N by 35% and NH4+-N by 15% in response to HN and LN soils, respectively. Results indicated higher respiration in Urea-treated soils and elevated net total nitrogen content (TN) in AS-treated soils. AN-amended soil exhibited no notable rise in C mineralization and TN content compared to other N-type soils. Microbial biomass carbon (MBC) was higher in glucose treated soils under LN conditions than control. This could result that high N suppressed microbial N mining and enhancing SOM stability by directing microbes towards accessible C sources. Our results suggest that glucose accelerated SOC mineralization in urea-added soils and TN contents in AS-amended soils, while HN levels suppressed C release and increased TN contents in all soil types except glucose-treated soils. Thus, different N-types and levels play a key role in modulating the stability of SOC over C input.
Collapse
Affiliation(s)
- Muhammad Junaid Nazir
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Muhammad Mahroz Hussain
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Babar Iqbal
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Khalid Ali Khan
- Applied College and Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Riffat Rahim
- Forschungszentrum Jülich GmbH, Agrosphere Institute (IBG-3), Wilhelm Johnen Strasse, Jülich, 52428, Germany
| | - Guanlin Li
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Daolin Du
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
10
|
Smith DD, Adams MA, Salvi AM, Krieg CP, Ané C, McCulloh KA, Givnish TJ. Ecophysiological adaptations shape distributions of closely related trees along a climatic moisture gradient. Nat Commun 2023; 14:7173. [PMID: 37935674 PMCID: PMC10630429 DOI: 10.1038/s41467-023-42352-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Tradeoffs between the energetic benefits and costs of traits can shape species and trait distributions along environmental gradients. Here we test predictions based on such tradeoffs using survival, growth, and 50 photosynthetic, hydraulic, and allocational traits of ten Eucalyptus species grown in four common gardens along an 8-fold gradient in precipitation/pan evaporation (P/Ep) in Victoria, Australia. Phylogenetically structured tests show that most trait-environment relationships accord qualitatively with theory. Most traits appear adaptive across species within gardens (indicating fixed genetic differences) and within species across gardens (indicating plasticity). However, species from moister climates have lower stomatal conductance than others grown under the same conditions. Responses in stomatal conductance and five related traits appear to reflect greater mesophyll photosynthetic sensitivity of mesic species to lower leaf water potential. Our data support adaptive cross-over, with realized height growth of most species exceeding that of others in climates they dominate. Our findings show that pervasive physiological, hydraulic, and allocational adaptations shape the distributions of dominant Eucalyptus species along a subcontinental climatic moisture gradient, driven by rapid divergence in species P/Ep and associated adaptations.
Collapse
Affiliation(s)
- Duncan D Smith
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Faculty of Science, Engineering, & Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
- School of Ecosystem and Forest Sciences, University of Melbourne, Creswick, VIC, 3363, Australia.
| | - Mark A Adams
- Faculty of Science, Engineering, & Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Amanda M Salvi
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christopher P Krieg
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
11
|
Siqueira JA, Zsögön A, Fernie AR, Nunes-Nesi A, Araújo WL. Does day length matter for nutrient responsiveness? TRENDS IN PLANT SCIENCE 2023; 28:1113-1123. [PMID: 37268488 DOI: 10.1016/j.tplants.2023.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 06/04/2023]
Abstract
For over 2500 years, considerable agronomic interest has been paid to soil fertility. Both crop domestication and the Green Revolution shifted photoperiodism and the circadian clock in cultivated species, although this contributed to an increase in the demand for chemical fertilisers. Thus, the uptake of nutrients depends on light signalling, whereas diel growth and circadian rhythms are affected by nutrient levels. Here, we argue that day length and circadian rhythms may be central regulators of the uptake and usage of nutrients, also modulating responses to toxic elements (e.g., aluminium and cadmium). Thus, we suggest that knowledge in this area might assist in developing next-generation crops with improved uptake and use efficiency of nutrients.
Collapse
Affiliation(s)
- João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| | - Agustin Zsögön
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
12
|
Waring EF, Perkowski EA, Smith NG. Soil nitrogen fertilization reduces relative leaf nitrogen allocation to photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5166-5180. [PMID: 37235800 DOI: 10.1093/jxb/erad195] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/25/2023] [Indexed: 05/28/2023]
Abstract
The connection between soil nitrogen availability, leaf nitrogen, and photosynthetic capacity is not perfectly understood. Because these three components tend to be positively related over large spatial scales, some posit that soil nitrogen positively drives leaf nitrogen, which positively drives photosynthetic capacity. Alternatively, others posit that photosynthetic capacity is primarily driven by above-ground conditions. Here, we examined the physiological responses of a non-nitrogen-fixing plant (Gossypium hirsutum) and a nitrogen-fixing plant (Glycine max) in a fully factorial combination of light by soil nitrogen availability to help reconcile these competing hypotheses. Soil nitrogen stimulated leaf nitrogen in both species, but the relative proportion of leaf nitrogen used for photosynthetic processes was reduced under elevated soil nitrogen in all light availability treatments due to greater increases in leaf nitrogen content than chlorophyll and leaf biochemical process rates. Leaf nitrogen content and biochemical process rates in G. hirsutum were more responsive to changes in soil nitrogen than those in G. max, probably due to strong G. max investments in root nodulation under low soil nitrogen. Nonetheless, whole-plant growth was significantly enhanced by increased soil nitrogen in both species. Light availability consistently increased relative leaf nitrogen allocation to leaf photosynthesis and whole-plant growth, a pattern that was similar between species. These results suggest that the leaf nitrogen-photosynthesis relationship varies under different soil nitrogen levels and that these species preferentially allocated more nitrogen to plant growth and non-photosynthetic leaf processes, rather than photosynthesis, as soil nitrogen increased.
Collapse
Affiliation(s)
- Elizabeth F Waring
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK, USA
| | - Evan A Perkowski
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
13
|
Westerband AC, Wright IJ, Maire V, Paillassa J, Prentice IC, Atkin OK, Bloomfield KJ, Cernusak LA, Dong N, Gleason SM, Guilherme Pereira C, Lambers H, Leishman MR, Malhi Y, Nolan RH. Coordination of photosynthetic traits across soil and climate gradients. GLOBAL CHANGE BIOLOGY 2023; 29:856-873. [PMID: 36278893 PMCID: PMC10098586 DOI: 10.1111/gcb.16501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
"Least-cost theory" posits that C3 plants should balance rates of photosynthetic water loss and carboxylation in relation to the relative acquisition and maintenance costs of resources required for these activities. Here we investigated the dependency of photosynthetic traits on climate and soil properties using a new Australia-wide trait dataset spanning 528 species from 67 sites. We tested the hypotheses that plants on relatively cold or dry sites, or on relatively more fertile sites, would typically operate at greater CO2 drawdown (lower ratio of leaf internal to ambient CO2 , Ci :Ca ) during light-saturated photosynthesis, and at higher leaf N per area (Narea ) and higher carboxylation capacity (Vcmax 25 ) for a given rate of stomatal conductance to water vapour, gsw . These results would be indicative of plants having relatively higher water costs than nutrient costs. In general, our hypotheses were supported. Soil total phosphorus (P) concentration and (more weakly) soil pH exerted positive effects on the Narea -gsw and Vcmax 25 -gsw slopes, and negative effects on Ci :Ca . The P effect strengthened when the effect of climate was removed via partial regression. We observed similar trends with increasing soil cation exchange capacity and clay content, which affect soil nutrient availability, and found that soil properties explained similar amounts of variation in the focal traits as climate did. Although climate typically explained more trait variation than soil did, together they explained up to 52% of variation in the slope relationships and soil properties explained up to 30% of the variation in individual traits. Soils influenced photosynthetic traits as well as their coordination. In particular, the influence of soil P likely reflects the Australia's geologically ancient low-relief landscapes with highly leached soils. Least-cost theory provides a valuable framework for understanding trade-offs between resource costs and use in plants, including limiting soil nutrients.
Collapse
Affiliation(s)
- Andrea C. Westerband
- Faculty of Science and EngineeringSchool of Natural SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Ian J. Wright
- Faculty of Science and EngineeringSchool of Natural SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Vincent Maire
- Département des Sciences de l'environnementUniversité du Québec à Trois‐RivièresTrois‐RivièresQuébecCanada
| | - Jennifer Paillassa
- Département des Sciences de l'environnementUniversité du Québec à Trois‐RivièresTrois‐RivièresQuébecCanada
| | - Iain Colin Prentice
- Faculty of Science and EngineeringSchool of Natural SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
- Georgina Mace Centre for the Living PlanetImperial College LondonAscotUK
- Department of Earth System ScienceTsinghua UniversityBeijingChina
| | - Owen K. Atkin
- Australian Research Council Centre of Excellence in Plant Energy BiologyResearch School of BiologyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | | | - Lucas A. Cernusak
- College of Science and EngineeringJames Cook UniversityCairnsQueenslandAustralia
| | - Ning Dong
- Faculty of Science and EngineeringSchool of Natural SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
- Georgina Mace Centre for the Living PlanetImperial College LondonAscotUK
| | - Sean M. Gleason
- USDA‐ARS Water Management and Systems Research UnitFort CollinsColoradoUSA
| | - Caio Guilherme Pereira
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Hans Lambers
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Michelle R. Leishman
- Faculty of Science and EngineeringSchool of Natural SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Yadvinder Malhi
- School of Geography and the EnvironmentEnvironmental Change InstituteUniversity of OxfordOxfordUK
| | - Rachael H. Nolan
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| |
Collapse
|
14
|
Bloomfield KJ, Stocker BD, Keenan TF, Prentice IC. Environmental controls on the light use efficiency of terrestrial gross primary production. GLOBAL CHANGE BIOLOGY 2023; 29:1037-1053. [PMID: 36334075 PMCID: PMC10099475 DOI: 10.1111/gcb.16511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Gross primary production (GPP) by terrestrial ecosystems is a key quantity in the global carbon cycle. The instantaneous controls of leaf-level photosynthesis are well established, but there is still no consensus on the mechanisms by which canopy-level GPP depends on spatial and temporal variation in the environment. The standard model of photosynthesis provides a robust mechanistic representation for C3 species; however, additional assumptions are required to "scale up" from leaf to canopy. As a consequence, competing models make inconsistent predictions about how GPP will respond to continuing environmental change. This problem is addressed here by means of an empirical analysis of the light use efficiency (LUE) of GPP inferred from eddy covariance carbon dioxide flux measurements, in situ measurements of photosynthetically active radiation (PAR), and remotely sensed estimates of the fraction of PAR (fAPAR) absorbed by the vegetation canopy. Focusing on LUE allows potential drivers of GPP to be separated from its overriding dependence on light. GPP data from over 100 sites, collated over 20 years and located in a range of biomes and climate zones, were extracted from the FLUXNET2015 database and combined with remotely sensed fAPAR data to estimate daily LUE. Daytime air temperature, vapor pressure deficit, diffuse fraction of solar radiation, and soil moisture were shown to be salient predictors of LUE in a generalized linear mixed-effects model. The same model design was fitted to site-based LUE estimates generated by 16 terrestrial ecosystem models. The published models showed wide variation in the shape, the strength, and even the sign of the environmental effects on modeled LUE. These findings highlight important model deficiencies and suggest a need to progress beyond simple "goodness of fit" comparisons of inferred and predicted carbon fluxes toward an approach focused on the functional responses of the underlying dependencies.
Collapse
Affiliation(s)
- Keith J. Bloomfield
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College LondonAscotUK
| | - Benjamin D. Stocker
- Department of Environmental Systems Science, ETHZurichSwitzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Institute of GeographyUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
| | - Trevor F. Keenan
- Department of Environmental Science, Policy and Management, UC BerkeleyBerkeleyCaliforniaUSA
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - I. Colin Prentice
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College LondonAscotUK
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System ScienceTsinghua UniversityBeijingChina
| |
Collapse
|
15
|
Zhu Z, Wang H, Harrison SP, Prentice IC, Qiao S, Tan S. Optimality principles explaining divergent responses of alpine vegetation to environmental change. GLOBAL CHANGE BIOLOGY 2023; 29:126-142. [PMID: 36176241 PMCID: PMC10092415 DOI: 10.1111/gcb.16459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Recent increases in vegetation greenness over much of the world reflect increasing CO2 globally and warming in cold areas. However, the strength of the response to both CO2 and warming in those areas appears to be declining for unclear reasons, contributing to large uncertainties in predicting how vegetation will respond to future global changes. Here, we investigated the changes of satellite-observed peak season absorbed photosynthetically active radiation (Fmax ) on the Tibetan Plateau between 1982 and 2016. Although climate trends are similar across the Plateau, we identified robust divergent responses (a greening of 0.31 ± 0.14% year-1 in drier regions and a browning of 0.12 ± 0.08% year-1 in wetter regions). Using an eco-evolutionary optimality (EEO) concept of plant acclimation/adaptation, we propose a parsimonious modelling framework that quantitatively explains these changes in terms of water and energy limitations. Our model captured the variations in Fmax with a correlation coefficient (r) of .76 and a root mean squared error of .12 and predicted the divergent trends of greening (0.32 ± 0.19% year-1 ) and browning (0.07 ± 0.06% year-1 ). We also predicted the observed reduced sensitivities of Fmax to precipitation and temperature. The model allows us to explain these changes: Enhanced growing season cumulative radiation has opposite effects on water use and energy uptake. Increased precipitation has an overwhelmingly positive effect in drier regions, whereas warming reduces Fmax in wetter regions by increasing the cost of building and maintaining leaf area. Rising CO2 stimulates vegetation growth by enhancing water-use efficiency, but its effect on photosynthesis saturates. The large decrease in the sensitivity of vegetation to climate reflects a shift from water to energy limitation. Our study demonstrates the potential of EEO approaches to reveal the mechanisms underlying recent trends in vegetation greenness and provides further insight into the response of alpine ecosystems to ongoing climate change.
Collapse
Affiliation(s)
- Ziqi Zhu
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modelling, Institute for Global Change StudiesTsinghua UniversityBeijingChina
| | - Han Wang
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modelling, Institute for Global Change StudiesTsinghua UniversityBeijingChina
| | - Sandy P. Harrison
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modelling, Institute for Global Change StudiesTsinghua UniversityBeijingChina
- School of Archaeology, Geography and Environmental Sciences (SAGES)University of ReadingReadingUK
| | - Iain Colin Prentice
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modelling, Institute for Global Change StudiesTsinghua UniversityBeijingChina
- Georgina Mace Centre for the Living Planet, Department of Life SciencesImperial College LondonAscotUK
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Shengchao Qiao
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modelling, Institute for Global Change StudiesTsinghua UniversityBeijingChina
| | - Shen Tan
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modelling, Institute for Global Change StudiesTsinghua UniversityBeijingChina
| |
Collapse
|
16
|
Wang H, Harrison SP, Li M, Prentice IC, Qiao S, Wang R, Xu H, Mengoli G, Peng Y, Yang Y. The China plant trait database version 2. Sci Data 2022; 9:769. [PMID: 36522346 PMCID: PMC9755148 DOI: 10.1038/s41597-022-01884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Plant functional traits represent adaptive strategies to the environment, linked to biophysical and biogeochemical processes and ecosystem functioning. Compilations of trait data facilitate research in multiple fields from plant ecology through to land-surface modelling. Here we present version 2 of the China Plant Trait Database, which contains information on morphometric, physical, chemical, photosynthetic and hydraulic traits from 1529 unique species in 140 sites spanning a diversity of vegetation types. Version 2 has five improvements compared to the previous version: (1) new data from a 4-km elevation transect on the edge of Tibetan Plateau, including alpine vegetation types not sampled previously; (2) inclusion of traits related to hydraulic processes, including specific sapwood conductance, the area ratio of sapwood to leaf, wood density and turgor loss point; (3) inclusion of information on soil properties to complement the existing data on climate and vegetation (4) assessments and flagging the reliability of individual trait measurements; and (5) inclusion of standardized templates for systematical field sampling and measurements.
Collapse
Grants
- 694481 GC2.0 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 787203 REALM EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- the LEMONTREE (Land Ecosystem Models based On New Theory, obseRvations and ExperimEnts) project, funded through the generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program
- High-End Foreign Expert award at Tsinghua University (G20190001075, G20200001064, G2021102001); the LEMONTREE (Land Ecosystem Models based On New Theory, obseRvations and ExperimEnts) project, funded through the generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program
- the LEMONTREE (Land Ecosystem Models based On New Theory, obseRvations and ExperimEnts) project, funded through the generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program; the High-End Foreign Expert award at Tsinghua University (G20190001075, G20200001064, G2021102001); the Imperial College initiative on Grand Challenges in Ecology and Environment
Collapse
Affiliation(s)
- Han Wang
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China.
| | - Sandy P Harrison
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China
- School of Archaeology, Geography and Environmental Sciences (SAGES), University of Reading, Reading, RG6 6AH, United Kingdom
| | - Meng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - I Colin Prentice
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, United Kingdom
| | - Shengchao Qiao
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China
| | - Runxi Wang
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Huiying Xu
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China
| | - Giulia Mengoli
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, United Kingdom
| | - Yunke Peng
- Department of Environmental Systems Science, ETH, Universitätsstrasse 2, 8092, Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Yanzheng Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
17
|
Dong N, Prentice IC, Wright IJ, Wang H, Atkin OK, Bloomfield KJ, Domingues TF, Gleason SM, Maire V, Onoda Y, Poorter H, Smith NG. Leaf nitrogen from the perspective of optimal plant function. THE JOURNAL OF ECOLOGY 2022; 110:2585-2602. [PMID: 36619687 PMCID: PMC9804922 DOI: 10.1111/1365-2745.13967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/14/2022] [Indexed: 05/14/2023]
Abstract
Leaf dry mass per unit area (LMA), carboxylation capacity (V cmax) and leaf nitrogen per unit area (Narea) and mass (Nmass) are key traits for plant functional ecology and ecosystem modelling. There is however no consensus about how these traits are regulated, or how they should be modelled. Here we confirm that observed leaf nitrogen across species and sites can be estimated well from observed LMA and V cmax at 25°C (V cmax25). We then test the hypothesis that global variations of both quantities depend on climate variables in specific ways that are predicted by leaf-level optimality theory, thus allowing both Narea to be predicted as functions of the growth environment.A new global compilation of field measurements was used to quantify the empirical relationships of leaf N to V cmax25 and LMA. Relationships of observed V cmax25 and LMA to climate variables were estimated, and compared to independent theoretical predictions of these relationships. Soil effects were assessed by analysing biases in the theoretical predictions.LMA was the most important predictor of Narea (increasing) and Nmass (decreasing). About 60% of global variation across species and sites in observed Narea, and 31% in Nmass, could be explained by observed LMA and V cmax25. These traits, in turn, were quantitatively related to climate variables, with significant partial relationships similar or indistinguishable from those predicted by optimality theory. Predicted trait values explained 21% of global variation in observed site-mean V cmax25, 43% in LMA and 31% in Narea. Predicted V cmax25 was biased low on clay-rich soils but predicted LMA was biased high, with compensating effects on Narea. Narea was overpredicted on organic soils. Synthesis. Global patterns of variation in observed site-mean Narea can be explained by climate-induced variations in optimal V cmax25 and LMA. Leaf nitrogen should accordingly be modelled as a consequence (not a cause) of V cmax25 and LMA, both being optimized to the environment. Nitrogen limitation of plant growth would then be modelled principally via whole-plant carbon allocation, rather than via leaf-level traits. Further research is required to better understand and model the terrestrial nitrogen and carbon cycles and their coupling.
Collapse
Affiliation(s)
- Ning Dong
- Department of Life SciencesGeorgina Mace Centre for the Living Planet, Imperial College LondonAscotUK
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Iain Colin Prentice
- Department of Life SciencesGeorgina Mace Centre for the Living Planet, Imperial College LondonAscotUK
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Ministry of Education Key Laboratory for Earth System ModellingDepartment of Earth System Science, Tsinghua UniversityBeijingChina
| | - Ian J. Wright
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System ModellingDepartment of Earth System Science, Tsinghua UniversityBeijingChina
| | - Owen K. Atkin
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Keith J. Bloomfield
- Department of Life SciencesGeorgina Mace Centre for the Living Planet, Imperial College LondonAscotUK
| | - Tomas F. Domingues
- FFCLRP, Department of BiologyUniversity of São PauloRibeirão PretoBrazil
| | - Sean M. Gleason
- Water Management and Systems Research UnitUSDA‐ARSFort CollinsColoradoUSA
| | - Vincent Maire
- Département des sciences de l'environnementUniversité du Québec à Trois‐Rivièresrois‐RivièresQuebecCanada
| | - Yusuke Onoda
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Hendrik Poorter
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Plant Sciences (IBG‐2)Forschungszentrum Julich GmbHJulichGermany
| | - Nicholas G. Smith
- Department of Biological SciencesTexas Tech UniversityLubbockTexasUSA
| |
Collapse
|
18
|
Using synthetic biology to improve photosynthesis for sustainable food production. J Biotechnol 2022; 359:1-14. [PMID: 36126804 DOI: 10.1016/j.jbiotec.2022.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Photosynthesis is responsible for the primary productivity and maintenance of life on Earth, boosting biological activity and contributing to the maintenance of the environment. In the past, traditional crop improvement was considered sufficient to meet food demands, but the growing demand for food coupled with climate change has modified this scenario over the past decades. However, advances in this area have not focused on photosynthesis per se but rather on fixed carbon partitioning. In short, other approaches must be used to meet an increasing agricultural demand. Thus, several paths may be followed, from modifications in leaf shape and canopy architecture, improving metabolic pathways related to CO2 fixation, the inclusion of metabolic mechanisms from other species, and improvements in energy uptake by plants. Given the recognized importance of photosynthesis, as the basis of the primary productivity on Earth, we here present an overview of the latest advances in attempts to improve plant photosynthetic performance. We focused on points considered key to the enhancement of photosynthesis, including leaf shape development, RuBisCO reengineering, Calvin-Benson cycle optimization, light use efficiency, the introduction of the C4 cycle in C3 plants and the inclusion of other CO2 concentrating mechanisms (CCMs). We further provide compelling evidence that there is still room for further improvements. Finally, we conclude this review by presenting future perspectives and possible new directions on this subject.
Collapse
|
19
|
Yang Q, Ravnskov S, Pullens JWM, Andersen MN. Interactions between biochar, arbuscular mycorrhizal fungi and photosynthetic processes in potato (Solanum tuberosum L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151649. [PMID: 34785223 DOI: 10.1016/j.scitotenv.2021.151649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Pyrolyzed biomass, generating biochar for use as soil amendment, is recognized as a promising strategy for carbon sequestration. Current understanding of the interactions between biochar, arbuscular mycorrhizal (AM), and plant photosynthesis, in terms of biochemical processes and CO2 uptake, is fragmentary. The aim of this study was to investigate the effects on photosynthesis in potato including maximum rate of carboxylation by Rubisco (Vcmax), maximum rate of electron transport rate for RuBP-regeneration (Jmax), mesophyll conductance (gm) and other plant traits. Four types of biochar (wheat or miscanthus straw pellets pyrolyzed at temperatures of either 550 °C or 700 °C) were amended into low phosphorus soil. Potato plants were inoculated with the AM fungus Rhizophagus irregularis (M+) or not (M-). The results showed that four types of biochar generally decreased nitrogen and phosphorus content of potato, especially the biochars pyrolyzed at high temperature. This negative effect of biochar on nutrient content was alleviated by AM. It was found that Vcmax was limited by low plant nitrogen content as well as leaf area and phosphorus content. Plant phosphorus content also limited Jmax, which was mutually constrained by Vcmax of leaves. Low gm was an additional limiting factor for photosynthesis. The gm was positively correlated to nitrogen content, which influenced the leaf anatomical structure by alteration of leaf mass per area. In conclusion, the influence of interactions between quality of biochar and AM symbiosis on photosynthesis of potato seems to relate to effects on plant nutrient content and leaf structures. Accordingly, a model for the dependence of Vcmax on nitrogen and phosphorus content and their interactive effect exhibited a high correlation coefficient. As potato plants form AM symbiosis under natural field conditions, the extent and interaction with the quality of amended biochar can be a determining factor for plant nutrient content, growth and yield.
Collapse
Affiliation(s)
- Qi Yang
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark.
| | - Sabine Ravnskov
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | - Mathias Neumann Andersen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| |
Collapse
|
20
|
Koppa A, Rains D, Hulsman P, Poyatos R, Miralles DG. A deep learning-based hybrid model of global terrestrial evaporation. Nat Commun 2022; 13:1912. [PMID: 35395845 PMCID: PMC8993934 DOI: 10.1038/s41467-022-29543-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/22/2022] [Indexed: 12/21/2022] Open
Abstract
Terrestrial evaporation (E) is a key climatic variable that is controlled by a plethora of environmental factors. The constraints that modulate the evaporation from plant leaves (or transpiration, Et) are particularly complex, yet are often assumed to interact linearly in global models due to our limited knowledge based on local studies. Here, we train deep learning algorithms using eddy covariance and sap flow data together with satellite observations, aiming to model transpiration stress (St), i.e., the reduction of Et from its theoretical maximum. Then, we embed the new St formulation within a process-based model of E to yield a global hybrid E model. In this hybrid model, the St formulation is bidirectionally coupled to the host model at daily timescales. Comparisons against in situ data and satellite-based proxies demonstrate an enhanced ability to estimate St and E globally. The proposed framework may be extended to improve the estimation of E in Earth System Models and enhance our understanding of this crucial climatic variable.
Collapse
Affiliation(s)
- Akash Koppa
- Hydro-Climate Extremes Lab (H-CEL), Ghent University, Ghent, Belgium.
| | - Dominik Rains
- Hydro-Climate Extremes Lab (H-CEL), Ghent University, Ghent, Belgium
| | - Petra Hulsman
- Hydro-Climate Extremes Lab (H-CEL), Ghent University, Ghent, Belgium
| | - Rafael Poyatos
- CREAF, Catalonia, Spain
- Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Diego G Miralles
- Hydro-Climate Extremes Lab (H-CEL), Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Reyes-Muñoz P, Pipia L, Salinero-Delgado M, Belda S, Berger K, Estévez J, Morata M, Rivera-Caicedo JP, Verrelst J. Quantifying Fundamental Vegetation Traits over Europe Using the Sentinel-3 OLCI Catalogue in Google Earth Engine. REMOTE SENSING 2022; 14:1347. [PMID: 36016907 PMCID: PMC7613398 DOI: 10.3390/rs14061347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Thanks to the emergence of cloud-computing platforms and the ability of machine learning methods to solve prediction problems efficiently, this work presents a workflow to automate spatiotemporal mapping of essential vegetation traits from Sentinel-3 (S3) imagery. The traits included leaf chlorophyll content (LCC), leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and fractional vegetation cover (FVC), being fundamental for assessing photosynthetic activity on Earth. The workflow involved Gaussian process regression (GPR) algorithms trained on top-of-atmosphere (TOA) radiance simulations generated by the coupled canopy radiative transfer model (RTM) SCOPE and the atmospheric RTM 6SV. The retrieval models, named to S3-TOA-GPR-1.0, were directly implemented in Google Earth Engine (GEE) to enable the quantification of the traits from TOA data as acquired from the S3 Ocean and Land Colour Instrument (OLCI) sensor.Following good to high theoretical validation results with normalized root mean square error (NRMSE) ranging from 5% (FAPAR) to 19% (LAI), a three fold evaluation approach over diverse sites and land cover types was pursued: (1) temporal comparison against LAI and FAPAR products obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) for the time window 2016-2020, (2) spatial difference mapping with Copernicus Global Land Service (CGLS) estimates, and (3) direct validation using interpolated in situ data from the VALERI network. For all three approaches, promising results were achieved. Selected sites demonstrated coherent seasonal patterns compared to LAI and FAPAR MODIS products, with differences between spatially averaged temporal patterns of only 6.59%. In respect of the spatial mapping comparison, estimates provided by the S3-TOA-GPR-1.0 models indicated highest consistency with FVC and FAPAR CGLS products. Moreover, the direct validation of our S3-TOA-GPR-1.0 models against VALERI estimates indicated with regard to jurisdictional claims in good retrieval performance for LAI, FAPAR and FVC. We conclude that our retrieval workflow of spatiotemporal S3 TOA data processing into GEE opens the path towards global monitoring of fundamental vegetation traits, accessible to the whole research community.
Collapse
Affiliation(s)
- Pablo Reyes-Muñoz
- Image Processing Laboratory (IPL), University of Valencia, 46980 Paterna, Spain
| | - Luca Pipia
- Institut Cartografic i Geologic de Catalunya (ICGC), Parc de Montjüic, 08038 Barcelona, Spain
| | | | - Santiago Belda
- Image Processing Laboratory (IPL), University of Valencia, 46980 Paterna, Spain
- Department of Applied Mathematics, University of Alicante, 03690 Alicante, Spain
| | - Katja Berger
- Image Processing Laboratory (IPL), University of Valencia, 46980 Paterna, Spain
- Department of Geography, Ludwig-Maximilians-Universität München (LMU), Luisenstr. 37, 80333 Munich, Germany
| | - José Estévez
- Image Processing Laboratory (IPL), University of Valencia, 46980 Paterna, Spain
| | - Miguel Morata
- Image Processing Laboratory (IPL), University of Valencia, 46980 Paterna, Spain
| | | | - Jochem Verrelst
- Image Processing Laboratory (IPL), University of Valencia, 46980 Paterna, Spain
| |
Collapse
|