1
|
Sharma S, Singh R, Kant S, Mishra MK. Integrating AI/ML and multi-omics approaches to investigate the role of TNFRSF10A/TRAILR1 and its potential targets in pancreatic cancer. Comput Biol Med 2025; 193:110432. [PMID: 40424767 DOI: 10.1016/j.compbiomed.2025.110432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/19/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, with a five-year survival of under 10 % despite current therapies. Aggressive tumor biology, a desmoplastic stroma that limits drug delivery and immune cell infiltration, and profound resistance to apoptosis make it more complex to treat. Here, we describe a multi-layered system biology and drug discovery pipeline that integrates bulk genomics, single-cell spatial transcriptomics, proteomics, competing endogenous RNA (ceRNA) network analysis, and deep learning-driven quantitative structure-activity relationship (QSAR) modeling. By implementing this pipeline, we predicted that TNFRSF10A encodes for the TRAILR1 death receptor as a potential therapeutic target in PDAC. Mutational and expressional analysis also confirmed TNFRSF10A as a putative target in PDAC. Cancer cells within the PDAC microenvironment exhibit aberrantly elevated TNFRSF10A expression. Immune-excluded tumor niches and pro-survival signaling link this elevated expression. Using an advanced transformer-based deep learning approach, SELFormer, combined with QSAR analysis-based virtual screening, we identified previously unexplored FDA-approved drugs and natural compounds, i.e., Temsirolimus, Ergotamine, and capivasertib, with potential TRAILR1 modulatory effects. During molecular dynamics simulations, these repurposed candidates showed the highest binding affinities against TNFRSF10A for 300 ns. These showed favorable binding energies (MM-PBSA), minimal RMSD drift, PCA, and SASA. We propose TNFRSF10A as a therapeutically important PDAC vulnerability nurtured by spatially resolved expression patterns and dynamic molecular modeling. This study has used a novel integration of AI-implemented chemical modeling, high-throughput screening, and a multi-omics approach to unravel and pharmacologically target a cancer compartment-specific weakness in a notoriously drug-resistant cancer.
Collapse
Affiliation(s)
- Sudhanshu Sharma
- Cancer Research Center, Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Rajesh Singh
- Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Shiva Kant
- Department of Biology and Environmental Sciences, College of Sciences, Auburn University of Montgomery, Montgomery, USA
| | - Manoj K Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA.
| |
Collapse
|
2
|
Aba G, Abudukelimu S, de Winter M, Collu G, Bos E, Hamers SMWR, Hawinkels LJAC, van Montfoort N, Scheeren FA, Sharp TH. Inducing Cancer Cell Killing Using DNA Nanostructure-Mediated Superclustering of Death Receptors. NANO LETTERS 2025; 25:6310-6317. [PMID: 40197050 PMCID: PMC12007100 DOI: 10.1021/acs.nanolett.5c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
Clustering of type-II tumor necrosis factor receptors (TNFRs) is required to induce intracellular signaling. Current methods for receptor clustering lack precise control over ligand valency and spatial organization, potentially limiting optimal TNFR activation, biological insight, and therapeutic efficacy. DNA nanostructures provide nanometer-precise control over molecular arrangement, allowing control of both ligand spacing and valency. Here, we produce a DNA nanostructure decorated with controlled numbers of engineered single-chain TNF-related apoptosis-inducing ligand (sc-TRAIL) trimers, which bind death receptor 5 (DR5) with native affinity and geometry and enable investigation of the geometric parameters influencing apoptotic pathway activation. We show that cell killing is affected by receptor valency and separation and enhanced by superclustering sc-TRAIL trimers, which can induce cell killing in human primary pancreatic and colorectal cancer organoids. Together, our data show that control of receptor superclustering enhances our understanding of receptor activation mechanisms and informs the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Göktuğ Aba
- Department
of Cell and Chemical Biology, Leiden University
Medical Center, 2333 ZG Leiden, The Netherlands
| | - Subinuer Abudukelimu
- Department
of Gastroenterology and Hepatology, Leiden
University Medical Center, 2333 ZG Leiden, The Netherlands
| | - Margot de Winter
- Department
of Cell and Chemical Biology, Leiden University
Medical Center, 2333 ZG Leiden, The Netherlands
| | - Gabriella Collu
- Department
of Cell and Chemical Biology, Leiden University
Medical Center, 2333 ZG Leiden, The Netherlands
| | - Erik Bos
- Department
of Cell and Chemical Biology, Leiden University
Medical Center, 2333 ZG Leiden, The Netherlands
| | - Sebastiaan M. W. R. Hamers
- Department
of Cell and Chemical Biology, Leiden University
Medical Center, 2333 ZG Leiden, The Netherlands
| | - Lukas J. A. C. Hawinkels
- Department
of Gastroenterology and Hepatology, Leiden
University Medical Center, 2333 ZG Leiden, The Netherlands
| | - Nadine van Montfoort
- Department
of Gastroenterology and Hepatology, Leiden
University Medical Center, 2333 ZG Leiden, The Netherlands
| | - Ferenc A. Scheeren
- Department
of Dermatology, Leiden University Medical
Center, 2333 ZG Leiden, The Netherlands
| | - Thomas H. Sharp
- Department
of Cell and Chemical Biology, Leiden University
Medical Center, 2333 ZG Leiden, The Netherlands
- School
of
Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom
| |
Collapse
|
3
|
Elliott IG, Fisher H, Chan HTC, Inzhelevskaya T, Mockridge CI, Penfold CA, Duriez PJ, Orr CM, Herniman J, Müller KTJ, Essex JW, Cragg MS, Tews I. Structure-guided disulfide engineering restricts antibody conformation to elicit TNFR agonism. Nat Commun 2025; 16:3495. [PMID: 40221417 PMCID: PMC11993666 DOI: 10.1038/s41467-025-58773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
A promising strategy in cancer immunotherapy is activation of immune signalling pathways through antibodies that target co-stimulatory receptors. hIgG2, one of four human antibody isotypes, is known to deliver strong agonistic activity, and modification of hIgG2 hinge disulfides can influence immune-stimulating activity. This was shown for antibodies directed against the hCD40 receptor, where cysteine-to-serine exchange mutations caused changes in antibody conformational flexibility. Here we demonstrate that the principles of increasing agonism by restricting antibody conformation through disulfide modification can be translated to the co-stimulatory receptor h4-1BB, another member of the tumour necrosis factor receptor superfamily. Furthermore, we explore structure-guided design of the anti-hCD40 antibody ChiLob7/4 and show that engineering additional disulfides between opposing F(ab') arms can elicit conformational restriction, concomitant with enhanced agonism. These results support a mode where subtle increases in rigidity can deliver significant improvements in immunostimulatory activity, thus providing a strategy for the rational design of more powerful antibody therapeutics.
Collapse
Affiliation(s)
- Isabel G Elliott
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Hayden Fisher
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- European Synchrotron Radiation Facility, Grenoble, Cedex 9, 38043, France
| | - H T Claude Chan
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
| | - Tatyana Inzhelevskaya
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
| | - C Ian Mockridge
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
| | - Christine A Penfold
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
| | - Patrick J Duriez
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
| | | | - Julie Herniman
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Kri T J Müller
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
| | - Jonathan W Essex
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Mark S Cragg
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ivo Tews
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
4
|
Nguyen OTP, Lara S, Ferro G, Peipp M, Kleinau S. Rituximab-IgG2 is a phagocytic enhancer in antibody-based immunotherapy of B-cell lymphoma by altering CD47 expression. Front Immunol 2024; 15:1483617. [PMID: 39712032 PMCID: PMC11659266 DOI: 10.3389/fimmu.2024.1483617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Antibody-dependent cellular phagocytosis (ADCP) by monocytes and macrophages contributes significantly to the efficacy of many therapeutic monoclonal antibodies (mAbs), including anti-CD20 rituximab (RTX) targeting CD20+ B-cell non-Hodgkin lymphomas (NHL). However, ADCP is constrained by various immune checkpoints, notably the anti-phagocytic CD47 molecule, necessitating strategies to overcome this resistance. We have previously shown that the IgG2 isotype of RTX induces CD20-mediated apoptosis in B-cell lymphoma cells and, when combined with RTX-IgG1 or RTX-IgG3 mAbs, can significantly enhance Fc receptor-mediated phagocytosis. Here, we report that the apoptotic effect of RTX-IgG2 on lymphoma cells contributes to changes in the tumor cell's CD47 profile by reducing its overall expression and altering its surface distribution. Furthermore, when RTX-IgG2 is combined with other lymphoma-targeting mAbs, such as anti-CD59 or anti-PD-L1, it significantly enhances the ADCP of lymphoma cells compared to single mAb treatment. In summary, RTX-IgG2 acts as a potent phagocytic enhancer by promoting Fc-receptor mediated phagocytosis through apoptosis and reduction of CD47 in CD20+ malignant B-cells. RTX-IgG2 represents a valuable therapeutic component in enhancing the effectiveness of different mAbs targeting B-cell NHL.
Collapse
Affiliation(s)
- Oanh T. P. Nguyen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sandra Lara
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Giovanni Ferro
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sandra Kleinau
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Glögl M, Krishnakumar A, Ragotte RJ, Goreshnik I, Coventry B, Bera AK, Kang A, Joyce E, Ahn G, Huang B, Yang W, Chen W, Sanchez MG, Koepnick B, Baker D. Target-conditioned diffusion generates potent TNFR superfamily antagonists and agonists. Science 2024; 386:1154-1161. [PMID: 39636970 DOI: 10.1126/science.adp1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Despite progress in designing protein-binding proteins, the shape matching of designs to targets is lower than in many native protein complexes, and design efforts have failed for the tumor necrosis factor receptor 1 (TNFR1) and other protein targets with relatively flat and polar surfaces. We hypothesized that free diffusion from random noise could generate shape-matched binders for challenging targets and tested this approach on TNFR1. We obtain designs with low picomolar affinity whose specificity can be completely switched to other family members using partial diffusion. Designs function as antagonists or as superagonists when presented at higher valency for OX40 and 4-1BB. The ability to design high-affinity and high-specificity antagonists and agonists for pharmacologically important targets in silico presages a coming era in protein design in which binders are made by computation rather than immunization or random screening approaches.
Collapse
MESH Headings
- Humans
- Drug Design
- Protein Binding
- Receptors, Tumor Necrosis Factor, Type I/agonists
- Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Tumor Necrosis Factor Receptor Superfamily, Member 9/chemistry
- Receptors, OX40/agonists
- Receptors, OX40/antagonists & inhibitors
- Receptors, OX40/chemistry
Collapse
Affiliation(s)
- Matthias Glögl
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Aditya Krishnakumar
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Robert J Ragotte
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Emily Joyce
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Green Ahn
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Wei Yang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Wei Chen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mariana Garcia Sanchez
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Brian Koepnick
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Kobayashi C, Suzuki‐Imaizumi M, Sakaguchi Y, Ishii T, Adachi M, Kaneda A, Ebihara R, Saito M, Uemori T, Mori K. The novel and potent CD40 agonist KHK2840 augments the antitumor efficacy of anti-PD-1 antibody and paclitaxel. Cancer Sci 2024; 115:4008-4020. [PMID: 39380291 PMCID: PMC11611760 DOI: 10.1111/cas.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Lack of tumor-reactive cytotoxic T lymphocytes (CTLs) limits the antitumor efficacy of immune checkpoint inhibitors (ICIs). CD40 agonists have been expected to overcome this limitation by generating tumor-reactive CTLs. However, the clinical efficacy of CD40 agonistic antibodies is not as good as in non-clinical studies. The novel human CD40 (hCD40) agonist KHK2840 is a fully human anti-CD40 IgG2 agonistic antibody that is Fc-engineered to minimize complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity. Compared to other hCD40 agonists, KHK2840 exhibited the most potent hCD40 agonistic signal in tumor-bearing hCD40 transgenic mice and human peripheral blood B cells. Moreover, KHK2840 enhanced the antitumor efficacy of the antiprogrammed cell death 1 antibody and paclitaxel. Comprehensive immune profiling revealed that the antitumor immune response of the triple combination involved tumor-draining lymph nodes in addition to tumor microenvironments. This suggests that a coordinated antitumor immune response between tumors and lymph nodes may underlie the synergistic antitumor efficacy of the triple combination therapy. Finally, a toxicology study in cynomolgus monkeys demonstrated that KHK2840 activated the CD40 signal with tolerable toxicological properties. These results indicate that KHK2840 is a novel and potent hCD40 agonistic antibody for cancer immunotherapy, which is expected to augment the antitumor efficacy of ICIs and chemotherapy.
Collapse
|
7
|
Hesen N, Anany M, Freidel A, Baker M, Siegmund D, Zaitseva O, Wajant H, Lang I. Genetically engineered IgG1 and nanobody oligomers acquire strong intrinsic CD40 agonism. Bioengineered 2024; 15:2302246. [PMID: 38214443 PMCID: PMC10793706 DOI: 10.1080/21655979.2024.2302246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024] Open
Abstract
Most anti-CD40 antibodies show robust agonism only upon binding to FcγR+ cells, such as B cells, macrophages, or DCs, but a few anti-CD40 antibodies display also strong intrinsic agonism dependent on the recognized epitope and/or isotype. It is worth mentioning, however, that also the anti-CD40 antibodies with intrinsic agonism can show a further increase in agonistic activity when bound by FcγR-expressing cells. Thus, conventional antibodies appear not to be sufficient to trigger the maximum possible CD40 activation independent from FcγR-binding. We proved here the hypothesis that oligomeric and oligovalent anti-CD40 antibody variants generated by genetic engineering display high intrinsic, thus FcγR-independent, agonistic activity. We generated tetra-, hexa- and dodecavalent variants of six anti-CD40 antibodies and a CD40-specific nanobody. All these oligovalent variants, even when derived of bivalent antagonistic anti-CD40 antibodies, showed strongly enhanced CD40 agonism compared to their conventional counterparts. In most cases, the CD40 agonism reached the maximum response induced by FcγR-bound anti-CD40 antibodies or membrane CD40L, the natural engager of CD40. In sum, our data show that increasing the valency of anti-CD40 antibody constructs by genetic engineering regularly results in molecules with high intrinsic agonism and level out the specific limitations of the parental antibodies.
Collapse
Affiliation(s)
- Nienke Hesen
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Mohamed Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
- Department of Microbial Biotechnology, Institute of Biotechnology, National Research Center, Giza, Egypt
| | - Andre Freidel
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Mediya Baker
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Olena Zaitseva
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| |
Collapse
|
8
|
Zhang J, Zhao H, Zhou Q, Yang X, Qi H, Zhao Y, Yang L. Discovery of Cyclic Peptide Inhibitors Targeted on TNFα-TNFR1 from Computational Design and Bioactivity Verification. Molecules 2024; 29:5147. [PMID: 39519786 PMCID: PMC11547827 DOI: 10.3390/molecules29215147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Activating tumor necrosis factor receptor 1 (TNFR1) with tumor necrosis factor alpha (TNFα) is one of the key pathological mechanisms resulting in the exacerbation of rheumatoid arthritis (RA) immune response. Despite various types of drugs being available for the treatment of RA, a series of shortcomings still limits their application. Therefore, developing novel peptide drugs that target TNFα-TNFR1 interaction is expected to expand therapeutic drug options. In this study, the detailed interaction mechanism between TNFα and TNFR1 was elucidated, based on which, a series of linear peptides were initially designed. To overcome its large conformational flexibility, two different head-to-tail cyclization strategies were adopted by adding a proline-glycine (GP) or cysteine-cysteine (CC) to form an amide or disulfide bond between the N-C terminal. The results indicate that two cyclic peptides, R1_CC4 and α_CC8, exhibit the strongest binding free energies. α_CC8 was selected for further optimization using virtual mutations through in vitro activity and toxicity experiments due to its optimal biological activity. The L16R mutant was screened, and its binding affinity to TNFR1 was validated using ELISA assays. This study designed a novel cyclic peptide structure with potential anti-inflammatory properties, possibly bringing an additional choice for the treatment of RA in the future.
Collapse
Affiliation(s)
- Jiangnan Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Huijian Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Qianqian Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Xiaoyue Yang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Haoran Qi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Yongxing Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou 450001, China
| | - Longhua Yang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| |
Collapse
|
9
|
Jayasinghe MK, Lay YS, Liu DXT, Lee CY, Gao C, Yeo BZ, How FYX, Prajogo RC, Hoang DV, Le HA, Pham TT, Peng B, Phung CD, Tenen DG, Le MTN. Extracellular vesicle surface display enhances the therapeutic efficacy and safety profile of cancer immunotherapy. Mol Ther 2024; 32:3558-3579. [PMID: 39033322 PMCID: PMC11489549 DOI: 10.1016/j.ymthe.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
Immunotherapy has emerged as a mainstay in cancer therapy, yet its efficacy is constrained by the risk of immune-related adverse events. In this study, we present a nanoparticle-based delivery system that enhances the therapeutic efficacy of immunomodulatory ligands while concurrently limiting systemic toxicity. We demonstrate that extracellular vesicles (EVs), lipid bilayer enclosed particles released by cells, can be efficiently engineered via inverse electron demand Diels-Alder (iEDDA)-mediated conjugation to display multiple immunomodulatory ligands on their surface. Display of immunomodulatory ligands on the EV surface conferred substantial enhancements in signaling efficacy, particularly for tumor necrosis factor receptor superfamily (TNFRSF) agonists, where the EV surface display served as an alternative FcγR-independent approach to induce ligand multimerization and efficient receptor crosslinking. EVs displaying a complementary combination of immunotherapeutic ligands were able to shift the tumor immune milieu toward an anti-tumorigenic phenotype and significantly suppress tumor burden and increase survival in multiple models of metastatic cancer to a greater extent than an equivalent dose of free ligands. In summary, we present an EV-based delivery platform for cancer immunotherapeutic ligands that facilitates superior anti-tumor responses at significantly lower doses with fewer side effects than is possible with conventional delivery approaches.
Collapse
Affiliation(s)
- Migara Kavishka Jayasinghe
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Yock Sin Lay
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Dawn Xiao Tian Liu
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Chang Yu Lee
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Chang Gao
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Brendon Zhijie Yeo
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Faith Yuan Xin How
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Rebecca Carissa Prajogo
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Dong Van Hoang
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Hong Anh Le
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Thach Tuan Pham
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Boya Peng
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Cao Dai Phung
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02138, USA
| | - Minh T N Le
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Institute of Molecular and Cell Biology, A∗STAR, Singapore 138673, Singapore.
| |
Collapse
|
10
|
Lyu X, Zhao L, Chen S, Li Y, Yang Y, Liu H, Yang F, Li W, Sui J. Targeting TNFRSF25 by agonistic antibodies and multimeric TL1A proteins co-stimulated CD8 + T cells and inhibited tumor growth. J Immunother Cancer 2024; 12:e008810. [PMID: 39142717 PMCID: PMC11331879 DOI: 10.1136/jitc-2024-008810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Tumor necrosis factor receptor superfamily 25 (TNFRSF25) is a T-cell co-stimulatory receptor. Expression of its ligand, TNF-like cytokine 1A (TL1A), on mouse tumor cells has been shown to promote tumor regression. This study aimed to develop TNFRSF25 agonists (both antibodies (Abs) and TL1A proteins) and to investigate their potential antitumor effects. METHODS Anti-mouse TNFRSF25 (mTNFRSF25) Abs and multimeric TL1A proteins were generated as TNFRSF25 agonists. Their agonism was assessed in luciferase reporter and T-cell co-stimulation assays, and their antitumor effects were evaluated in syngeneic mouse tumor models. TNFRSF25 expression within the tumor microenvironment and the effects of an anti-mTNFRSF25 agonistic Ab on tumor-infiltrating T cells were evaluated by flow cytometry. Cell depletion assays were used to identify the immune cell types that contribute to the antitumor effect of the anti-mTNFRSF25 Ab. The Fc gamma receptor (FcγR) dependence of TNFRSF25 agonists was assessed in an in vivo T-cell expansion model and a mouse tumor model using Fc variants and FcγR-deficient mice. RESULTS TNFRSF25 agonists exhibited antitumor effects in syngeneic mouse tumor models without causing observed side effects. We identified an anti-mTNFRSF25 agonistic Ab, 1A6-m1, which exhibited greater antitumor activity than a higher affinity anti-TNFRSF25 Ab which engages an overlapping epitope with 1A6-m1. 1A6-m1 activated CD8+ T cells and antigen-specific T cells, leading to tumor regression; it also induced long-term antitumor immune memory. Although activating TNFRSF25 by 1A6-m1 expanded splenic regulatory T (Treg) cells, it did not influence intratumoral Treg cells. Moreover, 1A6-m1's antitumor effects required the engagement of both inhibitory FcγRIIB and activating FcγRIII. Replacing 1A6-m1's CH1-hinge region with that of human IgG2 (h2) conferred enhanced antitumor effects. Finally, we also generated multimeric human and mouse TL1A fusion proteins as TNFRSF25 agonists, and they co-stimulated CD8+ T cells and reduced tumor growth, even in the absence of Fc-FcγR interactions. CONCLUSION Our data demonstrates the potential of activating TNFRSF25 by Abs and multimeric TL1A proteins for cancer immunotherapy and provides insights into their development astherapeutics.
Collapse
Affiliation(s)
- Xueyuan Lyu
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Linlin Zhao
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Sijia Chen
- National Institute of Biological Sciences, Beijing, China
| | - Yulu Li
- National Institute of Biological Sciences, Beijing, China
| | - Yajing Yang
- National Institute of Biological Sciences, Beijing, China
| | - Huisi Liu
- National Institute of Biological Sciences, Beijing, China
| | - Fang Yang
- National Institute of Biological Sciences, Beijing, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Willoughby JE, Dou L, Bhattacharya S, Jackson H, Seestaller-Wehr L, Kilian D, Bover L, Voo KS, Cox KL, Murray T, John M, Shi H, Bojczuk P, Jing J, Niederer H, Shepherd AJ, Hook L, Hopley S, Inzhelevskaya T, Penfold CA, Mockridge CI, English V, Brett SJ, Srinivasan R, Hopson C, Smothers J, Hoos A, Paul E, Martin SL, Morley PJ, Yanamandra N, Cragg MS. Impact of isotype on the mechanism of action of agonist anti-OX40 antibodies in cancer: implications for therapeutic combinations. J Immunother Cancer 2024; 12:e008677. [PMID: 38964788 PMCID: PMC11227834 DOI: 10.1136/jitc-2023-008677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND OX40 has been widely studied as a target for immunotherapy with agonist antibodies taken forward into clinical trials for cancer where they are yet to show substantial efficacy. Here, we investigated potential mechanisms of action of anti-mouse (m) OX40 and anti-human (h) OX40 antibodies, including a clinically relevant monoclonal antibody (mAb) (GSK3174998) and evaluated how isotype can alter those mechanisms with the aim to develop improved antibodies for use in rational combination treatments for cancer. METHODS Anti-mOX40 and anti-hOX40 mAbs were evaluated in a number of in vivo models, including an OT-I adoptive transfer immunization model in hOX40 knock-in (KI) mice and syngeneic tumor models. The impact of FcγR engagement was evaluated in hOX40 KI mice deficient for Fc gamma receptors (FcγR). Additionally, combination studies using anti-mouse programmed cell death protein-1 (mPD-1) were assessed. In vitro experiments using peripheral blood mononuclear cells (PBMCs) examining possible anti-hOX40 mAb mechanisms of action were also performed. RESULTS Isotype variants of the clinically relevant mAb GSK3174998 showed immunomodulatory effects that differed in mechanism; mIgG1 mediated direct T-cell agonism while mIgG2a acted indirectly, likely through depletion of regulatory T cells (Tregs) via activating FcγRs. In both the OT-I and EG.7-OVA models, hIgG1 was the most effective human isotype, capable of acting both directly and through Treg depletion. The anti-hOX40 hIgG1 synergized with anti-mPD-1 to improve therapeutic outcomes in the EG.7-OVA model. Finally, in vitro assays with human peripheral blood mononuclear cells (hPBMCs), anti-hOX40 hIgG1 also showed the potential for T-cell stimulation and Treg depletion. CONCLUSIONS These findings underline the importance of understanding the role of isotype in the mechanism of action of therapeutic mAbs. As an hIgG1, the anti-hOX40 mAb can elicit multiple mechanisms of action that could aid or hinder therapeutic outcomes, dependent on the microenvironment. This should be considered when designing potential combinatorial partners and their FcγR requirements to achieve maximal benefit and improvement of patient outcomes.
Collapse
Affiliation(s)
- Jane E Willoughby
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Lang Dou
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Heather Jackson
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Laura Seestaller-Wehr
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - David Kilian
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Laura Bover
- Immunology Department/ Genomics Medicine Department, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Kui S Voo
- ORBIT, Institute of Applied Cancer Science, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Kerry L Cox
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tom Murray
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mel John
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hong Shi
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Paul Bojczuk
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Junping Jing
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Heather Niederer
- Biopharm Discovery, GlaxoSmithKline Research & Development Limited, Stevenage, UK
| | - Andrew J Shepherd
- Protein, Cellular and Structural Sciences, GlaxoSmithKline Research & Development Limited, Gunnels Wood Road, Stevenage, UK
| | - Laura Hook
- Biopharm Discovery, GlaxoSmithKline Research & Development Limited, Stevenage, UK
| | - Stephanie Hopley
- Biopharm Discovery, GlaxoSmithKline Research & Development Limited, Stevenage, UK
| | - Tatyana Inzhelevskaya
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Chris A Penfold
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - C Ian Mockridge
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Vikki English
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sara J Brett
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Roopa Srinivasan
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Christopher Hopson
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - James Smothers
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Axel Hoos
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Elaine Paul
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
- GlaxoSmithKline, Durham, North Carolina, USA
| | - Stephen L Martin
- Biopharm Discovery, GlaxoSmithKline Research & Development Limited, Stevenage, UK
| | - Peter J Morley
- Immunology Research Unit, GlaxoSmithKline Research & Development Limited, Gunnels Wood Road, Stevenage, UK
| | - Niranjan Yanamandra
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
12
|
Asano R, Nakakido M, Pérez JF, Ise T, Caaveiro JMM, Nagata S, Tsumoto K. Crystal structures of human CD40 in complex with monoclonal antibodies dacetuzumab and bleselumab. Biochem Biophys Res Commun 2024; 714:149969. [PMID: 38657446 DOI: 10.1016/j.bbrc.2024.149969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
CD40 is a member of the tumor necrosis factor receptor superfamily, and it is widely expressed on immune and non-immune cell types. The interaction between CD40 and the CD40 ligand (CD40L) plays an essential function in signaling, and the CD40/CD40L complex works as an immune checkpoint molecule. CD40 has become a therapeutic target, and a variety of agonistic/antagonistic anti-CD40 monoclonal antibodies (mAbs) have been developed. To better understand the mode of action of anti-CD40 mAbs, we determined the X-ray crystal structures of dacetuzumab (agonist) and bleselumab (antagonist) in complex with the extracellular domain of human CD40, respectively. The structure reveals that dacetuzumab binds to CD40 on the top of cysteine-rich domain 1 (CRD1), which is the domain most distant from the cell surface, and it does not compete with CD40L binding. The binding interface of bleselumab spread between CRD2 and CRD1, overlapping with the binding surface of the ligand. Our results offer important insights for future structural and functional studies of CD40 and provide clues to understanding the mechanism of biological response. These data can be applied to developing new strategies for designing antibodies with more therapeutic efficacy.
Collapse
Affiliation(s)
- Risa Asano
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Jorge Fernández Pérez
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tomoko Ise
- Laboratory of Antibody Design, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jose M M Caaveiro
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Nagata
- Laboratory of Antibody Design, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan; The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Moquist PN, Zhang X, Leiske CI, Eng-Duncan NML, Zeng W, Bindman NA, Wo SW, Wong A, Henderson CM, Crowder K, Lyon R, Doronina SO, Senter PD, Neff-LaFord HD, Sussman D, Gardai SJ, Levengood MR. Reversible Chemical Modification of Antibody Effector Function Mitigates Unwanted Systemic Immune Activation. Bioconjug Chem 2024; 35:855-866. [PMID: 38789102 PMCID: PMC11191404 DOI: 10.1021/acs.bioconjchem.4c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Antibody effector functions including antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) are mediated through the interaction of the antibody Fc region with Fcγ receptors present on immune cells. Several approaches have been used to modulate antibody Fc-Fcγ interactions with the goal of driving an effective antitumor immune response, including Fc point mutations and glycan modifications. However, robust antibody-Fcγ engagement and immune cell binding of Fc-enhanced antibodies in the periphery can lead to the unwanted induction of systemic cytokine release and other dose-limiting infusion-related reactions. Creating a balance between effective engagement of Fcγ receptors that can induce antitumor activity without incurring systemic immune activation is an ongoing challenge in the field of antibody and immuno-oncology therapeutics. Herein, we describe a method for the reversible chemical modulation of antibody-Fcγ interactions using simple poly(ethylene glycol) (PEG) linkers conjugated to antibody interchain disulfides with maleimide attachments. This method enables dosing of a therapeutic with muted Fcγ engagement that is restored in vivo in a time-dependent manner. The technology was applied to an effector function enhanced agonist CD40 antibody, SEA-CD40, and experiments demonstrate significant reductions in Fc-induced immune activation in vitro and in mice and nonhuman primates despite showing retained efficacy and improved pharmacokinetics compared to the parent antibody. We foresee that this simple, modular system can be rapidly applied to antibodies that suffer from systemic immune activation due to peripheral FcγR binding immediately upon infusion.
Collapse
Affiliation(s)
- Philip N. Moquist
- ADC
Chemistry, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United states
| | - Xinqun Zhang
- ADC
Antibody Engineering, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Chris I. Leiske
- ADC
Antibody Engineering, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | | | - Weiping Zeng
- ADC
In Vivo Pharmacology, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Noah A. Bindman
- ADC
Antibody Engineering, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Serena W. Wo
- ADC
Antibody Engineering, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Abbie Wong
- ADC
Translational Sciences, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Clark M. Henderson
- ADC
Translational Sciences, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Karalyne Crowder
- Non-Clinical
Sciences, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Robert Lyon
- ADC
Antibody Engineering, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Svetlana O. Doronina
- ADC
Chemistry, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United states
| | - Peter D. Senter
- ADC
Chemistry, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United states
| | - Haley D. Neff-LaFord
- Non-Clinical
Sciences, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Django Sussman
- ADC
Antibody Engineering, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Shyra J. Gardai
- Immunology, Pfizer,
Inc., 21823 30th Dr.
SE, Bothell, Washington 98021, United States
| | - Matthew R. Levengood
- ADC
Antibody Engineering, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| |
Collapse
|
14
|
Lim SH, Beers SA, Al-Shamkhani A, Cragg MS. Agonist Antibodies for Cancer Immunotherapy: History, Hopes, and Challenges. Clin Cancer Res 2024; 30:1712-1723. [PMID: 38153346 PMCID: PMC7615925 DOI: 10.1158/1078-0432.ccr-23-1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Immunotherapy is among the most promising new treatment modalities to arise over the last two decades; antibody drugs are delivering immunotherapy to millions of patients with many different types of cancer. Initial success with antibody therapeutics came in the form of direct targeting or cytotoxic antibodies, such as rituximab and trastuzumab, which bind directly to tumor cells to elicit their destruction. These were followed by immunomodulatory antibodies that elicit antitumor responses by either stimulating immune cells or relieving tumor-mediated suppression. By far the most successful approach in the clinic to date has been relieving immune suppression, with immune checkpoint blockade now a standard approach in the treatment of many cancer types. Despite equivalent and sometimes even more impressive effects in preclinical models, agonist antibodies designed to stimulate the immune system have lagged behind in their clinical translation. In this review, we document the main receptors that have been targeted by agonist antibodies, consider the various approaches that have been evaluated to date, detail what we have learned, and consider how their anticancer potential can be unlocked.
Collapse
Affiliation(s)
- Sean H. Lim
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Stephen A. Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Aymen Al-Shamkhani
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
15
|
Archer S, Brailey PM, Song M, Bartlett PD, Figueiredo I, Gurel B, Guo C, Brucklacher-Waldert V, Thompson HL, Akinwale J, Boyle SE, Rossant C, Birkett NR, Pizzey J, Maginn M, Legg J, Williams R, Johnston CM, Bland-Ward P, de Bono JS, Pierce AJ. CB307: A Dual Targeting Costimulatory Humabody VH Therapeutic for Treating PSMA-Positive Tumors. Clin Cancer Res 2024; 30:1595-1606. [PMID: 38593226 PMCID: PMC11016891 DOI: 10.1158/1078-0432.ccr-23-3052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 02/05/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE CD137 is a T- and NK-cell costimulatory receptor involved in consolidating immunologic responses. The potent CD137 agonist urelumab has shown clinical promise as a cancer immunotherapeutic but development has been hampered by on-target off-tumor toxicities. A CD137 agonist targeted to the prostate-specific membrane antigen (PSMA), frequently and highly expressed on castration-resistant metastatic prostate cancer (mCRPC) tumor cells, could bring effective immunotherapy to this immunologically challenging to address disease. EXPERIMENTAL DESIGN We designed and manufactured CB307, a novel half-life extended bispecific costimulatory Humabody VH therapeutic to elicit CD137 agonism exclusively in a PSMA-high tumor microenvironment (TME). The functional activity of CB307 was assessed in cell-based assays and in syngeneic mouse antitumor pharmacology studies. Nonclinical toxicology and toxicokinetic properties of CB307 were assessed in a good laboratory practice (GLP) compliant study in cynomolgus macaques. RESULTS CB307 provides effective CD137 agonism in a PSMA-dependent manner, with antitumor activity both in vitro and in vivo, and additional activity when combined with checkpoint inhibitors. A validated novel PSMA/CD137 IHC assay demonstrated a higher prevalence of CD137-positive cells in the PSMA-expressing human mCRPC TME with respect to primary lesions. CB307 did not show substantial toxicity in nonhuman primates and exhibited a plasma half-life supporting weekly clinical administration. CONCLUSIONS CB307 is a first-in-class immunotherapeutic that triggers potent PSMA-dependent T-cell activation, thereby alleviating toxicologic concerns against unrestricted CD137 agonism.
Collapse
Affiliation(s)
- Sophie Archer
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Phillip M. Brailey
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Minjung Song
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Phillip D. Bartlett
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Ines Figueiredo
- Cancer Biomarkers Group, The Institute of Cancer Research, London, United Kingdom
| | - Bora Gurel
- Cancer Biomarkers Group, The Institute of Cancer Research, London, United Kingdom
| | - Christina Guo
- Cancer Biomarkers Group, The Institute of Cancer Research, London, United Kingdom
- Prostate Cancer Targeted Therapies Group, Royal Marsden Hospital, Sutton, United Kingdom
| | | | | | - Jude Akinwale
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Samantha E. Boyle
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Christine Rossant
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Neil R. Birkett
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Julia Pizzey
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Mark Maginn
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - James Legg
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Richard Williams
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Colette M. Johnston
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Philip Bland-Ward
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Johann S. de Bono
- Cancer Biomarkers Group, The Institute of Cancer Research, London, United Kingdom
- Prostate Cancer Targeted Therapies Group, Royal Marsden Hospital, Sutton, United Kingdom
| | - Andrew J. Pierce
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
16
|
Chen DS. Immunity as biophysics at the surface of a T cell. Immunity 2024; 57:193-195. [PMID: 38354696 DOI: 10.1016/j.immuni.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Different antibodies can bind to the same targets on the surface of immune cells with opposite biologic effects. These effects-agonism, antagonism, or partial agonism-are so poorly understood that drug developers must screen antibodies for relevant desired characteristics. In this issue of Immunity, Lippert et al. define molecular mechanisms that dictate antibody behavior, ushering in an era of directed antibody design.
Collapse
|
17
|
Kopp A, Kwon H, Johnston C, Vance S, Legg J, Galson-Holt L, Thurber GM. Impact of tissue penetration and albumin binding on design of T cell targeted bispecific agents. Neoplasia 2024; 48:100962. [PMID: 38183712 PMCID: PMC10809211 DOI: 10.1016/j.neo.2023.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Bispecific agents are a rapidly growing class of cancer therapeutics, and immune targeted bispecific agents have the potential to expand functionality well beyond monoclonal antibody agents. Humabodies⁎ are fully human single domain antibodies that can be linked in a modular fashion to form multispecific therapeutics. However, the effect of heterogeneous delivery on the efficacy of crosslinking bispecific agents is currently unclear. In this work, we utilize a PSMA-CD137 Humabody with an albumin binding half-life extension (HLE) domain to determine the impact of tissue penetration on T cell activating bispecific agents. Using heterotypic spheroids, we demonstrate that increased tissue penetration results in higher T cell activation at sub-saturating concentrations. Next, we tested the effect of two different albumin binding moieties on tissue distribution using albumin-specific HLE domains with varying affinities for albumin and a non-specific lipophilic dye. The results show that a specific binding mechanism to albumin does not influence tissue penetration, but a non-specific mechanism reduced both spheroid uptake and distribution in the presence of albumin. These results highlight the potential importance of tissue penetration on bispecific agent efficacy and describe how the design parameters including albumin-binding domains can be selected to maximize the efficacy of bispecific agents.
Collapse
Affiliation(s)
- Anna Kopp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hyeyoung Kwon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | | | | | - James Legg
- Crescendo Biologics, Cambridge, United Kingdom
| | | | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
18
|
Romei MG, Leonard B, Katz ZB, Le D, Yang Y, Day ES, Koo CW, Sharma P, Bevers Iii J, Kim I, Dai H, Farahi F, Lin M, Shaw AS, Nakamura G, Sockolosky JT, Lazar GA. i-shaped antibody engineering enables conformational tuning of biotherapeutic receptor agonists. Nat Commun 2024; 15:642. [PMID: 38245524 PMCID: PMC10799922 DOI: 10.1038/s41467-024-44985-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
The ability to leverage antibodies to agonize disease relevant biological pathways has tremendous potential for clinical investigation. Yet while antibodies have been successful as antagonists, immune mediators, and targeting agents, they are not readily effective at recapitulating the biology of natural ligands. Among the important determinants of antibody agonist activity is the geometry of target receptor engagement. Here, we describe an engineering approach inspired by a naturally occurring Fab-Fab homotypic interaction that constrains IgG in a unique i-shaped conformation. i-shaped antibody (iAb) engineering enables potent intrinsic agonism of five tumor necrosis factor receptor superfamily (TNFRSF) targets. When applied to bispecific antibodies against the heterodimeric IL-2 receptor pair, constrained bispecific IgG formats recapitulate IL-2 agonist activity. iAb engineering provides a tool to tune agonist antibody function and this work provides a framework for the development of intrinsic antibody agonists with the potential for generalization across broad receptor classes.
Collapse
Affiliation(s)
- Matthew G Romei
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Brandon Leonard
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Zachary B Katz
- Department of Research Biology, Genentech Inc., South San Francisco, CA, USA
| | - Daniel Le
- Department of Microchemistry, Proteomic, Lipidomics, and Next Generation Sequencing, Genentech Inc., South San Francisco, CA, USA
| | - Yanli Yang
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Eric S Day
- Department of Pharma Technical Development, Genentech Inc., South San Francisco, CA, USA
| | - Christopher W Koo
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Preeti Sharma
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Jack Bevers Iii
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Ingrid Kim
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Huiguang Dai
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Farzam Farahi
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - May Lin
- Department of Protein Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Andrey S Shaw
- Department of Research Biology, Genentech Inc., South San Francisco, CA, USA
| | - Gerald Nakamura
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | | | - Greg A Lazar
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
19
|
Galvez-Cancino F, Simpson AP, Costoya C, Matos I, Qian D, Peggs KS, Litchfield K, Quezada SA. Fcγ receptors and immunomodulatory antibodies in cancer. Nat Rev Cancer 2024; 24:51-71. [PMID: 38062252 DOI: 10.1038/s41568-023-00637-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 12/24/2023]
Abstract
The discovery of both cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) as negative regulators of antitumour immunity led to the development of numerous immunomodulatory antibodies as cancer treatments. Preclinical studies have demonstrated that the efficacy of immunoglobulin G (IgG)-based therapies depends not only on their ability to block or engage their targets but also on the antibody's constant region (Fc) and its interactions with Fcγ receptors (FcγRs). Fc-FcγR interactions are essential for the activity of tumour-targeting antibodies, such as rituximab, trastuzumab and cetuximab, where the killing of tumour cells occurs at least in part due to these mechanisms. However, our understanding of these interactions in the context of immunomodulatory antibodies designed to boost antitumour immunity remains less explored. In this Review, we discuss our current understanding of the contribution of FcγRs to the in vivo activity of immunomodulatory antibodies and the challenges of translating results from preclinical models into the clinic. In addition, we review the impact of genetic variability of human FcγRs on the activity of therapeutic antibodies and how antibody engineering is being utilized to develop the next generation of cancer immunotherapies.
Collapse
Affiliation(s)
- Felipe Galvez-Cancino
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Alexander P Simpson
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Cristobal Costoya
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Ignacio Matos
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Danwen Qian
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Karl S Peggs
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| |
Collapse
|
20
|
Fromm G, de Silva S, Schreiber TH. Reconciling intrinsic properties of activating TNF receptors by native ligands versus synthetic agonists. Front Immunol 2023; 14:1236332. [PMID: 37795079 PMCID: PMC10546206 DOI: 10.3389/fimmu.2023.1236332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
The extracellular domain of tumor necrosis factor receptors (TNFR) generally require assembly into a homotrimeric quaternary structure as a prerequisite for initiation of signaling via the cytoplasmic domains. TNF receptor homotrimers are natively activated by similarly homo-trimerized TNF ligands, but can also be activated by synthetic agonists including engineered antibodies and Fc-ligand fusion proteins. A large body of literature from pre-clinical models supports the hypothesis that synthetic agonists targeting a diverse range of TNF receptors (including 4-1BB, CD40, OX40, GITR, DR5, TNFRSF25, HVEM, LTβR, CD27, and CD30) could amplify immune responses to provide clinical benefit in patients with infectious diseases or cancer. Unfortunately, however, the pre-clinical attributes of synthetic TNF receptor agonists have not translated well in human clinical studies, and have instead raised fundamental questions regarding the intrinsic biology of TNF receptors. Clinical observations of bell-shaped dose response curves have led some to hypothesize that TNF receptor overstimulation is possible and can lead to anergy and/or activation induced cell death of target cells. Safety issues including liver toxicity and cytokine release syndrome have also been observed in humans, raising questions as to whether those toxicities are driven by overstimulation of the targeted TNF receptor, a non-TNF receptor related attribute of the synthetic agonist, or both. Together, these clinical findings have limited the development of many TNF receptor agonists, and may have prevented generation of clinical data which reflects the full potential of TNF receptor agonism. A number of recent studies have provided structural insights into how different TNF receptor agonists bind and cluster TNF receptors, and these insights aid in deconvoluting the intrinsic biology of TNF receptors with the mechanistic underpinnings of synthetic TNF receptor agonist therapeutics.
Collapse
|
21
|
Nimmerjahn F, Vidarsson G, Cragg MS. Effect of posttranslational modifications and subclass on IgG activity: from immunity to immunotherapy. Nat Immunol 2023; 24:1244-1255. [PMID: 37414906 DOI: 10.1038/s41590-023-01544-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/15/2023] [Indexed: 07/08/2023]
Abstract
Humoral immune responses are characterized by complex mixtures of polyclonal antibody species varying in their isotype, target epitope specificity and affinity. Posttranslational modifications occurring during antibody production in both the antibody variable and constant domain create further complexity and can modulate antigen specificity and antibody Fc-dependent effector functions, respectively. Finally, modifications of the antibody backbone after secretion may further impact antibody activity. An in-depth understanding of how these posttranslational modifications impact antibody function, especially in the context of individual antibody isotypes and subclasses, is only starting to emerge. Indeed, only a minute proportion of this natural variability in the humoral immune response is currently reflected in therapeutic antibody preparations. In this Review, we summarize recent insights into how IgG subclass and posttranslational modifications impact IgG activity and discuss how these insights may be used to optimize therapeutic antibody development.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Division of Genetics, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
22
|
Leitner J, Egerer R, Waidhofer-Söllner P, Grabmeier-Pfistershammer K, Steinberger P. FcγR requirements and costimulatory capacity of Urelumab, Utomilumab, and Varlilumab. Front Immunol 2023; 14:1208631. [PMID: 37575254 PMCID: PMC10413977 DOI: 10.3389/fimmu.2023.1208631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Targeting costimulatory receptors of the tumor necrosis factor receptor (TNFR) superfamily with agonistic antibodies is a promising approach in cancer immuno therapy. It is known that their efficacy strongly depends on FcγR cross-linking. Methods In this study, we made use of a Jurkat-based reporter platform to analyze the influence of individual FcγRs on the costimulatory activity of the 41BB agonists, Urelumab and Utomilumab, and the CD27 agonist, Varlilumab. Results We found that Urelumab (IgG4) can activate 41BB-NFκB signaling without FcγR cross-linking, but the presence of the FcγRs (CD32A, CD32B, CD64) augments the agonistic activity of Urelumab. The human IgG2 antibody Utomilumab exerts agonistic function only when crosslinked via CD32A and CD32B. The human IgG1 antibody Varlilumab showed strong agonistic activity with all FcγRs tested. In addition, we analyzed the costimulatory effects of Urelumab, Utomilumab, and Varlilumab in primary human peripheral blood mononuclear cells (PBMCs). Interestingly, we observed a very weak capacity of Varlilumab to enhance cytokine production and proliferation of CD4 and CD8 T cells. In the presence of Varlilumab the percentage of annexin V positive T cells was increased, indicating that this antibody mediated FcγR-dependent cytotoxic effects. Conclusion Collectively, our data underscore the importance to perform studies in reductionist systems as well as in primary PBMC samples to get a comprehensive understanding of the activity of costimulation agonists.
Collapse
Affiliation(s)
- Judith Leitner
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ricarda Egerer
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Shen A, Liu W, Wang H, Zeng X, Wang M, Zhang D, Zhao Q, Fang Q, Wang F, Cheng L, Shen G, Li Y. A novel 4-1BB/HER2 bispecific antibody shows potent antitumor activities by increasing and activating tumor-infiltrating T cells. Am J Cancer Res 2023; 13:3246-3256. [PMID: 37559991 PMCID: PMC10408481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/12/2023] [Indexed: 08/11/2023] Open
Abstract
Resistance to HER2-targeted therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB/CD137 is a promising drug target as a costimulatory molecule of immune cells, no therapeutic drug has been approved in the clinic because of systemic toxicity or limited efficacy. Previously, we developed a humanized anti-HER2 monoclonal antibody (mAb) HuA21 and anti-4-1BB mAb HuB6 with distinct antigen epitopes for cancer therapy. Here, we generated an Fc-muted IgG4 HER2/4-1BB bispecific antibody (BsAb) HK006 by the fusion of HuB6 scFv and HuA21 Fab. HK006 exhibited synergistic antitumor activity by blocking HER2 signal transduction and stimulating the 4-1BB signaling pathway simultaneously and strictly dependent on HER2 expression in vitro and in vivo. Strikingly, HK006 treatment enhanced antitumor immunity by increasing and activating tumor-infiltrating T cells. Moreover, HK006 did not induce nonspecific production of proinflammatory cytokines and had no obvious toxicity in mice. Overall, these data demonstrated that HK006 should be a promising candidate for HER2-positive cancer immunotherapy.
Collapse
Affiliation(s)
- Aolin Shen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition TherapyHefei 230001, Anhui, China
| | - Wenting Liu
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| | - Xiaoli Zeng
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Mengli Wang
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Dayan Zhang
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Qun Zhao
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Qing Fang
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Fengrong Wang
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Liansheng Cheng
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition TherapyHefei 230001, Anhui, China
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
- Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd.Hefei 230088, Anhui, China
| | - Guodong Shen
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition TherapyHefei 230001, Anhui, China
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230001, Anhui, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| |
Collapse
|
24
|
Yan X, Ols S, Arcoverde Cerveira R, Lenart K, Hellgren F, Ye K, Cagigi A, Buggert M, Nimmerjahn F, Falkesgaard Højen J, Parera D, Pessara U, Fischer S, Loré K. Cell targeting and immunostimulatory properties of a novel Fcγ-receptor-independent agonistic anti-CD40 antibody in rhesus macaques. Cell Mol Life Sci 2023; 80:189. [PMID: 37353664 PMCID: PMC10289945 DOI: 10.1007/s00018-023-04828-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/25/2023]
Abstract
Targeting CD40 by agonistic antibodies used as vaccine adjuvants or for cancer immunotherapy is a strategy to stimulate immune responses. The majority of studied agonistic anti-human CD40 antibodies require crosslinking of their Fc region to inhibitory FcγRIIb to induce immune stimulation although this has been associated with toxicity in previous studies. Here we introduce an agonistic anti-human CD40 monoclonal IgG1 antibody (MAB273) unique in its specificity to the CD40L binding site of CD40 but devoid of Fcγ-receptor binding. We demonstrate rapid binding of MAB273 to B cells and dendritic cells resulting in activation in vitro on human cells and in vivo in rhesus macaques. Dissemination of fluorescently labeled MAB273 after subcutaneous administration was found predominantly at the site of injection and specific draining lymph nodes. Phenotypic cell differentiation and upregulation of genes associated with immune activation were found in the targeted tissues. Antigen-specific T cell responses were enhanced by MAB273 when given in a prime-boost regimen and for boosting low preexisting responses. MAB273 may therefore be a promising immunostimulatory adjuvant that warrants future testing for therapeutic and prophylactic vaccination strategies.
Collapse
Affiliation(s)
- Xianglei Yan
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Sebastian Ols
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Klara Lenart
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Fredrika Hellgren
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Kewei Ye
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Alberto Cagigi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jesper Falkesgaard Højen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | | | | | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden.
- Center of Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
25
|
Liu G, Luo P. Targeting CD137 (4-1BB) towards improved safety and efficacy for cancer immunotherapy. Front Immunol 2023; 14:1208788. [PMID: 37334375 PMCID: PMC10272836 DOI: 10.3389/fimmu.2023.1208788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
T cells play a critical role in antitumor immunity, where T cell activation is regulated by both inhibitory and costimulatory receptor signaling that fine-tune T cell activity during different stages of T cell immune responses. Currently, cancer immunotherapy by targeting inhibitory receptors such as CTLA-4 and PD-1/L1, and their combination by antagonist antibodies, has been well established. However, developing agonist antibodies that target costimulatory receptors such as CD28 and CD137/4-1BB has faced considerable challenges, including highly publicized adverse events. Intracellular costimulatory domains of CD28 and/or CD137/4-1BB are essential for the clinical benefits of FDA-approved chimeric antigen receptor T cell (CAR-T) therapies. The major challenge is how to decouple efficacy from toxicity by systemic immune activation. This review focuses on anti-CD137 agonist monoclonal antibodies with different IgG isotypes in clinical development. It discusses CD137 biology in the context of anti-CD137 agonist drug discovery, including the binding epitope selected for anti-CD137 agonist antibody in competition or not with CD137 ligand (CD137L), the IgG isotype of antibodies selected with an impact on crosslinking by Fc gamma receptors, and the conditional activation of anti-CD137 antibodies for safe and potent engagement with CD137 in the tumor microenvironment (TME). We discuss and compare the potential mechanisms/effects of different CD137 targeting strategies and agents under development and how rational combinations could enhance antitumor activities without amplifying the toxicity of these agonist antibodies.
Collapse
Affiliation(s)
- Guizhong Liu
- Adagene Inc., San Diego, CA, United States
- Adagene (Suzhou) Limited., Suzhou, China
| | - Peter Luo
- Adagene Inc., San Diego, CA, United States
- Adagene (Suzhou) Limited., Suzhou, China
| |
Collapse
|
26
|
Cheng LS, Zhu M, Gao Y, Liu WT, Yin W, Zhou P, Zhu Z, Niu L, Zeng X, Zhang D, Fang Q, Wang F, Zhao Q, Zhang Y, Shen G. An Fc-muted bispecific antibody targeting PD-L1 and 4-1BB induces antitumor immune activity in colorectal cancer without systemic toxicity. Cell Mol Biol Lett 2023; 28:47. [PMID: 37259060 DOI: 10.1186/s11658-023-00461-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Resistance to immune checkpoint inhibitor (ICI) therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB is a promising drug target as a costimulatory molecule of immune cells, no 4-1BB agonist has been given clinical approval because of severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy. METHODS HK010 was generated by antibody engineering, and the Fab/antigen complex structure was analyzed using crystallography. The affinity and activity of HK010 were detected by multiple in vitro bioassays, including enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), flow cytometry, and luciferase-reporter assays. Humanized mice bearing human PD-L1-expressing MC38 (MC38/hPDL1) or CT26 (CT26/hPDL1) tumor transplants were established to assess the in vivo antitumor activity of HK010. The pharmacokinetics (PK) and toxicity of HK010 were evaluated in cynomolgus monkeys. RESULTS HK010 was generated as an Fc-muted immunoglobulin (Ig)G4 PD-L1x4-1BB bispecific antibody (BsAb) with a distinguished Fab/antigen complex structure, and maintained a high affinity for human PD-L1 (KD: 2.27 nM) and low affinity for human 4-1BB (KD: 493 nM) to achieve potent PD-1/PD-L1 blockade and appropriate 4-1BB agonism. HK010 exhibited synergistic antitumor activity by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously, and being strictly dependent on the PD-L1 receptor in vitro and in vivo. In particular, when the dose was decreased to 0.3 mg/kg, HK010 still showed a strong antitumor effect in a humanized mouse model bearing MC38/hPDL1 tumors. Strikingly, HK010 treatment enhanced antitumor immunity and induced durable antigen-specific immune memory to prevent rechallenged tumor growth by recruiting CD8+ T cells and other lymphocytes into tumor tissue and activating tumor-infiltrating lymphocytes. Moreover, HK010 not only did not induce nonspecific production of proinflammatory cytokines but was also observed to be well tolerated in cynomolgus monkeys in 5 week repeated-dose (5, 15, or 50 mg/kg) and single-dose (75 or 150 mg/kg) toxicity studies. CONCLUSION We generated an Fc-muted anti-PD-L1x4-1BB BsAb, HK010, with a distinguished structural interaction with PD-L1 and 4-1BB that exhibits a synergistic antitumor effect by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously. It is strictly dependent on the PD-L1 receptor with no systemic toxicity, which may offer a new option for cancer immunotherapy.
Collapse
Affiliation(s)
- Lian-Sheng Cheng
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
- Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd., Hefei, 230088, Anhui, China
| | - Min Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yan Gao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Wen-Ting Liu
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Wu Yin
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
| | - Pengfei Zhou
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Zhongliang Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Liwen Niu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaoli Zeng
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Dayan Zhang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Qing Fang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Fengrong Wang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Qun Zhao
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Yan Zhang
- School of Health Service Management, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Guodong Shen
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China.
| |
Collapse
|
27
|
Dadas O, Ertay A, Cragg MS. Delivering co-stimulatory tumor necrosis factor receptor agonism for cancer immunotherapy: past, current and future perspectives. Front Immunol 2023; 14:1147467. [PMID: 37180119 PMCID: PMC10167284 DOI: 10.3389/fimmu.2023.1147467] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor necrosis factor superfamily (TNFSF) and their receptors (TNFRSF) are important regulators of the immune system, mediating proliferation, survival, differentiation, and function of immune cells. As a result, their targeting for immunotherapy is attractive, although to date, under-exploited. In this review we discuss the importance of co-stimulatory members of the TNFRSF in optimal immune response generation, the rationale behind targeting these receptors for immunotherapy, the success of targeting them in pre-clinical studies and the challenges in translating this success into the clinic. The efficacy and limitations of the currently available agents are discussed alongside the development of next generation immunostimulatory agents designed to overcome current issues, and capitalize on this receptor class to deliver potent, durable and safe drugs for patients.
Collapse
Affiliation(s)
- Osman Dadas
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ayse Ertay
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
28
|
Yu X, Orr CM, Chan HTC, James S, Penfold CA, Kim J, Inzhelevskaya T, Mockridge CI, Cox KL, Essex JW, Tews I, Glennie MJ, Cragg MS. Reducing affinity as a strategy to boost immunomodulatory antibody agonism. Nature 2023; 614:539-547. [PMID: 36725933 DOI: 10.1038/s41586-022-05673-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 12/20/2022] [Indexed: 02/03/2023]
Abstract
Antibody responses during infection and vaccination typically undergo affinity maturation to achieve high-affinity binding for efficient neutralization of pathogens1,2. Similarly, high affinity is routinely the goal for therapeutic antibody generation. However, in contrast to naturally occurring or direct-targeting therapeutic antibodies, immunomodulatory antibodies, which are designed to modulate receptor signalling, have not been widely examined for their affinity-function relationship. Here we examine three separate immunologically important receptors spanning two receptor superfamilies: CD40, 4-1BB and PD-1. We show that low rather than high affinity delivers greater activity through increased clustering. This approach delivered higher immune cell activation, in vivo T cell expansion and antitumour activity in the case of CD40. Moreover, an inert anti-4-1BB monoclonal antibody was transformed into an agonist. Low-affinity variants of the clinically important antagonistic anti-PD-1 monoclonal antibody nivolumab also mediated more potent signalling and affected T cell activation. These findings reveal a new paradigm for augmenting agonism across diverse receptor families and shed light on the mechanism of antibody-mediated receptor signalling. Such affinity engineering offers a rational, efficient and highly tuneable solution to deliver antibody-mediated receptor activity across a range of potencies suitable for translation to the treatment of human disease.
Collapse
Affiliation(s)
- Xiaojie Yu
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Christian M Orr
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - H T Claude Chan
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Sonya James
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Christine A Penfold
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Jinny Kim
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Tatyana Inzhelevskaya
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - C Ian Mockridge
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Kerry L Cox
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Jonathan W Essex
- Institute for Life Sciences, University of Southampton, Southampton, UK
- School of Chemistry, University of Southampton, Southampton, UK
| | - Ivo Tews
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Biological Sciences, University of Southampton, Southampton, UK
| | - Martin J Glennie
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
29
|
Lang I, Zaitseva O, Wajant H. FcγRs and Their Relevance for the Activity of Anti-CD40 Antibodies. Int J Mol Sci 2022; 23:12869. [PMID: 36361658 PMCID: PMC9655775 DOI: 10.3390/ijms232112869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 03/14/2024] Open
Abstract
Inhibitory targeting of the CD40L-CD40 system is a promising therapeutic option in the field of organ transplantation and is also attractive in the treatment of autoimmune diseases. After early complex results with neutralizing CD40L antibodies, it turned out that lack of Fcγ receptor (FcγR)-binding is the crucial factor for the development of safe inhibitory antibodies targeting CD40L or CD40. Indeed, in recent years, blocking CD40 antibodies not interacting with FcγRs, has proven to be well tolerated in clinical studies and has shown initial clinical efficacy. Stimulation of CD40 is also of considerable therapeutic interest, especially in cancer immunotherapy. CD40 can be robustly activated by genetically engineered variants of soluble CD40L but also by anti-CD40 antibodies. However, the development of CD40L-based agonists is biotechnologically and pharmacokinetically challenging, and anti-CD40 antibodies typically display only strong agonism in complex with FcγRs or upon secondary crosslinking. The latter, however, typically results in poorly developable mixtures of molecule species of varying stoichiometry and FcγR-binding by anti-CD40 antibodies can elicit unwanted side effects such as antibody-dependent cellular cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP) of CD40 expressing immune cells. Here, we summarize and compare strategies to overcome the unwanted target cell-destroying activity of anti-CD40-FcγR complexes, especially the use of FcγR type-specific mutants and the FcγR-independent cell surface anchoring of bispecific anti-CD40 fusion proteins. Especially, we discuss the therapeutic potential of these strategies in view of the emerging evidence for the dose-limiting activities of systemic CD40 engagement.
Collapse
Affiliation(s)
| | | | - Harald Wajant
- Department of Internal Medicine II, Division of Molecular Internal Medicine, University Hospital Würzburg, Auvera Haus, Grombühlstrasse 12, 97080 Würzburg, Germany
| |
Collapse
|
30
|
Orr CM, Fisher H, Yu X, Chan CHT, Gao Y, Duriez PJ, Booth SG, Elliott I, Inzhelevskaya T, Mockridge I, Penfold CA, Wagner A, Glennie MJ, White AL, Essex JW, Pearson AR, Cragg MS, Tews I. Hinge disulfides in human IgG2 CD40 antibodies modulate receptor signaling by regulation of conformation and flexibility. Sci Immunol 2022; 7:eabm3723. [PMID: 35857577 DOI: 10.1126/sciimmunol.abm3723] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
Antibodies protect from infection, underpin successful vaccines and elicit therapeutic responses in otherwise untreatable cancers and autoimmune conditions. The human IgG2 isotype displays a unique capacity to undergo disulfide shuffling in the hinge region, leading to modulation of its ability to drive target receptor signaling (agonism) in a variety of important immune receptors, through hitherto unexplained molecular mechanisms. To address the underlying process and reveal how hinge disulfide orientation affects agonistic activity, we generated a series of cysteine to serine exchange variants in the hinge region of the clinically relevant monoclonal antibody ChiLob7/4, directed against the key immune receptor CD40. We report how agonistic activity varies with disulfide pattern and is afforded by the presence of a disulfide crossover between F(ab) arms in the agonistic forms, independently of epitope, as observed in the determined crystallographic structures. This structural "switch" affects directly on antibody conformation and flexibility. Small-angle x-ray scattering and ensemble modeling demonstrated that the least flexible variants adopt the fewest conformations and evoke the highest levels of receptor agonism. This covalent change may be amenable for broad implementation to modulate receptor signaling in an epitope-independent manner in future therapeutics.
Collapse
Affiliation(s)
- Christian M Orr
- University of Southampton, Biological Sciences, Southampton SO17 1BJ, UK
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
- Hamburg Centre for Ultrafast Imaging CFEL, Hamburg 22761, Germany
- Diamond Light Source, Didcot OX11 0FA, UK
| | - Hayden Fisher
- University of Southampton, Biological Sciences, Southampton SO17 1BJ, UK
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
| | - Xiaojie Yu
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
| | - Claude H-T Chan
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
| | - Yunyun Gao
- Hamburg Centre for Ultrafast Imaging CFEL, Hamburg 22761, Germany
- Institute for Nanostructure and Solid State Physics, Hamburg 22761, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany
| | - Patrick J Duriez
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
- University of Southampton, CRUK Protein Core Facility, Southampton, SO16 6YD, UK
| | - Steven G Booth
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
| | - Isabel Elliott
- University of Southampton, Biological Sciences, Southampton SO17 1BJ, UK
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
- University of Southampton, School of Chemistry, Southampton SO17 1BJ, UK
| | | | - Ian Mockridge
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
| | - Christine A Penfold
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
| | | | - Martin J Glennie
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
| | - Ann L White
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
- UCB Pharma, Slough SL1 3WE, UK
| | - Jonathan W Essex
- University of Southampton, School of Chemistry, Southampton SO17 1BJ, UK
- University of Southampton, Institute for Life Sciences, Southampton SO17 1BJ, UK
| | - Arwen R Pearson
- Hamburg Centre for Ultrafast Imaging CFEL, Hamburg 22761, Germany
- Institute for Nanostructure and Solid State Physics, Hamburg 22761, Germany
| | - Mark S Cragg
- University of Southampton, Centre for Cancer Immunology, Southampton SO16 6YD, UK
- University of Southampton, Institute for Life Sciences, Southampton SO17 1BJ, UK
| | - Ivo Tews
- University of Southampton, Biological Sciences, Southampton SO17 1BJ, UK
- University of Southampton, Institute for Life Sciences, Southampton SO17 1BJ, UK
| |
Collapse
|
31
|
Liu H, Wu W, Sun G, Chia T, Cao L, Liu X, Guan J, Fu F, Yao Y, Wu Z, Zhou S, Wang J, Lu J, Kuang Z, Wu M, He L, Shao Z, Wu D, Chen B, Xu W, Wang Z, He K. Optimal target saturation of ligand-blocking anti-GITR antibody IBI37G5 dictates FcγR-independent GITR agonism and antitumor activity. Cell Rep Med 2022; 3:100660. [PMID: 35732156 PMCID: PMC9245059 DOI: 10.1016/j.xcrm.2022.100660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/26/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
Glucocorticoid-induced tumor necrosis factor receptor (GITR) is a co-stimulatory receptor and an important target for cancer immunotherapy. We herein present a potent FcγR-independent GITR agonist IBI37G5 that can effectively activate effector T cells and synergize with anti-programmed death 1 (PD1) antibody to eradicate established tumors. IBI37G5 depends on both antibody bivalency and GITR homo-dimerization for efficient receptor cross-linking. Functional analyses reveal bell-shaped dose responses due to the unique 2:2 antibody-receptor stoichiometry required for GITR activation. Antibody self-competition is observed after concentration exceeded that of 100% receptor occupancy (RO), which leads to antibody monovalent binding and loss of activity. Retrospective pharmacokinetics/pharmacodynamics analysis demonstrates that the maximal efficacy is achieved at medium doses with drug exposure near saturating GITR occupancy during the dosing cycle. Finally, we propose an alternative dose-finding strategy that does not rely on the traditional maximal tolerated dose (MTD)-based paradigm but instead on utilizing the RO-function relations as biomarker to guide the clinical translation of GITR and similar co-stimulatory agonists.
Collapse
Affiliation(s)
- Huisi Liu
- Department of Immunology, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Weiwei Wu
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Gangyu Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tiongsun Chia
- Department of Immunology, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Lei Cao
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Xiaodan Liu
- Department of Immunology, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Jian Guan
- Department of Immunology, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Fenggen Fu
- Department of Antibody Discovery and Protein Engineering, Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Ying Yao
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Zhihai Wu
- Department of Antibody Discovery and Protein Engineering, Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Shuaixiang Zhou
- Department of Antibody Discovery and Protein Engineering, Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Jie Wang
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Jia Lu
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Zhihui Kuang
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Min Wu
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Luan He
- Department of Immunology, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Zhiyuan Shao
- Department of Antibody Discovery and Protein Engineering, Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Dongdong Wu
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Bingliang Chen
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Wenqing Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhizhi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Kaijie He
- Department of Immunology, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China.
| |
Collapse
|
32
|
Schluck M, Eggermont LJ, Weiden J, Popelier C, Weiss L, Pilzecker B, Kolder S, Heinemans A, Rodriguez Mogeda C, Verdoes M, Figdor CG, Hammink R. Dictating Phenotype, Function, and Fate of Human T Cells with Co‐Stimulatory Antibodies Presented by Filamentous Immune Cell Mimics. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marjolein Schluck
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Loek J. Eggermont
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Jorieke Weiden
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Carlijn Popelier
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Lea Weiss
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Bas Pilzecker
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Sigrid Kolder
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Anne Heinemans
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Carla Rodriguez Mogeda
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Roel Hammink
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| |
Collapse
|
33
|
Trivedi A, Bade G, Madan K, Ahmed Bhat M, Guleria R, Talwar A. Effect of Smoking and Its Cessation on the Transcript Profile of Peripheral Monocytes in COPD Patients. Int J Chron Obstruct Pulmon Dis 2022; 17:65-77. [PMID: 35027824 PMCID: PMC8749770 DOI: 10.2147/copd.s337635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Rationale Smoking is the primary cause of chronic obstructive pulmonary disease (COPD); however, only 10–20% of smokers develop the disease suggesting possible genomic association in the causation of the disease. In the present study, we aimed to explore the whole genome transcriptomics of blood monocytes from COPD smokers (COPD-S), COPD Ex-smokers (COPD-ExS), Control smokers (CS), and Control Never-smokers (CNS) to understand the differential effects of smoking, COPD and that of smoking cessation. Methods Exploratory analyses in form of principal component analysis (PCA) and hierarchical component analysis (uHCA) were performed to evaluate the similarity in gene expression patterns, while differential expression analyses of different supervised groups of smokers and never smokers were performed to study the differential effect of smoking, COPD and smoking cessation. Differentially expressed genes among groups were subjected to post-hoc enrichment analysis. Candidate genes were subjected to external validation by quantitative RT-PCR experiments. Results CNS made a cluster completely segregated from the other three subgroups (CS, COPDS and COPD-ExS). About 550, 8 and 5 genes showed differential expression, respectively, between CNS and CS, between CS and COPD-S, and between COPD-S and COPD-ExS. Apoptosis, immune response, cell adhesion, and inflammation were the top process networks identified in enrichment analysis. Two candidate genes (CASP9 and TNFRSF1A) found to be integral to several pathways in enrichment analysis were validated in an external validation experiment. Conclusion Control never smokers had formed a cluster distinctively separated from all smokers (COPDS, COPD-ExS, and CS), while amongst all smokers, control smokers had aggregated in a separate cluster. Smoking cessation appeared beneficial if started at an early stage as many genes altered due to smoking started reverting towards the baseline, whereas only a few COPD-related genes showed reversal after smoking cessation.
Collapse
Affiliation(s)
- Anjali Trivedi
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Geetanjali Bade
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Karan Madan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Muzaffer Ahmed Bhat
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Anjana Talwar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
34
|
Hussain K, Cragg MS, Beers SA. Remodeling the Tumor Myeloid Landscape to Enhance Antitumor Antibody Immunotherapies. Cancers (Basel) 2021; 13:4904. [PMID: 34638388 PMCID: PMC8507767 DOI: 10.3390/cancers13194904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 12/30/2022] Open
Abstract
Among the diverse tumor resident immune cell types, tumor-associated macrophages (TAMs) are often the most abundant, possess an anti-inflammatory phenotype, orchestrate tumor immune evasion and are frequently associated with poor prognosis. However, TAMs can also be harnessed to destroy antibody-opsonized tumor cells through the process of antibody-dependent cellular phagocytosis (ADCP). Clinically important tumor-targeting monoclonal antibodies (mAb) such as Rituximab, Herceptin and Cetuximab, function, at least in part, by inducing macrophages to eliminate tumor cells via ADCP. For IgG mAb, this is mediated by antibody-binding activating Fc gamma receptors (FcγR), with resultant phagocytic activity impacted by the level of co-engagement with the single inhibitory FcγRIIb. Approaches to enhance ADCP in the tumor microenvironment include the repolarization of TAMs to proinflammatory phenotypes or the direct augmentation of ADCP by targeting so-called 'phagocytosis checkpoints'. Here we review the most promising new strategies targeting the cell surface molecules present on TAMs, which include the inhibition of 'don't eat me signals' or targeting immunostimulatory pathways with agonistic mAb and small molecules to augment tumor-targeting mAb immunotherapies and overcome therapeutic resistance.
Collapse
Affiliation(s)
| | | | - Stephen A. Beers
- Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK; (K.H.); (M.S.C.)
| |
Collapse
|