1
|
Leng S, Zhang X, Zhao R, Jiang N, Liu X, Li X, Feng Q, Sheng Z, Wang S, Peng J, Hu X. Mechanical activation of adipose tissue macrophages mediated by Piezo1 protects against diet-induced obesity by regulating sympathetic activity. Metabolism 2025; 168:156262. [PMID: 40204210 DOI: 10.1016/j.metabol.2025.156262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Obesity-induced mechanical changes in white adipose tissue (WAT), including adipocyte hypertrophy and fibrosis, are hypothesized to alter adipose tissue macrophage (ATM) function through mechanosensitive pathways. This study aimed to determine whether the mechanosensor Piezo1 in ATMs regulates obesity-associated metabolic dysfunction and thermogenesis. METHODS To investigate macrophage Piezo1 in obesity, myeloid-specific Piezo1-deficient mice (Piezo1∆lyz2) and littermate controls (Piezo1flox/+) were fed a high-fat diet (HFD) to induce obesity for 12 weeks. Metabolic assessments (GTT/ITT), tissue analyses (H&E staining, micro-CT), and RNA-seq were performed. Bone marrow transplantation and co-culture experiments (BMDMs with 3T3L1 adipocytes/PC12 neurons) were performed to evaluate macrophage-adipocyte/neuron crosstalk. Sympathetic activity was tested via cold exposure, NE measurement, and 6-OHDA/αMPT denervation. Molecular mechanisms were investigated using ChIP-qPCR. RESULTS Piezo1∆lyz2 mice exhibited aggravated HFD-induced obesity and insulin resistance despite reduced pro-inflammatory responses. Piezo1 deficiency in ATMs suppressed Slit3-ROBO1 signaling, leading to diminished NE secretion and impaired thermogenesis. Pharmacological inhibition of NE release (6-OHDA) or ROBO1 knockdown (shROBO1) abolished thermogenic disparities between Piezo1∆lyz2 and control mice. Mechanistically, Piezo1 activation triggered SP1 nuclear translocation, directly binding to the Slit3 promoter to drive Slit3 transcription and secretion. CONCLUSION Piezo1 in ATMs mitigates obesity progression by promoting Slit3-ROBO1-dependent NE secretion and thermogenesis, independent of its pro-inflammatory role. This mechanosensitive pathway links WAT mechanical remodeling to metabolic regulation, which may offer a novel approach for managing obesity.
Collapse
Affiliation(s)
- Shaoqiu Leng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoyu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, China
| | - Ruxia Zhao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Nan Jiang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyue Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Zi Sheng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shuwen Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, China.
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Xiang Hu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Sardar MA, Abbasian S, Moghavemi H, Karabi M. HIIT may ameliorate inter-organ crosstalk between liver and hypothalamus of HFD-induced MAFLD rats; A two-phase study to investigate the effect of exercise intensity as a stressor. Brain Res 2025; 1856:149591. [PMID: 40120709 DOI: 10.1016/j.brainres.2025.149591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Previous studies demonstrate that GDF15 and its related signaling activators may be affected by exercise training, leading to the suppression of inflammatory factors and the promotion of immune-metabolic balance. Therefore, the purpose of the study was to evaluate the effect of high-intensity interval training (HIIT) on amelioration of inter-organ crosstalk between liver and hypothalamus of the high-fat diet (HFD)-induced metabolic dysfunction-associated fatty liver disease (MAFLD) rats in a two-phase study. In this regard, rats were initially divided into two groups, the normal diet-inactive (NS) and the HFD groups. HFD course lasted 12 weeks to induce MAFLD in the latter group. After ensuring the induction of MAFLD, 25 rats were divided into three groups: the HFD-inactive group (HS), the HFD-HIIT group (HH), as well as the HFD-aerobic group (HA). The training interventions were consistently applied over a period of eight weeks, five days a week, with each session lasting 40-60 min, and the duration of the whole research was 21 weeks. The results of this study displayed that HIIT intervention promotes hypothalamic Gdf15 gene expression and there were similar alterations in genes expression of Foxo1 and Akt2. Moreover, our results confirmed that HIIT ameliorated hypothalamic NFKB gene expression and there was a similar trend in genes expression of Tnfa and Il1b following both HIIT as well as aerobic training protocols. Taking these findings together, it is concluded that interventions, particularly exercise training, uniquely contribute to the reduction of hypothalamic-associated inflammatory responses that result in prolonged and chronic increases in GDF15.
Collapse
Affiliation(s)
- Mohammad Ali Sardar
- Department of General Courses, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Abbasian
- Department of Physical Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.
| | - Hamid Moghavemi
- Department of Exercise Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mina Karabi
- Department of Sport Sciences, Khavaran Institute of Higher Education, Mashhad, Iran
| |
Collapse
|
3
|
Otoda T, Aihara KI, Takayama T. Lysosomal Stress in Cardiovascular Diseases: Therapeutic Potential of Cardiovascular Drugs and Future Directions. Biomedicines 2025; 13:1053. [PMID: 40426881 DOI: 10.3390/biomedicines13051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/29/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Lysosomal dysfunction has emerged as a central contributor to the pathogenesis of cardiovascular diseases (CVDs), particularly due to its involvement in chronic inflammation, lipid dysregulation, and oxidative stress. This review highlights the multifaceted roles of lysosomes in CVD pathophysiology, focusing on key mechanisms such as NLRP3 inflammasome activation, TFEB-mediated autophagy regulation, ferroptosis, and the role of apolipoprotein M (ApoM) in preserving lysosomal integrity. Additionally, we discuss how impaired lysosomal acidification, mediated by V-ATPase, contributes to lipid-induced cardiac dysfunction. Therapeutically, several pharmacological agents, such as statins, SGLT2 inhibitors, TRPML1 agonists, resveratrol, curcumin, and ferroptosis modulators (e.g., GLS1 activators and icariin), have demonstrated promise in restoring lysosomal function, enhancing autophagic flux, and reducing inflammatory and oxidative injury in both experimental models and early clinical settings. However, key challenges remain, including limitations in drug delivery systems, the absence of lysosome-specific biomarkers, and insufficient clinical validation of these strategies. Future research should prioritize the development of reliable diagnostic tools for lysosomal dysfunction, the optimization of targeted drug delivery, and large-scale clinical trials to validate therapeutic efficacy. Incorporating lysosome-modulating approaches into standard cardiovascular care may offer a new precision medicine paradigm for managing CVD progression.
Collapse
Affiliation(s)
- Toshiki Otoda
- Division of General Medicine, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi, Tokyo 173-8610, Japan
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Ken-Ichi Aihara
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Tadateru Takayama
- Division of General Medicine, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi, Tokyo 173-8610, Japan
| |
Collapse
|
4
|
Pierre L, Juszczak F, Delmotte V, Decarnoncle M, Ledoux B, Bultot L, Bertrand L, Boonen M, Renard P, Arnould T, Declèves AE. AMPK protects proximal tubular epithelial cells from lysosomal dysfunction and dedifferentiation induced by lipotoxicity. Autophagy 2025; 21:860-880. [PMID: 39675352 PMCID: PMC11925112 DOI: 10.1080/15548627.2024.2435238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Renal proximal tubules are a primary site of injury in metabolic diseases. In obese patients and animal models, proximal tubular epithelial cells (PTECs) display dysregulated lipid metabolism, organelle dysfunctions, and oxidative stress that contribute to interstitial inflammation, fibrosis and ultimately end-stage renal failure. Our research group previously pointed out AMP-activated protein kinase (AMPK) decline as a driver of obesity-induced renal disease. Because PTECs display high macroautophagic/autophagic activity and rely heavily on their endo-lysosomal system, we investigated the effect of lipid stress on autophagic flux and lysosomes in these cells. Using a model of highly differentiated primary PTECs challenged with palmitate, our data placed lysosomes at the cornerstone of the lipotoxic phenotype. As soon as 6 h after palmitate exposure, cells displayed impaired lysosomal acidification subsequently leading to autophagosome accumulation and activation of lysosomal biogenesis. We also showed the inability of lysosomal quality control to restore acidic pH which finally drove PTECs dedifferentiation. When palmitate-induced AMPK activity decline was prevented by AMPK activators, lysosomal acidification and the differentiation profile of PTECs were preserved. Our work provided key insights on the importance of lysosomes in PTECs homeostasis and lipotoxicity and demonstrated the potential of AMPK in protecting the organelle from lipid stress.Abbreviation: ACAC: acetyl-CoA carboxylase; ACTB: actin beta; AICAR: 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside; AMPK: AMP-activated protein kinase; APQ1: aquaporin 1 (Colton blood group); BSA: bovine serum albumin; CDH16: cadherin 16; CKD: chronic kidney disease; CTSB: cathepsin B; CTSD: cathepsin D; EPB41L5: erythrocyte membrane protein band 4.1 like 5; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; EMT: epithelial-to-mesenchymal transition; FA: fatty acid; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GFP: green fluorescent protein; GUSB: glucuronidase beta; HEXB: hexosaminidase subunit beta; LAMP: lysosomal associated membrane protein; LD: lipid droplet; LGALS3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester hydrobromide; LMP: lysosomal membrane permeabilization; LRP2: LDL receptor related protein 2; LSD: lysosomal storage disorder; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCOLN1: mucolipin TRP cation channel 1; MG132: N-benzyloxycarbonyl-L-leucyl-L-leucyl-L-leucinal; MmPTECs: Mus musculus (mouse) proximal tubular epithelial cells; MTORC1: mechanistic target of rapamycin kinase complex 1; OA: oleate; PA: palmitate; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PTs: proximal tubules; PTECs: proximal tubular epithelial cells; PRKAA: protein kinase AMP-activated catalytic subunit alpha; RFP: red fluorescent protein; RPS6KB: ribosomal protein S6 kinase B; SLC5A2: solute carrier family 5 member 2; SOX9: SRY-box transcription factor 9; SQSTM1: sequestosome 1; TFEB: transcription factor EB; Ub: ubiquitin; ULK1: unc-51 like autophagy activating kinase 1; VIM: vimentin.
Collapse
Affiliation(s)
- Louise Pierre
- Laboratory of Biochemistry and Cell Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Florian Juszczak
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Valentine Delmotte
- Laboratory of Biochemistry and Cell Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Morgane Decarnoncle
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Benjamin Ledoux
- Laboratory of Biochemistry and Cell Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Laurent Bultot
- Pole of Cardiovascular Research, Experimental and Clinical Research Institute (CARD), UCLouvain, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Experimental and Clinical Research Institute (CARD), UCLouvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Marielle Boonen
- URPhyM, Intracellular Trafficking Biology, NARILIS, University of Namur, Namur, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Anne-Emilie Declèves
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| |
Collapse
|
5
|
Wang P, Li J, Li CG, Zhou X, Chen X, Zhu M, Wang H. Restoring Autophagy by Exercise Ameliorates Insulin Resistance Partly via Calcineurin-Driven TFEB Nuclear Translocation. Clin Exp Pharmacol Physiol 2025; 52:e70010. [PMID: 39787618 DOI: 10.1111/1440-1681.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 01/12/2025]
Abstract
Exercise activates autophagy and lysosome system in skeletal muscle, which are known to play an important role in metabolic adaptation. However, the mechanism of exercise-activated autophagy and lysosome system in obese insulin resistance remains covert. In this study, we investigated the role of exercise-induced activation of autophagy and lysosome system in improving glucose metabolism of skeletal muscle. Male C57BL/6 mice were randomly divided into five groups: the chow diet (CD) group, the high-fat diet (HFD) group, the high-fat diet plus exercise (HFD-E) group and the HFD-E treated with calcineurin inhibitor FK506 (HFD-E-F) or saline (HFD-E-S) groups. The mice in exercise groups (HFD-E, HFD-E-F and HFD-E-S) were subjected to aerobic treadmill exercise (speed at 12 m/min for 1 h per session, 0° slope, 5 days per week for 12 weeks). Mice of HFD-E-F group were intraperitoneally administered FK506 (1 mg/kg), once each day for 2 weeks before the end of exercise. Expressions pTFEB, T-TFEB and autophagy-lysosome markers, including Beclin1, LC3, ULK1, SQSTM1, LAMP1, CTSD and CTSL proteins in gastrocnemius muscle were analysed. We demonstrated that HFD induced insulin resistance and decreased autophagy-lysosomal proteins and the exercise significantly increased transcription factor EB (TFEB) translocation from the cytoplasm to the nucleus, restored the impaired autophagy-lysosomal-related protein expressions, and improved glucose metabolism. The increase in TFEB nuclear translocation was partly blocked by the calcineurin inhibitor FK506. Our results suggest that exercise promotes autophagy and lysosome restoration by regulating calcineurin-mediated TFEB nuclear translocation, ultimately alleviating HFD-induced insulin resistance in mice skeletal muscle.
Collapse
Affiliation(s)
- Ping Wang
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| | - Jiaxin Li
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales, Australia
| | - Xiaolong Chen
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| | - Minghua Zhu
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Hongjiang Wang
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
6
|
Wu Y, Wang H, Xu H. Autophagy-lysosome pathway in insulin & glucagon homeostasis. Front Endocrinol (Lausanne) 2025; 16:1541794. [PMID: 39996055 PMCID: PMC11847700 DOI: 10.3389/fendo.2025.1541794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Lysosome, a highly dynamic organelle, is an important nutrient sensing center. They utilize different ion channels and transporters to complete the mission in degradation, trafficking, nutrient sensing and integration of various metabolic pathways to maintain cellular homeostasis. Glucose homeostasis relies on tightly regulated insulin secretion by pancreatic β cells, and their dysfunction is a hallmark of type 2 diabetes. Glucagon also plays an important role in hyperglycemia in diabetic patients. Currently, lysosome has been recognized as a nutrient hub to regulate the homeostasis of insulin and other hormones. In this review, we will discuss recent advances in understanding lysosome-mediated autophagy and lysosomal proteins involved in maintaining insulin and glucagon homeostasis, as well as their contributions to the etiology of diabetes.
Collapse
Affiliation(s)
- Yi Wu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hui Wang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Huoyan Xu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
7
|
Montori-Grau M, Barroso E, Jurado-Aguilar J, Peyman M, Wahli W, Palomer X, Vázquez-Carrera M. Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels. Cell Mol Life Sci 2025; 82:43. [PMID: 39825925 PMCID: PMC11741968 DOI: 10.1007/s00018-024-05571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism. Human LHCN-M2 myotubes and skeletal muscle from wild-type and Gdf15-/- mice fed a standard (STD) or a high-fat (HFD) diet were subjected to a series of studies to investigate the involvement of lipids in nuclear GDF15 levels and the activation of the SMAD3 pathway. The saturated FA palmitate, but not the monounsaturated FA oleate, increased the expression of GDF15 in human myotubes and, unexpectedly, decreased its nuclear levels. This reduction was prevented by the nuclear export inhibitor leptomycin B. The decrease in nuclear GDF15 levels caused by palmitate was accompanied by increases in SMAD3 protein levels and in the expression of its target gene SERPINE1, which encodes plasminogen activator inhibitor 1 (PAI-1). HFD-fed Gdf15-/- mice displayed aggravated glucose intolerance compared to HFD-fed WT mice, with increased levels of SMAD3 and PAI-1 in the skeletal muscle. The increased PAI-1 levels in the skeletal muscle of HFD-fed Gdf15-/- mice were accompanied by a reduction in one of its targets, hepatocyte growth factor (HGF)α, a cytokine involved in glucose metabolism. Interestingly, PAI-1 acts as a ligand of signal transducer and activator of transcription 3 (STAT3) and the phosphorylation of this transcription factor was exacerbated in HFD-fed Gdf15-/- mice compared to HFD-fed WT mice. At the same time, the protein levels of insulin receptor substrate 1 (IRS-1) were reduced. These findings uncover a potential novel mechanism through which palmitate induces the SMAD3-PAI-1 pathway to promote insulin resistance in skeletal muscle by reducing nuclear GDF15 levels.
Collapse
Affiliation(s)
- Marta Montori-Grau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona (IBUB), 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona (IBUB), 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Spain
| | - Javier Jurado-Aguilar
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona (IBUB), 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Spain
| | - Mona Peyman
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona (IBUB), 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, 31300, Toulouse Cedex, France
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona (IBUB), 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona (IBUB), 08028, Barcelona, Spain.
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Spain.
| |
Collapse
|
8
|
Liu WS, You J, Chen SD, Zhang Y, Feng JF, Xu YM, Yu JT, Cheng W. Plasma proteomics identify biomarkers and undulating changes of brain aging. NATURE AGING 2025; 5:99-112. [PMID: 39653801 DOI: 10.1038/s43587-024-00753-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/17/2024] [Indexed: 12/15/2024]
Abstract
Proteomics enables the characterization of brain aging biomarkers and discernment of changes during brain aging. We leveraged multimodal brain imaging data from 10,949 healthy adults to estimate brain age gap (BAG), an indicator of brain aging. Proteome-wide association analysis across 4,696 participants of 2,922 proteins identified 13 significantly associated with BAG, implicating stress, regeneration and inflammation. Brevican (BCAN) (β = -0.838, P = 2.63 × 10-10) and growth differentiation factor 15 (β = 0.825, P = 3.48 × 10-11) showed the most significant, and multiple, associations with dementia, stroke and movement functions. Dysregulation of BCAN affected multiple cortical and subcortical structures. Mendelian randomization supported the causal association between BCAN and BAG. We revealed undulating changes in the plasma proteome across brain aging, and profiled brain age-related change peaks at 57, 70 and 78 years, implicating distinct biological pathways during brain aging. Our findings revealed the plasma proteomic landscape of brain aging and pinpointed biomarkers for brain disorders.
Collapse
Affiliation(s)
- Wei-Shi Liu
- Department of Neurology and National Center for Neurological diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia You
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wei Cheng
- Department of Neurology and National Center for Neurological diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| |
Collapse
|
9
|
Liang X, Zhang T, Cheng X, Yuan H, Yang N, Yi Y, Li X, Zhang F, Sun J, Li Z, Wang X. Sesamin alleviates lipid accumulation induced by elaidic acid in L02 cells through TFEB regulated autophagy. Front Nutr 2024; 11:1511682. [PMID: 39758315 PMCID: PMC11695222 DOI: 10.3389/fnut.2024.1511682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) is a common chronic disease seriously threatening human health, with limited treatment means, however. Sesamin, a common lignan in sesame seed oil, exhibits anti-inflammatory, antioxidant, and anticancer properties. Our previous studies have shown an ameliorative effect of sesamin on lipid accumulation in human hepatocellular carcinoma (HePG2) induced by oleic acid, with its protective effects unclear in the case of 9-trans-C18:1 elaidic acid (9-trans-C18,1). Methods L02 cells, an important tool in scientific researches due to its high proliferation ability, preserved hepatocyte function, and specificity in response to exogenous factors, were incubated with 9-trans-C18:1 to establish an in vitro model of NAFLD in our study. The lipid accumulation in cells and the morphology of mitochondria and autolysosomes were observed by Oil Red O staining and transmission electron microscopy. The effects of sesamin on oxidative stress, apoptosis, mitochondrial function, autophagy as well as related protein levels in L02 cells were also investigated in the presence of 9-trans-C18:1. Results The results showed that sesamin significantly accelerated the autophagy flux of L02 cells induced by 9-trans-C18:1 as well as elevated protein levels of transcription factor EB (TFEB) and its downstream target lysosome-associated membrane protein 1(LAMP1), along with up-regulated levels of TFEB and LAMP1 in the nucleus indicated by Immunofluorescence. In addition, PTEN-induced putative kinase 1 and Parkin mediated mitophagy was activated by sesamin. The direct inhibitor Eltrombopag and indirect inhibitor MHY1485 of TFEB reversed the protective effect of sesamin, suggesting the involvement of autophagy in the lipid-lowering process of sesamin. Discussion This work suggests that sesamin regulates autophagy through TFEB to alleviate lipid accumulation in L02 cells induced by 9-trans-C18:1, providing a potential target for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Xueli Liang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Tianliang Zhang
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, China
| | - Xinyi Cheng
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Hang Yuan
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Ning Yang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Yanlei Yi
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Xiaozhou Li
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Fengxiang Zhang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Jinyue Sun
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Zhenfeng Li
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, China
| | - Xia Wang
- School of Public Health, Shandong Second Medical University, Weifang, China
| |
Collapse
|
10
|
Zhao Z, Chen Q, Xiang X, Dai W, Fang W, Cui K, Li B, Liu Q, Liu Y, Shen Y, Li Y, Xu W, Mai K, Ai Q. Tip60-mediated Rheb acetylation links palmitic acid with mTORC1 activation and insulin resistance. J Cell Biol 2024; 223:e202309090. [PMID: 39422647 PMCID: PMC11489267 DOI: 10.1083/jcb.202309090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Excess dietary intake of saturated fatty acids (SFAs) induces glucose intolerance and metabolic disorders. In contrast, unsaturated fatty acids (UFAs) elicit beneficial effects on insulin sensitivity. However, it remains elusive how SFAs and UFAs signal differentially toward insulin signaling to influence glucose homeostasis. Here, using a croaker model, we report that dietary palmitic acid (PA), but not oleic acid or linoleic acid, leads to dysregulation of mTORC1, which provokes systemic insulin resistance. Mechanistically, we show that PA profoundly elevates acetyl-CoA derived from mitochondrial fatty acid β oxidation to intensify Tip60-mediated Rheb acetylation, which triggers mTORC1 activation by promoting the interaction between Rheb and FKBPs. Subsequently, hyperactivation of mTORC1 enhances IRS1 serine phosphorylation and inhibits TFEB-mediated IRS1 transcription, inducing impairment of insulin signaling. Collectively, our results reveal a conserved molecular insight into the mechanism by which Tip60-mediated Rheb acetylation induces mTORC1 activation and insulin resistance under the PA condition, which may provide therapeutic avenues to intervene in the development of T2D.
Collapse
Affiliation(s)
- Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Qiang Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Weiwei Dai
- Department of Biological Science, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Wei Fang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Baolin Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yanan Shen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| |
Collapse
|
11
|
Arden C, Park SH, Yasasilka XR, Lee EY, Lee MS. Autophagy and lysosomal dysfunction in diabetes and its complications. Trends Endocrinol Metab 2024; 35:1078-1090. [PMID: 39054224 DOI: 10.1016/j.tem.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Autophagy is critical for energy homeostasis and the function of organelles such as endoplasmic reticulum (ER) and mitochondria. Dysregulated autophagy due to aging, environmental factors, or genetic predisposition can be an underlying cause of not only diabetes through β-cell dysfunction and metabolic inflammation, but also diabetic complications such as diabetic kidney diseases (DKDs). Dysfunction of lysosomes, effector organelles of autophagic degradation, due to metabolic stress or nutrients/metabolites accumulating in metabolic diseases is also emerging as a cause or aggravating element in diabetes and its complications. Here, we discuss the etiological role of dysregulated autophagy and lysosomal dysfunction in diabetes and a potential role of autophagy or lysosomal modulation as a new avenue for treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Catherine Arden
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Seo H Park
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Xaviera Riani Yasasilka
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Eun Y Lee
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Republic of Korea
| | - Myung-Shik Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Republic of Korea; Division of Endocrinology, Department of Internal Medicine and Department of Microbiology and Immunology, Soonchunhyang University College of Medicine, Cheonan, Republic of Korea.
| |
Collapse
|
12
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Fasting: A Complex, Double-Edged Blade in the Battle Against Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2024; 24:1395-1409. [PMID: 39354217 DOI: 10.1007/s12012-024-09925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
In recent years, there has been a surge in the popularity of fasting as a method to enhance one's health and overall well-being. Fasting is a customary practice characterized by voluntary refraining from consuming food and beverages for a specified duration, ranging from a few hours to several days. The potential advantages of fasting, including enhanced insulin sensitivity, decreased inflammation, and better cellular repair mechanisms, have been well documented. However, the effects of fasting on cancer therapy have been the focus of recent scholarly investigations. Doxorubicin (Dox) is one of the most widely used chemotherapy medications for cancer treatment. Unfortunately, cardiotoxicity, which may lead to heart failure and other cardiovascular issues, has been linked to Dox usage. This study aims to comprehensively examine the possible advantages and disadvantages of fasting concerning Dox-induced cardiotoxicity. Researchers have investigated the potential benefits of fasting in lowering the risk of Dox-induced cardiac damage to solve this problem. Nevertheless, new studies indicate that prolonged alternate-day fasting may adversely affect the heart's capacity to manage the cardiotoxic properties of Dox. Though fasting may benefit overall health, it is essential to proceed cautiously and consider the potential risks in certain circumstances.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tao Yu
- Department of Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Liaoning Province Cancer Hospital, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Liaoning Province Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
13
|
Javaheri A, Ozcan M, Moubarak L, Smoyer KE, Rossulek MI, Revkin JH, Groarke JD, Tarasenko LC, Kosiborod MN. Association between growth differentiation factor-15 and adverse outcomes among patients with heart failure: A systematic literature review. Heliyon 2024; 10:e35916. [PMID: 39229539 PMCID: PMC11369438 DOI: 10.1016/j.heliyon.2024.e35916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Growth differentiation factor-15 (GDF-15) is an emerging biomarker in several conditions. This SLR, conducted following PRISMA guidelines, examined the association between GDF-15 concentration and range of adverse outcomes in patients with heart failure (HF). Publications were identified from Embase® and Medline® bibliographic databases between January 1, 2014, and August 23, 2022 (congress abstracts: January 1, 2020, to August 23, 2022). Sixty-three publications met the eligibility criteria (55 manuscripts and 8 abstracts; 45 observational studies and 18 post hoc analyses of randomized controlled trials [RCTs]). Of the 19 outcomes identified, the most frequently reported longitudinal outcomes were mortality (n = 32 studies; all-cause [n = 27] or cardiovascular-related [n = 6]), composite outcomes (n = 28; most commonly mortality ± hospitalization/rehospitalization [n = 19]), and hospitalization/re-hospitalization (n = 11). The most common cross-sectional outcome was renal function (n = 22). Among longitudinal studies assessing independent relationships with outcomes using multivariate analyses (MVA), a significant increase in risk associated with higher baseline GDF-15 concentration was found in 22/24 (92 %) studies assessing all-cause mortality, 4/5 (80 %) assessing cardiovascular-related mortality, 13/19 (68 %) assessing composite outcomes, and 4/8 (50 %) assessing hospitalization/rehospitalization. All (7/7; 100 %) of the cross-sectional studies assessing the relationship with renal function by MVA, and 3/4 (75 %) assessing exercise capacity, found poorer outcomes associated with higher baseline GDF-15 concentrations. This SLR suggests GDF-15 is an independent predictor of mortality and other adverse but nonfatal outcomes in patients with HF. A better understanding of the prognostic role of GDF-15 in HF could improve clinical risk prediction models and potentially help optimize treatment regimens.
Collapse
Affiliation(s)
- Ali Javaheri
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- John J. Cochran Veterans Affairs Medical Center, St. Louis, MO, USA
| | - Mualla Ozcan
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | | | | | | | | | | | - Mikhail N. Kosiborod
- Saint Luke's Mid America Heart Institute and University of Missouri–Kansas City, Kansas City, MO, USA
| |
Collapse
|
14
|
L'homme L, Sermikli BP, Haas JT, Fleury S, Quemener S, Guinot V, Barreby E, Esser N, Caiazzo R, Verkindt H, Legendre B, Raverdy V, Cheval L, Paquot N, Piette J, Legrand-Poels S, Aouadi M, Pattou F, Staels B, Dombrowicz D. Adipose tissue macrophage infiltration and hepatocyte stress increase GDF-15 throughout development of obesity to MASH. Nat Commun 2024; 15:7173. [PMID: 39169003 PMCID: PMC11339436 DOI: 10.1038/s41467-024-51078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Plasma growth differentiation factor-15 (GDF-15) levels increase with obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) but the underlying mechanism remains poorly defined. Using male mouse models of obesity and MASLD, and biopsies from carefully-characterized patients regarding obesity, type 2 diabetes (T2D) and MASLD status, we identify adipose tissue (AT) as the key source of GDF-15 at onset of obesity and T2D, followed by liver during the progression towards metabolic dysfunction-associated steatohepatitis (MASH). Obesity and T2D increase GDF15 expression in AT through the accumulation of macrophages, which are the main immune cells expressing GDF15. Inactivation of Gdf15 in macrophages reduces plasma GDF-15 concentrations and exacerbates obesity in mice. During MASH development, Gdf15 expression additionally increases in hepatocytes through stress-induced TFEB and DDIT3 signaling. Together, these results demonstrate a dual contribution of AT and liver to GDF-15 production in metabolic diseases and identify potential therapeutic targets to raise endogenous GDF-15 levels.
Collapse
Affiliation(s)
- Laurent L'homme
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - Benan Pelin Sermikli
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Joel T Haas
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sébastien Fleury
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sandrine Quemener
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Valentine Guinot
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Emelie Barreby
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nathalie Esser
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, Liège, Belgium
| | - Robert Caiazzo
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Hélène Verkindt
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Benjamin Legendre
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Violeta Raverdy
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- CNRS EMR 8228-Unité Métabolisme et Physiologie Rénale, Paris, France
| | - Nicolas Paquot
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, Liège, Belgium
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-Signal Transduction, University of Liège, Liège, Belgium
| | - Sylvie Legrand-Poels
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium
| | - Myriam Aouadi
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - François Pattou
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Bart Staels
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - David Dombrowicz
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
15
|
Silva-Bermudez LS, Klüter H, Kzhyshkowska JG. Macrophages as a Source and Target of GDF-15. Int J Mol Sci 2024; 25:7313. [PMID: 39000420 PMCID: PMC11242731 DOI: 10.3390/ijms25137313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a multifunctional cytokine that belongs to the transforming growth factor-beta (TGF-β) superfamily. GDF-15 is involved in immune tolerance and is elevated in several acute and chronic stress conditions, often correlating with disease severity and patient prognosis in cancer172 and metabolic and cardiovascular disorders. Despite these clinical associations, the molecular mechanisms orchestrating its effects remain to be elucidated. The effects of GDF-15 are pleiotropic but cell-specific and dependent on the microenvironment. While GDF-15 expression can be stimulated by inflammatory mediators, its predominant effects were reported as anti-inflammatory and pro-fibrotic. The role of GDF-15 in the macrophage system has been increasingly investigated in recent years. Macrophages produce high levels of GDF-15 during oxidative and lysosomal stress, which can lead to fibrogenesis and angiogenesis at the tissue level. At the same time, macrophages can respond to GDF-15 by switching their phenotype to a tolerogenic one. Several GDF-15-based therapies are under development, including GDF-15 analogs/mimetics and GDF-15-targeting monoclonal antibodies. In this review, we summarize the major physiological and pathological contexts in which GDF-15 interacts with macrophages. We also discuss the major challenges and future perspectives in the therapeutic translation of GDF-15.
Collapse
Affiliation(s)
- Lina Susana Silva-Bermudez
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.S.S.-B.); (H.K.)
- German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.S.S.-B.); (H.K.)
- German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Julia G. Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.S.S.-B.); (H.K.)
- German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| |
Collapse
|
16
|
Li J, Hu X, Xie Z, Li J, Huang C, Huang Y. Overview of growth differentiation factor 15 (GDF15) in metabolic diseases. Biomed Pharmacother 2024; 176:116809. [PMID: 38810400 DOI: 10.1016/j.biopha.2024.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
GDF15 is a stress response cytokine and a distant member of the transforming growth factor beta (TGFβ) superfamily, its levels increase in response to cell stress and certain diseases in the serum. To exert its effects, GDF15 binds to glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL), which was firstly identified in 2017 and highly expressed in the brain stem. Many studies have demonstrated that elevated serum GDF15 is associated with anorexia and weight loss. Herein, we focus on the biology of GDF15, specifically how this circulating protein regulates appetite and metabolism in influencing energy homeostasis through its actions on hindbrain neurons to shed light on its impact on diseases such as obesity and anorexia/cachexia syndromes. It works as an endocrine factor and transmits metabolic signals leading to weight reduction effects by directly reducing appetite and indirectly affecting food intake through complex mechanisms, which could be a promising target for the treatment of energy-intake disorders.
Collapse
Affiliation(s)
- Jian Li
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, China
| | - Xiangjun Hu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zichuan Xie
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiajin Li
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Chen Huang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Huang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Ahmad Y, Seo DS, Jang Y. Metabolic Effects of Ketogenic Diets: Exploring Whole-Body Metabolism in Connection with Adipose Tissue and Other Metabolic Organs. Int J Mol Sci 2024; 25:7076. [PMID: 39000187 PMCID: PMC11241756 DOI: 10.3390/ijms25137076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The ketogenic diet (KD) is characterized by minimal carbohydrate, moderate protein, and high fat intake, leading to ketosis. It is recognized for its efficiency in weight loss, metabolic health improvement, and various therapeutic interventions. The KD enhances glucose and lipid metabolism, reducing triglycerides and total cholesterol while increasing high-density lipoprotein levels and alleviating dyslipidemia. It significantly influences adipose tissue hormones, key contributors to systemic metabolism. Brown adipose tissue, essential for thermogenesis and lipid combustion, encounters modified UCP1 levels due to dietary factors, including the KD. UCP1 generates heat by uncoupling electron transport during ATP synthesis. Browning of the white adipose tissue elevates UCP1 levels in both white and brown adipose tissues, a phenomenon encouraged by the KD. Ketone oxidation depletes intermediates in the Krebs cycle, requiring anaplerotic substances, including glucose, glycogen, or amino acids, for metabolic efficiency. Methylation is essential in adipogenesis and the body's dietary responses, with DNA methylation of several genes linked to weight loss and ketosis. The KD stimulates FGF21, influencing metabolic stability via the UCP1 pathways. The KD induces a reduction in muscle mass, potentially involving anti-lipolytic effects and attenuating proteolysis in skeletal muscles. Additionally, the KD contributes to neuroprotection, possesses anti-inflammatory properties, and alters epigenetics. This review encapsulates the metabolic effects and signaling induced by the KD in adipose tissue and major metabolic organs.
Collapse
Affiliation(s)
- Yusra Ahmad
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Dong Soo Seo
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Younghoon Jang
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
18
|
Chrysafi P, Valenzuela-Vallejo L, Stefanakis K, Kelesidis T, Connelly MA, Mantzoros CS. Total and H-specific GDF-15 levels increase in caloric deprivation independently of leptin in humans. Nat Commun 2024; 15:5190. [PMID: 38890300 PMCID: PMC11189399 DOI: 10.1038/s41467-024-49366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Mitochondrial-secreted growth differentiation factor-15 (GDF-15) promotes weight loss in animals. Its effects in humans remain unclear, due to limited research and potential measurement interference from the H202D-variant. Our post-hoc analysis investigates total (irrespective of genetic variants) and H-specific GDF-15 (detected only in H202D-variant absence) in humans under acute and chronic energy deprivation, examining GDF-15 interaction with leptin (energy homeostasis regulator) and GDF-15 biologic activity modulation by the H202D-variant. Total and H-specific GDF-15 increased with acute starvation, and total GDF-15 increased with chronic energy deprivation, compared with healthy subjects and regardless of leptin repletion. Baseline GDF-15 positively correlated with triglyceride-rich particles and lipoproteins. During acute metabolic stress, GDF-15 associations with metabolites/lipids appeared to differ in subjects with the H202D-variant. Our findings suggest GDF-15 increases with energy deprivation in humans, questioning its proposed weight loss and suggesting its function as a mitokine, reflecting or mediating metabolic stress response.
Collapse
Affiliation(s)
- Pavlina Chrysafi
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Konstantinos Stefanakis
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Theodoros Kelesidis
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 02215, USA
| | | | - Christos S Mantzoros
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Medicine, Boston VA Healthcare System, Boston, MA, 90095, USA.
| |
Collapse
|
19
|
Schaftenaar FH, van Dam AD, de Bruin G, Depuydt MA, de Mol J, Amersfoort J, Douna H, Meijer M, Kröner MJ, van Santbrink PJ, Bernabé Kleijn MN, van Puijvelde GH, Florea BI, Slütter B, Foks AC, Bot I, Rensen PC, Kuiper J. Immunoproteasomal Inhibition With ONX-0914 Attenuates Atherosclerosis and Reduces White Adipose Tissue Mass and Metabolic Syndrome in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1346-1364. [PMID: 38660806 PMCID: PMC11188635 DOI: 10.1161/atvbaha.123.319701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Atherosclerosis is the major underlying pathology of cardiovascular disease and is driven by dyslipidemia and inflammation. Inhibition of the immunoproteasome, a proteasome variant that is predominantly expressed by immune cells and plays an important role in antigen presentation, has been shown to have immunosuppressive effects. METHODS We assessed the effect of ONX-0914, an inhibitor of the immunoproteasomal catalytic subunits LMP7 (proteasome subunit β5i/large multifunctional peptidase 7) and LMP2 (proteasome subunit β1i/large multifunctional peptidase 2), on atherosclerosis and metabolism in LDLr-/- and APOE*3-Leiden.CETP mice. RESULTS ONX-0914 treatment significantly reduced atherosclerosis, reduced dendritic cell and macrophage levels and their activation, as well as the levels of antigen-experienced T cells during early plaque formation, and Th1 cells in advanced atherosclerosis in young and aged mice in various immune compartments. Additionally, ONX-0914 treatment led to a strong reduction in white adipose tissue mass and adipocyte progenitors, which coincided with neutrophil and macrophage accumulation in white adipose tissue. ONX-0914 reduced intestinal triglyceride uptake and gastric emptying, likely contributing to the reduction in white adipose tissue mass, as ONX-0914 did not increase energy expenditure or reduce total food intake. Concomitant with the reduction in white adipose tissue mass upon ONX-0914 treatment, we observed improvements in markers of metabolic syndrome, including lowered plasma triglyceride levels, insulin levels, and fasting blood glucose. CONCLUSIONS We propose that immunoproteasomal inhibition reduces 3 major causes underlying cardiovascular disease, dyslipidemia, metabolic syndrome, and inflammation and is a new target in drug development for atherosclerosis treatment.
Collapse
MESH Headings
- Animals
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Atherosclerosis/drug therapy
- Atherosclerosis/immunology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Metabolic Syndrome/drug therapy
- Metabolic Syndrome/immunology
- Disease Models, Animal
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/pathology
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Proteasome Endopeptidase Complex/metabolism
- Mice, Inbred C57BL
- Male
- Proteasome Inhibitors/pharmacology
- Apolipoprotein E3/genetics
- Apolipoprotein E3/metabolism
- Aortic Diseases/prevention & control
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/enzymology
- Aortic Diseases/immunology
- Aortic Diseases/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/immunology
- Plaque, Atherosclerotic
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Mice, Knockout, ApoE
- Mice
- Energy Metabolism/drug effects
- Oligopeptides
Collapse
Affiliation(s)
- Frank H. Schaftenaar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Andrea D. van Dam
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (A.D.D., P.C.N.R.)
| | - Gerjan de Bruin
- Department of Chemical Biology, Leiden Institute of Chemistry, the Netherlands (G.d.B., B.I.F.)
| | - Marie A.C. Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Jill de Mol
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Jacob Amersfoort
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Hidde Douna
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Menno Meijer
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Mara J. Kröner
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Peter J. van Santbrink
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Mireia N.A. Bernabé Kleijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Gijs H.M. van Puijvelde
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Bogdan I. Florea
- Department of Chemical Biology, Leiden Institute of Chemistry, the Netherlands (G.d.B., B.I.F.)
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Patrick C.N. Rensen
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (A.D.D., P.C.N.R.)
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| |
Collapse
|
20
|
Yasasilka XR, Lee M. Role of β-cell autophagy in β-cell physiology and the development of diabetes. J Diabetes Investig 2024; 15:656-668. [PMID: 38470018 PMCID: PMC11143416 DOI: 10.1111/jdi.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Elucidating the molecular mechanism of autophagy was a landmark in understanding not only the physiology of cells and tissues, but also the pathogenesis of diverse diseases, including diabetes and metabolic disorders. Autophagy of pancreatic β-cells plays a pivotal role in the maintenance of the mass, structure and function of β-cells, whose dysregulation can lead to abnormal metabolic profiles or diabetes. Modulators of autophagy are being developed to improve metabolic profile and β-cell function through the removal of harmful materials and rejuvenation of organelles, such as mitochondria and endoplasmic reticulum. Among the known antidiabetic drugs, glucagon-like peptide-1 receptor agonists enhance the autophagic activity of β-cells, which might contribute to the profound effects of glucagon-like peptide-1 receptor agonists on systemic metabolism. In this review, the results from studies on the role of autophagy in β-cells and their implication in the development of diabetes are discussed. In addition to non-selective (macro)autophagy, the role and mechanisms of selective autophagy and other minor forms of autophagy that might occur in β-cells are discussed. As β-cell failure is the ultimate cause of diabetes and unresponsiveness to conventional therapy, modulation of β-cell autophagy might represent a future antidiabetic treatment approach, particularly in patients who are not well managed with current antidiabetic therapy.
Collapse
Affiliation(s)
- Xaviera Riani Yasasilka
- Soonchunhyang Institute of Medi‐bio Science and Division of Endocrinology, Department of Internal MedicineSoonchunhyang University College of MedicineCheonanKorea
| | - Myung‐Shik Lee
- Soonchunhyang Institute of Medi‐bio Science and Division of Endocrinology, Department of Internal MedicineSoonchunhyang University College of MedicineCheonanKorea
| |
Collapse
|
21
|
Haber R, Zarzour F, Ghezzawi M, Saadeh N, Bacha DS, Al Jebbawi L, Chakhtoura M, Mantzoros CS. The impact of metformin on weight and metabolic parameters in patients with obesity: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab 2024; 26:1850-1867. [PMID: 38468148 DOI: 10.1111/dom.15501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
There are conflicting data on the weight-reducing potential of metformin (MTF) in nondiabetic patients with obesity. The purpose of this systematic review and meta-analysis was to evaluate the effect of MTF on weight and cardiometabolic parameters in adults with overweight/obesity with or without nonalcoholic fatty liver disease (NAFLD) (CRD42018085512). We included randomized controlled trials (RCTs) in adults without diabetes mellitus, with mean body mass index (BMI) ≥ 25 kg/m2, with or without NAFLD, comparing MTF to placebo/control, lifestyle modification (LSM) or a US Food and Drug Administration-approved anti-obesity drug, reporting on weight or metabolic parameters, and extending over at least 3 months. We conducted a systematic search in MEDLINE, EMBASE, PubMed and the Cochrane Library without time limitation (until March 2022). We screened and selected eligible articles, abstracted relevant data, and assessed the risk of bias. All steps were in duplicate and independently. We conducted a random-effects model meta-analysis using Review Manager version 5.3, with prespecified subgroup analyses in case of heterogeneity. We identified 2650 citations and included 49 trials (55 publications). Compared to placebo, MTF was associated with a significant reduction in BMI (mean difference [MD] -0.56 [-0.74, -0.37] kg/m2; p < 0.0001), at doses ranging from 500 to 2550 mg/day, and with a significant percentage change in BMI of -2.53% (-2.90, -2.17) at the dose 1700 mg/day. There was no interaction by baseline BMI, MTF dose or duration, nor presence or absence of NAFLD. There was no significant difference between MTF and LSM. Orlistat was more effective than MTF (at doses of 1000-1700 mg/day) in terms of weight loss, with an MD in BMI of -3.17 (-5.88; -0.47) kg/m2, favouring the former. Compared to placebo/control, MTF improved insulin parameters, while no effect was detected when compared to LSM. A few small trials showed heterogenous effects on liver parameters in patients with NAFLD treated with MTF compared to placebo/control. There was a large variability in the expression of outcome measures and RCTs were of low quality. In conclusion, MTF was associated with a modest weight reduction in obese nondiabetic patients. Further high-quality and better powered studies are needed to examine the impact of MTF in patients with insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Rachelle Haber
- Department of Internal Medicine, Division of Endocrinology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fatima Zarzour
- Department of Internal Medicine, Division of Endocrinology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Malak Ghezzawi
- Department of Internal Medicine, Division of Endocrinology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Natalie Saadeh
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Dania S Bacha
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lama Al Jebbawi
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Marlene Chakhtoura
- Department of Internal Medicine, Division of Endocrinology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Boston VA Healthcare System, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Gao Y, Zhang L, Zhang F, Liu R, Liu L, Li X, Zhu X, Liang Y. Traditional Chinese medicine and its active substances reduce vascular injury in diabetes via regulating autophagic activity. Front Pharmacol 2024; 15:1355246. [PMID: 38505420 PMCID: PMC10949535 DOI: 10.3389/fphar.2024.1355246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Due to its high prevalence, poor prognosis, and heavy burden on healthcare costs, diabetic vascular complications have become a significant public health issue. Currently, the molecular and pathophysiological mechanisms underlying diabetes-induced vascular complications remain incompletely understood. Autophagy, a highly conserved process of lysosomal degradation, maintains intracellular homeostasis and energy balance via removing protein aggregates, damaged organelles, and exogenous pathogens. Increasing evidence suggests that dysregulated autophagy may contribute to vascular abnormalities in various types of blood vessels, including both microvessels and large vessels, under diabetic conditions. Traditional Chinese medicine (TCM) possesses the characteristics of "multiple components, multiple targets and multiple pathways," and its safety has been demonstrated, particularly with minimal toxicity in liver and kidney. Thus, TCM has gained increasing attention from researchers. Moreover, recent studies have indicated that Chinese herbal medicine and its active compounds can improve vascular damage in diabetes by regulating autophagy. Based on this background, this review summarizes the classification, occurrence process, and related molecular mechanisms of autophagy, with a focus on discussing the role of autophagy in diabetic vascular damage and the protective effects of TCM and its active compounds through the regulation of autophagy in diabetes. Moreover, we systematically elucidate the autophagic mechanisms by which TCM formulations, individual herbal extracts, and active compounds regulate diabetic vascular damage, thereby providing new candidate drugs for clinical treatment of vascular complications in diabetes. Therefore, further exploration of TCM and its active compounds with autophagy-regulating effects holds significant research value for achieving targeted therapeutic approaches for diabetic vascular complications.
Collapse
Affiliation(s)
- Yankui Gao
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Lei Zhang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Fei Zhang
- Department of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Lanzhou, China
| | - Rong Liu
- Department of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lei Liu
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaoyan Li
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiangdong Zhu
- Department of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Yonglin Liang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
23
|
Zhao N, Yu X, Zhu X, Song Y, Gao F, Yu B, Qu A. Diabetes Mellitus to Accelerated Atherosclerosis: Shared Cellular and Molecular Mechanisms in Glucose and Lipid Metabolism. J Cardiovasc Transl Res 2024; 17:133-152. [PMID: 38091232 DOI: 10.1007/s12265-023-10470-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 02/28/2024]
Abstract
Diabetes is one of the critical independent risk factors for the progression of cardiovascular disease, and the underlying mechanism regarding this association remains poorly understood. Hence, it is urgent to decipher the fundamental pathophysiology and consequently provide new insights into the identification of innovative therapeutic targets for diabetic atherosclerosis. It is now appreciated that different cell types are heavily involved in the progress of diabetic atherosclerosis, including endothelial cells, macrophages, vascular smooth muscle cells, dependence on altered metabolic pathways, intracellular lipids, and high glucose. Additionally, extensive studies have elucidated that diabetes accelerates the odds of atherosclerosis with the explanation that these two chronic disorders share some common mechanisms, such as endothelial dysfunction and inflammation. In this review, we initially summarize the current research and proposed mechanisms and then highlight the role of these three cell types in diabetes-accelerated atherosclerosis and finally establish the mechanism pinpointing the relationship between diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xiaoting Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xinxin Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Yanting Song
- Department of Pathology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| |
Collapse
|
24
|
Bianco V, Kratky D. Glycoprotein Non-Metastatic Protein B (GPNMB): The Missing Link Between Lysosomes and Obesity. Exp Clin Endocrinol Diabetes 2023; 131:639-645. [PMID: 37956971 PMCID: PMC10700020 DOI: 10.1055/a-2192-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/06/2023] [Indexed: 11/21/2023]
Abstract
As a result of an unhealthy diet and limited physical activity, obesity has become a widespread pandemic worldwide and is an important predictor for the development of cardiovascular disease. Obesity is often characterized by a pro-inflammatory environment in white adipose tissue (WAT), mainly due to increased macrophage infiltration. These immune cells boost their lipid concentrations by accumulating the content of dying adipocytes. As the lysosome is highly involved in lipid handling, the progressive lipid accumulation may result in lysosomal stress and a metabolic shift. Recent studies have identified glycoprotein non-metastatic melanoma protein B (GPNMB) as a novel marker of inflammatory diseases. GPNMB is a type I transmembrane protein on the cell surface of various cell types, such as macrophages, dendritic cells, osteoblasts, and microglia, from which it can be proteolytically cleaved into a soluble molecule. It is induced by lysosomal stress via microphthalmia-associated transcription factor and thus has been found to be upregulated in many lysosomal storage disorders. In addition, a clear connection between GPNMB and obesity was recently established. GPNMB was shown to have protective and anti-inflammatory effects in most cases, preventing the progression of obesity-related metabolic disorders. In contrast, soluble GPNMB likely has the opposite effect and promotes lipogenesis in WAT. This review aims to summarize and clarify the role of GPNMB in the progression of obesity and to highlight its potential use as a biomarker for lipid-associated disorders.
Collapse
Affiliation(s)
- Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry,
Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry,
Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
25
|
Wen W, Zheng H, Li W, Huang G, Chen P, Zhu X, Cao Y, Li J, Huang X, Huang Y. Transcription factor EB: A potential integrated network regulator in metabolic-associated cardiac injury. Metabolism 2023; 147:155662. [PMID: 37517793 DOI: 10.1016/j.metabol.2023.155662] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
With the worldwide pandemic of metabolic diseases, such as obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD), cardiometabolic disease (CMD) has become a significant cause of death in humans. However, the pathophysiology of metabolic-associated cardiac injury is complex and not completely clear, and it is important to explore new strategies and targets for the treatment of CMD. A series of pathophysiological disturbances caused by metabolic disorders, such as insulin resistance (IR), hyperglycemia, hyperlipidemia, mitochondrial dysfunction, oxidative stress, inflammation, endoplasmic reticulum stress (ERS), autophagy dysfunction, calcium homeostasis imbalance, and endothelial dysfunction, may be related to the incidence and development of CMD. Transcription Factor EB (TFEB), as a transcription factor, has been extensively studied for its role in regulating lysosomal biogenesis and autophagy. Recently, the regulatory role of TFEB in other biological processes, including the regulation of glucose homeostasis, lipid metabolism, etc. has been gradually revealed. In this review, we will focus on the relationship between TFEB and IR, lipid metabolism, endothelial dysfunction, oxidative stress, inflammation, ERS, calcium homeostasis, autophagy, and mitochondrial quality control (MQC) and the potential regulatory mechanisms among them, to provide a comprehensive summary for TFEB as a potential new therapeutic target for CMD.
Collapse
Affiliation(s)
- Weixing Wen
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Haoxiao Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Weiwen Li
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Guolin Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Peng Chen
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Xiaolin Zhu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Yue Cao
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Jiahuan Li
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Xiaohui Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation Research, Guangzhou, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| |
Collapse
|
26
|
Zhang L, Li Z, Zhang L, Qin Y, Yu D. Dissecting the multifaced function of transcription factor EB (TFEB) in human diseases: From molecular mechanism to pharmacological modulation. Biochem Pharmacol 2023; 215:115698. [PMID: 37482200 DOI: 10.1016/j.bcp.2023.115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The transcription factor EB (TFEB) is a transcription factor of the MiT/TFE family that translocations from the cytoplasm to the nucleus in response to various stimuli, including lysosomal stress and nutrient starvation. By activating genes involved in lysosomal function, autophagy, and lipid metabolism, TFEB plays a crucial role in maintaining cellular homeostasis. Dysregulation of TFEB has been implicated in various diseases, including cancer, neurodegenerative diseases, metabolic diseases, cardiovascular diseases, infectious diseases, and inflammatory diseases. Therefore, modulating TFEB activity with agonists or inhibitors may have therapeutic potential. In this review, we reviewed the recently discovered regulatory mechanisms of TFEB and their impact on human diseases. Additionally, we also summarize the existing TFEB inhibitors and agonists (targeted and non-targeted) and discuss unresolved issues and future research directions in the field. In summary, this review sheds light on the crucial role of TFEB, which may pave the way for its translation from basic research to practical applications, bringing us closer to realizing the full potential of TFEB in various fields.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yuan Qin
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China.
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
27
|
He F, Jiang H, Peng C, Wang T, Xiao R, Chen M, Song N, Du Z, Wang H, Ding X, Shao Y, Fang J, Zang Y, Hua R, Li J, Ding K. Hepatic glucuronyl C5-epimerase combats obesity by stabilising GDF15. J Hepatol 2023; 79:605-617. [PMID: 37217020 DOI: 10.1016/j.jhep.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND & AIMS Disturbed hepatic metabolism frequently results in excessive lipid accumulation in the adipose tissue. However, the specific role of the liver-adipose axis in maintaining lipid homeostasis, as well as the underlying mechanism, has not yet been fully elucidated. In this study, we investigated the role of hepatic glucuronyl C5-epimerase (Glce) in the progression of obesity. METHODS We determined the association between the expression of hepatic Glce and body mass index (BMI) in obese patients. Obesity models were established in hepatic Glce-knockout and wild-type mice fed a high-fat diet (HFD) to understand the effect of Glce on obesity development. The role of Glce in the progression of disrupted hepatokine secretion was examined via secretome analysis. RESULTS Hepatic Glce expression was inversely correlated with BMI in obese patients. Moreover, Glce level was found to be decreased in the liver of a HFD murine model. Hepatic Glce deficiency led to impaired thermogenesis in adipose tissue and exacerbated HFD-induced obesity. Interestingly, decreased level of growth differentiation factor 15 (GDF15) was observed in the culture medium of Glce-knockout mouse hepatocytes. Treatment with recombinant GDF15 obstructed obesity progression derived from the absence of hepatic Glce, similar to the effect of Glce or its inactive mutant overexpressed both in vitro and in vivo. Furthermore, liver Glce deficiency led to diminished production and increased degradation of mature GDF15, resulting in reduced hepatic GDF15 secretion. CONCLUSIONS Hepatic Glce deficiency facilitated obesity development, and decreased Glce expression further reduced hepatic secretion of GDF15, thereby perturbing lipid homeostasis in vivo. Therefore, the novel Glce-GDF15 axis plays an important role in maintaining energy balance and may act as a potential target for combating obesity. IMPACT AND IMPLICATIONS Evidence suggests that GDF15 plays a key role in hepatic metabolism; however, the molecular mechanism for regulating its expression and secretion is largely unknown. Our work observes that hepatic Glce, as a key Golgi-localised epimerase, may work on the maturation and post-translational regulation of GDF15. Hepatic Glce deficiency reduces the production of mature GDF15 protein and facilitates its ubiquitination, resulting in the aggravation of obesity development. This study sheds light on the new function and mechanism of the Glce-GDF15 axis in lipid metabolism and provides a potential therapeutic target against obesity.
Collapse
Affiliation(s)
- Fei He
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chang Peng
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Wang
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Rongrong Xiao
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Meilin Chen
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Nixue Song
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhenyun Du
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hanlin Wang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Ding
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yikai Shao
- Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Jianping Fang
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Rong Hua
- Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China.
| | - Jia Li
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
| | - Kan Ding
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
| |
Collapse
|
28
|
Ozcan M, Guo Z, Valenzuela Ripoll C, Diab A, Picataggi A, Rawnsley D, Lotfinaghsh A, Bergom C, Szymanski J, Hwang D, Asnani A, Kosiborod M, Zheng J, Hayashi RJ, Woodard PK, Kovacs A, Margulies KB, Schilling J, Razani B, Diwan A, Javaheri A. Sustained alternate-day fasting potentiates doxorubicin cardiotoxicity. Cell Metab 2023; 35:928-942.e4. [PMID: 36868222 PMCID: PMC10257771 DOI: 10.1016/j.cmet.2023.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/24/2022] [Accepted: 02/07/2023] [Indexed: 03/05/2023]
Abstract
Fasting strategies are under active clinical investigation in patients receiving chemotherapy. Prior murine studies suggest that alternate-day fasting may attenuate doxorubicin cardiotoxicity and stimulate nuclear translocation of transcription factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis. In this study, human heart tissue from patients with doxorubicin-induced heart failure demonstrated increased nuclear TFEB protein. In mice treated with doxorubicin, alternate-day fasting or viral TFEB transduction increased mortality and impaired cardiac function. Mice randomized to alternate-day fasting plus doxorubicin exhibited increased TFEB nuclear translocation in the myocardium. When combined with doxorubicin, cardiomyocyte-specific TFEB overexpression provoked cardiac remodeling, while systemic TFEB overexpression increased growth differentiation factor 15 (GDF15) and caused heart failure and death. Cardiomyocyte TFEB knockout attenuated doxorubicin cardiotoxicity, while recombinant GDF15 was sufficient to cause cardiac atrophy. Our studies identify that both sustained alternate-day fasting and a TFEB/GDF15 pathway exacerbate doxorubicin cardiotoxicity.
Collapse
Affiliation(s)
- Mualla Ozcan
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhen Guo
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Ahmed Diab
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - David Rawnsley
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Carmen Bergom
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeff Szymanski
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Hwang
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aarti Asnani
- Beth Israel and Harvard Medical School, Boston, MA, USA
| | | | - Jie Zheng
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert J Hayashi
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pamela K Woodard
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Attila Kovacs
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth B Margulies
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel Schilling
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babak Razani
- Washington University School of Medicine, St. Louis, MO 63110, USA; John Cochran Veterans Affairs Medical Center, Saint Louis, MO, USA
| | - Abhinav Diwan
- Washington University School of Medicine, St. Louis, MO 63110, USA; John Cochran Veterans Affairs Medical Center, Saint Louis, MO, USA
| | - Ali Javaheri
- Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
29
|
Maimaiti Y, Cheng H, Guo Z, Yu X, Tuohuti A, Li G. Correlation between serum GDF-15 level and pulmonary vascular morphological changes and prognosis in patients with pulmonary arterial hypertension. Front Cardiovasc Med 2023; 10:1085122. [PMID: 37288264 PMCID: PMC10241999 DOI: 10.3389/fcvm.2023.1085122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/12/2023] [Indexed: 06/09/2023] Open
Abstract
Objective To investigate how serum GDF-15 concentration affects pulmonary artery hemodynamics and pulmonary vascular morphological changes in patients with pulmonary arterial hypertension. Methods A total of 45 patients admitted to our hospital from December 2017 to December 2019, were selected for the study. Pulmonary vascular hemodynamics and pulmonary vascular morphology were detected by RHC and IVUS. Serum GDF-15 levels were detected by enzyme-linked immunosorbent assay (ELISA). Based on the concentration of GDF-15, the patients were divided into two groups-the normal GDF-15 group (GDF-15 <1,200 pg/ml, 12 cases) and the elevated GDF-15 group (GDF-15 ≥1,200 pg/ml, 33 cases). A statistical analysis was performed to compare the effects of normal blood GDF-15 levels and high serum GDF-15 levels on hemodynamics and pulmonary vascular morphology in each group of patients. Results The average levels of RVP, sPAP, dPAP, mPAP, and PVR in patients with elevated GDF-15 levels were higher than those in patients with normal GDF-15 levels. The difference between the two groups was statistically significant (P < 0.05). The average levels of Vd, elastic modulus, stiffness index β, lesion length, and PAV in the normal GDF-15 group were lower than those in the elevated GDF-15 group. The average levels of compliance, distensibility, and minimum l umen area were higher than those in the elevated GDF-15 group. The difference between the two groups was statistically significant (P < 0.05). The survival analysis results showed that the 1-year survival rate of patients with normal GDF-15 levels and elevated GDF-15 levels was 100% and 87.9%, respectively, and that the 3-year survival rate of patients with normal GDF-15 levels and elevated GDF-15 levels was 91.7% and 78.8%, respectively. The survival rates of the two groups were compared by the Kaplan Meier method, and the difference was not statistically significant (P > 0.05). Conclusion Patients with pulmonary arterial hypertension with elevated GDF-15 levels have higher pulmonary arterial pressure, higher pulmonary vascular resistance, and more serious pulmonary vascular lesions, which are potentially more harmful. There was no statistically significant difference in survival rates among patients with different serum GDF-15 levels.
Collapse
Affiliation(s)
- Yasenjiang Maimaiti
- Gerontology Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Hui Cheng
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zitong Guo
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaolin Yu
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Adilijiang Tuohuti
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Guoqing Li
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
30
|
Park K, Sonn SK, Seo S, Kim J, Hur KY, Oh GT, Lee MS. Impaired TFEB activation and mitophagy as a cause of PPP3/calcineurin inhibitor-induced pancreatic β-cell dysfunction. Autophagy 2023; 19:1444-1458. [PMID: 36217215 PMCID: PMC10240995 DOI: 10.1080/15548627.2022.2132686] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/02/2022] Open
Abstract
Macroautophagy/autophagy or mitophagy plays crucial roles in the maintenance of pancreatic β-cell function. PPP3/calcineurin can modulate the activity of TFEB, a master regulator of lysosomal biogenesis and autophagy gene expression, through dephosphorylation. We studied whether PPP3/calcineurin inhibitors can affect the mitophagy of pancreatic β-cells and pancreatic β-cell function employing FK506, an immunosuppressive drug against graft rejection. FK506 suppressed rotenone- or oligomycin+antimycin-A-induced mitophagy measured by Mito-Keima localization in acidic lysosomes or RFP-LC3 puncta colocalized with TOMM20 in INS-1 insulinoma cells. FK506 diminished nuclear translocation of TFEB after treatment with rotenone or oligomycin+antimycin A. Forced TFEB nuclear translocation by a constitutively active TFEB mutant transfection restored impaired mitophagy by FK506, suggesting the role of decreased TFEB nuclear translocation in FK506-mediated mitophagy impairment. Probably due to reduced mitophagy, recovery of mitochondrial potential or quenching of mitochondrial ROS after removal of rotenone or oligomycin+antimycin A was delayed by FK506. Mitochondrial oxygen consumption was reduced by FK506, indicating reduced mitochondrial function by FK506. Likely due to mitochondrial dysfunction, insulin release from INS-1 cells was reduced by FK506 in vitro. FK506 treatment also reduced insulin release and impaired glucose tolerance in vivo, which was associated with decreased mitophagy and mitochondrial COX activity in pancreatic islets. FK506-induced mitochondrial dysfunction and glucose intolerance were ameliorated by an autophagy enhancer activating TFEB. These results suggest that diminished mitophagy and consequent mitochondrial dysfunction of pancreatic β-cells contribute to FK506-induced β-cell dysfunction or glucose intolerance, and autophagy enhancement could be a therapeutic modality against post-transplantation diabetes mellitus caused by PPP3/calcineurin inhibitors.
Collapse
Affiliation(s)
- Kihyoun Park
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Keun Sonn
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Seungwoon Seo
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Jinyoung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyu Yeon Hur
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
31
|
Chavakis T, Alexaki VI, Ferrante AW. Macrophage function in adipose tissue homeostasis and metabolic inflammation. Nat Immunol 2023; 24:757-766. [PMID: 37012544 DOI: 10.1038/s41590-023-01479-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/23/2023] [Indexed: 04/05/2023]
Abstract
Obesity-related metabolic organ inflammation contributes to cardiometabolic disorders. In obese individuals, changes in lipid fluxes and storage elicit immune responses in the adipose tissue (AT), including expansion of immune cell populations and qualitative changes in the function of these cells. Although traditional models of metabolic inflammation posit that these immune responses disturb metabolic organ function, studies now suggest that immune cells, especially AT macrophages (ATMs), also have important adaptive functions in lipid homeostasis in states in which the metabolic function of adipocytes is taxed. Adverse consequences of AT metabolic inflammation might result from failure to maintain local lipid homeostasis and long-term effects on immune cells beyond the AT. Here we review the complex function of ATMs in AT homeostasis and metabolic inflammation. Additionally, we hypothesize that trained immunity, which involves long-term functional adaptations of myeloid cells and their bone marrow progenitors, can provide a model by which metabolic perturbations trigger chronic systemic inflammation.
Collapse
Affiliation(s)
- Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anthony W Ferrante
- Department of Medicine, Institute of Human Nutrition, Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| |
Collapse
|
32
|
Zhou Z, Liu H, Ju H, Chen H, Jin H, Sun M. Circulating GDF-15 in relation to the progression and prognosis of chronic kidney disease: A systematic review and dose-response meta-analysis. Eur J Intern Med 2023; 110:77-85. [PMID: 36740468 DOI: 10.1016/j.ejim.2023.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) typically exhibit circulating growth differentiation factor-15 (GDF-15) at high levels. This meta-analysis aimed to evaluate the potential value of GDF-15 in predicting CKD progression and prognosis. Furthermore, when sufficient information was provided, the dose-response correlation was studied. METHODS Studies were searched in Web of Science, Embase, and PubMed from inception until November 2022. By using random- or fixed-effects models, the pooled effect size was estimated in accordance with heterogeneity in existing research. RESULTS This study covered 14 studies from 12 articles with 7813 subjects participating in the research. CKD patients in the top GDF-15 tertile had notably higher risks of CKD progression (HR 2.60, 95% CI 2.06-3.27), all-cause mortality (HR 2.05, 95% CI 1.44-2.92), cardiovascular mortality (HR 2.82, 95% CI 1.85-4.30), and cardiovascular events (HR 2.74, 95% CI 2.21-3.40), as compared to CKD patients in the bottom tertile. In the dose-response study, the risks for CKD progression, all-cause death, cardiovascular death, and cardiovascular events were increased by 31% (HR 1.31, 95% CI 1.06-1.61), 44% (HR 1.44, 95% CI 1.08-1.92), 67% (HR 1.67, 95% CI 1.37-2.03), and 55% (HR 1.55, 95% CI 1.31-1.83), respectively, with per 1 ng/mL increase in GDF-15. The positive linear correlations between GDF-15 and CKD progression and prognosis in a certain GDF-15 concentration range of approximately 0-3 ng/mL were indicated by the dose-response curve. CONCLUSIONS Circulating GDF-15 independently predicted CKD progression and worse prognosis; however, the predicted correlations may fall into a specific range of GDF-15 concentrations.
Collapse
Affiliation(s)
- Zhongwei Zhou
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Jiangsu 224001, China
| | - Hongli Liu
- Department of Clinical Laboratory, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Jiangsu 226361, China
| | - Huixiang Ju
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Jiangsu 224001, China
| | - Hongmei Chen
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Jiangsu 224001, China
| | - Hao Jin
- Department of Blood Transfusion, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Jiangsu 224001, China.
| | - Mingzhong Sun
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Jiangsu 224001, China.
| |
Collapse
|
33
|
Oh SJ, Hwang Y, Hur KY, Lee MS. Lysosomal Ca 2+ as a mediator of palmitate-induced lipotoxicity. Cell Death Discov 2023; 9:100. [PMID: 36944629 PMCID: PMC10030853 DOI: 10.1038/s41420-023-01379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
While the mechanism of lipotoxicity by palmitic acid (PA), an effector of metabolic stress in vitro and in vivo, has been extensively investigated, molecular details of lipotoxicity are still not fully characterized. Since recent studies reported that PA can exert lysosomal stress in addition to well-known ER and mitochondrial stress, we studied the role of lysosomal events in lipotoxicity by PA, focusing on lysosomal Ca2+. We found that PA induced accumulation of mitochondrial ROS and that mitochondrial ROS induced release of lysosomal Ca2+ due to lysosomal Ca2+ exit channel activation. Lysosomal Ca2+ release led to increased cytosolic Ca2+ which induced mitochondrial permeability transition (mPT). Chelation of cytoplasmic Ca2+ or blockade of mPT with olesoxime or decylubiquinone (DUB) suppressed lipotoxicity. Lysosomal Ca2+ release led to reduced lysosomal Ca2+ content which was replenished by ER Ca2+, the largest intracellular Ca2+ reservoir (ER → lysosome Ca2+ refilling), which in turn activated store-operated Ca2+ entry (SOCE). Inhibition of ER → lysosome Ca2+ refilling by blockade of ER Ca2+ exit channel using dantrolene or inhibition of SOCE using BTP2 inhibited lipotoxicity in vitro. Dantrolene or DUB also inhibited lipotoxic death of hepatocytes in vivo induced by administration of ethyl palmitate together with LPS. These results suggest a novel pathway of lipotoxicity characterized by mPT due to lysosomal Ca2+ release which was supplemented by ER → lysosome Ca2+ refilling and subsequent SOCE, and also suggest the potential role of modulation of ER → lysosome Ca2+ refilling by dantrolene or other blockers of ER Ca2+ exit channels in disease conditions characterized by lipotoxicity such as metabolic syndrome, diabetes, cardiomyopathy or nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Korea
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang Medical Center, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Yeseong Hwang
- Severance Biomedical Science Institute, Graduate school of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kyu Yeon Hur
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myung-Shik Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang Medical Center, Soonchunhyang University College of Medicine, Cheonan, Korea.
- Severance Biomedical Science Institute, Graduate school of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
34
|
Li D, Dai D, Xiong G, Lan S, Zhang C. Metal-Based Nanozymes with Multienzyme-Like Activities as Therapeutic Candidates: Applications, Mechanisms, and Optimization Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205870. [PMID: 36513384 DOI: 10.1002/smll.202205870] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Most nanozymes in development for medical applications only exhibit single-enzyme-like activity, and are thus limited by insufficient catalytic activity and dysfunctionality in complex pathological microenvironments. To overcome the impediments of limited substrate availabilities and concentrations, some metal-based nanozymes may mimic two or more activities of natural enzymes to catalyze cascade reactions or to catalyze multiple substrates simultaneously, thereby amplifying catalysis. Metal-based nanozymes with multienzyme-like activities (MNMs) may adapt to dissimilar catalytic conditions to exert different enzyme-like effects. These multienzyme-like activities can synergize to realize "self-provision of the substrate," in which upstream catalysts produce substrates for downstream catalytic reactions to overcome the limitation of insufficient substrates in the microenvironment. Consequently, MNMs exert more potent antitumor, antibacterial, and anti-inflammatory effects in preclinical models. This review summarizes the cellular effects and underlying mechanisms of MNMs. Their potential medical utility and optimization strategy from the perspective of clinical requirements are also discussed, with the aim to provide a theoretical reference for the design, development, and therapeutic application of their catalytic effects.
Collapse
Affiliation(s)
- Dan Li
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Danni Dai
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Gege Xiong
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shuquan Lan
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
35
|
Daneshyar S, Tavoosidana G, Bahmani M, Basir SS, Delfan M, Laher I, Saeidi A, Granacher U, Zouhal H. Combined effects of high fat diet and exercise on autophagy in white adipose tissue of mice. Life Sci 2023; 314:121335. [PMID: 36587790 DOI: 10.1016/j.lfs.2022.121335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
AIM The effects of nutrition and exercise on autophagy are not well studied. This study aimed to investigate the combined effects of high-fat diets (HFD) and exercise training (ET) on autophagy in white adipose tissue of mice. MATERIALS AND METHODS Male C57BL/6 mice were assigned into four groups of 7 mice per group: (1) Control, (2) high-fat diet-induced obesity (HFD-Ob), (3) exercise training (ET), and (4) high-fat diet with exercise training (HFD-ET). The HFD-Ob group was fed a high-fat diet for 14 weeks, while the ET group continuously ran on a treadmill for five sessions per week for seven weeks, and the HFD-ET group had both HFD and exercise training. qReal-time-PCR and western blot were used to measure the mRNA and protein levels of autophagy markers in white adipose tissue. RESULTS Mice from the HFD group showed higher levels in autophagy-related gene5 (ATG5, p = 0.04), ATG7 (p = 0.002), cathepsin B (CTSB, p = 0.0004), LC3-II (p = 0.03) than control. Mice in the ET group displayed higher levels of genes for ATG7 (p = 0.0003), microtubule-associated protein1-light chain 3 (LC3, p = 0.05), lysosome-associated membrane protein 2 (LAMP2, p = 0.04) and cathepsin L (CTSL, p = 0.03) than control. Mice from the HFD-ET group had higher levels of genes for ATG7 (p = 0.05) and CTSL (p = 0.043) and lower levels of genes for CTSB (p = 0.045) compared to the HFD group and lower levels of LAMP2 (p = 0.02) compared to the ET group. CONCLUSION There were increases in autophagosome formation in the white adipose tissue from mice in the HFD and ET groups. A combination of HFD and ET enhances autophagosome formation and modulates lysosomal degradation in white adipose tissue.
Collapse
Affiliation(s)
- Saeed Daneshyar
- Department of Physical Education, Faculty of Humanities, Ayatollah Alozma Boroujerdi University, Lorestan, Iran; Department of Physical Education, Hamedan University of Technology, Hamedan, Iran.
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Bahmani
- Department of Biochemistry, Faculty of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Saeed Shokati Basir
- Department of Exercise Physiology, Faculty of Physical Education, University of Guilan, Guilan, Iran
| | - Maryam Delfan
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Germany.
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, F-35000 Rennes, France; Institut International des Sciences du Sport (2I2S), 35850 Irodouer, France.
| |
Collapse
|
36
|
Gebrie A. Transcription factor EB as a key molecular factor in human health and its implication in diseases. SAGE Open Med 2023; 11:20503121231157209. [PMID: 36891126 PMCID: PMC9986912 DOI: 10.1177/20503121231157209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 03/07/2023] Open
Abstract
Transcription factor EB, as a component of the microphthalmia family of transcription factors, has been demonstrated to be a key controller of autophagy-lysosomal biogenesis. Transcription factor EB is activated by stressors such as nutrition and deprivation of growth factors, hypoxia, lysosomal stress, and mitochondrial injury. To achieve the ultimate functional state, it is controlled in a variety of modes, such as in its rate of transcription, post-transcriptional control, and post-translational alterations. Due to its versatile role in numerous signaling pathways, including the Wnt, calcium, AKT, and mammalian target of rapamycin complex 1 signaling pathways, transcription factor EB-originally identified to be an oncogene-is now well acknowledged as a regulator of a wide range of physiological systems, including autophagy-lysosomal biogenesis, response to stress, metabolism, and energy homeostasis. The well-known and recently identified roles of transcription factor EB suggest that this protein might play a central role in signaling networks in a number of non-communicable illnesses, such as cancer, cardiovascular disorders, drug resistance mechanisms, immunological disease, and tissue growth. The important developments in transcription factor EB research since its first description are described in this review. This review helps to advance transcription factor EB from fundamental research into therapeutic and regenerative applications by shedding light on how important a role it plays in human health and disease at the molecular level.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
37
|
Govaere O, Anstee QM. Non-Alcoholic Fatty Liver Disease and Steatohepatitis. ENCYCLOPEDIA OF CELL BIOLOGY 2023:610-621. [DOI: 10.1016/b978-0-12-821618-7.00265-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
38
|
Aguilar-Recarte D, Barroso E, Palomer X, Wahli W, Vázquez-Carrera M. Knocking on GDF15's door for the treatment of type 2 diabetes mellitus. Trends Endocrinol Metab 2022; 33:741-754. [PMID: 36151002 DOI: 10.1016/j.tem.2022.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/21/2023]
Abstract
Although a large number of drugs are available for the treatment of type 2 diabetes mellitus (T2DM), many patients do not achieve adequate disease control despite adhering to medication. Recent findings indicate that the pharmacological modulation of the stress-induced cytokine growth differentiation factor 15 (GDF15) shows promise for the treatment of T2DM. GDF15 suppresses appetite and reduces inflammation, increases thermogenesis and lipid catabolism, sustains AMP-activated protein kinase (AMPK) activity, and ameliorates insulin resistance and hepatic steatosis. In addition, circulating GDF15 levels are elevated in response to several antidiabetic drugs, including metformin, with GDF15 mediating some of their effects. Here, we review the mechanistic insights into the beneficial effects of recently explored therapeutic approaches that target GDF15 for the treatment of T2DM.
Collapse
Affiliation(s)
- David Aguilar-Recarte
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232; ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, 31300 Toulouse Cedex, France
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
39
|
Oh SJ, Lee MS. Role of Autophagy in the Pathogenesis of Diabetes and Therapeutic Potential of Autophagy Modulators in the Treatment of Diabetes and Metabolic Syndrome. J Korean Med Sci 2022; 37:e276. [PMID: 36163475 PMCID: PMC9512677 DOI: 10.3346/jkms.2022.37.e276] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is critically involved in the maintenance of intracellular nutrient homeostasis and organelle function. Dysregulated autophagy is likely to play a role in the development of metabolic disorders and diabetes because autophagy is critical in the rejuvenation of dysfunctional or stressed endoplasmic reticulum and mitochondria that play a crucial role in the development of diabetes. Indeed, systemic autophagy insufficiency led to the increased tissue lipid content, aggravated metabolic and finally more severe diabetes when metabolic stress was imposed, suggesting that autophagy insufficiency of dysfunction of lysosome, an effector organelle of autophagy, due to aging, genetic predisposition or environmental factors could be an underlying cause of diabetes. Conversely, autophagy enhancer could improve metabolic profile of obese mice by reducing tissue lipid content and ameliorating metabolic inflammation. Furthermore, clearance of human islet amyloid polypeptide (hIAPP) oligomer and amyloid that accumulate in pancreatic islets of > 90% of diabetes patients was also dependent on autophagy. Consistently, autophagy enhancer could improve glucose profile and β-cell function of transgenic mice expressing amyloidogenic hIAPP in pancreatic β-cells, which was accompanied by reduced accumulation of hIAPP oligomer or amyloid, ameliorated β-cell apoptosis and increased β-cell mass. These results suggest that autophagy enhancer could be a novel therapeutic modality against diabetes associated with lipid overload and human diabetes characterized by islet amyloid accumulation.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Myung-Shik Lee
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea.
| |
Collapse
|
40
|
Tan A, Prasad R, Lee C, Jho EH. Past, present, and future perspectives of transcription factor EB (TFEB): mechanisms of regulation and association with disease. Cell Death Differ 2022; 29:1433-1449. [PMID: 35739255 PMCID: PMC9345944 DOI: 10.1038/s41418-022-01028-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/16/2022] Open
Abstract
Transcription factor EB (TFEB), a member of the MiT/TFE family of basic helix-loop-helix leucine zipper transcription factors, is an established central regulator of the autophagy/lysosomal-to-nucleus signaling pathway. Originally described as an oncogene, TFEB is now widely known as a regulator of various processes, such as energy homeostasis, stress response, metabolism, and autophagy-lysosomal biogenesis because of its extensive involvement in various signaling pathways, such as mTORC1, Wnt, calcium, and AKT signaling pathways. TFEB is also implicated in various human diseases, such as lysosomal storage disorders, neurodegenerative diseases, cancers, and metabolic disorders. In this review, we present an overview of the major advances in TFEB research over the past 30 years, since its description in 1990. This review also discusses the recently discovered regulatory mechanisms of TFEB and their implications for human diseases. We also summarize the moonlighting functions of TFEB and discuss future research directions and unanswered questions in the field. Overall, this review provides insight into our understanding of TFEB as a major molecular player in human health, which will take us one step closer to promoting TFEB from basic research into clinical and regenerative applications.
Collapse
Affiliation(s)
- Anderson Tan
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Renuka Prasad
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Chaerin Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
41
|
Schrader S, Perfilyev A, Ahlqvist E, Groop L, Vaag A, Martinell M, García-Calzón S, Ling C. Novel Subgroups of Type 2 Diabetes Display Different Epigenetic Patterns That Associate With Future Diabetic Complications. Diabetes Care 2022; 45:1621-1630. [PMID: 35607770 PMCID: PMC9274219 DOI: 10.2337/dc21-2489] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/05/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Type 2 diabetes (T2D) was recently reclassified into severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), and mild age-related diabetes (MARD), which have different risk of complications. We explored whether DNA methylation differs between these subgroups and whether subgroup-unique methylation risk scores (MRSs) predict diabetic complications. RESEARCH DESIGN AND METHODS Genome-wide DNA methylation was analyzed in blood from subjects with newly diagnosed T2D in discovery and replication cohorts. Subgroup-unique MRSs were built, including top subgroup-unique DNA methylation sites. Regression models examined whether MRSs associated with subgroups and future complications. RESULTS We found epigenetic differences between the T2D subgroups. Subgroup-unique MRSs were significantly different in those patients allocated to each respective subgroup compared with the combined group of all other subgroups. These associations were validated in an independent replication cohort, showing that subgroup-unique MRSs associate with individual subgroups (odds ratios 1.6-6.1 per 1-SD increase, P < 0.01). Subgroup-unique MRSs were also associated with future complications. Higher MOD-MRS was associated with lower risk of cardiovascular (hazard ratio [HR] 0.65, P = 0.001) and renal (HR 0.50, P < 0.001) disease, whereas higher SIRD-MRS and MARD-MRS were associated with an increased risk of these complications (HR 1.4-1.9 per 1-SD increase, P < 0.01). Of 95 methylation sites included in subgroup-unique MRSs, 39 were annotated to genes previously linked to diabetes-related traits, including TXNIP and ELOVL2. Methylation in the blood of 18 subgroup-unique sites mirrors epigenetic patterns in tissues relevant for T2D, muscle and adipose tissue. CONCLUSIONS We identified differential epigenetic patterns between T2D subgroups that associated with future diabetic complications. These data support a reclassification of diabetes and the need for precision medicine in T2D subgroups.
Collapse
Affiliation(s)
- Silja Schrader
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Emma Ahlqvist
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Leif Groop
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Allan Vaag
- Type 2 Diabetes Biology Research, Steno Diabetes Center, Copenhagen, Denmark
| | - Mats Martinell
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden.,Academic Primary Care Centre, Uppsala, Sweden
| | - Sonia García-Calzón
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.,Department of Food Science and Physiology, University of Navarra, Pamplona, Spain
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
42
|
Kim J, Lee S, Lee MS. Suppressive Effect of Autocrine FGF21 on Autophagy-Deficient Hepatic Tumorigenesis. Front Oncol 2022; 12:832804. [PMID: 35321438 PMCID: PMC8936433 DOI: 10.3389/fonc.2022.832804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/09/2022] [Indexed: 12/23/2022] Open
Abstract
Mice with hepatocyte-specific deletion of autophagy-related 7 (Atg7ΔHep mice) develop hepatoma, suggesting that autophagy deficiency could be a factor in the initiation of tumorigenesis. We have shown that FGF21 is induced as a ‘mitokine’ when Atg7 is disrupted in insulin target tissues such as the liver, which could affect systemic metabolism through endocrine activity. Since FGF21 or other endocrine FGF such as FGF19 can affect tumor growth, we hypothesized that FGF21 produced by Atg7-knockout (KO) hepatocytes may affect the behavior of Atg7-KO hepatoma in an autocrine manner. We, thus, crossed Atg7ΔHep mice with systemic Fgf21-KO (Fgf21−/−) mice to generate Atg7ΔHepFgf21−/− mice. The number and size of hepatoma of Atg7ΔHep mice were significantly increased by additional Fgf21 KO. The proliferation of Atg7-KO hepatocyte was significantly increased by Fgf21 KO. pYAP1/YAP1 representing YAP1 degradation was significantly decreased in the liver of Atg7ΔHepFgf21−/− mice compared to Atg7ΔHepFgf21+/+ mice. Consistently, expression of YAP1/TAZ downstream genes was significantly increased in the liver of Atg7ΔHepFgf21−/− mice compared to Atg7ΔHepFgf21+/+ mice, which could explain the increased size of hepatoma in Atg7ΔHepFgf21−/− mice. Accumulation of ROS and ROS-mediated DNA damage were increased in the liver of Atg7ΔHepFgf21+/+ mice, which was further aggravated by additional Fgf21 KO probably due to the absence of positive effect of FGF21 on mitochondrial function, explaining the increased number of hepatoma in Atg7ΔHepFgf21−/− mice compared to Atg7ΔHepFgf21+/+ mice. These results show that FGF21 produced by autophagy-deficient hepatocytes could have autocrine or paracrine effects on the number and proliferation of autophagy-deficient hepatoma, suggesting that hormones or factors released from autophagy-deficient tumors can influence the behavior or prognosis of the tumor in addition to the effects on host metabolism.
Collapse
Affiliation(s)
- Jinyoung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Soyeon Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, South Korea
- *Correspondence: Myung-Shik Lee, ;
| |
Collapse
|
43
|
Park K, Lee MS. Current Status of Autophagy Enhancers in Metabolic Disorders and Other Diseases. Front Cell Dev Biol 2022; 10:811701. [PMID: 35237600 PMCID: PMC8882819 DOI: 10.3389/fcell.2022.811701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
Autophagy is pivotal in the maintenance of organelle function and intracellular nutrient balance. Besides the role of autophagy in the homeostasis and physiology of the individual tissues and whole organism in vivo, dysregulated autophagy has been incriminated in the pathogenesis of a variety of diseases including metabolic diseases, neurodegenerative diseases, cardiovascular diseases, inflammatory or immunological disorders, cancer and aging. Search for autophagy modulators has been widely conducted to amend dysregulation of autophagy or pharmacologically modulate autophagy in those diseases. Current data support the view that autophagy modulation could be a new modality for treatment of metabolic syndrome associated with lipid overload, human-type diabetes characterized by deposition of islet amyloid or other diseases including neurodegenerative diseases, infection and cardiovascular diseases. While clinically available bona fide autophagy modulators have not been developed yet, it is expected that on-going investigation will lead to the development of authentic autophagy modulators that can be safely administered to patients in the near future and will open a new horizon for treatment of incurable or difficult diseases.
Collapse
|
44
|
Myojin Y, Hikita H, Tahata Y, Doi A, Kato S, Sasaki Y, Shirai K, Sakane S, Yamada R, Kodama T, Hagiwara H, Imai Y, Hiramatsu N, Tamura S, Yamamoto K, Ohkawa K, Hijioka T, Fukui H, Doi Y, Yamada Y, Yakushijin T, Mita E, Sakamori R, Tatsumi T, Takehara T. Serum growth differentiation factor 15 predicts hepatocellular carcinoma occurrence after hepatitis C virus elimination. Aliment Pharmacol Ther 2022; 55:422-433. [PMID: 34812502 DOI: 10.1111/apt.16691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/04/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND After hepatitis C virus (HCV) elimination, patients should be followed up due to risk of hepatocellular carcinoma (HCC). Growth differentiation factor 15 (GDF15) is a cytokine induced by mitochondrial dysfunction or oxidative stress. Aim To evaluate the prognostic value of GDF15 for HCC occurrence after HCV elimination. METHODS We measured GDF15 levels in stored serum from patients with chronic HCV infection without a history of HCC who had achieved sustained virological response with direct-acting antiviral agents (DAAs). The patients were randomly divided into derivation (n = 964) and validation (n = 642) cohorts. RESULTS In the derivation cohort, serum GDF15 levels were higher in those with HCC occurrence after DAA treatment than in those without. Multivariate Cox proportional hazards analysis revealed baseline GDF15 (>1350 pg/mL, HR 2.54), AFP (>5 ng/mL, HR 2.00), and the FIB-4 index (>3.25, HR 2.69) to be independent risk factors for HCC. Scoring based on GDF15, AFP and the FIB-4 index stratified HCC occurrence risk. In the validation cohort, the cumulative HCC occurrence rate at 3 years was 0.64%, 3.27% and 15.3% in low-score (N = 171), medium-score (N = 300) and high-score (N = 166) groups, respectively. In the total cohort, scoring divided patients with a FIB-4 index ≤3.25, whose HCC occurrence rate was 2.0% at 3 years, into medium-score and low-score groups with HCC occurrence rates at 3 years of 3.76% and 0.24%, respectively. CONCLUSIONS Serum GDF15 predicts de novo HCC occurrence. Scoring using GDF15, AFP, and the FIB-4 index can predict de novo HCC occurrence risk after HCV elimination.
Collapse
|
45
|
Liu QR, Aseer KR, Yao Q, Zhong X, Ghosh P, O’Connell JF, Egan JM. Anti-Inflammatory and Pro-Autophagy Effects of the Cannabinoid Receptor CB2R: Possibility of Modulation in Type 1 Diabetes. Front Pharmacol 2022; 12:809965. [PMID: 35115945 PMCID: PMC8804091 DOI: 10.3389/fphar.2021.809965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease resulting from loss of insulin-secreting β-cells in islets of Langerhans. The loss of β-cells is initiated when self-tolerance to β-cell-derived contents breaks down, which leads to T cell-mediated β-cell damage and, ultimately, β-cell apoptosis. Many investigations have demonstrated the positive effects of antagonizing cannabinoid receptor 1 (CB1R) in metabolic diseases such as fatty liver disease, obesity, and diabetes mellitus, but the role of cannabinoid receptor 2 (CB2R) in such diseases is relatively unknown. Activation of CB2R is known for its immunosuppressive roles in multiple sclerosis, rheumatoid arthritis, Crohn’s, celiac, and lupus diseases, and since autoimmune diseases can share common environmental and genetic factors, we propose CB2R specific agonists may also serve as disease modifiers in diabetes mellitus. The CNR2 gene, which encodes CB2R protein, is the result of a gene duplication of CNR1, which encodes CB1R protein. This ortholog evolved rapidly after transitioning from invertebrates to vertebrate hundreds of million years ago. Human specific CNR2 isoforms are induced by inflammation in pancreatic islets, and a CNR2 nonsynonymous SNP (Q63R) is associated with autoimmune diseases. We collected evidence from the literature and from our own studies demonstrating that CB2R is involved in regulating the inflammasome and especially release of the cytokine interleukin 1B (IL-1β). Furthermore, CB2R activation controls intracellular autophagy and may regulate secretion of extracellular vesicles from adipocytes that participate in recycling of lipid droplets, dysregulation of which induces chronic inflammation and obesity. CB2R activation may play a similar role in islets of Langerhans. Here, we will discuss future strategies to unravel what roles, if any, CB2R modifiers potentially play in T1DM.
Collapse
Affiliation(s)
- Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
- *Correspondence: Qing-Rong Liu, ; Josephine M. Egan,
| | - Kanikkai Raja Aseer
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Qin Yao
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Xiaoming Zhong
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Paritosh Ghosh
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Jennifer F. O’Connell
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Josephine M. Egan
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
- *Correspondence: Qing-Rong Liu, ; Josephine M. Egan,
| |
Collapse
|
46
|
Hosaka T. Editorial: can experimental biomarkers be useful for predicting HCC occurrence after sustained viral response in clinical settings? Aliment Pharmacol Ther 2022; 55:137-138. [PMID: 34907559 DOI: 10.1111/apt.16716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Tetsuya Hosaka
- Department of Hepatology, Toranomon Hospital, Tokyo, Japan
| |
Collapse
|
47
|
Klein AB, Kleinert M, Richter EA, Clemmensen C. GDF15 in Appetite and Exercise: Essential Player or Coincidental Bystander? Endocrinology 2022; 163:6440292. [PMID: 34849709 DOI: 10.1210/endocr/bqab242] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 02/07/2023]
Abstract
Growth differentiation factor 15 (GDF15) has recently moved to the forefront of metabolism research. When administered pharmacologically, GDF15 reduces food intake and lowers body weight via the hindbrain-situated receptor GFRAL (glial cell-derived neurotrophic factor family receptor alpha-like). Endogenous GDF15 is a ubiquitous cellular stress signal that can be produced and secreted by a variety of cell types. Circulating levels are elevated in a series of disease states, but also in response to exogenous agents such as metformin, colchicine, AICAR, and cisplatin. Recently, exercise has emerged as a relevant intervention to interrogate GDF15 physiology. Prolonged endurance exercise increases circulating GDF15 to levels otherwise associated with certain pathological states and in response to metformin treatment. The jury is still out on whether GDF15 is a functional "exerkine" mediating organ-to-brain crosstalk or whether it is a coincidental bystander. In this review, we discuss the putative physiological implication of exercise-induced GDF15, focusing on the potential impact on appetite and metabolism.
Collapse
Affiliation(s)
- Anders B Klein
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Muscle Physiology and Metabolism Group, German Institute of Human Nutrition (DIfE), Potsdam - Rehbrücke, Nuthetal, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Silva-Bermudez LS, Sevastyanova TN, Schmuttermaier C, De La Torre C, Schumacher L, Klüter H, Kzhyshkowska J. Titanium Nanoparticles Enhance Production and Suppress Stabilin-1-Mediated Clearance of GDF-15 in Human Primary Macrophages. Front Immunol 2021; 12:760577. [PMID: 34975851 PMCID: PMC8714923 DOI: 10.3389/fimmu.2021.760577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Macrophages are key innate immune cells that mediate implant acceptance or rejection. Titanium implants degrade over time inside the body, which results in the release of implant wear-off particles. Titanium nanoparticles (TiNPs) favor pro-inflammatory macrophage polarization (M1) and lower tolerogenic activation (M2). GDF-15 regulates immune tolerance and fibrosis and is endocytosed by stabilin-1. How TiNPs affect the healing activities of macrophages and their release of circulating cytokines is an open question in regenerative medicine. In this study for the first time, we identified the transcriptional program induced and suppressed by TiNPs in human pro-inflammatory and healing macrophages. Microarray analysis revealed that TiNPs altered the expression of 5098 genes in M1 (IFN-γ-stimulated) and 4380 genes in M2 (IL-4–stimulated) macrophages. 1980 genes were differentially regulated in both M1 and M2. Affymetrix analysis, confirmed by RT-PCR, demonstrated that TiNPs upregulate expression of GDF-15 and suppress stabilin-1, scavenger receptor of GDF-15. TiNPs also significantly stimulated GDF-15 protein secretion in inflammatory and healing macrophages. Flow cytometry demonstrated, that scavenging activity of stabilin-1 was significantly suppressed by TiNPs. Confocal microscopy analysis showed that TiNPs impair internalization of stabilin-1 ligand acLDL and its transport to the endocytic pathway. Our data demonstrate that TiNPs have a dual effect on the GDF-15/stabilin-1 interaction in macrophage system, by increasing the production of GDF-15 and suppressing stabilin-1-mediated clearance function. In summary, this process can result in a significant increase of GDF-15 in the extracellular space and in circulation leading to unbalanced pro-fibrotic reactions and implant complications.
Collapse
Affiliation(s)
- Lina S. Silva-Bermudez
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
| | - Tatyana N. Sevastyanova
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christina Schmuttermaier
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolina De La Torre
- Microarray Analytics – NGS Core Facility (IKC), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Leonie Schumacher
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
- *Correspondence: Julia Kzhyshkowska,
| |
Collapse
|
49
|
Keipert S, Ost M. Stress-induced FGF21 and GDF15 in obesity and obesity resistance. Trends Endocrinol Metab 2021; 32:904-915. [PMID: 34526227 DOI: 10.1016/j.tem.2021.08.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 02/06/2023]
Abstract
Fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) are established as stress-responsive cytokines that can modulate energy balance by increasing energy expenditure or suppressing food intake, respectively. Despite their pharmacologically induced beneficial effects on obesity and comorbidities, circulating levels of both cytokines are elevated during obesity and related metabolic complications. On the other hand, endocrine crosstalk via FGF21 and GDF15 was also reported to play a crucial role in genetically modified mouse models of mitochondrial perturbations leading to diet-induced obesity (DIO) resistance. This review aims to dissect the complexities of endogenous FGF21 and GDF15 action in obesity versus DIO resistance for the regulation of energy balance in metabolic health and disease.
Collapse
Affiliation(s)
- Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Mario Ost
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
50
|
Kumar S, Sánchez-Álvarez M, Lolo FN, Trionfetti F, Strippoli R, Cordani M. Autophagy and the Lysosomal System in Cancer. Cells 2021; 10:cells10102752. [PMID: 34685734 PMCID: PMC8534995 DOI: 10.3390/cells10102752] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy and the lysosomal system, together referred to as the autophagolysosomal system, is a cellular quality control network which maintains cellular health and homeostasis by removing cellular waste including protein aggregates, damaged organelles, and invading pathogens. As such, the autophagolysosomal system has roles in a variety of pathophysiological disorders, including cancer, neurological disorders, immune- and inflammation-related diseases, and metabolic alterations, among others. The autophagolysosomal system is controlled by TFEB, a master transcriptional regulator driving the expression of multiple genes, including autophagoly sosomal components. Importantly, Reactive Oxygen Species (ROS) production and control are key aspects of the physiopathological roles of the autophagolysosomal system, and may hold a key for synergistic therapeutic interventions. In this study, we reviewed our current knowledge on the biology and physiopathology of the autophagolysosomal system, and its potential for therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Suresh Kumar
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- Correspondence: (S.K.); (R.S.)
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
| | - Fidel-Nicolás Lolo
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Raffaele Strippoli
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
- Correspondence: (S.K.); (R.S.)
| | | |
Collapse
|