1
|
Dali R, Langlet F. Tanycytes in the nexus of hypothalamic inflammation, appetite control, and obesity. Physiol Behav 2025; 296:114917. [PMID: 40222438 DOI: 10.1016/j.physbeh.2025.114917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/16/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Hypothalamic inflammation has been identified as a critical factor driving the development of obesity and associated metabolic disorders. This inflammation-related disruption of energy balance relies on alterations in metabolic cues sensing and hypothalamic cellular functions, together leading to overeating and weight gain. Within the hypothalamic cellular networks controlling energy balance, recent studies have highlighted the significance of glial dysfunction in these processes, suggesting that these cells could provide new avenues for weight loss therapies. Glia rapidly activates following the consumption of a high-fat diet, even after a very short exposure, and contributes to the disruption of the entire system through inflammatory crosstalk. This review explores recent progress in understanding the molecular interactions between glial cells and neurons in hypothalamic inflammation related to obesity, diabetes, and associated complications. Notably, it highlights specialized ependymal cells called tanycytes, whose role is still underestimated in hypothalamic inflammation, and examines the potential for targeting this cell type as a treatment strategy for metabolic disorders.
Collapse
Affiliation(s)
- Rafik Dali
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Fanny Langlet
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Roddick C, Harris M, Hofman PL. The Metabolic Programming of Pubertal Onset. Clin Endocrinol (Oxf) 2025; 102:526-538. [PMID: 39360615 DOI: 10.1111/cen.15138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND There is increasing evidence that maternal factors such as nutritional status (both under and over-nutrition) and diabetes, alongside prenatal exposure to endocrine disrupting chemicals (EDCs), are associated with early pubertal onset in offspring. Such children are also at increased risk of the metabolic syndrome during adolescence and young adulthood. AIM This literature review focuses on the role of the prenatal environment in programming pubertal onset, and the impact of prenatal metabolic stressors on the declining average age of puberty. METHOD A review of all relevant literature was conducted in PubMed by the authors. OUTCOME The mechanism for this appears to be mediated through metabolic signals, such as leptin and insulin, on the kisspeptin-neuronal nitric oxide-gonadotropin releasing hormone (KiNG) axis. Exposed children have an elevated risk of childhood obesity and display a phenotype of hyperinsunlinaemia and hyperleptinaemia. These metabolic changes permit an earlier attainment of the nutritional "threshold" for puberty. Unfortunately, this cycle may be amplified across subsequent generations, however early intervention may help "rescue" progression of this programming.
Collapse
Affiliation(s)
- Clinton Roddick
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Mark Harris
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Paul L Hofman
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Chen G, Chen L, Li X, Mohammadi M. FGF-based drug discovery: advances and challenges. Nat Rev Drug Discov 2025; 24:335-357. [PMID: 39875570 DOI: 10.1038/s41573-024-01125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
The fibroblast growth factor (FGF) family comprises 15 paracrine-acting and 3 endocrine-acting polypeptides, which govern a multitude of processes in human development, metabolism and tissue homeostasis. Therapeutic endocrine FGFs have recently advanced in clinical trials, with FGF19 and FGF21-based therapies on the cusp of approval for the treatment of primary sclerosing cholangitis and metabolic syndrome-associated steatohepatitis, respectively. By contrast, while paracrine FGFs were once thought to be promising drug candidates for wound healing, burns, tissue repair and ischaemic ailments based on their potent mitogenic and angiogenic properties, repeated failures in clinical trials have led to the widespread perception that the development of paracrine FGF-based drugs is not feasible. However, the observation that paracrine FGFs can exert FGF hormone-like metabolic activities has restored interest in these FGFs. The recent structural elucidation of the FGF cell surface signalling machinery and the formulation of a new threshold model for FGF signalling specificity have paved the way for therapeutically harnessing paracrine FGFs for the treatment of a range of metabolic diseases.
Collapse
Affiliation(s)
- Gaozhi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Moosa Mohammadi
- Institute of Cell Growth Factor, Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Mikołajczyk-Stecyna J, Zuk E, Chmurzynska A, Blatkiewicz M, Jopek K, Rucinski M. Exposure to a choline-deficient diet during pregnancy and lactation alters the liver transcriptome profile in offspring of dams with fatty liver. Clin Nutr ESPEN 2025; 66:9-23. [PMID: 39800134 DOI: 10.1016/j.clnesp.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND & AIMS The developmental origin of health and disease hypothesis shows that early adverse exposures can have lifelong health effects. Thus, the aim of this study was to analyze the impact of choline intake during pregnancy and/or lactation on gene expression profiles in the liver of 24-day-old male rat offspring from dams with non-alcoholic fatty liver disease (NAFLD). METHODS Phenotypic characteristic, histological examination and global transcriptome pattern of liver tissue specimens obtained from offspring of dams suffering from fatty liver, provided with proper choline intake during pregnancy and lactation (NN), fed a choline-deficient diet during both periods (DD), deprived of choline only during pregnancy (DN), or only during lactation (ND), was performed. The global gene expression profile was analyzed by using microarray approach (Affymetrix® Rat Gene 2.1 ST Array Strip). The relative expression of selected genes was validated by real-time polymerase chain reaction (qPCR). RESULTS The histological examination of rat liver sections indicated alternations typical for fatty liver in all analyzed groups with increased progression among groups deprived of choline. Choline deficiency in the maternal diet was associated with changes in body mass and composition but not with biochemical marker levels, except for the high density lipoprotein fraction of cholesterol (HDL). Enhanced expression of genes involved in oxidative stress, cell proliferation, activation of catabolic processes related to hepatocyte dysfunction and cell membrane composition were simultaneously observed in all choline-deficient groups. CONCLUSIONS An adequate amount of choline in the diet of a mother with fatty liver during pregnancy and/or lactation can regulate gene expression in the offspring's liver and contribute to a milder stage of the disease in the progeny. Moreover, proper choline supply during the postpartum period is as crucial as during the prenatal period.
Collapse
Affiliation(s)
- Joanna Mikołajczyk-Stecyna
- Poznań University of Life Sciences, Department of Human Nutrition and Dietetics, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Ewelina Zuk
- Poznań University of Life Sciences, Department of Human Nutrition and Dietetics, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Agata Chmurzynska
- Poznań University of Life Sciences, Department of Human Nutrition and Dietetics, Wojska Polskiego 31, 60-624 Poznań, Poland
| | | | - Karol Jopek
- University of Medical Sciences, Department of Histology and Embryology, Poznań, Poland
| | - Marcin Rucinski
- University of Medical Sciences, Department of Histology and Embryology, Poznań, Poland
| |
Collapse
|
5
|
Zhao Y, Feng L, Wu C, Xu Y, Bo W, Di L, Pan S, Cai M, Tian Z. Aerobic Exercise Activates Fibroblast Growth Factor 21 and Alleviates Cardiac Ischemia/Reperfusion-induced Neuronal Oxidative Stress and Ferroptosis in Paraventricular Nucleus. Mol Neurobiol 2025:10.1007/s12035-025-04780-1. [PMID: 40009261 DOI: 10.1007/s12035-025-04780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Cardiac ischemia/reperfusion (I/R) induces systemic oxidative stress, which in turn gives rise to the development of multiple organ abnormalities, including brain injury. The paraventricular nucleus (PVN) of the hypothalamus is a cardiovascular regulatory center. Aerobic exercise is an effective intervention to protect the heart against I/R injury. However, the effect of aerobic exercise on cardiac I/R-induced neuronal injury in the PVN has not been fully elucidated. The aim of this study is to investigate whether aerobic exercise can up-regulate fibroblast growth factor 21 (FGF21) and alleviate neuronal oxidative stress and ferroptosis in the PVN caused by cardiac I/R. In vivo, after six weeks of aerobic exercise, the cardiac I/R model was established by ligating the left anterior descending (LAD) coronary artery for 30 min, followed by 2 h of reperfusion. Cardiac function and heart rate variability (HRV) were measured. Morphological changes, oxidative stress, expression of FGF21 and its downstream signaling molecules, as well as ferroptosis-related indicators in the PVN, were evaluated. In vitro, HT22 cells were exposed to oxygen-glucose deprivation and reoxygenation (OGD/R) and treated with recombinant human FGF21 (rhFGF21) and compound C to elucidate the potential mechanism. Cardiac I/R induced iron deposition, elevated expression of lipid peroxidation drivers, and impaired antioxidant capacity in the PVN, which collectively contributed to neuronal ferroptosis. Aerobic exercise up-regulated the expression of FGF21, FGFR1, and PGC-1α, maintained the phosphorylation of AMPKα, enhanced antioxidant capacity, reduced ROS and lipid peroxidation, regulated iron homeostasis, and effectively attenuated neuronal ferroptosis induced by cardiac I/R. In addition, rhFGF21 protected HT22 cells against OGD/R-induced oxidative stress and ferroptosis, which was blocked by AMPK inhibition. FGF21 plays a pivotal role in regulating neuronal oxidative stress and ferroptosis. Aerobic exercise could increase the expression of FGF21, FGFR1, and PGC-1α, maintain the phosphorylation of AMPKα, and alleviate cardiac I/R-induced neuronal oxidative stress and ferroptosis. These results confirm the protective effect of aerobic exercise against cardiac I/R-induced brain injury and provide an experimental basis for studying the relationship between exercise and the "heart-brain axis."
Collapse
Affiliation(s)
- Yifang Zhao
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Lili Feng
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
- Department of Sport Science, College of Education, Zhejiang University, Hangzhou, 310058, China
| | - Chenyang Wu
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Yuxiang Xu
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Wenyan Bo
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Lingyun Di
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Shou Pan
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Mengxin Cai
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
6
|
Wang Y, Tong X, Xiao Y, Wang Y, Hu W, Lu W, Chen Y, Li J, Gao W, Gao H, Tian Y, Dai S, Feng Y. Regulating Integrin β1 to Restore Gonadotropin-Releasing Hormone-Tanycyte Unit Function in Polycystic Ovary Syndrome-Related Hypothalamic Dysregulation. RESEARCH (WASHINGTON, D.C.) 2025; 8:0619. [PMID: 39975575 PMCID: PMC11836200 DOI: 10.34133/research.0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
Excessive gonadotropin-releasing hormone (GnRH) is considered to be an initiating factor in the etiology of polycystic ovary syndrome (PCOS). GnRH neuronal axons terminate at the hypothalamic arcuate nucleus and median eminence, where tanycytes, specialized glial cells, have been proposed to modulate GnRH secretion through plasticity. However, the precise role of the "GnRH-tanycyte unit" during the pathological state of PCOS has not been thoroughly explored. In this study, we demonstrated the architecture and distribution of GnRH neurons and tanycytes. In PCOS-like mice, retracted tanycyte processes and dysregulated GnRH-tanycyte unit may create an environment conducive to the excessive secretion of GnRH and subsequent reproductive endocrine dysfunction. Mechanistically, excessive androgens impair hypothalamic neuroglial homeostasis by acting through the androgen receptor (AR) and its downstream target integrin β1 (Itgb1), thereby suppressing the FAK/TGF-βR1/Smad2 signaling pathway. Both selective deletion of AR and overexpression of Itgb1 in tanycytes counteracted the detrimental effects of androgens, alleviating endocrine dysfunction. Collectively, this study highlights the alterations in the GnRH-tanycyte unit mediated by androgen/AR/Itgb1 signaling and provides a novel perspective for developing therapies for hypothalamic hormone secretion disorders by maintaining solid neuroglial structures in the brain.
Collapse
Affiliation(s)
- Yu Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Yan Xiao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Yicong Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Wei Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Wenhan Lu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College,
Fudan University, Shanghai, China
| | - Yuning Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Jiajia Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Wenhao Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Hongru Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Yicheng Tian
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Sizhe Dai
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| |
Collapse
|
7
|
Yao N, Kinouchi K, Katoh M, Ashtiani KC, Abdelkarim S, Morimoto H, Torimitsu T, Kozuma T, Iwahara A, Kosugi S, Komuro J, Kato K, Tonomura S, Nakamura T, Itoh A, Yamaguchi S, Yoshino J, Irie J, Hashimoto H, Yuasa S, Satoh A, Mikami Y, Uchida S, Ueki T, Nomura S, Baldi P, Hayashi K, Itoh H. Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring. Cell Metab 2025; 37:395-412.e6. [PMID: 39814018 PMCID: PMC11872692 DOI: 10.1016/j.cmet.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/29/2024] [Accepted: 12/04/2024] [Indexed: 01/18/2025]
Abstract
Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation. Intriguingly, diet-induced obesity was exacerbated in parallel with arrhythmic feeding behavior, hypothalamic leptin resistance, and hepatic circadian reprogramming in offspring of chronodisrupted mothers. In utero circadian desynchrony altered the phase-relationship between the mother and fetus and impacted placental efficiency. Temporal feeding restriction in offspring failed to fully prevent obesity, whereas the circadian alignment of caloric restriction with the onset of the active phase virtually ameliorated the phenotype. Thus, maternal circadian rhythms during pregnancy confer adaptive properties to metabolic functions in offspring and provide insights into the developmental origins of health and disease.
Collapse
Affiliation(s)
- Na Yao
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenichiro Kinouchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Manami Katoh
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Sherif Abdelkarim
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Hiroyuki Morimoto
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takuto Torimitsu
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takahide Kozuma
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihide Iwahara
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shotaro Kosugi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Health Center, Keio University, Yokohama, Japan
| | - Jin Komuro
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Kyosuke Kato
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shun Tonomura
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshifumi Nakamura
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Arata Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Yamaguchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jun Yoshino
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Shimane University, Izumo, Japan; The Center for Integrated Kidney Research and Advance (IKRA), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Junichiro Irie
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hisayuki Hashimoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Department of Cardiovascular Medicine, Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shusaku Uchida
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Pierre Baldi
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Kaori Hayashi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Center for Preventive Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|
8
|
Gao Y, Zhang J, Cao M, Zhang Y, Cao M, Gu W, Wang M. MDPAO1 peptide from human milk enhances brown adipose tissue thermogenesis and mitigates obesity. Mol Cell Endocrinol 2025; 597:112443. [PMID: 39710295 DOI: 10.1016/j.mce.2024.112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/19/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
The regulatory effect of breastfeeding on offspring metabolism has garnered significant attention as an effective strategy in combating childhood obesity. However, the underlying mechanism remains largely unknown. Through integrated analysis of multiple human milk peptide databases and functional screening, MDPAO1 (milk-derived peptide associated with obesity 1) was identified as having potential activity in promoting the expression of thermogenic genes. In lactating mice, intervention with MDPAO1 enhanced the thermogenic phenotype of brown adipose tissue (BAT) and overall metabolic activity. Moreover, MDPAO1 intervention led to reduced body weight gain, increased brown fat mass, and improved glucose tolerance and insulin sensitivity in a mouse model of high-fat diet (HFD)-induced obesity. RNA-seq analysis of BAT post-MDPAO1 intervention revealed close association with mitochondrial oxidative respiratory chain and mitophagy. Subsequent in vitro experiments conducted on primary brown adipocytes confirmed that MDPAO1 inhibited mitophagy, increased mitochondrial mass, and elevated levels of mitochondrial respiratory chain complexes. In conclusion, this study underscores the potential of MDPAO1, a peptide enriched in breast milk, in activating the thermogenic phenotype of brown adipose tissue and mitigating obesity, thus offering novel insights into the mechanisms underlying breastfeeding's role in preventing childhood obesity.
Collapse
Affiliation(s)
- Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Jiahui Zhang
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China
| | - Mengda Cao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210044, China
| | - Yiting Zhang
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China; Department of Neonatology, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China
| | - Minkai Cao
- Department of Obstetrics and Gynecology, Affiliated Women's Hospital of Jiangnan University ,Wuxi Maternity and Child Health Care Hospital, Wuxi 214002, China.
| | - Wei Gu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| | - Mingxin Wang
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China; Department of Neonatology, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China.
| |
Collapse
|
9
|
Yoshida Y, Shinomiya A, Oikawa M, Shimada T, Hanaki KI, Watanabe Y. [Neonatal Malnutrition Impacts Fibroblast Growth Factor 21-induced Neurite Outgrowth and Growth Hormone-releasing Hormone Secretion in Neonatal Mouse Brain]. YAKUGAKU ZASSHI 2025; 145:183-188. [PMID: 40024730 DOI: 10.1248/yakushi.24-00177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Neonatal malnutrition has been suggested as a factor contributing to neurological and other disorders. However, the details of this mechanism remain unclear. We focused on fibroblast growth factor 21 (FGF21), an endocrine factor produced in the liver during lactation-the main source of nutrition during the neonatal period- and analyzed its role in the brain. From the RNA-seq analysis of mouse brains, we analyzed the genes whose expression was regulated by FGF21 and their respective functions. We found that FGF21 has two functions in the neonatal brain; FGF21 induces the production of growth hormone-releasing hormone (GHRH) in the hypothalamus and is involved in isoform determination of Kalirin, a Ras homologous guanine nucleotide exchange factor, and promotes neurite outgrowth in the brain. Furthermore, the above mechanism is regulated by SH2-containing tyrosine phosphatase (SHP2) activity downstream of the FGF receptor. Additionally, the conserved intron of the SHP2 gene, Ptpn11, shows altered activity in malnourished mouse brains. In summary, FGF21 functions in neurite outgrowth and GHRH production in the neonatal mouse brain, with the mechanism being regulated by SHP2. However, SHP2 activity depends on nutritional status. Our goal was to elucidate the mechanisms by which FGF21 is involved in the maintenance of the central nervous system during the neonatal period. This study provides new insights into the role of FGF21 in diseases caused by dysfunction due to malnutrition.
Collapse
Affiliation(s)
- Yuko Yoshida
- Laboratory of Biosecurity Management, Research Center for Biosafety, Laboratory Animal and Pathogen Bank, NIID
| | | | | | | | - Ken-Ichi Hanaki
- Laboratory of Biosecurity Management, Research Center for Biosafety, Laboratory Animal and Pathogen Bank, NIID
| | - Yoshifumi Watanabe
- Faculty of Pharmacy, Musashino University
- Research Institute of Pharmaceutical Sciences, Musashino University
| |
Collapse
|
10
|
Ames SR, Lotoski LC, Rodriguez L, Brodin P, Mandhane PJ, Moraes TJ, Simons E, Turvey SE, Subbarao P, Azad MB. Human milk feeding practices and serum immune profiles of one-year-old infants in the CHILD birth cohort study. Am J Clin Nutr 2025; 121:60-73. [PMID: 39486685 PMCID: PMC11747196 DOI: 10.1016/j.ajcnut.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Breastfeeding and human milk consumption are associated with immune system development; however, the underlying mechanisms and the impact of different infant feeding practices are unclear. OBJECTIVES This study aimed to investigate how current human milk feeding (HMF) status is related to infant immune biomarker profiles, as well as explore relationships with HMF history (i.e., duration, exclusivity, and method: directly from the breast or pumped and bottled). METHODS This observational birth cohort study involved 605 infants from the Canadian CHILD Cohort Study. Infant feeding was captured from hospital birth records and parent questionnaires. Ninety-two biomarkers reflecting immune system activity and development were measured in serum collected at 1 y (12.6 ± 1.4 mo) using the Olink Target 96 Inflammation panel. Associations were determined using multivariable regression (adjusted for sex, time until blood sample centrifugation, and study site). RESULTS Nearly half (42.6%) of infants were still receiving HMF at the time of blood sampling. Compared with non-HMF infants, HMF infants had higher levels of serum fibroblast growth factor 21 (FGF-21, adjusted standardized β coefficient: 0.56; 95% CI: 0.41, 0.72), cluster of differentiation 244 (CD244, β: 0.35; 95% CI: 0.19, 0.50), chemokine ligand 6 (CXCL6, β: 0.34; 95% CI: 0.18, 0.50), and chemokine ligand 20 (CCL20, β: 0.26; 95% CI: 0.09, 0.42) and lower extracellular newly identified receptor for advanced glycation end-products binding protein (EN-RAGE, β: -0.16; 95% CI: -0.29, -0.03). Among non-HMF infants, serum interleukin 7 (IL-7) had a marginally positive association with past HMF duration (β: 0.05; 95% CI: 0.02, 0.08) that persisted for ≤5 mo post-HMF cessation. Exclusive HMF duration and HMF method (at 3 mo of age) were not associated with any biomarkers. CONCLUSIONS Current HMF status and (to a lesser extent) HMF history are associated with several inflammation-associated biomarkers in 1-y-old infants. These results provide new evidence that HMF impacts immune activity and development and suggest hypotheses about the underlying mechanisms. They also highlight the importance of including current HMF status in immune system-focused infant serum proteomic studies.
Collapse
Affiliation(s)
- Spencer R Ames
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Larisa C Lotoski
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lucie Rodriguez
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Petter Brodin
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | | | - Theo J Moraes
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Elinor Simons
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stuart E Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Meghan B Azad
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
11
|
Bourdon G, Chevaleyre C, Estienne A, Péchoux C, Bourgeais J, Hérault O, Ba M, Ramé C, Dupont J, Ducluzeau PH, Froment P. The hepatokine FGF21 stopped lipogenesis and reduced testosterone production in mLTC-1 Leydig Cell Line. Mol Cell Endocrinol 2024; 594:112350. [PMID: 39233040 DOI: 10.1016/j.mce.2024.112350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/05/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Beyond their link to metabolic issues like type 2 diabetes, factors like lifestyle, environment, and excess weight may also influence fertility. Fibroblast growth factor 21 (FGF21), a liver-derived hormone linked to energy balance, has recently emerged as a potential player in female mammalian reproduction. In male, only two studies have described potential effects of FGF21 on fertility. A recent study has described a negative correlation observed in obese patients presenting a low testosterone level associated with elevated FGF21 plasma levels. To investigate the role of FGF21 in steroidogenesis, we have studied the involvement of FGF21 in lipid and steroid activity by Leydig cells. Leydig cell model expressed all FGF21 receptors and β-Klotho cofactor as determined by RT-qPCR and by western-blot. Cultured mLTC-1 Leydig cell line exposed to increasing FGF21 concentration induced phosphorylation (Ser 473) of Akt and modified the CREB factor activity, suggesting the functionality of the FGF21 pathway. FGF21 consequences on mLTC-1 Leydig cells are inhibition of the lipid synthesis, leading to a reduction in the content of lipid droplets. The drop in lipid synthesis is associated with a reduction in the amount of lipids (mainly PUFA, cholesterol esterified, and triglycerides) as measured by lipidomic approach. The main consequence is to reduce the quantity of cholesterol, the steroid precursor, in mLTC-1 Leydig cells and is associated with a low production in testosterone. The decrease in androgens was also associated with a reduction in the steroid enzyme genes expression, which are under the control of CREB activity, and present a lower activity due to low cAMP intracellular levels. In vivo, steroid production was lowering after FGF21 administration in adult male mice associated to a decrease in progressive motility and velocity of sperm. In addition, these experimental data are reinforced by a data mining analysis focused on "gonad" terms in 1,319,905 article references showing the link already described between FGF21 with the fatty acids pathways, cholesterol storage, and steroid production. In conclusion, we demonstrated that Leydig cells in the testes present a functional FGF21 pathway, which regulates lipid metabolism and steroid function. In mLTC-1 Leydig cells, FGF21 reduced cholesterol, PUFA content, and testosterone production. Finally, this work highlighted that the hepatokine FGF21 could have a negative impact on androgen synthesis and testicular activity.
Collapse
Affiliation(s)
- Guillaume Bourdon
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Claire Chevaleyre
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Anthony Estienne
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Jérôme Bourgeais
- INSERM UMR 1069 N2C, Team LNOx, Tours University, 37000, Tours, France
| | - Olivier Hérault
- INSERM UMR 1069 N2C, Team LNOx, Tours University, 37000, Tours, France
| | - Mouhamadou Ba
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France; Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, 78350, Jouy-en-Josas, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Pierre-Henri Ducluzeau
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Internal Medicine Department, Unit of Endocrinology, CHRU Tours, F-37044, Tours, France
| | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.
| |
Collapse
|
12
|
Zhou W, Du Z. Oleuropein mitigates non-alcoholic fatty liver disease (NAFLD) and modulates liver metabolites in high-fat diet-induced obese mice via activating PPARα. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8634-8645. [PMID: 38952322 DOI: 10.1002/jsfa.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND This study aimed to elucidate the mechanism of oleuropein (OLE) ameliorates non-alcoholic fatty liver disease (NAFLD) and its underlying mechanisms. RESULTS Male C57BL/6J mice were fed either a low-fat diet (LFD), a high-fat diet (HFD), or a HFD supplemented with 0.03% (w/w) OLE for 16 weeks. OLE supplementation decreased body weight and liver weight, improved serum lipid profiles, and ameliorated HFD-induced hepatic dysfunction. Liver metabolomics analysis revealed that OLE increased the levels of nicotinamide, tauroursodeoxycholic acid, taurine, and docosahexaenoic acid, which were beneficial for lipid homeostasis and inflammation regulation. OLE exerted its protective effects by activating peroxisome proliferator-activated receptor alpha (PPARα), a key transcription factor that regulates fibroblast growth factor 21 (FGF21) expression and modulates lipid oxidation, lipogenesis and inflammation pathways. Importantly, OLE supplementation did not significantly affect body weight or liver weight in PPARα knockout (PPARα KO) mice, indicating that PPARα is essential for OLE-mediated NAFLD prevention. CONCLUSION Our results suggest that OLE alleviates NAFLD in mice by activating PPARα and modulating liver metabolites. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Zhou
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zheng Du
- The First People's Hospital of Lianyungang Public Health Department, Lianyungang, China
| |
Collapse
|
13
|
Lv J, Lan H, Qin A, Sun T, Shao D, Gao F, Yao J, Avanaki K, Nie L. Dynamic synthetic-scanning photoacoustic tracking monitors hepatic and renal clearance pathway of exogeneous probes in vivo. LIGHT, SCIENCE & APPLICATIONS 2024; 13:304. [PMID: 39482292 PMCID: PMC11528052 DOI: 10.1038/s41377-024-01644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024]
Abstract
Advancements in precision medicine necessitate understanding drug clearance pathways, especially in organs like the liver and kidneys. Traditional techniques such as PET/CT pose radiation hazards, whereas optical imaging poses challenges in maintaining both depth penetration and high resolution. Moreover, very few longitudinal studies have been performed for drug candidates for different symptoms. Leveraging non-ionizing photoacoustic tomography for deep tissue imaging, we developed a spatiotemporally resolved clearance pathway tracking (SRCPT) method, providing unprecedented insights into drug clearance dynamics within vital organs. SRCPT addresses challenges like laser fluence attenuation, enabling dynamic visualization of drug clearance pathways and essential parameter extraction. We employed a novel frequency component selection based synthetic aperture focusing technique (FCS-SAFT) with respiratory-artifacts-free weighting factors to enhance three-dimensional imaging resolutions. Inspired by this, we investigated the clearance pathway of a clinical drug, mitoxantrone, revealing reduced liver clearance when hepatic function is impaired. Furthermore, immunoglobulin G clearance analysis revealed significant differences among mice with varying renal injury degrees. The accuracy of our method was validated using a double-labeled probe [68Ga]DFO-IRDye800CW, showing a strong positive correlation between SRCPT and PET. We believe that this powerful SRCPT promises precise mapping of drug clearance pathways and enhances diagnosis and treatment of liver and kidney-related diseases.
Collapse
Affiliation(s)
- Jing Lv
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Hengrong Lan
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Aoji Qin
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Tong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Dan Shao
- Department of PET Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Fei Gao
- Hybrid Imaging System Laboratory, School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Kamran Avanaki
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
14
|
Zhou YS, Tao HB, Lv SS, Liang KQ, Shi WY, Liu KY, Li YY, Chen LY, Zhou L, Yin SJ, Zhao QR. Effects of Kv1.3 knockout on pyramidal neuron excitability and synaptic plasticity in piriform cortex of mice. Acta Pharmacol Sin 2024; 45:2045-2060. [PMID: 38862816 PMCID: PMC11420205 DOI: 10.1038/s41401-024-01275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/24/2024] [Indexed: 06/13/2024]
Abstract
Kv1.3 belongs to the voltage-gated potassium (Kv) channel family, which is widely expressed in the central nervous system and associated with a variety of neuropsychiatric disorders. Kv1.3 is highly expressed in the olfactory bulb and piriform cortex and involved in the process of odor perception and nutrient metabolism in animals. Previous studies have explored the function of Kv1.3 in olfactory bulb, while the role of Kv1.3 in piriform cortex was less known. In this study, we investigated the neuronal changes of piriform cortex and feeding behavior after smell stimulation, thus revealing a link between the olfactory sensation and body weight in Kv1.3 KO mice. Coronal slices including the anterior piriform cortex were prepared, whole-cell recording and Ca2+ imaging of pyramidal neurons were conducted. We showed that the firing frequency evoked by depolarization pulses and Ca2+ influx evoked by high K+ solution were significantly increased in pyramidal neurons of Kv1.3 knockout (KO) mice compared to WT mice. Western blotting and immunofluorescence analyses revealed that the downstream signaling molecules CaMKII and PKCα were activated in piriform cortex of Kv1.3 KO mice. Pyramidal neurons in Kv1.3 KO mice exhibited significantly reduced paired-pulse ratio and increased presynaptic Cav2.1 expression, proving that the presynaptic vesicle release might be elevated by Ca2+ influx. Using Golgi staining, we found significantly increased dendritic spine density of pyramidal neurons in Kv1.3 KO mice, supporting the stronger postsynaptic responses in these neurons. In olfactory recognition and feeding behavior tests, we showed that Kv1.3 conditional knockout or cannula injection of 5-(4-phenoxybutoxy) psoralen, a Kv1.3 channel blocker, in piriform cortex both elevated the olfactory recognition index and altered the feeding behavior in mice. In summary, Kv1.3 is a key molecule in regulating neuronal activity of the piriform cortex, which may lay a foundation for the treatment of diseases related to piriform cortex and olfactory detection.
Collapse
Affiliation(s)
- Yong-Sheng Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Hao-Bo Tao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Si-Si Lv
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ke-Qin Liang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wen-Yi Shi
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ke-Yi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yun-Yun Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lv-Yi Chen
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ling Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Shi-Jin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Qian-Ru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
15
|
Duquenne M, Deligia E, Folgueira C, Bourouh C, Caron E, Pfrieger F, Schwaninger M, Nogueiras R, Annicotte JS, Imbernon M, Prévot V. Tanycytic transcytosis inhibition disrupts energy balance, glucose homeostasis and cognitive function in male mice. Mol Metab 2024; 87:101996. [PMID: 39047908 PMCID: PMC11340606 DOI: 10.1016/j.molmet.2024.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES In Western society, high-caloric diets rich in fats and sugars have fueled the obesity epidemic and its related disorders. Disruption of the body-brain communication, crucial for maintaining glucose and energy homeostasis, arises from both obesogenic and genetic factors, leading to metabolic disorders. Here, we investigate the role of hypothalamic tanycyte shuttles between the pituitary portal blood and the third ventricle cerebrospinal fluid in regulating energy balance. METHODS We inhibited vesicle-associated membrane proteins (VAMP1-3)-mediated release in tanycytes by expressing the botulinum neurotoxin type B light chain (BoNT/B) in a Cre-dependent manner in tanycytes. This was achieved by injecting either TAT-Cre in the third ventricle or an AAV1/2 expressing Cre under the control of the tanycyte-specific promoter iodothyronine deiodinase 2 into the lateral ventricle of adult male mice. RESULTS In male mice fed a standard diet, targeted expression of BoNT/B in adult tanycytes blocks leptin transport into the mediobasal hypothalamus and results in normal-weight central obesity, including increased food intake, abdominal fat deposition, and elevated leptin levels but no marked change in body weight. Furthermore, BoNT/B expression in adult tanycytes promotes fatty acid storage, leading to glucose intolerance and insulin resistance. Notably, these metabolic disturbances occur despite a compensatory increase in insulin secretion, observed both in response to exogenous glucose boluses in vivo and in isolated pancreatic islets. Intriguingly, these metabolic alterations are associated with impaired spatial memory in BoNT/B-expressing mice. CONCLUSIONS These findings underscore the central role of tanycytes in brain-periphery communication and highlight their potential implication in the age-related development of type 2 diabetes and cognitive decline. Our tanycytic BoNT/B mouse model provides a robust platform for studying how these conditions progress over time, from prediabetic states to full-blown metabolic and cognitive disorders, and the mechanistic contribution of tanycytes to their development. The recognition of the impact of tanycytic transcytosis on hormone transport opens new avenues for developing targeted therapies that could address both metabolic disorders and their associated cognitive comorbidities, which often emerge or worsen with advancing age.
Collapse
Affiliation(s)
- Manon Duquenne
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France
| | - Eleonora Deligia
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France
| | - Cintia Folgueira
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Cyril Bourouh
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Emilie Caron
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France
| | - Frank Pfrieger
- Centre National de la Recherche Scientifique, Universite de Strasbourg, Institut des Neurosciences Cellulaires et Integratives, 67000 Strasbourg, France
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Jean-Sébastien Annicotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Monica Imbernon
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France.
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France.
| |
Collapse
|
16
|
Fernandois D, Rusidzé M, Mueller-Fielitz H, Sauve F, Deligia E, Silva MSB, Evrard F, Franco-García A, Mazur D, Martinez-Corral I, Jouy N, Rasika S, Maurage CA, Giacobini P, Nogueiras R, Dehouck B, Schwaninger M, Lenfant F, Prevot V. Estrogen receptor-α signaling in tanycytes lies at the crossroads of fertility and metabolism. Metabolism 2024; 158:155976. [PMID: 39019342 PMCID: PMC7616427 DOI: 10.1016/j.metabol.2024.155976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Estrogen secretion by the ovaries regulates the hypothalamic-pituitary-gonadal axis during the reproductive cycle, influencing gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion, and also plays a role in regulating metabolism. Here, we establish that hypothalamic tanycytes-specialized glia lining the floor and walls of the third ventricle-integrate estrogenic feedback signals from the gonads and couple reproduction with metabolism by relaying this information to orexigenic neuropeptide Y (NPY) neurons. METHODS Using mouse models, including mice floxed for Esr1 (encoding estrogen receptor alpha, ERα) and those with Cre-dependent expression of designer receptors exclusively activated by designer drugs (DREADDs), along with viral-mediated, pharmacological and indirect calorimetric approaches, we evaluated the role of tanycytes and tanycytic estrogen signaling in pulsatile LH secretion, cFos expression in NPY neurons, estrous cyclicity, body-weight changes and metabolic parameters in adult females. RESULTS In ovariectomized mice, chemogenetic activation of tanycytes significantly reduced LH pulsatile release, mimicking the effects of direct NPY neuron activation. In intact mice, tanycytes were crucial for the estrogen-mediated control of GnRH/LH release, with tanycytic ERα activation suppressing fasting-induced NPY neuron activation. Selective knockout of Esr1 in tanycytes altered estrous cyclicity and fertility in female mice and affected estrogen's ability to inhibit refeeding in fasting mice. The absence of ERα signaling in tanycytes increased Npy transcripts and body weight in intact mice and prevented the estrogen-mediated decrease in food intake as well as increase in energy expenditure and fatty acid oxidation in ovariectomized mice. CONCLUSIONS Our findings underscore the pivotal role of tanycytes in the neuroendocrine coupling of reproduction and metabolism, with potential implications for its age-related deregulation after menopause. SIGNIFICANCE STATEMENT Our investigation reveals that tanycytes, specialized glial cells in the brain, are key interpreters of estrogen signals for orexigenic NPY neurons in the hypothalamus. Disrupting tanycytic estrogen receptors not only alters fertility in female mice but also impairs the ability of estrogens to suppress appetite. This work thus sheds light on the critical role played by tanycytes in bridging the hormonal regulation of cyclic reproductive function and appetite/feeding behavior. This understanding may have potential implications for age-related metabolic deregulation after menopause.
Collapse
Affiliation(s)
- Daniela Fernandois
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Mariam Rusidzé
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297UPS, CHU, Toulouse, France
| | - Helge Mueller-Fielitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Florent Sauve
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Eleonora Deligia
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Mauro S B Silva
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Florence Evrard
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Aurelio Franco-García
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain, Instituto Murciano de Investigación Biosanitaria (IMIB), Pascual Parrilla, Murcia, Spain
| | - Daniele Mazur
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Ines Martinez-Corral
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | | | - S Rasika
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Claude-Alain Maurage
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Benedicte Dehouck
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Francoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297UPS, CHU, Toulouse, France
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France.
| |
Collapse
|
17
|
Zhou M, Hu L, Li F, Wen J, Liang Z, Chen D. Beneficial effects of short-term breastfeeding versus non-breastfeeding in early life against childhood obesity: findings from the US-based population study NHANES. Int Breastfeed J 2024; 19:56. [PMID: 39113155 PMCID: PMC11308696 DOI: 10.1186/s13006-024-00659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Breastfeeding is widely recognized for its potential to reduce childhood obesity. However, research investigating these benefits in children breastfed for a short duration (up to 6 months) remains limited despite this being a common practice globally. METHODS This study focused on a population breastfed for 6 months or less to determine the potential benefits of short-term breastfeeding for preventing childhood obesity. Data were collected from five survey cycles of an US-based population study (the National Health and Nutrition Examination Survey (NHANES)), spanning 2009-2020. A sample of 3,211 children aged 2-6 years was selected, including 1,373 never breastfed and 1,838 ever breastfed. Logistic regression analysis examined the direct association between short-term breastfeeding and childhood obesity. Subsequent subgroup analyses were conducted. Additionally, stratified logistic regression explored the relationship between childhood obesity and the introduction of other early nutrition in both ever-breastfed and never-breastfed children. RESULTS Overall, breastfeeding for 6 months or less did not directly prevent childhood obesity. However, among participants with older mothers (aged 35 or above), short-term breastfeeding was associated with a lower risk of childhood obesity compared to never being breastfed (OR 0.31, 95% CI: 0.17, 0.59). Similarly, children aged 3-4 years who were breastfed for > 3 ~ 6 months exhibited a lower obesity risk (OR 0.56, 95% CI: 0.35, 0.89). In ever-breastfed children, delayed infant formula introduction was linked to a lower risk of obesity (P-trend < 0.05: introduction at age ≤ 1 vs. >1 ~ 3 vs. >3 months). Conversely, for non-breastfed children, introducing milk (other than breast milk or formula) later (≥ 12 versus < 12 months) and introducing alternatives to whole cow's milk were associated with lower obesity risks (OR 0.54, 95% CI: 0.37, 0.78; OR 0.21, 95% CI: 0.08, 0.60, respectively). Notably, these trends were not observed in ever-breastfed children. CONCLUSIONS Short-term breastfeeding may offer some benefits in preventing childhood obesity for specific populations. Additionally, it could potentially mitigate risks associated with the introduction of formula and cow's milk at inappropriate times.
Collapse
Affiliation(s)
- Menglin Zhou
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Rd #1, Hangzhou, Zhejiang Province, 310006, China
| | - Luyao Hu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Rd #1, Hangzhou, Zhejiang Province, 310006, China
| | - Fan Li
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Rd #1, Hangzhou, Zhejiang Province, 310006, China
| | - Jie Wen
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Rd #1, Hangzhou, Zhejiang Province, 310006, China
| | - Zhaoxia Liang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Rd #1, Hangzhou, Zhejiang Province, 310006, China.
| | - Danqing Chen
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Rd #1, Hangzhou, Zhejiang Province, 310006, China.
| |
Collapse
|
18
|
Yang X, Qiu K, Jiang Y, Huang Y, Zhang Y, Liao Y. Metabolic Crosstalk between Liver and Brain: From Diseases to Mechanisms. Int J Mol Sci 2024; 25:7621. [PMID: 39062868 PMCID: PMC11277155 DOI: 10.3390/ijms25147621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Multiple organs and tissues coordinate to respond to dietary and environmental challenges. It is interorgan crosstalk that contributes to systemic metabolic homeostasis. The liver and brain, as key metabolic organs, have their unique dialogue to transmit metabolic messages. The interconnected pathogenesis of liver and brain is implicated in numerous metabolic and neurodegenerative disorders. Recent insights have positioned the liver not only as a central metabolic hub but also as an endocrine organ, capable of secreting hepatokines that transmit metabolic signals throughout the body via the bloodstream. Metabolites from the liver or gut microbiota also facilitate a complex dialogue between liver and brain. In parallel to humoral factors, the neural pathways, particularly the hypothalamic nuclei and autonomic nervous system, are pivotal in modulating the bilateral metabolic interplay between the cerebral and hepatic compartments. The term "liver-brain axis" vividly portrays this interaction. At the end of this review, we summarize cutting-edge technical advancements that have enabled the observation and manipulation of these signals, including genetic engineering, molecular tracing, and delivery technologies. These innovations are paving the way for a deeper understanding of the liver-brain axis and its role in metabolic homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
19
|
Le Thuc O, García-Cáceres C. Obesity-induced inflammation: connecting the periphery to the brain. Nat Metab 2024; 6:1237-1252. [PMID: 38997442 DOI: 10.1038/s42255-024-01079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Obesity is often associated with a chronic, low-grade inflammatory state affecting the entire body. This sustained inflammatory state disrupts the coordinated communication between the periphery and the brain, which has a crucial role in maintaining homeostasis through humoural, nutrient-mediated, immune and nervous signalling pathways. The inflammatory changes induced by obesity specifically affect communication interfaces, including the blood-brain barrier, glymphatic system and meninges. Consequently, brain areas near the third ventricle, including the hypothalamus and other cognition-relevant regions, become susceptible to impairments, resulting in energy homeostasis dysregulation and an elevated risk of cognitive impairments such as Alzheimer's disease and dementia. This Review explores the intricate communication between the brain and the periphery, highlighting the effect of obesity-induced inflammation on brain function.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
20
|
Liu D, Wang T, Zhao X, Chen J, Yang T, Shen Y, Zhou YD. Saturated fatty acids stimulate cytokine production in tanycytes via the PP2Ac-dependent signaling pathway. J Cereb Blood Flow Metab 2024; 44:985-999. [PMID: 38069840 PMCID: PMC11318396 DOI: 10.1177/0271678x231219115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/18/2023] [Accepted: 11/10/2023] [Indexed: 05/18/2024]
Abstract
The hypothalamic tanycytes are crucial for free fatty acids (FFAs) detection, storage, and transport within the central nervous system. They have been shown to effectively respond to fluctuations in circulating FFAs, thereby regulating energy homeostasis. However, the precise molecular mechanisms by which tanycytes modulate lipid utilization remain unclear. Here, we report that the catalytic subunit of protein phosphatase 2 A (PP2Ac), a serine/threonine phosphatase, is expressed in tanycytes and its accumulation and activation occur in response to high-fat diet consumption. In vitro, tanycytic PP2Ac responds to palmitic acid (PA) exposure and accumulates and is activated at an early stage in an AMPK-dependent manner. Furthermore, activated PP2Ac boosts hypoxia-inducible factor-1α (HIF-1α) accumulation, resulting in upregulation of an array of cytokines. Pretreatment with a PP2Ac inhibitor, LB100, prevented the PA-induced elevation of vascular endothelial growth factor (VEGF), fibroblast growth factor 1 (FGF1), hepatocyte growth factor (HGF), and dipeptidyl peptidase IV (DPPIV or CD26). Our results disclose a mechanism of lipid metabolism in tanycytes that involves the activation of PP2Ac and highlight the physiological significance of PP2Ac in hypothalamic tanycytes in response to overnutrition and efficacious treatment of obesity.
Collapse
Affiliation(s)
- Danyang Liu
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Tao Wang
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xingqi Zhao
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Juan Chen
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Tianqi Yang
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yi Shen
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Dong Zhou
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Lingang Laboratory, Shanghai 200031, China
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
21
|
Zhou W, Feng W, Chang J, Hu J, Li F, Hu K, Jiao J, Xue X, Lan T, Wan W, Chen ZJ, Cui L. Metabolic profiles of children aged 2-5 years born after frozen and fresh embryo transfer: A Chinese cohort study. PLoS Med 2024; 21:e1004388. [PMID: 38843150 PMCID: PMC11156393 DOI: 10.1371/journal.pmed.1004388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/27/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Frozen embryo transfer (FET) has become a widely employed assisted reproductive technology technique. There have historically been concerns regarding the long-term metabolic safety of FET technology in offspring due to pregnancy-induced hypertension and large for gestational age, both of which are well-recognized factors for metabolic dysfunction of children. Therefore, we aimed to compare the metabolic profiles of children born after frozen versus fresh embryo transfer at 2 to 5 years of age. METHODS AND FINDINGS This was a prospective cohort study. Using data from the "Assisted Reproductive Technology borned KIDs (ARTKID)," a birth cohort of offspring born from assisted reproductive technology at the Institute of Women, Children and Reproductive Health, Shandong University, China. We included 4,246 singletons born after FET (n = 2,181) and fresh embryo transfer (n = 2,065) enrolled between 2008 and 2019 and assessed the glucose and lipid variables until the age of 2 to 5 years. During a mean follow-up of 3.6 years, no significant differences were observed in fasting blood glucose, fasting insulin, Homeostatic Model Assessment of Insulin Resistance Index, total cholesterol, triglycerides, low-density lipoprotein-cholesterol, and high-density lipoprotein-cholesterol levels between offspring conceived by fresh and frozen embryo transfer in the crude model and adjusted model (adjusted for parental age, parental body mass index, parental education level, paternal smoking, parity, offspring age and sex). These results remained consistent across subgroup analyses considering offspring age, the stage of embryo transfer, and the mode of fertilization. Results from sensitivity analysis on children matched for age within the cohort remains the same. The main limitation of our study is the young age of the offspring. CONCLUSIONS In this study, the impact of FET on glucose and lipid profiles during early childhood was comparable to fresh embryo transfer. Long-term studies are needed to evaluate the metabolic health of offspring born after FET.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| | - Wanbing Feng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| | - Jinli Chang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| | - Jingmei Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| | - Fuxia Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| | - Kuona Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| | - Jiejing Jiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| | - Xinyi Xue
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| | - Ting Lan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| | - Wenjing Wan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linlin Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| |
Collapse
|
22
|
Pena-Leon V, Perez-Lois R, Villalon M, Prida E, Muñoz-Moreno D, Fernø J, Quiñones M, Al-Massadi O, Seoane LM. Novel mechanisms involved in leptin sensitization in obesity. Biochem Pharmacol 2024; 223:116129. [PMID: 38490517 DOI: 10.1016/j.bcp.2024.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/21/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Leptin is a hormone that is secreted by adipocytes in proportion to adipose tissue size, and that informs the brain about the energy status of the body. Leptin acts through its receptor LepRb, expressed mainly in the hypothalamus, and induces a negative energy balance by potent inhibition of feeding and activation of energy expenditure. These actions have led to huge expectations for the development of therapeutic targets for metabolic complications based on leptin-derived compounds. However, the majority of patients with obesity presents elevated leptin production, suggesting that in this setting leptin is ineffective in the regulation of energy balance. This resistance to the action of leptin in obesity has led to the development of "leptin sensitizers," which have been tested in preclinical studies. Much research has focused on generating combined treatments that act on multiple levels of the gastrointestinal-brain axis. The gastrointestinal-brain axis secretes a variety of different anorexigenic signals, such as uroguanylin, glucagon-like peptide-1, amylin, or cholecystokinin, which can alleviate the resistance to leptin action. Moreover, alternative mechanism such as pharmacokinetics, proteostasis, the role of specific kinases, chaperones, ER stress and neonatal feeding modifications are also implicated in leptin resistance. This review will cover the current knowledge regarding the interaction of leptin with different endocrine factors from the gastrointestinal-brain axis and other novel mechanisms that improve leptin sensitivity in obesity.
Collapse
Affiliation(s)
- Veronica Pena-Leon
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Raquel Perez-Lois
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Maria Villalon
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Eva Prida
- Translational Endocrinology group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Diego Muñoz-Moreno
- Translational Endocrinology group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, 5201 Bergen, Norway
| | - Mar Quiñones
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Omar Al-Massadi
- Translational Endocrinology group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Luisa M Seoane
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
23
|
Anderson GM, Hill JW, Kaiser UB, Navarro VM, Ong KK, Perry JRB, Prevot V, Tena-Sempere M, Elias CF. Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra's seminal work. Nat Rev Endocrinol 2024; 20:111-123. [PMID: 38049643 PMCID: PMC10843588 DOI: 10.1038/s41574-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/06/2023]
Abstract
An individual's nutritional status has a powerful effect on sexual maturation. Puberty onset is delayed in response to chronic energy insufficiency and is advanced under energy abundance. The consequences of altered pubertal timing for human health are profound. Late puberty increases the chances of cardiometabolic, musculoskeletal and neurocognitive disorders, whereas early puberty is associated with increased risks of adult obesity, type 2 diabetes mellitus, cardiovascular diseases and various cancers, such as breast, endometrial and prostate cancer. Kennedy and Mitra's trailblazing studies, published in 1963 and using experimental models, were the first to demonstrate that nutrition is a key factor in puberty onset. Building on this work, the field has advanced substantially in the past decade, which is largely due to the impressive development of molecular tools for experimentation and population genetics. In this Review, we discuss the latest advances in basic and translational sciences underlying the nutritional and metabolic control of pubertal development, with a focus on perspectives and future directions.
Collapse
Affiliation(s)
- Greg M Anderson
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor M Navarro
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken K Ong
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John R B Perry
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain.
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Liang C, Niu HY, Lyu LZ, Wu YF, Zhang LW. Profiles of Intestinal Flora in Breastfed Obese Children and Selecting Functional Strains Against Obesity. Mol Nutr Food Res 2024; 68:e2300735. [PMID: 38227364 DOI: 10.1002/mnfr.202300735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Indexed: 01/17/2024]
Abstract
SCOPE Breast milk has the potential to prevent childhood obesity by providing probiotics, but there are still instances of obesity in breastfed children. METHODS AND RESULTS This study investigates the difference in intestinal flora structure between breastfed children with obesity (OB-BF) and normal-weight breastfed children (N-BF). Building upon this foundation, it employs both cell and mouse models to identify an antiobesity strain within the fecal matter of N-BF children and explore its underlying mechanisms. The results reveal a reduction in lactobacillus levels within the intestinal flora of OB-BF children compared to N-BF children. Consequently, Lactobacillus plantarum H-72 (H-72) is identified as a promising candidate due to its capacity to stimulate glucagon-like peptide-1 (GLP-1) secretion in enteroendocrine cells (ECCs). In vivo, H-72 effectively increases serum GLP-1 concentration, reduces food intake, regulates the expression of genes related to energy metabolism (SCD-1, FAS, UCP-1, and UCP-3), and regulates gut microbiota structure in mice. Moreover, the lipoteichoic acid of H-72 activates toll-like receptor 4 to enhanced GLP-1 secretion in STC-1 cells. CONCLUSIONS L. plantarum H-72 is screened out for its potential antiobesity effect, which presents a potential and promising avenue for future interventions aimed at preventing pediatric obesity in breastfed children.
Collapse
Affiliation(s)
- Cong Liang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Hai-Yue Niu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Lin-Zheng Lyu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Yi-Fan Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Lan-Wei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
25
|
Chandrasekar A, Schmidtlein PM, Neve V, Rivagorda M, Spiecker F, Gauthier K, Prevot V, Schwaninger M, Müller-Fielitz H. Regulation of Thyroid Hormone Gatekeepers by Thyrotropin in Tanycytes. Thyroid 2024; 34:261-273. [PMID: 38115594 DOI: 10.1089/thy.2023.0375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Background: Tanycytes are specialized glial cells within the mediobasal hypothalamus that have multiple functions, including hormone sensing and regulation of hypophysiotropic hormone secretion. There are ongoing discussions about the role of tanycytes in regulating the supply of hypothalamic thyroid hormones (THs) through the expression of TH transporters (Slc16a2, Slco1c1) and deiodinases (Dio2, Dio3). In this study, we investigated the potential feedback effect of thyrotropin (TSH) on the transcription of these gatekeeper genes on tanycytes. Methods: We analyzed the changes in the expression of TH-gatekeeper genes, in TSH-stimulated primary tanycytes, using quantitative polymerase chain reaction (qPCR). We also used RNAScope® in brain slices to further reveal the local distribution of the transcripts. In addition, we blocked intracellular pathways and used small-interfering RNA (siRNA) to elucidate differences in the regulation of the gatekeeper genes. Results: TSH elevated messenger RNA (mRNA) levels of Slco1c1, Dio2, and Dio3 in tanycytes, while Slc16a2 was mostly unaffected. Blockade and knockdown of the TSH receptor (TSHR) and antagonization of cAMP response element-binding protein (CREB) clearly abolished the increased expression induced by TSH, indicating PKA-dependent regulation through the TSHR. The TSH-dependent expression of Dio3 and Slco1c1 was also regulated by protein kinase C (PKC), and in case of Dio3, also by extracellular signal-regulated kinase (ERK) activity. Importantly, these gene regulations were specifically found in different subpopulations of tanycytes. Conclusions: This study demonstrates that TSH induces transcriptional regulation of TH-gatekeeper genes in tanycytes through the Tshr/Gαq/PKC pathway, in parallel to the Tshr/Gαs/PKA/CREB pathway. These differential actions of TSH on tanycytic subpopulations appear to be important for coordinating the supply of TH to the hypothalamus and aid its functions.
Collapse
Affiliation(s)
- Akila Chandrasekar
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Paula Marie Schmidtlein
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Vanessa Neve
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Manon Rivagorda
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Frauke Spiecker
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Karine Gauthier
- ENS de Lyon, INRAE, CNRS, Institut de Génomique Fonctionnelle de Lyon, University of Lyon, Lyon, France
| | - Vincent Prevot
- Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, European Genomic Institute for Diabetes (EGID), University of Lille, Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Lübeck, Germany
| | - Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
26
|
Cicuéndez B, Pérez-García J, Folgueira C. A Combination of a Dopamine Receptor 2 Agonist and a Kappa Opioid Receptor Antagonist Synergistically Reduces Weight in Diet-Induced Obese Rodents. Nutrients 2024; 16:424. [PMID: 38337707 PMCID: PMC10857008 DOI: 10.3390/nu16030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
As the global obesity rate increases, so does the urgency to find effective anti-obesity drugs. In the search for therapeutic targets, central nervous system (CNS) mechanisms engaged in the regulation of energy expenditure and food intake, such as the opioid and dopamine systems, are crucial. In this study, we examined the effect on body weight of two drugs: bromocriptine (BC), a D2R receptor agonist, and PF-04455242, a selective κ opioid receptor (KOR) antagonist. Using diet-induced obese (DIO) rats, we aimed to ascertain whether the administration of BC and PF-04455242, independently or in combination, could enhance body weight loss. Furthermore, the present work demonstrates that the peripheral coadministration of BC and PF-04455242 enhances the reduction of weight in DIO rats and leads to a decrease in adiposity in a food-intake-independent manner. These effects were based on heightened energy expenditure, particularly through the activation of brown adipose tissue (BAT) thermogenesis. Overall, our findings indicate that the combination of BC and PF-04455242 effectively induces body weight loss through increased energy expenditure by increasing thermogenic activity and highlight the importance of the combined use of drugs to combat obesity.
Collapse
Affiliation(s)
| | | | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (B.C.); (J.P.-G.)
| |
Collapse
|
27
|
Lecoutre S, Maqdasy S, Lambert M, Breton C. The Impact of Maternal Obesity on Adipose Progenitor Cells. Biomedicines 2023; 11:3252. [PMID: 38137473 PMCID: PMC10741630 DOI: 10.3390/biomedicines11123252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The concept of Developmental Origin of Health and Disease (DOHaD) postulates that adult-onset metabolic disorders may originate from suboptimal conditions during critical embryonic and fetal programming windows. In particular, nutritional disturbance during key developmental stages may program the set point of adiposity and its associated metabolic diseases later in life. Numerous studies in mammals have reported that maternal obesity and the resulting accelerated growth in neonates may affect adipocyte development, resulting in persistent alterations in adipose tissue plasticity (i.e., adipocyte proliferation and storage) and adipocyte function (i.e., insulin resistance, impaired adipokine secretion, reduced thermogenesis, and higher inflammation) in a sex- and depot-specific manner. Over recent years, adipose progenitor cells (APCs) have been shown to play a crucial role in adipose tissue plasticity, essential for its development, maintenance, and expansion. In this review, we aim to provide insights into the developmental timeline of lineage commitment and differentiation of APCs and their role in predisposing individuals to obesity and metabolic diseases. We present data supporting the possible implication of dysregulated APCs and aberrant perinatal adipogenesis through epigenetic mechanisms as a primary mechanism responsible for long-lasting adipose tissue dysfunction in offspring born to obese mothers.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, F-75013 Paris, France
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet Hospital, C2-94, 14186 Stockholm, Sweden;
| | - Mélanie Lambert
- U978 Institut National de la Santé et de la Recherche Médicale, F-93022 Bobigny, France;
- Université Sorbonne Paris Nord, Alliance Sorbonne Paris Cité, Labex Inflamex, F-93000 Bobigny, France
| | - Christophe Breton
- Maternal Malnutrition and Programming of Metabolic Diseases, Université de Lille, EA4489, F-59000 Lille, France
- U1283-UMR8199-EGID, Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
28
|
Fos-Codoner FS, Bouwman LMS, Keijer J, van Schothorst EM. Dietary Galactose Increases the Expression of Mitochondrial OXPHOS Genes and Modulates the Carbohydrate Oxidation Pathways in Mouse Intestinal Mucosa. J Nutr 2023; 153:3448-3457. [PMID: 37858726 DOI: 10.1016/j.tjnut.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Prolonged lactation provides substantial health benefits, possibly because of galactose as part of milk sugar lactose. Isocaloric replacement of dietary glucose [16 energy%(en%)] with galactose within a normal diet (64en% carbohydrates) during a 3-wk postweaning period provided substantial benefits on short- and long-term physiologic and metabolic parameters at the whole-body level and liver in female mice, which might be attributable to intestinal function. OBJECTIVES This study aimed to investigate if partial dietary replacement of glucose with galactose alters intestinal metabolism underlying hepatic health effects. METHODS Proximal intestinal mucosa gene profiles in female mice were analyzed using RNAseq technology, validated, and correlated with hepatic health parameters. RESULTS Transcriptome analysis revealed that the presence of galactose primarily affected the pathways involved in energy metabolism. A consistently higher expression was observed in the subset of mitochondrial transcripts (78 of 80, all P.adj < 0.1). Oxidative phosphorylation (OXPHOS) represented the most upregulated process (all top 10 pathways) independent of the total mitochondrial mass (P = 0.75). Moreover, galactose consistently upregulated carbohydrate metabolism pathways, specifically glycolysis till acetyl-CoA production and fructose metabolism. Also, the expression of transcripts involved in these pathways was negatively correlated with circulating serum amyloid A3 protein, a marker of hepatic inflammation [R (-0.61, -0.5), P (0.002, 0.01)]. Accordingly, CD163+ cells were decreased in the liver. Additionally, the expression of key fructolytic enzymes in the small intestinal mucosa was negatively correlated with triglyceride accumulation in the liver [R (-0.45, -0.4), P (0.03, 0.05)]. CONCLUSIONS To our knowledge, our results show for the first time the role of galactose as an OXPHOS activator in vivo. Moreover, the concept of intestinal cells acting as the body's metabolic gatekeeper is strongly supported, as they alter substrate availability and thereby contribute to the maintenance of metabolic homeostasis, protecting other organs, as evidenced by their potential ability to shield the liver from the potentially detrimental effects of fructose.
Collapse
Affiliation(s)
| | - Lianne M S Bouwman
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
29
|
Xu Y, Yang D, Wang L, Król E, Mazidi M, Li L, Huang Y, Niu C, Liu X, Lam SM, Shui G, Douglas A, Speakman JR. Maternal High Fat Diet in Lactation Impacts Hypothalamic Neurogenesis and Neurotrophic Development, Leading to Later Life Susceptibility to Obesity in Male but Not Female Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305472. [PMID: 37867217 PMCID: PMC10724448 DOI: 10.1002/advs.202305472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 10/24/2023]
Abstract
Early life nutrition can reprogram development and exert long-term consequences on body weight regulation. In mice, maternal high-fat diet (HFD) during lactation predisposed male but not female offspring to diet-induced obesity when adult. Molecular and cellular changes in the hypothalamus at important time points are examined in the early postnatal life in relation to maternal diet and demonstrated sex-differential hypothalamic reprogramming. Maternal HFD in lactation decreased the neurotropic development of neurons formed at the embryo stage (e12.5) and impaired early postnatal neurogenesis in the hypothalamic regions of both males and females. Males show a larger increased ratio of Neuropeptide Y (NPY) to Pro-opiomelanocortin (POMC) neurons in early postnatal neurogenesis, in response to maternal HFD, setting an obese tone for male offspring. These data provide insights into the mechanisms by which hypothalamic reprograming by early life overnutrition contributes to the sex-dependent susceptibility to obesity in adult life in mice.
Collapse
Affiliation(s)
- Yanchao Xu
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Dengbao Yang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Lu Wang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationYantai UniversityYantai264005P. R. China
| | - Elżbieta Król
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
| | - Mohsen Mazidi
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
| | - Li Li
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
| | - Yi Huang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Chaoqun Niu
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Xue Liu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Alex Douglas
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
| | - John R. Speakman
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
- China medical universityShenyang110000P. R. China
| |
Collapse
|
30
|
Zhang Y, Fang XM. The pan-liver network theory: From traditional chinese medicine to western medicine. CHINESE J PHYSIOL 2023; 66:401-436. [PMID: 38149555 DOI: 10.4103/cjop.cjop-d-22-00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
In traditional Chinese medicine (TCM), the liver is the "general organ" that is responsible for governing/maintaining the free flow of qi over the entire body and storing blood. According to the classic five elements theory, zang-xiang theory, yin-yang theory, meridians and collaterals theory, and the five-viscera correlation theory, the liver has essential relationships with many extrahepatic organs or tissues, such as the mother-child relationships between the liver and the heart, and the yin-yang and exterior-interior relationships between the liver and the gallbladder. The influences of the liver to the extrahepatic organs or tissues have been well-established when treating the extrahepatic diseases from the perspective of modulating the liver by using the ancient classic prescriptions of TCM and the acupuncture and moxibustion. In modern medicine, as the largest solid organ in the human body, the liver has the typical functions of filtration and storage of blood; metabolism of carbohydrates, fats, proteins, hormones, and foreign chemicals; formation of bile; storage of vitamins and iron; and formation of coagulation factors. The liver also has essential endocrine function, and acts as an immunological organ due to containing the resident immune cells. In the perspective of modern human anatomy, physiology, and pathophysiology, the liver has the organ interactions with the extrahepatic organs or tissues, for example, the gut, pancreas, adipose, skeletal muscle, heart, lung, kidney, brain, spleen, eyes, skin, bone, and sexual organs, through the circulation (including hemodynamics, redox signals, hepatokines, metabolites, and the translocation of microbiota or its products, such as endotoxins), the neural signals, or other forms of pathogenic factors, under normal or diseases status. The organ interactions centered on the liver not only influence the homeostasis of these indicated organs or tissues, but also contribute to the pathogenesis of cardiometabolic diseases (including obesity, type 2 diabetes mellitus, metabolic [dysfunction]-associated fatty liver diseases, and cardio-cerebrovascular diseases), pulmonary diseases, hyperuricemia and gout, chronic kidney disease, and male and female sexual dysfunction. Therefore, based on TCM and modern medicine, the liver has the bidirectional interaction with the extrahepatic organ or tissue, and this established bidirectional interaction system may further interact with another one or more extrahepatic organs/tissues, thus depicting a complex "pan-hepatic network" model. The pan-hepatic network acts as one of the essential mechanisms of homeostasis and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong; Issue 12th of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi-Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine (Guangxi Hospital of Integrated Chinese Medicine and Western Medicine, Ruikang Clinical Faculty of Guangxi University of Chinese Medicine), Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
31
|
Martínez-Oca P, Alba C, Sánchez-Roncero A, Fernández-Marcelo T, Martín MÁ, Escrivá F, Rodríguez JM, Álvarez C, Fernández-Millán E. Maternal Diet Determines Milk Microbiome Composition and Offspring Gut Colonization in Wistar Rats. Nutrients 2023; 15:4322. [PMID: 37892398 PMCID: PMC10609248 DOI: 10.3390/nu15204322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Mother's milk contains a unique microbiome that plays a relevant role in offspring health. We hypothesize that maternal malnutrition during lactation might impact the microbial composition of milk and affect adequate offspring gut colonization, increasing the risk for later onset diseases. Then, Wistar rats were fed ad libitum (Control, C) food restriction (Undernourished, U) during gestation and lactation. After birth, offspring feces and milk stomach content were collected at lactating day (L)4, L14 and L18. The V3-V4 region of the bacterial 16S rRNA gene was sequenced to characterize bacterial communities. An analysis of beta diversity revealed significant disparities in microbial composition between groups of diet at L4 and L18 in both milk, and fecal samples. In total, 24 phyla were identified in milk and 18 were identified in feces, with Firmicutes, Proteobacteria, Actinobacteroidota and Bacteroidota collectively representing 96.1% and 97.4% of those identified, respectively. A higher abundance of Pasteurellaceae and Porphyromonas at L4, and of Gemella and Enterococcus at L18 were registered in milk samples from the U group. Lactobacillus was also significantly more abundant in fecal samples of the U group at L4. These microbial changes compromised the number and variety of milk-feces or feces-feces bacterial correlations. Moreover, increased offspring gut permeability and an altered expression of goblet cell markers TFF3 and KLF3 were observed in U pups. Our results suggest that altered microbial communication between mother and offspring through breastfeeding may explain, in part, the detrimental consequences of maternal malnutrition on offspring programming.
Collapse
Affiliation(s)
- Paula Martínez-Oca
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), Campus de Excelencia Científica, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
| | - Claudio Alba
- Department of Nutrition and Food Science, Faculty of Veterinary Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (C.A.); (J.M.R.)
| | - Alicia Sánchez-Roncero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.S.-R.); (F.E.); (C.Á.)
| | - Tamara Fernández-Marcelo
- Centro de Investigación Biomédica en Red (CIBERDEM), ISCIII, 28029 Madrid, Spain; (T.F.-M.); (M.Á.M.)
| | - María Ángeles Martín
- Centro de Investigación Biomédica en Red (CIBERDEM), ISCIII, 28029 Madrid, Spain; (T.F.-M.); (M.Á.M.)
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Fernando Escrivá
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.S.-R.); (F.E.); (C.Á.)
- Centro de Investigación Biomédica en Red (CIBERDEM), ISCIII, 28029 Madrid, Spain; (T.F.-M.); (M.Á.M.)
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Faculty of Veterinary Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (C.A.); (J.M.R.)
| | - Carmen Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.S.-R.); (F.E.); (C.Á.)
- Centro de Investigación Biomédica en Red (CIBERDEM), ISCIII, 28029 Madrid, Spain; (T.F.-M.); (M.Á.M.)
| | - Elisa Fernández-Millán
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.S.-R.); (F.E.); (C.Á.)
- Centro de Investigación Biomédica en Red (CIBERDEM), ISCIII, 28029 Madrid, Spain; (T.F.-M.); (M.Á.M.)
| |
Collapse
|
32
|
Bonet ML, Ribot J, Picó C. Decoding the Mechanisms Behind Early Weaning-Driven Obesity and the Leucine "Solution". Diabetes 2023; 72:1347-1349. [PMID: 37729508 DOI: 10.2337/dbi23-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/07/2023] [Indexed: 09/22/2023]
Affiliation(s)
- M Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| |
Collapse
|
33
|
Sun Y, Sun B, Han X, Shan A, Ma Q. Leucine Supplementation Ameliorates Early-Life Programming of Obesity in Rats. Diabetes 2023; 72:1409-1423. [PMID: 37196349 DOI: 10.2337/db22-0862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
The advanced cessation of lactation elevates the risk of programmed obesity and obesity-related metabolic disorders in adulthood. This study used multiomic analysis to investigate the mechanism behind this phenomenon and the effects of leucine supplementation on ameliorating programmed obesity development. Wistar/SD rat offspring were subjected to early weaning (EW) at day 17 (EWWIS and EWSD groups) or normal weaning at day 21 (CWIS and CSD groups). Half of the rats from the EWSD group were selected to create a new group with 2-month leucine supplementation at day 150. The results showed that EW impaired lipid metabolic gene expression and increased insulin, neuropeptide Y, and feed intake, inducing obesity in adulthood. Six lipid metabolism-related genes (Acot1, Acot2, Acot4, Scd, Abcg8, and Cyp8b1) were influenced by EW during the entire experimental period. Additionally, adult early-weaned rats exhibited cholesterol and fatty acid β-oxidation disorders, liver taurine reduction, cholestasis, and insulin and leptin resistance. Leucine supplementation partly alleviated these metabolic disorders and increased liver L-carnitine, retarding programmed obesity development. This study provides new insights into the mechanism of programmed obesity development and the potential benefits of leucine supplementation, which may offer suggestions for life planning and programmed obesity prevention. ARTICLE HIGHLIGHTS Early-weaned adult rats showed excess lipid accumulation and metabolic defects. Early weaning disrupts lipid metabolism and secretion of neuropeptide Y and insulin. The altered lipid metabolic gene expression in this study is vital in programming. Leucine mitigates metabolic disorders and hampers programmed obesity development.
Collapse
Affiliation(s)
- Yuchen Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Bo Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xuesong Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qingquan Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
34
|
Muro-Valdez JC, Meza-Rios A, Aguilar-Uscanga BR, Lopez-Roa RI, Medina-Díaz E, Franco-Torres EM, Zepeda-Morales ASM. Breastfeeding-Related Health Benefits in Children and Mothers: Vital Organs Perspective. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1535. [PMID: 37763654 PMCID: PMC10536202 DOI: 10.3390/medicina59091535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
Breast milk (BM) is a constantly changing fluid that represents the primary source of nutrition for newborns. It is widely recognized that breastfeeding provides benefits for both the child and the mother, including a lower risk of ovarian and breast cancer, type 2 diabetes mellitus, decreased blood pressure, and more. In infants, breastfeeding has been correlated with a lower risk of infectious diseases, obesity, lower blood pressure, and decreased incidence of respiratory infections, diabetes, and asthma. Various factors, such as the baby's sex, the health status of the mother and child, the mother's diet, and the mode of delivery, can affect the composition of breast milk. This review focuses on the biological impact of the nutrients in BM on the development and functionality of vital organs to promote the benefit of health.
Collapse
Affiliation(s)
- Julio César Muro-Valdez
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (J.C.M.-V.); (A.M.-R.)
| | - Alejandra Meza-Rios
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (J.C.M.-V.); (A.M.-R.)
| | - Blanca Rosa Aguilar-Uscanga
- Laboratorio de Microbiología Industrial, Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico
| | - Rocio Ivette Lopez-Roa
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico
| | - Eunice Medina-Díaz
- Instituto Transdisciplinar de Investigación y Servicios, CUCEI, Universidad de Guadalajara, Av. José Parres Arias 5, Rinconada de la Azalea, Industrial Belenes, Zapopan 45150, Mexico
| | - Esmeralda Marisol Franco-Torres
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico
| | - Adelaida Sara Minia Zepeda-Morales
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (J.C.M.-V.); (A.M.-R.)
| |
Collapse
|
35
|
Kannangara H, Cullen L, Miyashita S, Korkmaz F, Macdonald A, Gumerova A, Witztum R, Moldavski O, Sims S, Burgess J, Frolinger T, Latif R, Ginzburg Y, Lizneva D, Goosens K, Davies TF, Yuen T, Zaidi M, Ryu V. Emerging roles of brain tanycytes in regulating blood-hypothalamus barrier plasticity and energy homeostasis. Ann N Y Acad Sci 2023; 1525:61-69. [PMID: 37199228 PMCID: PMC10524199 DOI: 10.1111/nyas.15009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Seasonal changes in food intake and adiposity in many animal species are triggered by changes in the photoperiod. These latter changes are faithfully transduced into a biochemical signal by melatonin secreted by the pineal gland. Seasonal variations, encoded by melatonin, are integrated by third ventricular tanycytes of the mediobasal hypothalamus through the detection of the thyroid-stimulating hormone (TSH) released from the pars tuberalis. The mediobasal hypothalamus is a critical brain region that maintains energy homeostasis by acting as an interface between the neural networks of the central nervous system and the periphery to control metabolic functions, including ingestive behavior, energy homeostasis, and reproduction. Among the cells involved in the regulation of energy balance and the blood-hypothalamus barrier (BHB) plasticity are tanycytes. Increasing evidence suggests that anterior pituitary hormones, specifically TSH, traditionally considered to have unitary functions in targeting single endocrine sites, display actions on multiple somatic tissues and central neurons. Notably, modulation of tanycytic TSH receptors seems critical for BHB plasticity in relation to energy homeostasis, but this needs to be proven.
Collapse
Affiliation(s)
- Hasni Kannangara
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Liam Cullen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sari Miyashita
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Funda Korkmaz
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anne Macdonald
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anisa Gumerova
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ronit Witztum
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ofer Moldavski
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Steven Sims
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jocoll Burgess
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tal Frolinger
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rauf Latif
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yelena Ginzburg
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daria Lizneva
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ki Goosens
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Terry F. Davies
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mone Zaidi
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vitaly Ryu
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
36
|
Dali R, Estrada-Meza J, Langlet F. Tanycyte, the neuron whisperer. Physiol Behav 2023; 263:114108. [PMID: 36740135 DOI: 10.1016/j.physbeh.2023.114108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Reciprocal communication between neurons and glia is essential for normal brain functioning and adequate physiological functions, including energy balance. In vertebrates, the homeostatic process that adjusts food intake and energy expenditure in line with physiological requirements is tightly controlled by numerous neural cell types located within the hypothalamus and the brainstem and organized in complex networks. Within these neural networks, peculiar ependymoglial cells called tanycytes are nowadays recognized as multifunctional players in the physiological mechanisms of appetite control, partly by modulating orexigenic and anorexigenic neurons. Here, we review recent advances in tanycytes' impact on hypothalamic neuronal activity, emphasizing on arcuate neurons.
Collapse
Affiliation(s)
- Rafik Dali
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Judith Estrada-Meza
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Fanny Langlet
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
37
|
Donato J. Programming of metabolism by adipokines during development. Nat Rev Endocrinol 2023:10.1038/s41574-023-00828-1. [PMID: 37055548 DOI: 10.1038/s41574-023-00828-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/15/2023]
Abstract
The intrauterine and early postnatal periods represent key developmental stages in which an organism is highly susceptible to being permanently influenced by maternal factors and nutritional status. Strong evidence indicates that either undernutrition or overnutrition during development can predispose individuals to disease later in life, especially type 2 diabetes mellitus and obesity, a concept known as metabolic programming. Adipose tissue produces important signalling molecules that control energy and glucose homeostasis, including leptin and adiponectin. In addition to their well-characterized metabolic effects in adults, adipokines have been associated with metabolic programming by affecting different aspects of development. Therefore, alterations in the secretion or signalling of adipokines, caused by nutritional insults in early life, might lead to metabolic diseases in adulthood. This Review summarizes and discusses the potential role of several adipokines in inducing metabolic programming through their effects during development. The identification of the endocrine factors that act in early life to permanently influence metabolism represents a key step in understanding the mechanisms behind metabolic programming. Thus, future strategies aiming to prevent and treat these metabolic diseases can be designed, taking into consideration the relationship between adipokines and the developmental origins of health and disease.
Collapse
Affiliation(s)
- Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
38
|
Fur removal promotes an earlier expression of involution-related genes in mammary gland of lactating mice. J Comp Physiol B 2023; 193:171-192. [PMID: 36650338 PMCID: PMC9992052 DOI: 10.1007/s00360-023-01474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Peak lactation occurs when milk production is at its highest. The factors limiting peak lactation performance have been subject of intense debate. Milk production at peak lactation appears limited by the capacity of lactating females to dissipate body heat generated as a by-product of processing food and producing milk. As a result, manipulations that enhance capacity to dissipate body heat (such as fur removal) increase peak milk production. We investigated the potential correlates of shaving-induced increases in peak milk production in laboratory mice. By transcriptomic profiling of the mammary gland, we searched for the mechanisms underlying experimentally increased milk production and its consequences for mother-young conflict over weaning, manifested by advanced or delayed involution of mammary gland. We demonstrated that shaving-induced increases in milk production were paradoxically linked to reduced expression of some milk synthesis-related genes. Moreover, the mammary glands of shaved mice had a gene expression profile indicative of earlier involution relative to unshaved mice. Once provided with enhanced capacity to dissipate body heat, shaved mice were likely to rear their young to independence faster than unshaved mothers.
Collapse
|
39
|
Alonso S, Braña I, Pardo E, Burger S, González del Pozo P, Alperi M, Queiro R. Are Patients with Axial Spondyloarthritis Who Were Breastfed Protected against the Development of Severe Disease? J Clin Med 2023; 12:jcm12051863. [PMID: 36902650 PMCID: PMC10003909 DOI: 10.3390/jcm12051863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/12/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND AND AIMS Breastfeeding is recognized as one of the most influential drivers of the gut microbiome. In turn, alterations in the gut microbiome may play a role in the development and severity of spondyloarthritis (SpA). We aimed to analyze different disease outcomes in patients with axial SpA (axSpA) based on the history of breastfeeding. PATIENTS AND METHODS A random sample was selected from a large database of axSpA patients. Patients were divided based on history of breastfeeding and several disease outcomes were compared. Both groups were also compared based on disease severity. Adjusted linear and logistic regression statistical methods were used. RESULTS The study included 105 patients (46 women and 59 men), and the median age was 45 years (IQR: 16-72), and the mean age at diagnosis was 34.3 ± 10.9 years. Sixty-one patients (58.1%) were breastfed, with a median duration of 4 (IQR: 1-24) months. After the fully adjusted model, BASDAI [-1.13 (95%CI: -2.04, -0.23), p = 0.015] and ASDAS [-0.38 (95%CI: -0.72, -0.04), p = 0.030] scores were significantly lower in breastfed patients. Forty-two percent had severe disease. In the adjusted logistic model for age, sex, disease duration, family history, HLA-B27, biologic therapy, smoking, and obesity, breastfeeding had a protective effect against the development of severe disease (OR 0.22, 95%CI: 0.08-0.57, p = 0.003). The selected sample size was sufficient to detect this difference with a statistical power of 87% and a confidence level of 95%. CONCLUSION Breastfeeding might exert a protective effect against severe disease in patients with axSpA. These data need further confirmation.
Collapse
Affiliation(s)
- Sara Alonso
- Rheumatology Service, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Ignacio Braña
- Rheumatology Service, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Estefanía Pardo
- Rheumatology Service, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Stefanie Burger
- Rheumatology Service, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | - Mercedes Alperi
- Rheumatology Service, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Rubén Queiro
- Rheumatology Service, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- ISPA Translational Immunology Section, Biohealth Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- School of Medicine, Oviedo University, 33011 Oviedo, Spain
- Correspondence: ; Tel.: +34-985-108000
| |
Collapse
|
40
|
Geller S, Pellerin L. Tanycytes and hypothalamic FGF21: New players in the metabolic game. Cell Rep 2023; 42:111954. [PMID: 36640320 DOI: 10.1016/j.celrep.2022.111954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023] Open
Affiliation(s)
- Sarah Geller
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Luc Pellerin
- Inserm U1313 IRMETIST, Université de Poitiers et CHU de Poitiers, Poitiers, France.
| |
Collapse
|
41
|
Prida E, Álvarez-Delgado S, Pérez-Lois R, Soto-Tielas M, Estany-Gestal A, Fernø J, Seoane LM, Quiñones M, Al-Massadi O. Liver Brain Interactions: Focus on FGF21 a Systematic Review. Int J Mol Sci 2022; 23:ijms232113318. [PMID: 36362103 PMCID: PMC9658462 DOI: 10.3390/ijms232113318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 21 is a pleiotropic hormone secreted mainly by the liver in response to metabolic and nutritional challenges. Physiologically, fibroblast growth factor 21 plays a key role in mediating the metabolic responses to fasting or starvation and acts as an important regulator of energy homeostasis, glucose and lipid metabolism, and insulin sensitivity, in part by its direct action on the central nervous system. Accordingly, pharmacological recombinant fibroblast growth factor 21 therapies have been shown to counteract obesity and its related metabolic disorders in both rodents and nonhuman primates. In this systematic review, we discuss how fibroblast growth factor 21 regulates metabolism and its interactions with the central nervous system. In addition, we also state our vision for possible therapeutic uses of this hepatic-brain axis.
Collapse
Affiliation(s)
- Eva Prida
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Sara Álvarez-Delgado
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Raquel Pérez-Lois
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| | - Mateo Soto-Tielas
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Ana Estany-Gestal
- Unidad de Metodología de la Investigación, Fundación Instituto de Investigación de Santiago (FIDIS), 15706 Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, 5201 Bergen, Norway
| | - Luisa María Seoane
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| | - Mar Quiñones
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
- Correspondence: (M.Q.); (O.A.-M.); Tel.: +34-981955708 (M.Q.); +34-981955522 (O.A.-M.)
| | - Omar Al-Massadi
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
- Correspondence: (M.Q.); (O.A.-M.); Tel.: +34-981955708 (M.Q.); +34-981955522 (O.A.-M.)
| |
Collapse
|
42
|
Greenhill C. Lactation duration affects obesity risk in rat offspring. Nat Rev Endocrinol 2022; 18:588. [PMID: 35922572 DOI: 10.1038/s41574-022-00732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Félix-Soriano E, Stanford KI. Prolonged lactation benefits offspring metabolism. Nat Metab 2022; 4:798-799. [PMID: 35879460 DOI: 10.1038/s42255-022-00604-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elisa Félix-Soriano
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA.
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|