1
|
Miao Z, Sha Z, He J, Liang Y, Tan L, Zhao Y, Cui X, Zhong J, Zhong R, Liang H, Yue W, Qiu B, Gao Y, Zhang L, Teng Z, He Z, Chen L, Xiao R, Pei X, He C. Long non-coding RNA LRTOR drives osimertinib resistance in non-small cell lung cancer by boosting YAP positive feedback loop. Drug Resist Updat 2025:101245. [PMID: 40316465 DOI: 10.1016/j.drup.2025.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 05/04/2025]
Abstract
The therapeutic efficacy of osimertinib (OSI) in EGFR-mutant lung cancer is ultimately limited by the onset of acquired resistance, of which the mechanisms remain poorly understood. Here, we identify a novel long non-coding RNA, LRTOR, as a key driver of OSI resistance in non-small cell lung cancer (NSCLC). Clinical data indicate that elevated LRTOR expression correlates with poor prognosis in OSI-resistant patients. Functionally, LRTOR promotes tumor growth and confers OSI resistance both in vitro and in vivo. Mechanistically, LRTOR shields YAP from LATS-mediated phosphorylation at Ser127 and Ser381, preventing its proteasomal degradation. Furthermore, LRTOR facilitates the interaction between YAP and KCMF1, promoting K63-linked ubiquitination, nuclear translocation of YAP, and formation of the YAP/TEAD1 transcriptional complex, which in turn triggers the transcription of LRTOR, establishing a positive feedback loop that amplifies oncogenic signaling of YAP and consequently induces OSI resistance. LRTOR depletion by siRNA restores OSI sensitivity in resistant tumors, as demonstrated in patient-derived organoid xenograft models. Our findings unveil LRTOR as a central regulator of OSI resistance in NSCLC and propose it as a promising therapeutic and prognostic target for overcoming acquired OSI resistance in EGFR-mutant lung cancer.
Collapse
Affiliation(s)
- Zhimin Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Zhou Sha
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Jianzhong He
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Yongkai Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yuxin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Xiaobing Cui
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Jinmiao Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Ruting Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Huijun Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Wendi Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Boyang Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yunzhen Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Lan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Zixin Teng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Zeen He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Li Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Rufei Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Xiaofeng Pei
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China.
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|
2
|
Li Z, Wang D, Zhu X. Roles of LncRNA ARSR in tumor proliferation, drug resistance, and lipid and cholesterol metabolism. Clin Transl Oncol 2025; 27:1356-1365. [PMID: 39251493 DOI: 10.1007/s12094-024-03700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Cancer is one of the most serious diseases that threaten human life and health. Among all kinds of diseases, the mortality rate of malignant tumors is the second highest, second only to cardio-cerebrovascular diseases. Cancer treatment typically involves imaging, surgery, and pathological analysis. When patients are identified as carcinoma by the above means, there are often problems of distant metastasis, delayed treatment, and drug tolerance, indicating that patients have some poor prognosis and overall survival. Hence, the development of novel molecular biomarkers is of great clinical importance. In recent years, as an important mediator of material and information exchange between cells in the tumor microenvironment, lncRNA have attracted widespread attention for their roles in tumor development. In this review, we comprehensively summarize the up-to-date knowledge of lncARSR on diverse cancer types which mainly focuses on tumor proliferation, drug tolerance, and lipid and cholesterol metabolism, highlighting the potential of lncARSR as a diagnostic and prognostic biomarker and even a therapeutic target. In our final analysis, we provide a synthesized overview of the directions for future inquiry into lncARSR, and we are eager to witness the advancement of research that will elucidate the multifaceted nature of this lncRNA.
Collapse
Affiliation(s)
- Zhicheng Li
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Dan Wang
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Xiaojun Zhu
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
3
|
Gao L, Huang J, Xia J, Zhao P, Dong S, Jiang W, Zhou Q, Xu Z, Luo H, Zhou W, Sun J, Wang G, Geng Q, Wang J, Zou C. SNHG17 Reprograms Energy Metabolism of Breast Cancer by Activating Mitochondrial DNA Transcription. Cancer Res 2025; 85:1097-1112. [PMID: 39841089 DOI: 10.1158/0008-5472.can-24-1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
In most solid tumors, cellular energy metabolism is primarily dominated by aerobic glycolysis, which fulfills the high demand for biomacromolecules at the expense of reduced ATP production efficiency. Elucidation of the mechanisms by which rapidly proliferating malignant cells acquire sufficient energy in this state of inefficient ATP production from glycolysis could enable the development of metabolism-targeted therapeutic strategies. In this study, we observed a significant association between elevated expression levels of the long noncoding RNA small nuclear RNA host gene 17 (SNHG17) and unfavorable prognosis in breast cancer. SNHG17 promoted breast cancer cell proliferation by augmenting mitochondrial ATP production. Mechanistically, SNHG17 directly interacted with the P65 subunit of NF-κB and phosphorylated P65 at the threonine 505 site. SNHG17 bound to P65 at its truncated loop2 site, recruited P65 to mitochondria, and coregulated the transcriptional activation of mitochondrial DNA to promote ATP production. Accordingly, targeting SNHG17 with an antisense oligonucleotide significantly reduced breast cancer tumor growth both in vitro and in vivo. Overall, these results established a role for SNHG17 in promoting breast cancer progression by increasing ATP production and provided insights into the reprogramming of energy metabolism in solid tumors. Significance: SNHG17 cooperates with NF-κB to induce expression of mitochondrial DNA and boost ATP production in breast cancer, suggesting that targeting SNHG17 could reverse metabolic reprogramming to suppress tumor progression.
Collapse
Affiliation(s)
- Lin Gao
- Department of Thoracic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Jingyi Huang
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Jinquan Xia
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Pan Zhao
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
- Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, the Second Clinical Medical College, Jinan University, Shenzhen, P.R. China
| | - Shaowei Dong
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, P.R. China
| | - Wei Jiang
- Department of Breast Surgery, Harbin Medical University, Harbin, P.R. China
| | - Qianqian Zhou
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Zhenglei Xu
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Hui Luo
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Wenbin Zhou
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Jichao Sun
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Guangsuo Wang
- Department of Thoracic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Qingshan Geng
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Jigang Wang
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Chang Zou
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
- Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, the Second Clinical Medical College, Jinan University, Shenzhen, P.R. China
- School of Life and Health Sciences, The Chinese University of Kong Hong, Shenzhen, P.R. China
| |
Collapse
|
4
|
Shi C, Liu F, Su X, Yang Z, Wang Y, Xie S, Xie S, Sun Q, Chen Y, Sang L, Tan M, Zhu L, Lei K, Li J, Yang J, Gao Z, Yu M, Wang X, Wang J, Chen J, Zhuo W, Fang Z, Liu J, Yan Q, Neculai D, Sun Q, Shao J, Lin W, Liu W, Chen J, Wang L, Liu Y, Li X, Zhou T, Lin A. Comprehensive discovery and functional characterization of the noncanonical proteome. Cell Res 2025; 35:186-204. [PMID: 39794466 PMCID: PMC11909191 DOI: 10.1038/s41422-024-01059-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/14/2024] [Indexed: 01/13/2025] Open
Abstract
The systematic identification and functional characterization of noncanonical translation products, such as novel peptides, will facilitate the understanding of the human genome and provide new insights into cell biology. Here, we constructed a high-coverage peptide sequencing reference library with 11,668,944 open reading frames and employed an ultrafiltration tandem mass spectrometry assay to identify novel peptides. Through these methods, we discovered 8945 previously unannotated peptides from normal gastric tissues, gastric cancer tissues and cell lines, nearly half of which were derived from noncoding RNAs. Moreover, our CRISPR screening revealed that 1161 peptides are involved in tumor cell proliferation. The presence and physiological function of a subset of these peptides, selected based on screening scores, amino acid length, and various indicators, were verified through Flag-knockin and multiple other methods. To further characterize the potential regulatory mechanisms involved, we constructed a framework based on artificial intelligence structure prediction and peptide‒protein interaction network analysis for the top 100 candidates and revealed that these cancer-related peptides have diverse subcellular locations and participate in organelle-specific processes. Further investigation verified the interacting partners of pep1-nc-OLMALINC, pep5-nc-TRHDE-AS1, pep-nc-ZNF436-AS1 and pep2-nc-AC027045.3, and the functions of these peptides in mitochondrial complex assembly, energy metabolism, and cholesterol metabolism, respectively. We showed that pep5-nc-TRHDE-AS1 and pep2-nc-AC027045.3 had substantial impacts on tumor growth in xenograft models. Furthermore, the dysregulation of these four peptides is closely correlated with clinical prognosis. Taken together, our study provides a comprehensive characterization of the noncanonical proteome, and highlights critical roles of these previously unannotated peptides in cancer biology.
Collapse
Affiliation(s)
- Chengyu Shi
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Fangzhou Liu
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Xinwan Su
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Zuozhen Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Shanshan Xie
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shaofang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang, China
| | - Qiang Sun
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Lingjie Sang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Manman Tan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Linyu Zhu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Kai Lei
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Junhong Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Jiecheng Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Zerui Gao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Meng Yu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Xinyi Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Junfeng Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Jing Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Zhuo
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhaoyuan Fang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Liu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang, China
- Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dante Neculai
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Qiming Sun
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiqiang Lin
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Wei Liu
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jian Chen
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liangjing Wang
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xu Li
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang, China
| | - Tianhua Zhou
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Aifu Lin
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, Zhejiang, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Wang Z, Wang J, Wu W, Shi C, Wang Y, Chen Y, Liu F, Xie S, Lin A. LncRNAs: expanding horizons in drug development and disease treatment. Sci Bull (Beijing) 2025; 70:287-289. [PMID: 39667985 DOI: 10.1016/j.scib.2024.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Affiliation(s)
- Zhizhuo Wang
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China; MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Junfeng Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenfei Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shanshan Xie
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Aifu Lin
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China; MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310009, China.
| |
Collapse
|
6
|
Gugnoni M, Kashyap MK, Wary KK, Ciarrocchi A. lncRNAs: the unexpected link between protein synthesis and cancer adaptation. Mol Cancer 2025; 24:38. [PMID: 39891197 PMCID: PMC11783725 DOI: 10.1186/s12943-025-02236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
Cancer progression relies on the ability of cells to adapt to challenging environments overcoming stresses and growth constraints. Such adaptation is a multifactorial process that depends on the rapid reorganization of many basic cellular mechanisms. Protein synthesis is often dysregulated in cancer, and translational reprogramming is emerging as a driving force of cancer adaptive plasticity. Long non-coding RNAs (lncRNAs) represent the main product of genome transcription. They outnumber mRNAs by an order of magnitude and their expression is regulated in an extremely specific manner depending on context, space and time. This heterogeneity is functional and allows lncRNAs to act as context-specific, fine-tuning controllers of gene expression. Multiple recent evidence underlines how, besides their consolidated role in transcription, lncRNAs are major players in translation control. Their capacity to establish multiple and highly dynamic interactions with proteins and other transcripts makes these molecules able to play a central role across all phases of protein synthesis. Even if through a myriad of different mechanisms, the action of these transcripts is dual. On one hand, by modulating the overall translation speed, lncRNAs participate in the process of metabolic adaptation of cancer cells under stress conditions. On the other hand, by prioritizing the synthesis of specific transcripts they help cancer cells to maintain high levels of essential oncogenes. In this review, we aim to discuss the most relevant evidence regarding the involvement of lncRNAs in translation regulation and to discuss how this specific function may affect cancer plasticity and resistance to stress. We also expect to provide one of the first collective perspectives on the way these transcripts modulate gene expression beyond transcription.
Collapse
Affiliation(s)
- Mila Gugnoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| | - Kishore K Wary
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, IL, USA.
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
7
|
Chen Q, Zhang H, Wang D, Liao W, Liu Y, Cai Y, Wang S, Yu M. mTOR-related linc-PMB promotes mitochondrial biogenesis via stabilizing SIRT1 mRNA through binding to the HuR protein. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39910977 DOI: 10.3724/abbs.2024236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Mitochondrial dysfunction is implicated in numerous disorders, including type 2 diabetes, Alzheimer's disease and cancer. Long non-coding RNAs (lncRNAs) are emerging as pivotal regulators of cellular energy metabolism, yet their roles remain largely unclear. In this study, we identify an lncRNA named linc-PMB, which is associated with mTOR and promotes mitochondrial biogenesis, through microarray analysis. We demonstrate that the knockdown of linc-PMB results in significantly impaired mitochondrial respiration and biogenesis, along with altered expressions of related genes. Conversely, overexpression of linc-PMB markedly increases mitochondrial function. We further reveal that linc-PMB interacts with the RNA-binding protein HuR, promoting the stabilization of SIRT1 mRNA and a substantial increase in SIRT1 expression, which in turn activates the PGC-1α/mtTFA pathway and mitochondrial biogenesis. Collectively, our findings reveal a novel regulatory pathway in which linc-PMB, through its interaction with HuR, modulates the SIRT1/PGC-1α/mtTFA axis to maintain mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Qian Chen
- Department of Laboratory Medicine, Chengdu Second People's Hospital, Chengdu 610017, China
| | - Huaying Zhang
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Daokun Wang
- Department of Laboratory Medicine, Chengdu Second People's Hospital, Chengdu 610017, China
| | - Wenjing Liao
- Department of Laboratory Medicine, Chengdu Second People's Hospital, Chengdu 610017, China
| | - Yazhou Liu
- Department of Laboratory Medicine, Chengdu Second People's Hospital, Chengdu 610017, China
| | - Yurui Cai
- Department of Laboratory Medicine, Chengdu Second People's Hospital, Chengdu 610017, China
| | - Siyou Wang
- Department of Laboratory Medicine, Chengdu Second People's Hospital, Chengdu 610017, China
| | - Mengqian Yu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
8
|
Zhao R, Zhang C, Tang C, Wu X, Hu S, Luo Q, Jia N, Fan L, Wang Y, Jiang W, Chen Q. Triterpenes from Ganoderma lucidum inhibit hepatocellular carcinoma by regulating enhancer-associated lncRNA in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118706. [PMID: 39186989 DOI: 10.1016/j.jep.2024.118706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (G. lucidum) has been widely used as adjuvant of anti-tumor therapy for variety tumors. The bioactive ingredients of G. lucidum mainly include triterpenes, such as Ganoderic acid A, Ganoderic acid B, Ganoderenic acid A, Ganoderenic acid B, Ganoderenic acid D, and Ganoderic acid X. However, the effects and underlying mechanisms of G. lucidum are often challenging in hepatocellular carcinoma (HCC) treatment. AIM OF THE STUDY To explore the potential role and mechanism of enhancer-associated lncRNAs (en-lncRNAs) in G. lucidum treated HCC through the in vivo and in vitro experiments. MATERIALS AND METHODS Hepa1-6-bearing C57 BL/6 mice model were established to evaluate the therapeutic efficacy of G. lucidum treated HCC. Ki67 and TUNEL staining were used to detect the tumor cell proliferation and apoptosis in vivo. The Mouse lncRNA 4*180K array was implemented to identify the differentially expressed (DE) lncRNAs and mRNAs of G. lucidum treated tumor mice. The constructed lncRNA-mRNA co-expression network and bioinformatics analysis were used to selected core en-lncRNAs and its neighboring genes. The UPLC-MS method was used to identify the triterpenes of G. lucidum, and the in vitro experiments were used to verify which triterpene monomers regulated en-lncRNAs in tumor cells. Finally, a stable knockdown/overexpression cell lines were used to confirm the relationship between en-lncRNA and neighboring gene. RESULTS Ki67 and TUNEL staining demonstrated G. lucidum significantly inhibited tumor growth, suppressed cell proliferation and induced apoptosis in vivo. Transcriptomic analysis revealed the existence of 126 DE lncRNAs high correlated with 454 co-expressed mRNAs in G. lucidum treated tumor mice. Based on lncRNA-mRNA network and qRT-PCR validation, 6 core lncRNAs were selected and considered high correlated with G. lucidum treatment. Bioinformatics analysis revealed FR036820 and FR121302 might act as enhancers, and qRT-PCR results suggested FR121302 might enhance Popdc2 mRNA level in HCC. Furthermore, 6 main triterpene monomers of G. lucidum were identified by UPLC-MS method, and in vitro experiments showed FR121302 and Popdc2 were significantly suppressed by Ganoderenic acid A and Ganoderenic acid B, respectively. The knock/overexpression results demonstrated that FR121302 activating and enhancing Popdc2 expression levels, and Ganoderenic acid A and Ganoderenic acid B dramatically suppressed FR121302 and decreased Popdc2 level in Hepa1-6 cells. CONCLUSIONS Enhancer-associated lncRNA plays a crucial role as an enhancer during hepatocarcinogenesis, and triterpenes of G. lucidum significantly inhibited tumor cell proliferation and induced apoptosis by regulating en-lncRNAs. Our study demonstrated Ganoderenic acid A and Ganoderenic acid B suppressed en-lncRNA FR121302 may be one of the critical strategies of G. lucidum inhibit hepatocellular carcinoma growth.
Collapse
MESH Headings
- Animals
- Triterpenes/pharmacology
- Triterpenes/isolation & purification
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Reishi/chemistry
- Apoptosis/drug effects
- Mice, Inbred C57BL
- Cell Proliferation/drug effects
- Mice
- Cell Line, Tumor
- Male
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/isolation & purification
Collapse
Affiliation(s)
- Ruolin Zhao
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Institute of Basic Medical Research, Naval Medical University, Shanghai, 200433, China
| | - Caiyun Zhang
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Chenchen Tang
- Department of Experimental Management, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinxin Wu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Sheng Hu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Qingqiong Luo
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ning Jia
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Lingzhi Fan
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yixing Wang
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Wencheng Jiang
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Qilong Chen
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
9
|
Wang N, Tan S, Liu H, Wang M, Xia J, Zhang W, Wang M, Liu H, Sha Z. SHP-1 alleviates acute liver injury caused by Escherichia coli sepsis through negatively regulating the canonical and non-canonical NFκB signaling pathways. Int Immunopharmacol 2024; 143:113371. [PMID: 39413645 DOI: 10.1016/j.intimp.2024.113371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
SHP-1, as a protein tyrosine phosphatase, plays a key role in inflammation-related diseases. However, its function and regulatory mechanism in the imbalance of inflammatory response and acute liver injury during sepsis are still unknown. Herein, we constructed a murine model of Escherichia coli (E. coli) sepsis and demonstrated the function and novel mechanism of SHP-1 in sepsis. Overexpression of SHP-1 significantly reduced the mortality rate of mice and alleviated the histopathological deterioration of liver. In addition, it inhibited the expression and release of pro-inflammatory mediators in liver tissue and serum, but upregulated the expression of anti-inflammatory molecules. Silencing SHP-1 exhibited the completely opposite effects. Furthermore, the transcriptome data of mice liver showed that SHP-1 suppressed the progression of sepsis by negatively regulating the activation of multiple inflammation-related signaling pathways. More importantly, we fully revealed the regulation mechanism of SHP-1 on both canonical and non-canonical nuclear factor kappa-B (NFκB) signaling pathways during sepsis for the first time. SHP-1 significantly inhibited the phosphorylation and nuclear translocation of p50, while p65 inhibition was mainly achieved by inhibiting its transcription and translation levels. Meanwhile, SHP-1 inhibited the phosphorylation and nuclear translocation of p52, thereby inhibiting the activation of non-canonical NFκB signaling pathways. In summary, SHP-1 negatively regulated canonical and non-canonical NFκB signaling pathways, thereby blocking the occurrence of excessive inflammatory response and acute liver injury caused by E. coli sepsis. Our findings systematically elucidate the role and mechanism of SHP-1 during sepsis, providing new insights into the prevention and treatment of inflammation and immune-related diseases.
Collapse
Affiliation(s)
- Ningning Wang
- College of Basic Medicine, Qingdao University, Qingdao 266071, China; Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Hongning Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Muyuan Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Jinqi Xia
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Weijun Zhang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Minmin Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Hui Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| |
Collapse
|
10
|
Gao Y, Siyu zhang, Zhang X, Du Y, Ni T, Hao S. Crosstalk between metabolic and epigenetic modifications during cell carcinogenesis. iScience 2024; 27:111359. [PMID: 39660050 PMCID: PMC11629229 DOI: 10.1016/j.isci.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Genetic mutations arising from various internal and external factors drive cells to become cancerous. Cancerous cells undergo numerous changes, including metabolic reprogramming and epigenetic modifications, to support their abnormal proliferation. This metabolic reprogramming leads to the altered expression of many metabolic enzymes and the accumulation of metabolites. Recent studies have shown that these enzymes and metabolites can serve as substrates or cofactors for chromatin-modifying enzymes, thereby participating in epigenetic modifications and promoting carcinogenesis. Additionally, epigenetic modifications play a role in the metabolic reprogramming and immune evasion of cancer cells, influencing cancer progression. This review focuses on the origins of cancer, particularly the metabolic reprogramming of cancer cells and changes in epigenetic modifications. We discuss how metabolites in cancer cells contribute to epigenetic remodeling, including lactylation, acetylation, succinylation, and crotonylation. Finally, we review the impact of epigenetic modifications on tumor immunity and the latest advancements in cancer therapies targeting these modifications.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siyu zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
11
|
Su RY, Xu CH, Guo HJ, Meng LJ, Zhuo JY, Xu N, Li HG, He CY, Zhang XY, Lian ZX, Wang S, Cao C, Zhou R, Lu D, Zheng SS, Wei XY, Xu X. Oncogenic cholesterol rewires lipid metabolism in hepatocellular carcinoma via the CSNK2A1-IGF2R Ser2484 axis. J Adv Res 2024:S2090-1232(24)00540-X. [PMID: 39547439 DOI: 10.1016/j.jare.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/02/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
INTRODUCTION Alcohol consumption and hepatitis B virus (HBV) infection are common risk factors for hepatocellular carcinoma (HCC). However, few studies have focused on elucidating the mechanisms of HCC with combined alcohol and HBV etiology. OBJECTIVES We aimed to investigate the molecular features of alcohol and HBV on HCC and to seek out potential therapeutic strategies. METHODS Two independent cohorts of HCC patients (n = 539 and n = 140) were included to investigate HCC with synergetic alcohol and HBV (AB-HCC) background. Patient-derived cell lines, organoids, and xenografts were used to validate the metabolic fragile. High-throughput drug screening (1181 FDA-approved anticancer drugs) was leveraged to explore the potential therapeutic agents. RESULTS Here, we delineated AB-HCC as a distinctive metabolic subtype, hallmarked by oncogenic cholesterol, through the integration of clinical cohorts, proteomics, phosphoproteomics, and spatial transcriptome. Mechanistically, our findings revealed that cholesterol directly binds to CSNK2A1 (Casein Kinase 2 Alpha 1), augmenting its kinase activity and leading to phosphorylation of IGF2R (Insulin-Like Growth Factor 2 Receptor) at Ser2484. This cascade rewires lipid-driven mitochondrial oxidative phosphorylation, spawns reactive oxygen species measured by malondialdehyde assay, and perpetuates a positive feedback loop for cholesterol biosynthesis, ultimately culminating in tumorigenesis. Initial transcriptional activation of CSNK2A1 is driven by upregulation of RAD21 in AB-HCC. Our cholesterol profiling exposes AB-HCC's compensatory mechanism of AB-HCC, which capitalizes on both uptake and biosynthesis of cholesterol to confer survival edge. Moreover, high-throughput drug screening coupled with in vivo validation has uncovered the susceptibilities of AB-HCC, which can be effectively addressed by a combination of dietary cholesterol restriction and oral administration of Fostamatinib. The CSNK2A1-mediated cholesterol biosynthesis pathway has been implicated in various cancers characterized by cholesterol metabolism. CONCLUSION These findings not only pinpoint the oncogenic metabolite cholesterol as a hidden culprit in AB-HCC subtype, but also enlighten a novel combination strategy to rejuvenate tumor metabolism.
Collapse
Affiliation(s)
- Ren-Yi Su
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Chen-Hao Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hai-Jun Guo
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Li-Jun Meng
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Jian-Yong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Nan Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hui-Gang Li
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Chi-Yu He
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xuan-Yu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Zheng-Xin Lian
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Chenhao Cao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, and College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Di Lu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, China.
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China; Department of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310022, China.
| | - Xu-Yong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China.
| |
Collapse
|
12
|
Huang J, Lin J, Zhong T, Qin Z, Li G, Yi T, Lu X, Qin Y. LINC00894 targets Annexin A2 to regulate oxaliplatin resistance in hepatocellular carcinoma: ANXA2 protein function. Int J Biol Macromol 2024; 281:136538. [PMID: 39396585 DOI: 10.1016/j.ijbiomac.2024.136538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
To investigate the role of LINC00894 in oxaliplatin chemoresistance of hepatocellular carcinoma (HCC) and its mechanisms. The oxaliplatin-resistant HCC cell lines were established. IC50 of oxaliplatin was calculated by CCK-8 assay. Cell viability was detected using clonal formation experiment, while cell apoptosis was accessed by flow cytometry. RNA binding protein immunoprecipitation and RNA pull-down were performed to explore the interaction of LINC00894 and ANXA2. The expressions of RNA and protein were tested by qRT-PCR and western blot respectively. Tumor xenograft was performed to detect the effect of LINC00894 in vivo. The expression of ki67 was evaluated by immunohistochemistry staining. LINC00894 was overexpressed in HCC cells resistant to oxaliplatin. Elevated LINC00894 promoted HCC cells resistance to oxaliplatin, whereas silence of LINC00894 improved HCC sensitivity to oxaliplatin. LINC00894 could bind to the ANXA2 protein, enhanced the stability of the ANXA2 protein and reduced its ubiquitination. Furthermore, LINC00894 modulated HCC resistance to oxaliplatin both in vitro and in vivo by targeting the ANXA2 protein.LINC00894 enhanced the stability of ANXA2 protein and attenuated its ubiquitination by interacting with it, thereby promoting oxaliplatin resistance in HCC. Our findings contributed to understanding the role of these mechanisms in the process of oxaliplatin resistance in HCC.
Collapse
MESH Headings
- Annexin A2/metabolism
- Annexin A2/genetics
- Humans
- Oxaliplatin/pharmacology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Animals
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Mice
- Apoptosis/drug effects
- Apoptosis/genetics
- Ubiquitination/drug effects
- Xenograft Model Antitumor Assays
- Mice, Nude
- Cell Proliferation/drug effects
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Junling Huang
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 530632, China; Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China
| | - Jiajie Lin
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 530632, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, Guangxi 533000, China
| | - Tengmeng Zhong
- Department of Hepatobiliary Surgery, Baise People's Hospital, Baise, 533000, Guangxi Province, China
| | - Zongshuai Qin
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China
| | - Guangzhi Li
- Department of General practice, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan 2nd Road, Baise 533000, Guangxi Province, China
| | - Tingzhuang Yi
- Department of Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi Province, China
| | - Xianzhe Lu
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 530632, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, Guangxi 533000, China.
| | - Yueqiu Qin
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China.
| |
Collapse
|
13
|
Goyal H, Parwani S, Kaur J. Deciphering the nexus between long non-coding RNAs and endoplasmic reticulum stress in hepatocellular carcinoma: biomarker discovery and therapeutic horizons. Cell Death Discov 2024; 10:451. [PMID: 39448589 PMCID: PMC11502918 DOI: 10.1038/s41420-024-02200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a significant global health challenge with few effective treatment options. The dysregulation of endoplasmic reticulum (ER) stress responses has emerged as a pivotal factor in HCC progression and therapy resistance. Long non-coding RNAs (lncRNAs) play a crucial role as key epigenetic modifiers in this process. Recent research has explored how lncRNAs influence ER stress which in turn affects lncRNAs activity in HCC. We systematically analyze the current literature to highlight the regulatory roles of lncRNAs in modulating ER stress and vice versa in HCC. Our scrutinization highlights how dysregulated lncRNAs contribute to various facets of HCC, including apoptosis resistance, enhanced proliferation, invasion, and metastasis, all driven by ER stress. Moreover, we delve into the emerging paradigm of the lncRNA-miRNA-mRNA axis, elucidating it as the promising avenue for developing novel biomarkers and paving the way for more personalized treatment options in HCC. Nevertheless, we acknowledge the challenges and future directions in translating these insights into clinical practice. In conclusion, our review provides insights into the complex regulatory mechanisms governing ER stress modulation by lncRNAs in HCC.
Collapse
Affiliation(s)
- Himanshi Goyal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sachin Parwani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
14
|
Su X, Shi C, Liu F, Tan M, Wang Y, Zhu L, Chen Y, Yu M, Wang X, Liu J, Liu Y, Lin W, Fang Z, Sun Q, Zhou T, Lin A. HMPA: a pioneering framework for the noncanonical peptidome from discovery to functional insights. Brief Bioinform 2024; 25:bbae510. [PMID: 39413795 PMCID: PMC11483136 DOI: 10.1093/bib/bbae510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/01/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
Advancements in peptidomics have revealed numerous small open reading frames with coding potential and revealed that some of these micropeptides are closely related to human cancer. However, the systematic analysis and integration from sequence to structure and function remains largely undeveloped. Here, as a solution, we built a workflow for the collection and analysis of proteomic data, transcriptomic data, and clinical outcomes for cancer-associated micropeptides using publicly available datasets from large cohorts. We initially identified 19 586 novel micropeptides by reanalyzing proteomic profile data from 3753 samples across 8 cancer types. Further quantitative analysis of these micropeptides, along with associated clinical data, identified 3065 that were dysregulated in cancer, with 370 of them showing a strong association with prognosis. Moreover, we employed a deep learning framework to construct a micropeptide-protein interaction network for further bioinformatics analysis, revealing that micropeptides are involved in multiple biological processes as bioactive molecules. Taken together, our atlas provides a benchmark for high-throughput prediction and functional exploration of micropeptides, providing new insights into their biological mechanisms in cancer. The HMPA is freely available at http://hmpa.zju.edu.cn.
Collapse
Affiliation(s)
- Xinwan Su
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Manman Tan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Linyu Zhu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Yu Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Meng Yu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Xinyi Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
| | - Jian Liu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, 718 East Haizhou Rd., Haining, Zhejiang 314400, China
| | - Yang Liu
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310009, China
| | - Weiqiang Lin
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, Zhejiang 322000, China
| | - Zhaoyuan Fang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, 718 East Haizhou Rd., Haining, Zhejiang 314400, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310000, China
| | - Qiang Sun
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, Zhejiang 322000, China
| | - Tianhua Zhou
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310000, China
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, Zhejiang 322000, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, 828 Zhongxing Road, Xitang District, Jiashan, Zhejiang, 314100, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, 866 Yuhangtang Road, West Lake District, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
15
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
16
|
Lin Z, Huang Z, Qiu J, Shi Y, Zuo D, Qiu Z, He W, Niu Y, Yuan Y, Li B. m 6A-mediated lnc-OXAR promotes oxaliplatin resistance by enhancing Ku70 stability in non-alcoholic steatohepatitis-related hepatocellular carcinoma. J Exp Clin Cancer Res 2024; 43:206. [PMID: 39054531 PMCID: PMC11271202 DOI: 10.1186/s13046-024-03134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND The escalating prevalence of metabolic diseases has led to a rapid increase in non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (NASH-HCC). While oxaliplatin (OXA)-based hepatic arterial infusion chemotherapy (HAIC) has shown promise in advanced-stage HCC patients, its efficacy in NASH-HCC remains uncertain. This study aims to assess the effectiveness of OXA-based HAIC and elucidate the mechanisms underlying OXA resistance in NASH-HCC. METHODS The key lncRNAs were screened through RNA-seq analysis of NASH/non-NASH and OXA-sensitive/OXA-resistant (OXA-S/R) HCC tissues. The biological functions of the lnc-OXAR (OXA resistance-related lncRNA in NASH-HCC) in NASH-HCC were verified through a series of in vitro and in vivo experiments. The molecular mechanism of lnc-OXAR was elucidated by fluorescence in situ hybridization, immunoprecipitation-mass spectrometry (FISH), Immunoprecipitation-Mass Spectrometry (IP-MS), RNA pulldown, RNA immunoprecipitation (RIP), methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and a dual-luciferase reporter assay. RESULTS NASH-HCC exhibited reduced responsiveness to OXA-based HAIC compared to non-NASH HCC. We identified and validated a novel transcript namedlnc-OXAR, which played a crucial role in conferring OXA resistance to NASH-HCC. Inhibition of lnc-OXAR suppressed HCC cell growth and restored OXA sensitivity both in NASH-HCC mouse models and in vitro. Mechanistically, lnc-OXAR recruited Ku70 and cystatin A (CSTA), preventing Ku70 degradation and facilitating DNA double-strand break (DSB) repair, thereby promoting OXA resistance in NASH-HCC. Additionally, WTAP-mediated m6A modification enhanced the stability of lnc-OXAR in an IGF2BP2-dependent manner. Notably, silencing lnc-OXAR significantly enhanced the response to OXA in patient-derived xenograft (PDX) models derived from NASH-HCC. CONCLUSIONS The reduced responsiveness of NASH-HCC to OXA treatment can be attributed to the upregulation of lnc-OXAR. Our findings provide a rationale for stratifying HCC patients undergoing OXA-based HAIC based on etiology. Lnc-OXAR holds promise as a novel target for overcoming OXA resistance in NASH-HCC and improving prognosis.
Collapse
Affiliation(s)
- Zhu Lin
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhenkun Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yunxing Shi
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhiyu Qiu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei He
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yi Niu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Binkui Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
17
|
Zhu YH, Jia QY, Yao HF, Duan ZH, Ma XSY, Zheng JH, Yin YF, Liu W, Zhang JF, Hua R, Ma D, Sun YW, Yang JY, Liu DJ, Huo YM. The lncRNA LINC01605 promotes the progression of pancreatic ductal adenocarcinoma by activating the mTOR signaling pathway. Cancer Cell Int 2024; 24:262. [PMID: 39048994 PMCID: PMC11271012 DOI: 10.1186/s12935-024-03440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND This study investigated the molecular mechanism of long intergenic non-protein coding RNA 1605 (LINC01605) in the process of tumor growth and liver metastasis of pancreatic ductal adenocarcinoma (PDAC). METHODS LINC01605 was filtered out with specificity through TCGA datasets (related to DFS) and our RNA-sequencing data of PDAC tissue samples from Renji Hospital. The expression level and clinical relevance of LINC01605 were then verified in clinical cohorts and samples by immunohistochemical staining assay and survival analysis. Loss- and gain-of-function experiments were performed to estimate the regulatory effects of LINC01605 in vitro. RNA-seq of LINC01605-knockdown PDAC cells and subsequent inhibitor-based cellular function, western blotting, immunofluorescence and rescue experiments were conducted to explore the mechanisms by which LINC01605 regulates the behaviors of PDAC tumor cells. Subcutaneous xenograft models and intrasplenic liver metastasis models were employed to study its role in PDAC tumor growth and liver metastasis in vivo. RESULTS LINC01605 expression is upregulated in both PDAC primary tumor and liver metastasis tissues and correlates with poor clinical prognosis. Loss and gain of function experiments in cells demonstrated that LINC01605 promotes the proliferation and migration of PDAC cells in vitro. In subsequent verification experiments, we found that LINC01605 contributes to PDAC progression through cholesterol metabolism regulation in a LIN28B-interacting manner by activating the mTOR signaling pathway. Furthermore, the animal models showed that LINC01605 facilitates the proliferation and metastatic invasion of PDAC cells in vivo. CONCLUSIONS Our results indicate that the upregulated lncRNA LINC01605 promotes PDAC tumor cell proliferation and migration by regulating cholesterol metabolism via activation of the mTOR signaling pathway in a LIN28B-interacting manner. These findings provide new insight into the role of LINC01605 in PDAC tumor growth and liver metastasis as well as its value for clinical approaches as a metabolic therapeutic target in PDAC.
Collapse
Affiliation(s)
- Yu-Heng Zhu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qin-Yuan Jia
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hong-Fei Yao
- Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Zong-Hao Duan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xue-Shi-Yu Ma
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jia-Hao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi-Fan Yin
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun-Feng Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ding Ma
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jian-Yu Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - De-Jun Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
18
|
Mi Y, Yan L, Jin H, Jin M, Zhu D, Huang H, Han K, Huang J. NKILA is a novel suppressor of local recurrence in women breast malignant phyllodes tumor patients via inhibition of the NF-κB pathway. Heliyon 2024; 10:e33259. [PMID: 39027510 PMCID: PMC11255658 DOI: 10.1016/j.heliyon.2024.e33259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
The aim of the present study was to explore the functional mechanism of NF-Kappa B-interacting Long non-protein coding RNA (NKILA) in breast malignant phyllodes tumors (BMPTs). The expression and functional role of NKILA were investigated by performing qRT‒PCR, Transwell assays, and CCK‒8 assays in primary BMPT cells. A Kaplan‒Meier curve was used to assess overall survival (OS) and local recurrence-free survival (LRFS). The location and expression levels of NKILA and P65 were determined by fluorescence in situ hybridization (FISH) and immunofluorescence (IF), respectively. NKILA was downregulated in patients with BMPT, especially in patients with local recurrence. NKILA had an antitumor effect and promoted the chemosensitivity of cells to cisplatin by blocking P65 phosphorylation and nuclear translocation. In conclusion, NKILA may be a potential therapeutic target for BMPT, especially for BMPT patients with local recurrence.
Collapse
Affiliation(s)
- Ying Mi
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, NO. 1838 Canton Avenue North, Guangzhou, 510515, China
| | - Le Yan
- Department of Cosmetic Surgery, Nanfang Hospital Baiyun Branch, Southern Medical University, NO. 23 Yuanxiadi Road, Guangzhou, 510420, Guangdong, China
| | - Haiyun Jin
- Department of Gynaecology and Obstetrics, Southern Hospital TaiHe Branch, Southern Medical University, NO. 53 Taihe Middle Road, Guangzhou, 510540, Guangdong, China
| | - Ming Jin
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China
| | - Di Zhu
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, NO. 253 Industrial Road, Guangzhou, 510282, China
| | - Hongyan Huang
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, NO. 253 Industrial Road, Guangzhou, 510282, China
| | - Kai Han
- Department of Dermatology, Nanfang Hospital, Southern Medical University, NO. 1838 Canton Avenue North, Guangzhou, 510515, China
| | - Jibo Huang
- Department of Cosmetic Surgery, Nanfang Hospital Baiyun Branch, Southern Medical University, NO. 23 Yuanxiadi Road, Guangzhou, 510420, Guangdong, China
| |
Collapse
|
19
|
Shi M, Jia JS, Gao GS, Hua X. Advances and challenges of exosome-derived noncoding RNAs for hepatocellular carcinoma diagnosis and treatment. Biochem Biophys Rep 2024; 38:101695. [PMID: 38560049 PMCID: PMC10979073 DOI: 10.1016/j.bbrep.2024.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/10/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Exosomes, also termed extracellular vesicles (EVs), are an important component of the tumor microenvironment (TME) and exert versatile effects on the molecular communications in the TME of hepatocellular carcinoma (HCC). Exosome-mediated intercellular communication is closely associated with the tumorigenesis and development of HCC. Exosomes can be extracted through ultracentrifugation and size exclusion, followed by molecular analysis through sequencing. Increasing studies have confirmed the important roles of exosome-derived ncRNAs in HCC, including tumorigenesis, progression, immune escape, and treatment resistance. Due to the protective membrane structure of exosomes, the ncRNAs carried by exosomes can evade degradation by enzymes in body fluids and maintain good expression stability. Thus, exosome-derived ncRNAs are highly suitable as biomarkers for the diagnosis and prognostic prediction of HCC, such as exosomal miR-21-5p, miR-221-3p and lncRNA-ATB. In addition, substantial studies revealed that the up-or down-regulation of exosome-derived ncRNAs had an important impact on HCC progression and response to treatment. Exosomal biomarkers, such as miR-23a, lncRNA DLX6-AS1, miR-21-5p, lncRNA TUC339, lncRNA HMMR-AS1 and hsa_circ_0004658, can reshape immune microenvironment by regulating M2-type macrophage polarization and then promote HCC development. Therefore, by controlling exosome biogenesis and modulating exosomal ncRNA levels, HCC may be inhibited or eliminated. In this current review, we summarized the recent findings on the role of exosomes in HCC progression and analyzed the relationship between exosome-derived ncRNAs and HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Min Shi
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Jun-Su Jia
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Guo-Sheng Gao
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Xin Hua
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
20
|
Scholda J, Nguyen TTA, Kopp F. Long noncoding RNAs as versatile molecular regulators of cellular stress response and homeostasis. Hum Genet 2024; 143:813-829. [PMID: 37782337 PMCID: PMC11294412 DOI: 10.1007/s00439-023-02604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Normal cell and body functions need to be maintained and protected against endogenous and exogenous stress conditions. Different cellular stress response pathways have evolved that are utilized by mammalian cells to recognize, process and overcome numerous stress stimuli in order to maintain homeostasis and to prevent pathophysiological processes. Although these stress response pathways appear to be quite different on a molecular level, they all have in common that they integrate various stress inputs, translate them into an appropriate stress response and eventually resolve the stress by either restoring homeostasis or inducing cell death. It has become increasingly appreciated that non-protein-coding RNA species, such as long noncoding RNAs (lncRNAs), can play critical roles in the mammalian stress response. However, the precise molecular functions and underlying modes of action for many of the stress-related lncRNAs remain poorly understood. In this review, we aim to provide a framework for the categorization of mammalian lncRNAs in stress response and homeostasis based on their experimentally validated modes of action. We describe the molecular functions and physiological roles of selected lncRNAs and develop a concept of how lncRNAs can contribute as versatile players in mammalian stress response and homeostasis. These concepts may be used as a starting point for the identification of novel lncRNAs and lncRNA functions not only in the context of stress, but also in normal physiology and disease.
Collapse
Affiliation(s)
- Julia Scholda
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Thi Thuy Anh Nguyen
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Florian Kopp
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| |
Collapse
|
21
|
Feng W, Jiang Y, Zeng L, Ouyang Y, Li H, Tang Y, Luo L, Ouyang L, Xie L, Tan Y, Li Y. SPACA6P-AS: a trailblazer in breast cancer pathobiology and therapeutics. Cell Biol Toxicol 2024; 40:49. [PMID: 38922500 PMCID: PMC11208203 DOI: 10.1007/s10565-024-09870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE The primary objective of this investigation is to delve into the involvement of the long noncoding RNA (lncRNA) SPACA6P-AS in breast cancer (BC) development, focusing on its expression pattern, association with clinical-pathological features, impact on prognosis, as well as its molecular and immunological implications. METHODS Bioinformatics analysis was conducted utilizing RNA sequencing data of 1083 BC patients from the TCGA database. Functional exploration of SPACA6P-AS was carried out through the construction of survival curves, GO and KEGG enrichment analysis, and single-sample gene set enrichment analysis (ssGSEA). Furthermore, its functionality was validated through in vitro cell experiments and in vivo nude mouse model experiments. RESULTS SPACA6P-AS showed a remarkable increase in expression levels in BC tissues (p < 0.001) and demonstrated a close relationship to poor prognosis (overall survival HR = 1.616, progression-free interval HR = 1.40, disease-specific survival HR = 1.54). Enrichment analysis revealed that SPACA6P-AS could impact biological functions such as protease regulation, endopeptidase inhibitor activity, taste receptor activity, taste transduction, and maturity-onset diabetes of the young pathway. ssGSEA analysis indicated a negative correlation between SPACA6P-AS expression and immune cell infiltration like dendritic cells and neutrophils, while a positive correlation was observed with central memory T cells and T helper 2 cells. Results from in vitro and in vivo experiments illustrated that silencing SPACA6P-AS significantly inhibited the proliferation, migration, and invasion capabilities of BC cells. In vitro experiments also highlighted that dendritic cells with silenced SPACA6P-AS exhibited enhanced capabilities in promoting the proliferation of autologous CD3 + T cells and cytokine secretion. These discoveries elucidate the potential multifaceted roles of SPACA6P-AS in BC, including its potential involvement in modulating immune cell infiltration in the tumor microenvironment. CONCLUSION The high expression of lncRNA SPACA6P-AS in BC is closely linked to poor prognosis and may facilitate tumor progression by influencing specific biological processes, signaling pathways, and the immune microenvironment. The regulatory role of SPACA6P-AS positions it as a prospective biomarker and target for therapeutic approaches for BC diagnosis and intervention.
Collapse
Affiliation(s)
- Wenjie Feng
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Yiling Jiang
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Lijun Zeng
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Yuhan Ouyang
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Hailong Li
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University, the First People's Hospital of Changde City, Changde, Hunan, People's Republic of China
| | - Yuanbin Tang
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Lunqi Luo
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Lianjie Ouyang
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Liming Xie
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China.
| | - Yeru Tan
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China.
| | - Yuehua Li
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China.
| |
Collapse
|
22
|
Li A, Wang R, Zhao Y, Zhao P, Yang J. Crosstalk between Epigenetics and Metabolic Reprogramming in Metabolic Dysfunction-Associated Steatotic Liver Disease-Induced Hepatocellular Carcinoma: A New Sight. Metabolites 2024; 14:325. [PMID: 38921460 PMCID: PMC11205353 DOI: 10.3390/metabo14060325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Epigenetic and metabolic reprogramming alterations are two important features of tumors, and their reversible, spatial, and temporal regulation is a distinctive hallmark of carcinogenesis. Epigenetics, which focuses on gene regulatory mechanisms beyond the DNA sequence, is a new entry point for tumor therapy. Moreover, metabolic reprogramming drives hepatocellular carcinoma (HCC) initiation and progression, highlighting the significance of metabolism in this disease. Exploring the inter-regulatory relationship between tumor metabolic reprogramming and epigenetic modification has become one of the hot directions in current tumor metabolism research. As viral etiologies have given way to metabolic dysfunction-associated steatotic liver disease (MASLD)-induced HCC, it is urgent that complex molecular pathways linking them and hepatocarcinogenesis be explored. However, how aberrant crosstalk between epigenetic modifications and metabolic reprogramming affects MASLD-induced HCC lacks comprehensive understanding. A better understanding of their linkages is necessary and urgent to improve HCC treatment strategies. For this reason, this review examines the interwoven landscape of molecular carcinogenesis in the context of MASLD-induced HCC, focusing on mechanisms regulating aberrant epigenetic alterations and metabolic reprogramming in the development of MASLD-induced HCC and interactions between them while also updating the current advances in metabolism and epigenetic modification-based therapeutic drugs in HCC.
Collapse
Affiliation(s)
- Anqi Li
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Rui Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yuqiang Zhao
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Peiran Zhao
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Jing Yang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| |
Collapse
|
23
|
Truong T, Martin K, Salemi M, Ray A, Phinney BS, Penn BH. The balance between antiviral and antibacterial responses during M. tuberculosis infection is regulated by the ubiquitin ligase CBL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594178. [PMID: 38798543 PMCID: PMC11118416 DOI: 10.1101/2024.05.15.594178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
As a first line of host defense, macrophages must be able to effectively sense and respond to diverse types of pathogens, and while a particular type of immune response may be beneficial in some circumstances, it can be detrimental in others. Upon infecting a macrophage, M. tuberculosis (Mtb) induces proinflammatory cytokines that activate antibacterial responses. Surprisingly, Mtb also triggers antiviral responses that actually hinder the ability of macrophages to control Mtb infection. The ubiquitin ligase CBL suppresses these antiviral responses and shifts macrophages toward a more antibacterial state during Mtb infection, however, the mechanisms by which CBL regulates immune signaling are unknown. We found that CBL controls responses to multiple stimuli and broadly suppresses the expression of antiviral effector genes. We then used mass-spectrometry to investigate potential CBL substrates and identified over 46,000 ubiquitylated peptides in Mtb-infected macrophages, as well as roughly 400 peptides with CBL-dependent ubiquitylation. We then performed genetic interaction analysis of CBL and its putative substrates, and identified the Fas associated factor 2 (FAF2) adapter protein as a key signaling molecule protein downstream of CBL. Together, these analyses identify thousands of new ubiquitin-mediated signaling events during the innate immune response and reveal an important new regulatory hub in this response.
Collapse
Affiliation(s)
- Tina Truong
- Department of Internal Medicine, University of California, Davis, Davis, California, United States of America
- Graduate Group in Immunology, University of California, Davis, Davis, California, United States of America
| | - Kelsey Martin
- Department of Internal Medicine, University of California, Davis, Davis, California, United States of America
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, Davis, California, United States of America
| | - Abigail Ray
- Department of Internal Medicine, University of California, Davis, Davis, California, United States of America
- Microbiology Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, Davis, California, United States of America
| | - Bennett H. Penn
- Department of Internal Medicine, University of California, Davis, Davis, California, United States of America
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
24
|
Fu R, Xue W, Liang J, Li X, Zheng J, Wang L, Zhang M, Meng J. SOAT1 regulates cholesterol metabolism to induce EMT in hepatocellular carcinoma. Cell Death Dis 2024; 15:325. [PMID: 38724499 PMCID: PMC11082151 DOI: 10.1038/s41419-024-06711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Cholesterol metabolism reprogramming is one of the significant characteristics of hepatocellular carcinoma (HCC). Cholesterol increases the risk of epithelial-mesenchymal transition (EMT) in cancer. Sterol O-acyltransferases 1 (SOAT1) maintains the cholesterol homeostasis. However, the exact mechanistic contribution of SOAT1 to EMT in HCC remains unclear. Here we demonstrated that SOAT1 positively related to poor prognosis of HCC, EMT markers and promoted cell migration and invasion in vitro, which was mediated by the increased cholesterol in plasmalemma and cholesterol esters accumulation. Furthermore, we reported that SOAT1 disrupted cholesterol metabolism homeostasis to accelerate tumorigenesis and development in HCC xenograft and NAFLD-HCC. Also, we detected that nootkatone, a sesquiterpene ketone, inhibited EMT by targeting SOAT1 in vitro and in vivo. Collectively, our finding indicated that SOAT1 promotes EMT and contributes to hepatocarcinogenesis by increasing cholesterol esterification, which is suppressed efficiently by nootkatone. This study demonstrated that SOAT1 is a potential biomarker and therapeutic target in NAFLD-HCC and SOAT1-targeting inhibitors are expected to be the potential new therapeutic treatment for HCC.
Collapse
Affiliation(s)
- Rongrong Fu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenqing Xue
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jingjie Liang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinran Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Juan Zheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Lechen Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China.
- China-Russia Agricultural Products Processing Joint Laboratory, Tianjin Agricultural University, Tianjin, China.
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China.
- Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| |
Collapse
|
25
|
Tao Q, Xie J, Wu Y, Jin Y. Long non-coding RNAs as modulators and therapeutic targets in non-alcoholic fatty liver disease (NAFLD). GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:506-516. [PMID: 37806343 DOI: 10.1016/j.gastrohep.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world, with epidemiological studies indicating a 25% prevalence. NAFLD is considered to be a progressive disease that progresses from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH), then to liver fibrosis, and finally to cirrhosis or hepatocellular carcinoma (HCC). Existing research has mostly elucidated the etiology of NAFLD, yet its particular molecular processes remain uncertain. Long non-coding RNAs (LncRNAs) have been linked in a wide range of biological processes in recent years, with the introduction of microarray and high-throughput sequencing technologies, and previous studies have established their tight relationship with several stages of NAFLD development. Existing studies have shown that lncRNAs can regulate the signaling pathways related to hepatic lipid metabolism, NASH, NASH-related fibrosis and HCC. This review aims to provide a basic overview of NAFLD and lncRNAs, summarize and describe the mechanisms of lncRNAs action involved in the development of NAFLD, and provide an outlook on the future of lncRNAs-based therapy for NAFLD.
Collapse
Affiliation(s)
- Qing Tao
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jing Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yongkang Wu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yong Jin
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
26
|
Wang D, Cao Y, Meng M, Qiu J, Ni C, Guo X, Li Y, Liu S, Yu J, Guo M, Wang J, Du B, Qiu W, Xie C, Zhao B, Ma X, Cheng X, Xu L. FOXA3 regulates cholesterol metabolism to compensate for low uptake during the progression of lung adenocarcinoma. PLoS Biol 2024; 22:e3002621. [PMID: 38805565 PMCID: PMC11161053 DOI: 10.1371/journal.pbio.3002621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/07/2024] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
Cholesterol metabolism is vital for multiple cancer progression, while how cholesterol affects lung, a low-cholesterol tissue, for cancer metastasis and the underlying mechanism remain unclear. In this study, we found that metastatic lung adenocarcinoma cells acquire cellular dehydrocholesterol and cholesterol by endogenous cholesterol biosynthesis, instead of uptake upon cholesterol treatment. Besides, we demonstrated that exogenous cholesterol functions as signaling molecule to induce FOXA3, a key transcription factor for lipid metabolism via GLI2. Subsequently, ChIP-seq analysis and molecular studies revealed that FOXA3 transcriptionally activated Hmgcs1, an essential enzyme of cholesterol biosynthesis, to induce endogenous dehydrocholesterol and cholesterol level for membrane composition change and cell migration. Conversely, FOXA3 knockdown or knockout blocked cholesterol biosynthesis and lung adenocarcinoma metastasis in mice. In addition, the potent FOXA3 inhibitor magnolol suppressed metastatic gene programs in lung adenocarcinoma patient-derived organoids (PDOs). Altogether, our findings shed light onto unique cholesterol metabolism and FOXA3 contribution to lung adenocarcinoma metastasis.
Collapse
Affiliation(s)
- Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Department of Gastrointestinal Surgery, the Affiliated Changzhou, No. 2 People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yuxiang Cao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chao Ni
- Institute of Organoid Technology, BioGenous Biotechnology, Inc., Suzhou, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiawen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenwei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Zhao
- Institute of Organoid Technology, BioGenous Biotechnology, Inc., Suzhou, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China
| | - Xinghua Cheng
- Department of Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
27
|
Du G, Jiang Z, Xia T, Liu M, Liu Z, Zhou H, Zhang H, Zhai X, Jin B. lincRNA00907 promotes NASH progression by targeting miRNA-942-5p/TAOK1. Aging (Albany NY) 2024; 16:6868-6882. [PMID: 38613803 PMCID: PMC11087098 DOI: 10.18632/aging.205730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 04/15/2024]
Abstract
OBJECTIVE The study aims to examine the involvement of lincRNA00907 in the advancement of non-alcoholic steatohepatitis (NASH). METHODS The examination was conducted to assess the expression of linc00907 in liver tissues from NASH patients and healthy individuals. High-fat diets induced NASH in mouse models, while palmitic acid/oleic acid treatment was used to create in vitro cell models. Various techniques, such as qRT-PCR, Oil Red O staining and gene knockdown/overexpression, were used to assess the impact of linc00907 on genes related to lipid metabolism and immunity, as well as intracellular lipid accumulation. Furthermore, dual-luciferase reporter assays were carried out to confirm the connection between miRNA-942-5p and linc00907 or TAOK1 mRNA. RESULTS Linc00907 was found to be significantly upregulated in both NASH patients and NASH mouse models. Overexpression of linc00907 led to an increase in intracellular lipid accumulation, while knockdown of linc00907 resulted in decreased lipid content. It was found that miRNA-942-5p binds with linc00907, and their interaction was confirmed in dual-luciferase reporter assays. Additionally, TAOK1 was predicted to be a downstream target of miRNA-942-5p, and the upregulation of TAOK1 due to linc00907 was reversed by miRNA-942-5p overexpression. linc00907 overexpression reduces apoptosis but can be reversed by TAOK1 knockdown. The reduction of TAOK1 counteracted the impact of linc00907 on gene expression associated with lipid metabolism and immunity, as well as on the accumulation of intracellular lipids. CONCLUSIONS Our research suggests that linc00907 functions as a competitive endogenous RNA (ceRNA) by sequestering miRNA-942-5p, thus increasing the expression of TAOK1 and encouraging lipid accumulation in hepatocytes, leading to the aggravation of NASH development. Targeting the linc00907/miRNA-942-5p/TAOK1 axis may hold therapeutic potential for the treatment of NASH.
Collapse
Affiliation(s)
- Gang Du
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Zhaochen Jiang
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Tong Xia
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Mingkun Liu
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Zeyang Liu
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Huaxin Zhou
- Department of Hepatobiliary Surgery, The Second Hospital of Shangdong University, Jinan 250033, China
| | - Hao Zhang
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital of Shangdong University, Jinan 250033, China
| | - Bin Jin
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
- Department of Hepatobiliary Surgery, The Second Hospital of Shangdong University, Jinan 250033, China
| |
Collapse
|
28
|
Fei M, Li X, Liang S, Zhou S, Wu H, Sun L, Liu Y, Hu Q, Liu L, Wang J. LncRNA PWRN1 inhibits the progression of hepatocellular carcinoma by activating PKM2 activity. Cancer Lett 2024; 584:216620. [PMID: 38218456 DOI: 10.1016/j.canlet.2024.216620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/15/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and leading causes of cancer-related mortality worldwide. Long non-coding RNAs (lncRNAs) have been demonstrated to play vital roles in cancer development and progression. The lncRNA PWRN1 (PWRN1), acts as a tumor suppressor factor, which is low expressed in some cancers. However, the molecular mechanisms underlying the effects of PWRN1, especially the regulatory relationship with RNA binding protein in HCC remain largely unknown. In the present study, we demonstrated that PWRN1 was significantly down-regulated in HCC and correlated with better prognosis; furthermore, gain-of-function experiments showed that PWRN1 inhibited the proliferation of HCC cells. We further found that PWRN1 up-regulated pyruvate kinase activity and thus hinders the proliferation of HCC in vitro and in vivo. Mechanistically, pyruvate kinase M2 (PKM2) was bound to it and maintained the high activity state of PKM2, thereby hindering PKM2 from entering the nucleus in the form of low-activity dimers, reducing the expression of c-Myc downstream gene LDHA, leading to a decrease in lactate levels, and inhibiting the growth of tumor cells. In addition, PWRN1 was found to inhibit aerobic glycolysis. Finally, TEPP-46, a pyruvate kinase activator, appeared to inhibit HCC proliferation by maintaining tetramer stability and increasing pyruvate kinase activity. Taken together, our results provide new insights into the biology hindering HCC proliferation and indicate that PWRN1 in combination with PKM2 activators might represent a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Mingming Fei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China
| | - Xianying Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China
| | - Shuhang Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Swan Lake Road, Hefei, 230001, Anhui Province, China
| | - Shuo Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China
| | - Huihui Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China
| | - Qingsong Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China.
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China.
| |
Collapse
|
29
|
Fan X, Liu F, Wang X, Wang Y, Chen Y, Shi C, Su X, Tan M, Yan Q, Peng J, Shao J, Xiong Y, Lin A. LncFASA promotes cancer ferroptosis via modulating PRDX1 phase separation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:488-503. [PMID: 37955780 DOI: 10.1007/s11427-023-2425-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 11/14/2023]
Abstract
Ferroptosis, a unique type of non-apoptotic cell death resulting from iron-dependent lipid peroxidation, has a potential physiological function in tumor suppression, but its underlying mechanisms have not been fully elucidated. Here, we report that the long non-coding RNA (lncRNA) LncFASA increases the susceptibility of triple-negative breast cancer (TNBC) to ferroptosis. As a tumor suppressor, LncFASA drives the formation of droplets containing peroxiredoxin1 (PRDX1), a member of the peroxidase family, resulting in the accumulation of lipid peroxidation via the SLC7A11-GPX4 axis. Mechanistically, LncFASA directly binds to the Ahpc-TSA domain of PRDX1, inhibiting its peroxidase activity by driving liquid-liquid phase separation, which disrupts intracellular ROS homeostasis. Notably, high LncFASA expression indicates favorable overall survival in individuals with breast cancer, and LncFASA impairs the growth of breast xenograft tumors by modulating ferroptosis. Together, our findings illustrate the crucial role of this lncRNA in ferroptosis-mediated cancer development and provide new insights into therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Xiao Fan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, 310058, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, 310058, China.
| | - Xiang Wang
- Department of Central Laboratory, the First People's Hospital of Huzhou, Huzhou, 313000, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinwan Su
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Manman Tan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Xiong
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, 310058, China.
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China.
| |
Collapse
|
30
|
Hazan JM, Amador R, Ali-Nasser T, Lahav T, Shotan SR, Steinberg M, Cohen Z, Aran D, Meiri D, Assaraf YG, Guigó R, Bester AC. Integration of transcription regulation and functional genomic data reveals lncRNA SNHG6's role in hematopoietic differentiation and leukemia. J Biomed Sci 2024; 31:27. [PMID: 38419051 PMCID: PMC10900714 DOI: 10.1186/s12929-024-01015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are pivotal players in cellular processes, and their unique cell-type specific expression patterns render them attractive biomarkers and therapeutic targets. Yet, the functional roles of most lncRNAs remain enigmatic. To address the need to identify new druggable lncRNAs, we developed a comprehensive approach integrating transcription factor binding data with other genetic features to generate a machine learning model, which we have called INFLAMeR (Identifying Novel Functional LncRNAs with Advanced Machine Learning Resources). METHODS INFLAMeR was trained on high-throughput CRISPR interference (CRISPRi) screens across seven cell lines, and the algorithm was based on 71 genetic features. To validate the predictions, we selected candidate lncRNAs in the human K562 leukemia cell line and determined the impact of their knockdown (KD) on cell proliferation and chemotherapeutic drug response. We further performed transcriptomic analysis for candidate genes. Based on these findings, we assessed the lncRNA small nucleolar RNA host gene 6 (SNHG6) for its role in myeloid differentiation. Finally, we established a mouse K562 leukemia xenograft model to determine whether SNHG6 KD attenuates tumor growth in vivo. RESULTS The INFLAMeR model successfully reconstituted CRISPRi screening data and predicted functional lncRNAs that were previously overlooked. Intensive cell-based and transcriptomic validation of nearly fifty genes in K562 revealed cell type-specific functionality for 85% of the predicted lncRNAs. In this respect, our cell-based and transcriptomic analyses predicted a role for SNHG6 in hematopoiesis and leukemia. Consistent with its predicted role in hematopoietic differentiation, SNHG6 transcription is regulated by hematopoiesis-associated transcription factors. SNHG6 KD reduced the proliferation of leukemia cells and sensitized them to differentiation. Treatment of K562 leukemic cells with hemin and PMA, respectively, demonstrated that SNHG6 inhibits red blood cell differentiation but strongly promotes megakaryocyte differentiation. Using a xenograft mouse model, we demonstrate that SNHG6 KD attenuated tumor growth in vivo. CONCLUSIONS Our approach not only improved the identification and characterization of functional lncRNAs through genomic approaches in a cell type-specific manner, but also identified new lncRNAs with roles in hematopoiesis and leukemia. Such approaches can be readily applied to identify novel targets for precision medicine.
Collapse
Affiliation(s)
- Joshua M Hazan
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Raziel Amador
- Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003, Barcelona, Catalonia, Spain
- Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Tahleel Ali-Nasser
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Tamar Lahav
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Stav Roni Shotan
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Miryam Steinberg
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Ziv Cohen
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
- The Taub Faculty of Computer Science, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Dvir Aran
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
- The Taub Faculty of Computer Science, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - David Meiri
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003, Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Assaf C Bester
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
31
|
Wang X, Zhang L, Dong B. Molecular mechanisms in MASLD/MASH-related HCC. Hepatology 2024:01515467-990000000-00739. [PMID: 38349726 PMCID: PMC11323288 DOI: 10.1097/hep.0000000000000786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/16/2024] [Indexed: 03/23/2024]
Abstract
Liver cancer is the third leading cause of cancer-related deaths and ranks as the sixth most prevalent cancer type globally. NAFLD or metabolic dysfunction-associated steatotic liver disease, and its more severe manifestation, NASH or metabolic dysfunction-associated steatohepatitis (MASH), pose a significant global health concern, affecting approximately 20%-25% of the population. The increased prevalence of metabolic dysfunction-associated steatotic liver disease and MASH is parallel to the increasing rates of obesity-associated metabolic diseases, including type 2 diabetes, insulin resistance, and fatty liver diseases. MASH can progress to MASH-related HCC (MASH-HCC) in about 2% of cases each year, influenced by various factors such as genetic mutations, carcinogen exposure, immune microenvironment, and microbiome. MASH-HCC exhibits distinct molecular and immune characteristics compared to other causes of HCC and affects both men and women equally. The management of early to intermediate-stage MASH-HCC typically involves surgery and locoregional therapies, while advanced HCC is treated with systemic therapies, including anti-angiogenic therapies and immune checkpoint inhibitors. In this comprehensive review, we consolidate previous research findings while also providing the most current insights into the intricate molecular processes underlying MASH-HCC development. We delve into MASH-HCC-associated genetic variations and somatic mutations, disease progression and research models, multiomics analysis, immunological and microenvironmental impacts, and discuss targeted/combined therapies to overcome immune evasion and the biomarkers to recognize treatment responders. By furthering our comprehension of the molecular mechanisms underlying MASH-HCC, our goal is to catalyze the advancement of more potent treatment strategies, ultimately leading to enhanced patient outcomes.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Liang Zhang
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bingning Dong
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
32
|
Schmeisser K, Kaptan D, Raghuraman BK, Shevchenko A, Rodenfels J, Penkov S, Kurzchalia TV. Mobilization of cholesterol induces the transition from quiescence to growth in Caenorhabditis elegans through steroid hormone and mTOR signaling. Commun Biol 2024; 7:121. [PMID: 38267699 PMCID: PMC10808130 DOI: 10.1038/s42003-024-05804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Recovery from the quiescent developmental stage called dauer is an essential process in C. elegans and provides an excellent model to understand how metabolic transitions contribute to developmental plasticity. Here we show that cholesterol bound to the small secreted proteins SCL-12 or SCL-13 is sequestered in the gut lumen during the dauer state. Upon recovery from dauer, bound cholesterol undergoes endocytosis into lysosomes of intestinal cells, where SCL-12 and SCL-13 are degraded and cholesterol is released. Free cholesterol activates mTORC1 and is used for the production of dafachronic acids. This leads to promotion of protein synthesis and growth, and a metabolic switch at the transcriptional level. Thus, mobilization of sequestered cholesterol stores is the key event for transition from quiescence to growth, and cholesterol is the major signaling molecule in this process.
Collapse
Affiliation(s)
- Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Damla Kaptan
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jonathan Rodenfels
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Physics of Life (PoL), Technical University Dresden, Dresden, Germany
| | - Sider Penkov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | | |
Collapse
|
33
|
Li S, Peng M, Tan S, Oyang L, Lin J, Xia L, Wang J, Wu N, Jiang X, Peng Q, Zhou Y, Liao Q. The roles and molecular mechanisms of non-coding RNA in cancer metabolic reprogramming. Cancer Cell Int 2024; 24:37. [PMID: 38238756 PMCID: PMC10795359 DOI: 10.1186/s12935-023-03186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024] Open
Abstract
One of the key features of cancer is energy metabolic reprogramming which is tightly related to cancer proliferation, invasion, metastasis, and chemotherapy resistance. NcRNAs are a class of RNAs having no protein-coding potential and mainly include microRNAs, lncRNAs and circRNAs. Accumulated evidence has suggested that ncRNAs play an essential role in regulating cancer metabolic reprogramming, and the altered metabolic networks mediated by ncRNAs primarily drive carcinogenesis by regulating the expression of metabolic enzymes and transporter proteins. Importantly, accumulated research has revealed that dysregulated ncRNAs mediate metabolic reprogramming contributing to the generation of therapeutic tolerance. Elucidating the molecular mechanism of ncRNAs in cancer metabolic reprogramming can provide promising metabolism-related therapeutic targets for treatment as well as overcome therapeutic tolerance. In conclusion, this review updates the latest molecular mechanisms of ncRNAs related to cancer metabolic reprogramming.
Collapse
Affiliation(s)
- Shizhen Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiewen Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
34
|
Wang Z, He A, Lu Z, Xu W, Wu G, Peng T. Predicting prognosis and immune status in sarcomas by identifying necroptosis-related lncRNAs. Aging (Albany NY) 2024; 16:493-517. [PMID: 38194709 PMCID: PMC10817413 DOI: 10.18632/aging.205383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/21/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Sarcomas are a type of highly heterogeneous malignant tumors originating from mesenchymal tissues. Necroptosis is intricately connected to the oncogenesis and progression of tumors. The main goal of this research is to assess the prognostic value of necroptosis-related lncRNAs (NRlncRNAs) in sarcomas and to develop a risk model based on NRlncRNAs to evaluate prognostic and immune status of the sarcomas. METHODS We screened NRlncRNAs using the gene co-expression network, developed a prognostic risk model of sarcomas, and then verified the model. Following that, various bioinformatics analysis algorithms were employed to analyze the distinct characteristics of patients of the risk model. Furthermore, the function and regulatory mechanism of NRlncRNA SNHG6 in sarcomas were investigated through osteosarcoma cell experiments, such as qRT-PCR, Western blot, CCK-8, clone formation, and transwell assay. RESULTS We successfully developed a NRlncRNAs-related prognostic risk model and screened 5 prognosis-related NRlncRNAs, with SNGH6 being the most significant for prognosis of patients. According to results, the significant differences exist in prognosis, clinical characteristics, and tumor immune status among patients of the risk model. The experiments of osteosarcoma cells demonstrated that NRlncRNA SNHG6 knockdown significantly attenuated the cells' proliferation, migration, and invasion. qRT-PCR and WB results showed that SNHG6 regulated AXL and AKT signaling. CONCLUSIONS We have developed an innovative investigation on NRlncRNAs, which can serve as a reference for diagnosis, therapy, and prognosis of sarcomas. Additionally, we demonstrated that NRlncRNA SNHG6 regulated AXL and AKT signaling in osteosarcoma cells and the proliferation, migration, and invasion of tumor cells.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Anfang He
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Zhengyu Lu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Wenli Xu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Gang Wu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Tingsheng Peng
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
35
|
Shah M, Sarkar D. HCC-Related lncRNAs: Roles and Mechanisms. Int J Mol Sci 2024; 25:597. [PMID: 38203767 PMCID: PMC10779127 DOI: 10.3390/ijms25010597] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health threat, particularly in regions endemic to hepatitis B and C viruses, and because of the ongoing pandemic of obesity causing metabolic-dysfunction-related fatty liver disease (MAFLD), a precursor to HCC. The molecular intricacies of HCC, genetic and epigenetic alterations, and dysregulated signaling pathways facilitate personalized treatment strategies based on molecular profiling. Epigenetic regulation, encompassing DNA methyltion, histone modifications, and noncoding RNAs, functions as a critical layer influencing HCC development. Long noncoding RNAs (lncRNAs) are spotlighted for their diverse roles in gene regulation and their potential as diagnostic and therapeutic tools in cancer. In this review, we explore the pivotal role of lncRNAs in HCC, including MAFLD and viral hepatitis, the most prevalent risk factors for hepatocarcinogenesis. The dysregulation of lncRNAs is implicated in HCC progression by modulating chromatin regulation and transcription, sponging miRNAs, and influencing structural functions. The ongoing studies on lncRNAs contribute to a deeper comprehension of HCC pathogenesis and offer promising routes for precision medicine, highlighting the utility of lncRNAs as early biomarkers, prognostic indicators, and therapeutic targets.
Collapse
Affiliation(s)
- Mimansha Shah
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, and VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
36
|
Zhang S, Shi YN, Gu J, He P, Ai QD, Zhou XD, Wang W, Qin L. Mechanisms of dihydromyricetin against hepatocellular carcinoma elucidated by network pharmacology combined with experimental validation. PHARMACEUTICAL BIOLOGY 2023; 61:1108-1119. [PMID: 37462387 DOI: 10.1080/13880209.2023.2234000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/03/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
CONTEXT Dihydromyricetin (DMY) is extracted from vine tea, a traditional Chinese herbal medicine with anti-cancer, liver protection, and cholesterol-lowering effects. OBJECTIVE This study investigated the mechanism of DMY against hepatocellular carcinoma (HCC). MATERIALS AND METHODS Potential DMY, HCC, and cholesterol targets were collected from relevant databases. PPI networks were created by STRING. Then, the hub genes of co-targets, screened using CytoHubba. GO and KEGG pathway enrichment, were performed by Metascape. Based on the above results, a series of in vitro experiments were conducted by using 40-160 μM DMY for 24 h, including transwell migration/invasion assay, western blotting, and Bodipy stain assay. RESULTS Network pharmacology identified 98 common targets and 10 hub genes of DMY, HCC, and cholesterol, and revealed that the anti-HCC effect of DMY may be related to the positive regulation of lipid rafts. Further experiments confirmed that DMY inhibits the proliferation, migration, and invasion of HCC cells and reduces their cholesterol levels in vitro. The IC50 is 894.4, 814.4, 467.8, 1,878.8, 151.8, and 156.9 μM for 97H, Hep3B, Sk-Hep1, SMMC-7721, HepG2, and Huh7 cells, respectively. In addition, DMY downregulates the expression of lipid raft markers (CAV1, FLOT1), as well as EGFR, PI3K, Akt, STAT3, and Erk. DISCUSSION AND CONCLUSION The present study reveals that DMY suppresses EGFR and its downstream pathways by reducing cholesterol to disrupt lipid rafts, thereby inhibiting HCC, which provides a promising candidate drug with low toxicity for the treatment of HCC.
Collapse
Affiliation(s)
- Shuo Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Ya-Ning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Peng He
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qi-Di Ai
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xu-Dong Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
37
|
Du J, Su Y, Gao J, Tai Y. The expression and function of long noncoding RNAs in hepatocellular carcinoma. CANCER INNOVATION 2023; 2:488-499. [PMID: 38125766 PMCID: PMC10730004 DOI: 10.1002/cai2.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 12/23/2023]
Abstract
With the deepening of the genome project study, attention on noncoding RNAs is increasing. Long noncoding RNAs (lncRNAs) have become a new research hotspot. A growing number of studies have revealed that lncRNAs are involved in tumorigenesis and tumor suppressor pathways. Aberrant expressions of lncRNAs have been found in a variety of human tumors including hepatocellular carcinoma (HCC). In this review, we provide a brief introduction to lncRNA and highlight recent research on the functions and clinical significance of lncRNAs in HCC.
Collapse
Affiliation(s)
- Jingli Du
- Senior Department of TuberculosisThe 8th Medical Center of PLA General HospitalBeijingChina
| | - Yue Su
- Senior Department of TuberculosisThe 8th Medical Center of PLA General HospitalBeijingChina
| | - Jianzhi Gao
- Department of OncologyZhuozhou Hospital, ZhuozhouHebeiChina
| | - Yanhong Tai
- Department of PathologyThe 5th Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
38
|
Liu X, Lv M, Zhang W, Zhan Q. Dysregulation of cholesterol metabolism in cancer progression. Oncogene 2023; 42:3289-3302. [PMID: 37773204 DOI: 10.1038/s41388-023-02836-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Cholesterol homeostasis has been implicated in the regulation of cellular and body metabolism. Hence, deregulated cholesterol homeostasis leads to the development of many diseases such as cardiovascular diseases, and neurodegenerative diseases, among others. Recent studies have unveiled the connection between abnormal cholesterol metabolism and cancer development. Cholesterol homeostasis at the cellular level dynamically circulates between synthesis, influx, efflux, and esterification. Any dysregulation of this dynamic process disrupts cholesterol homeostasis and its derivatives, which potentially contributes to tumor progression. There is also evidence that cancer-related signals, which promote malignant progression, also regulate cholesterol metabolism. Here, we described the relationship between cholesterol metabolism and cancer hallmarks, with particular focus on the molecular mechanisms, and the anticancer drugs that target cholesterol metabolism.
Collapse
Affiliation(s)
- Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
- Peking University International Cancer Institute, Beijing, 100191, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Soochow University Cancer Institute, Suzhou, 215127, China.
| |
Collapse
|
39
|
Kakehashi A, Suzuki S, Wanibuchi H. Recent Insights into the Biomarkers, Molecular Targets and Mechanisms of Non-Alcoholic Steatohepatitis-Driven Hepatocarcinogenesis. Cancers (Basel) 2023; 15:4566. [PMID: 37760534 PMCID: PMC10527326 DOI: 10.3390/cancers15184566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (NASH) are chronic hepatic conditions leading to hepatocellular carcinoma (HCC) development. According to the recent "multiple-parallel-hits hypothesis", NASH could be caused by abnormal metabolism, accumulation of lipids, mitochondrial dysfunction, and oxidative and endoplasmic reticulum stresses and is found in obese and non-obese patients. Recent translational research studies have discovered new proteins and signaling pathways that are involved not only in the development of NAFLD but also in its progression to NASH, cirrhosis, and HCC. Nevertheless, the mechanisms of HCC developing from precancerous lesions have not yet been fully elucidated. Now, it is of particular importance to start research focusing on the discovery of novel molecular pathways that mediate alterations in glucose and lipid metabolism, which leads to the development of liver steatosis. The role of mTOR signaling in NASH progression to HCC has recently attracted attention. The goals of this review are (1) to highlight recent research on novel genetic and protein contributions to NAFLD/NASH; (2) to investigate how recent scientific findings might outline the process that causes NASH-associated HCC; and (3) to explore the reliable biomarkers/targets of NAFLD/NASH-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.S.); (H.W.)
| | | | | |
Collapse
|
40
|
Wei C, Xu Y, Shen Q, Li R, Xiao X, Saw PE, Xu X. Role of long non-coding RNAs in cancer: From subcellular localization to nanoparticle-mediated targeted regulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:774-793. [PMID: 37655045 PMCID: PMC10466435 DOI: 10.1016/j.omtn.2023.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA transcripts more than 200 nucleotides in length that play crucial roles in cancer development and progression. With the rapid development of high-throughput sequencing technology, a considerable number of lncRNAs have been identified as novel biomarkers for predicting the prognosis of cancer patients and/or therapeutic targets for cancer therapy. In recent years, increasing evidence has shown that the biological functions and regulatory mechanisms of lncRNAs are closely associated with their subcellular localization. More importantly, based on the important roles of lncRNAs in regulating cancer progression (e.g., growth, therapeutic resistance, and metastasis) and the specific ability of nucleic acids (e.g., siRNA, mRNA, and DNA) to regulate the expression of any target genes, much effort has been exerted recently to develop nanoparticle (NP)-based nucleic acid delivery systems for in vivo regulation of lncRNA expression and cancer therapy. In this review, we introduce the subcellular localization and regulatory mechanisms of various functional lncRNAs in cancer and systemically summarize the recent development of NP-mediated nucleic acid delivery for targeted regulation of lncRNA expression and effective cancer therapy.
Collapse
Affiliation(s)
- Chunfang Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Qian Shen
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaoyun Xiao
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
41
|
Wang X, Zhang Z, Shi C, Wang Y, Zhou T, Lin A. Clinical prospects and research strategies of long non-coding RNA encoding micropeptides. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:397-405. [PMID: 37643974 PMCID: PMC10495248 DOI: 10.3724/zdxbyxb-2023-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Long non-coding RNAs (lncRNAs) which are usually thought to have no protein coding ability, are widely involved in cell proliferation, signal transduction and other biological activities. However, recent studies have suggested that short open reading frames (sORFs) of some lncRNAs can encode small functional peptides (micropeptides). These micropeptides appear to play important roles in calcium homeostasis, embryonic development and tumorigenesis, suggesting their potential as therapeutic targets and diagnostic biomarkers. Currently, bioinformatic tools as well as experimental methods such as ribosome mapping and in vitro translation are applied to predict the coding potential of lncRNAs. Furthermore, mass spectrometry, specific antibodies and epitope tags are used for validating the expression of micropeptides. Here, we review the physiological and pathological functions of recently identified micropeptides as well as research strategies for predicting the coding potential of lncRNAs to facilitate the further research of lncRNA encoded micropeptides.
Collapse
Affiliation(s)
- Xinyi Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Zhen Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Chengyu Shi
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Ying Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Tianhua Zhou
- Zhejiang University Cancer Center, Hangzhou 310058, China.
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for RNA Medicine, International Institutes of Medicine, Zhejiang University, Jinhua 322000, Zhejiang Province, China.
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for RNA Medicine, International Institutes of Medicine, Zhejiang University, Jinhua 322000, Zhejiang Province, China.
| |
Collapse
|
42
|
Bao C, Wu T, Zhu S, Wang X, Zhang Y, Wang X, Yang L, He C. Regulation of cholesterol homeostasis in osteoporosis mechanisms and therapeutics. Clin Sci (Lond) 2023; 137:1131-1143. [PMID: 37553962 DOI: 10.1042/cs20220752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023]
Abstract
Osteoporosis is a metabolic bone disease that affects hundreds of millions of people worldwide and is characterized by excessive loss of bone protein and mineral content. The incidence and mortality of osteoporosis increase with age, creating a significant medical and economic burden globally. The importance of cholesterol levels has been reported in the development of diseases including osteoporosis. It is important to note that key enzymes and molecules involved in cholesterol homeostasis are closely related to bone formation. Excessive cholesterol may cause osteoporosis, cholesterol and its metabolites affect bone homeostasis by regulating the proliferation and stimulation of osteoblasts and osteoclasts. Therefore, antagonism of elevated cholesterol levels may be a potential strategy to prevent osteoporosis. There is sufficient evidence to support the use of bisphosphonates and statin drugs for osteoporosis in the clinic. Therefore, in view of the aggravation of the aging problem, we summarize the intracellular mechanism of cholesterol homeostasis and its relationship with osteoporosis (including cholesterol and cholesterol oxidation products (COPs) in osteoporosis). Furthermore, the current clinical cholesterol-lowering drugs for osteoporosis were also summarized, as are new and promising therapies (cell-based therapies (e.g., stem cells) and biomaterial-delivered target drug therapies for osteoporosis as well).
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Tao Wu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Siyi Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoyi Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yujia Zhang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiangxiu Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Lin Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
43
|
Sung Y, Yu YC, Han JM. Nutrient sensors and their crosstalk. Exp Mol Med 2023; 55:1076-1089. [PMID: 37258576 PMCID: PMC10318010 DOI: 10.1038/s12276-023-01006-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The macronutrients glucose, lipids, and amino acids are the major components that maintain life. The ability of cells to sense and respond to fluctuations in these nutrients is a crucial feature for survival. Nutrient-sensing pathways are thus developed to govern cellular energy and metabolic homeostasis and regulate diverse biological processes. Accordingly, perturbations in these sensing pathways are associated with a wide variety of pathologies, especially metabolic diseases. Molecular sensors are the core within these sensing pathways and have a certain degree of specificity and affinity to sense the intracellular fluctuation of each nutrient either by directly binding to that nutrient or indirectly binding to its surrogate molecules. Once the changes in nutrient levels are detected, sensors trigger signaling cascades to fine-tune cellular processes for energy and metabolic homeostasis, for example, by controlling uptake, de novo synthesis or catabolism of that nutrient. In this review, we summarize the major discoveries on nutrient-sensing pathways and explain how those sensors associated with each pathway respond to intracellular nutrient availability and how these mechanisms control metabolic processes. Later, we further discuss the crosstalk between these sensing pathways for each nutrient, which are intertwined to regulate overall intracellular nutrient/metabolic homeostasis.
Collapse
Affiliation(s)
- Yulseung Sung
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea.
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, South Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
44
|
Pathania AS. Crosstalk between Noncoding RNAs and the Epigenetics Machinery in Pediatric Tumors and Their Microenvironment. Cancers (Basel) 2023; 15:2833. [PMID: 37345170 DOI: 10.3390/cancers15102833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
According to the World Health Organization, every year, an estimated 400,000+ new cancer cases affect children under the age of 20 worldwide. Unlike adult cancers, pediatric cancers develop very early in life due to alterations in signaling pathways that regulate embryonic development, and environmental factors do not contribute much to cancer development. The highly organized complex microenvironment controlled by synchronized gene expression patterns plays an essential role in the embryonic stages of development. Dysregulated development can lead to tumor initiation and growth. The low mutational burden in pediatric tumors suggests the predominant role of epigenetic changes in driving the cancer phenotype. However, one more upstream layer of regulation driven by ncRNAs regulates gene expression and signaling pathways involved in the development. Deregulation of ncRNAs can alter the epigenetic machinery of a cell, affecting the transcription and translation profiles of gene regulatory networks required for cellular proliferation and differentiation during embryonic development. Therefore, it is essential to understand the role of ncRNAs in pediatric tumor development to accelerate translational research to discover new treatments for childhood cancers. This review focuses on the role of ncRNA in regulating the epigenetics of pediatric tumors and their tumor microenvironment, the impact of their deregulation on driving pediatric tumor progress, and their potential as effective therapeutic targets.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
45
|
Roh K, Noh J, Kim Y, Jang Y, Kim J, Choi H, Lee Y, Ji M, Kang D, Kim MS, Paik MJ, Chung J, Kim JH, Kang C. Lysosomal control of senescence and inflammation through cholesterol partitioning. Nat Metab 2023; 5:398-413. [PMID: 36864206 DOI: 10.1038/s42255-023-00747-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 01/27/2023] [Indexed: 03/04/2023]
Abstract
Whereas cholesterol is vital for cell growth, proliferation, and remodeling, dysregulation of cholesterol metabolism is associated with multiple age-related pathologies. Here we show that senescent cells accumulate cholesterol in lysosomes to maintain the senescence-associated secretory phenotype (SASP). We find that induction of cellular senescence by diverse triggers enhances cellular cholesterol metabolism. Senescence is associated with the upregulation of the cholesterol exporter ABCA1, which is rerouted to the lysosome, where it moonlights as a cholesterol importer. Lysosomal cholesterol accumulation results in the formation of cholesterol-rich microdomains on the lysosomal limiting membrane enriched with the mammalian target of rapamycin complex 1 (mTORC1) scaffolding complex, thereby sustaining mTORC1 activity to support the SASP. We further show that pharmacological modulation of lysosomal cholesterol partitioning alters senescence-associated inflammation and in vivo senescence during osteoarthritis progression in male mice. Our study reveals a potential unifying theme for the role of cholesterol in the aging process through the regulation of senescence-associated inflammation.
Collapse
Affiliation(s)
- Kyeonghwan Roh
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, South Korea
| | - Jeonghwan Noh
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Center for RNA Research, Institute of Basic Science, Seoul, South Korea
| | - Yeonju Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, South Korea
| | - Yeji Jang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, South Korea
| | - Jaejin Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, South Korea
| | - Haebeen Choi
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, South Korea
| | - Yeonghyeon Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, South Korea
| | - Moongi Ji
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
| | - Donghyun Kang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Center for RNA Research, Institute of Basic Science, Seoul, South Korea
| | - Mi-Sung Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, South Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
| | - Jongkyeong Chung
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jin-Hong Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea.
- Center for RNA Research, Institute of Basic Science, Seoul, South Korea.
| | - Chanhee Kang
- School of Biological Sciences, Seoul National University, Seoul, South Korea.
- Center for Systems Geroscience, Seoul National University, Seoul, South Korea.
| |
Collapse
|
46
|
Gallage S, Avila JEB, Ramadori P, Focaccia E, Rahbari M, Ali A, Malek NP, Anstee QM, Heikenwalder M. A researcher's guide to preclinical mouse NASH models. Nat Metab 2022; 4:1632-1649. [PMID: 36539621 DOI: 10.1038/s42255-022-00700-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its inflammatory form, non-alcoholic steatohepatitis (NASH), have quickly risen to become the most prevalent chronic liver disease in the Western world and are risk factors for the development of hepatocellular carcinoma (HCC). HCC is not only one of the most common cancers but is also highly lethal. Nevertheless, there are currently no clinically approved drugs for NAFLD, and NASH-induced HCC poses a unique metabolic microenvironment that may influence responsiveness to certain treatments. Therefore, there is an urgent need to better understand the pathogenesis of this rampant disease to devise new therapies. In this line, preclinical mouse models are crucial tools to investigate mechanisms as well as novel treatment modalities during the pathogenesis of NASH and subsequent HCC in preparation for human clinical trials. Although, there are numerous genetically induced, diet-induced and toxin-induced models of NASH, not all of these models faithfully phenocopy and mirror the human pathology very well. In this Perspective, we shed some light onto the most widely used mouse models of NASH and highlight some of the key advantages and disadvantages of the various models with an emphasis on 'Western diets', which are increasingly recognized as some of the best models in recapitulating the human NASH pathology and comorbidities.
Collapse
Affiliation(s)
- Suchira Gallage
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany.
| | - Jose Efren Barragan Avila
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Enrico Focaccia
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mohammad Rahbari
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adnan Ali
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nisar P Malek
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany
- Department Internal Medicine I, Eberhard-Karls University, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Quentin M Anstee
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
47
|
Hong Y, Zhang Y, Zhao H, Chen H, Yu QQ, Cui H. The roles of lncRNA functions and regulatory mechanisms in the diagnosis and treatment of hepatocellular carcinoma. Front Cell Dev Biol 2022; 10:1051306. [PMID: 36467404 PMCID: PMC9716033 DOI: 10.3389/fcell.2022.1051306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/07/2022] [Indexed: 10/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent and deadly type of liver cancer. While the underlying molecular mechanisms are poorly understood, it is documented that lncRNAs may play key roles. Many HCC-associated lncRNAs have been linked to HBV and HCV infection, mediating gene expression, cell growth, development, and death. Studying the regulatory mechanisms and biological functions of HCC-related lncRNAs will assist our understanding of HCC pathogenesis as well as its diagnosis and management. Here, we address the potential of dysregulated lncRNAs in HCC as diagnostic and therapeutic biomarkers, and we evaluate the oncogenic or tumor-suppressive properties of these lncRNAs.
Collapse
Affiliation(s)
- Yuling Hong
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Yunxing Zhang
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Haibo Zhao
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Hailing Chen
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Qing-Qing Yu
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Hongxia Cui
- Jining First People’s Hospital, Jining Medical College, Jining, China
| |
Collapse
|
48
|
Research progress on the role of cholesterol in hepatocellular carcinoma. Eur J Pharmacol 2022; 938:175410. [DOI: 10.1016/j.ejphar.2022.175410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
|
49
|
Rusu I, Pirlog R, Chiroi P, Nutu A, Puia VR, Fetti AC, Rusu DR, Berindan-Neagoe I, Al Hajjar N. The Implications of Noncoding RNAs in the Evolution and Progression of Nonalcoholic Fatty Liver Disease (NAFLD)-Related HCC. Int J Mol Sci 2022; 23:12370. [PMID: 36293225 PMCID: PMC9603983 DOI: 10.3390/ijms232012370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver pathology worldwide. Meanwhile, liver cancer represents the sixth most common malignancy, with hepatocellular carcinoma (HCC) as the primary, most prevalent subtype. Due to the rising incidence of metabolic disorders, NAFLD has become one of the main contributing factors to HCC development. However, although NAFLD might account for about a fourth of HCC cases, there is currently a significant gap in HCC surveillance protocols regarding noncirrhotic NAFLD patients, so the majority of NAFLD-related HCC cases were diagnosed in late stages when survival chances are minimal. However, in the past decade, the focus in cancer genomics has shifted towards the noncoding part of the genome, especially on the microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), which have proved to be involved in the regulation of several malignant processes. This review aims to summarize the current knowledge regarding some of the main dysregulated, noncoding RNAs (ncRNAs) and their implications for NAFLD and HCC development. A central focus of the review is on miRNA and lncRNAs that can influence the progression of NAFLD towards HCC and how they can be used as potential screening tools and future therapeutic targets.
Collapse
Affiliation(s)
- Ioana Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Vlad Radu Puia
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Alin Cornel Fetti
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Daniel Radu Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| |
Collapse
|