1
|
Xie H, Wang J, Zhao Q. Identification of potential metabolic biomarkers and immune cell infiltration for metabolic associated steatohepatitis by bioinformatics analysis and machine learning. Sci Rep 2025; 15:16596. [PMID: 40360670 PMCID: PMC12075577 DOI: 10.1038/s41598-025-86397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/10/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Metabolic associated steatohepatitis (MASH) represents a severe subtype of metabolic associated fatty liver disease (MASLD), with an increased risk of progression to cirrhosis and hepatocellular carcinoma. The nomenclature shift from nonalcoholic steatohepatitis (NASH)/nonalcoholic fatty liver disease (NAFLD) to MASH/MASLD, underscores the pivotal role of metabolic factors in disease progression. Diagnosis of MASH currently hinges on liver biopsy, a procedure whose invasive nature limits its clinical utility. This study aims to identify and validate metabolism-related genes (MRGs) markers for the non-invasive diagnosis of MASH. METHODS This study extracted multiple datasets from the GEO database to identify metabolism-related differentially expressed genes (MRDEGs). Protein-Protein Interaction (PPI) network and machine learning algorithms, including Least Absolute Shrinkage and Selection Operator (LASSO) regression, Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Random Forest (RF), were applied to screen for signature MRDEGs. The diagnostic performance of these MRDEGs was evaluated using the Receiver Operating Characteristic (ROC) curve and further validated using independent external datasets. Additionally, enrichment analysis was performed to uncover key driver pathways in MASH. The infiltration levels of various immune cell types were assessed using single sample Gene Set Enrichment Analysis (ssGSEA). Finally, Spearman correlation analysis confirmed the association between signature genes and immune cells. RESULTS We successfully identified seven signature MRDEGs, including CYP7A1, GCK, AKR1B10, HPRT1, GPD1, FADS2, and ENO3, through PPI network analysis and machine learning algorithms. The gene model displayed exceptional diagnostic performance in the training and validation cohorts, as evidenced by the area under ROC curve (AUC) exceeding 0.9. Further enrichment analysis revealed that signature MEDEGs were primarily involved in multiple biological pathways related to glucose and lipid metabolism. Immune infiltration analysis indicated a significant increase in the infiltration levels of activated CD8 T cells, gamma-delta T cells, natural killer cells, and CD56bright NK cells in patients with MASH. CONCLUSION This study successfully identified seven signature MRDEGs as significant diagnostic biomarkers for MASH. The findings not only offer novel strategies for non-invasive diagnosis of MASH but also highlight the substantial role of immune cell infiltration in the progression of MASH.
Collapse
Affiliation(s)
- Haoran Xie
- Hepatobiliary Pancreatic Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Junjun Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyan Zhao
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Ramirez CB, Ahn IS, Rubtsova VI, Cely I, Le J, Kim J, Jung S, Kelly ME, Kim Y, Bae H, Song WS, Alam YH, Zhang G, Diamante G, Chao A, Hoffner L, Anica A, Le I, Lopez ML, Tamburini IJ, Moyer EM, Tsai A, Yang Q, Dai X, Piomelli D, Lee G, Yang X, Jang C. Circulating glycerate predicts resilience to fructose-induced hepatic steatosis. Cell Metab 2025; 37:1223-1234.e5. [PMID: 40267913 PMCID: PMC12058382 DOI: 10.1016/j.cmet.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/18/2024] [Accepted: 03/28/2025] [Indexed: 04/25/2025]
Abstract
Excessive intake of dietary fructose increases the risk of metabolic-dysfunction-associated steatotic liver disease (MASLD), cirrhosis, and cancers. However, what host factors determine disease vulnerability is incompletely understood. Here, we leverage genetically divergent mouse strains, mass spectrometry-based metabolomics, and in vivo isotope tracing, identifying circulating glycerate as a biomarker that predicts resilience to fructose-induced hepatic steatosis in both sexes. We found that the surge of circulating glycerate after an oral fructose provision reflects strong small-intestinal fructose catabolism. Such fructose clearance by the small intestine is linked to a weaker induction of hepatic de novo lipogenesis and steatosis upon chronic fructose exposure across strains. These data indicate the potential utility of an oral fructose tolerance test and circulating glycerate measurements to predict an individual's susceptibility to fructose-elicited steatotic liver and provide personalized dietary recommendations.
Collapse
Affiliation(s)
- Cuauhtemoc B Ramirez
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Varvara I Rubtsova
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Johnny Le
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Joohwan Kim
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
| | - Sunhee Jung
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Miranda E Kelly
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Yeojin Kim
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Hosung Bae
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Won-Suk Song
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Yasmine H Alam
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alina Chao
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Lauren Hoffner
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
| | - Alexis Anica
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
| | - Izabelle Le
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
| | - Miranda L Lopez
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Ian J Tamburini
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Elena M Moyer
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Ariel Tsai
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Qin Yang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Xing Dai
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Daniele Piomelli
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Gina Lee
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA; Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA, USA.
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA; Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Piras IS, DiStefano JK. Comprehensive meta-analysis reveals distinct gene expression signatures of MASLD progression. Life Sci Alliance 2024; 7:e202302517. [PMID: 38565287 PMCID: PMC10987979 DOI: 10.26508/lsa.202302517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), pose significant risks of severe fibrosis, cirrhosis, and hepatocellular carcinoma. Despite their widespread prevalence, the molecular mechanisms underlying the development and progression of these common chronic hepatic conditions are not fully understood. Here, we conducted the most extensive meta-analysis of hepatic gene expression datasets from liver biopsy samples to date, integrating 10 RNA-sequencing and microarray datasets (1,058 samples). Using a random-effects meta-analysis model, we compared over 12,000 shared genes across datasets. We identified 685 genes differentially expressed in MASLD versus normal liver, 1,870 in MASH versus normal liver, and 3,284 in MASLD versus MASH. Integrating these results with genome-wide association studies and coexpression networks, we identified two functionally relevant, validated coexpression modules mainly driven by SMOC2, ITGBL1, LOXL1, MGP, SOD3, and TAT, HGD, SLC25A15, respectively, the latter not previously associated with MASLD and MASH. Our findings provide a comprehensive and robust analysis of hepatic gene expression alterations associated with MASLD and MASH and identify novel key drivers of MASLD progression.
Collapse
Affiliation(s)
- Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Johanna K DiStefano
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
4
|
Webster NJG, Kumar D, Wu P. Dysregulation of RNA splicing in early non-alcoholic fatty liver disease through hepatocellular carcinoma. Sci Rep 2024; 14:2500. [PMID: 38291075 PMCID: PMC10828381 DOI: 10.1038/s41598-024-52237-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
While changes in RNA splicing have been extensively studied in hepatocellular carcinoma (HCC), no studies have systematically investigated changes in RNA splicing during earlier liver disease. Mouse studies have shown that disruption of RNA splicing can trigger liver disease and we have shown that the splicing factor SRSF3 is decreased in the diseased human liver, so we profiled RNA splicing in liver samples from twenty-nine individuals with no-history of liver disease or varying degrees of non-alcoholic fatty liver disease (NAFLD). We compared our results with three publicly available transcriptome datasets that we re-analyzed for splicing events (SEs). We found many changes in SEs occurred during early liver disease, with fewer events occurring with the onset of inflammation and fibrosis. Many of these early SEs were enriched for SRSF3-dependent events and were associated with SRSF3 binding sites. Mapping the early and late changes to gene ontologies and pathways showed that the genes harboring these early SEs were involved in normal liver metabolism, whereas those harboring late SEs were involved in inflammation, fibrosis and proliferation. We compared the SEs with HCC data from the TCGA and observed that many of these early disease SEs are found in HCC samples and, furthermore, are correlated with disease survival. Changes in splicing factor expression are also observed, which may be associated with distinct subsets of the SEs. The maintenance of these SEs through the multi-year oncogenic process suggests that they may be causative. Understanding the role of these splice variants in metabolic liver disease progression may shed light on the triggers of liver disease progression and the pathogenesis of HCC.
Collapse
Affiliation(s)
- Nicholas J G Webster
- Jennifer Moreno VA Medical Center, San Diego, CA, 92161, USA.
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA.
- Moores Cancer Center, University of California, San Diego, CA, 92093, USA.
| | - Deepak Kumar
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Panyisha Wu
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA
| |
Collapse
|
5
|
Powell NR, Liang T, Ipe J, Cao S, Skaar TC, Desta Z, Qian HR, Ebert PJ, Chen Y, Thomas MK, Chalasani N. Clinically important alterations in pharmacogene expression in histologically severe nonalcoholic fatty liver disease. Nat Commun 2023; 14:1474. [PMID: 36927865 PMCID: PMC10020163 DOI: 10.1038/s41467-023-37209-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Polypharmacy is common in patients with nonalcoholic fatty liver disease (NAFLD) and previous reports suggest that NAFLD is associated with altered drug disposition. This study aims to determine if patients with NAFLD are at risk for altered drug response by characterizing changes in hepatic mRNA expression of genes mediating drug disposition (pharmacogenes) across the histological NAFLD severity spectrum. We utilize RNA-seq for 93 liver biopsies with histologically staged NAFLD Activity Score (NAS), fibrosis stage, and steatohepatitis (NASH). We identify 37 significant pharmacogene-NAFLD severity associations including CYP2C19 downregulation. We chose to validate CYP2C19 due to its actionability in drug prescribing. Meta-analysis of 16 independent studies demonstrate that CYP2C19 is significantly downregulated to 46% in NASH, to 58% in high NAS, and to 43% in severe fibrosis. Our data demonstrate the downregulation of CYP2C19 in NAFLD which supports developing personalized medicine approaches for drugs sensitive to metabolism by the CYP2C19 enzyme.
Collapse
Affiliation(s)
- Nicholas R Powell
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Tiebing Liang
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA
| | - Joseph Ipe
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Sha Cao
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA
| | - Todd C Skaar
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Zeruesenay Desta
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | | | | | - Yu Chen
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Naga Chalasani
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Liu B, Tian Y, He J, Gu Q, Jin B, Shen H, Li W, Shi L, Yu H, Shan G, Cai X. The potential of mecciRNA in hepatic stellate cell to regulate progression of nonalcoholic hepatitis. J Transl Med 2022; 20:393. [PMID: 36058953 PMCID: PMC9441041 DOI: 10.1186/s12967-022-03595-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) occupies a substantial proportion of chronic liver disease worldwide, of which pathogenesis needs further research. Recent studies have demonstrated the significant roles of circular RNAs (circRNAs) in NASH, while the function of a novel type of circRNAs, namely mitochondria-encoded circRNAs (mecciRNAs), remains elusive. Therefore, we aimed to investigate their potential to regulate the progression of NASH in this study. METHODS GSE134146 was used to screen for differentially expressed mecciRNAs in NASH, while GSE46300 was used to identify NASH-related genes. To establish the mecciRNA-miRNA-mRNA networks, circMINE and miRNet databases were used for predicting downstream targets. Then, consensus clustering analysis was used to determine immune subtypes of NASH. Finally, we successfully validated our findings in vitro (LPS-treated hepatic stellate cells [HSCs]) and in vivo (MCD-diet mice) NASH models. RESULTS We confirmed that circRNomics balance is disrupted in HSCs of NASH, while two mecciRNAs (hsa_circ_0089761 and hsa_circ_0089763) could function as competing for endogenous RNAs (ceRNAs) to regulate fibrosis-related signals. Furthermore, we constructed two ceRNA networks based on mecciRNAs for the first time. Cell and animal NASH models validated our findings that c-MYC and SMAD2/3 were upregulated in HSCs, while THBS1 and p-STAT3 were upregulated in hepatocytes. Moreover, we identified 21 core genes by overlapping the differentially expressed genes (NASH vs. Normal) with mecciRNA-targeted genes. According to their expression profiles, NASH patients could be divided in 2 different clusters, in which proinflammatory signals (TNF and IL-17 pathways) are significantly activated in Cluster 1. CONCLUSION We successfully established two novel mecciRNA-miRNA-mRNA networks in HSCs and hepatocytes, which were further confirmed by in vitro and in vivo models. Meanwhile, the novel immunotyping model revealed the heterogeneity of NASH, thereby might guiding treatment options. Altogether, our study brought a distinct perspective on the relationship between mecciRNAs and NASH.
Collapse
Affiliation(s)
- Boqiang Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China
| | - Yuanshi Tian
- Department of Diagnostic Ultrasound & Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jing He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China
| | - Qiuxia Gu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China
| | - Binghan Jin
- Department of Endocrinology, The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, 310053, China
| | - Hao Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China
| | - Weiqi Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China
| | - Liang Shi
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Zhejiang University, Hangzhou, 310016, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China
| | - Ge Shan
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China. .,Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China. .,Department of Clinical Laboratory, First Affiliated Hospital of the USTC, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China. .,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Zhejiang University, Hangzhou, 310016, China. .,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China. .,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China. .,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310030, China.
| |
Collapse
|
7
|
Xue WY, Zhang L, Liu CM, Gao Y, Li SJ, Huai ZY, Dai J, Wang YY. Research progress on the relationship between TM6SF2 rs58542926 polymorphism and non-alcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2022; 16:97-107. [PMID: 35057689 DOI: 10.1080/17474124.2022.2032661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION nonalcoholic fatty liver disease is a common liver disease with a global average prevalence of about 25%. In addition to the incidence of NAFLD being related to obesity, diabetes, hyperlipidemia, etc., genetic factors also have an important impact on the incidence of NAFLD. AREAS COVERED Current experimental results and clinical studies show that the transmembrane 6 superfamily member 2 (TM6SF2) gene plays an important role in the pathogenesis of NAFLD. The research on genetic polymorphism of TM6SF2 gene mainly focuses on rs58542926 locus (rs58542926 c.449 C > T, p. Glu167Lys, E167K). The Mutations of this site might increase the risk of NAFLD in carriers. EXPERT OPINION The mutation of this site causes the disorder of triglyceride metabolism in the liver, which leads to the deposition of a large amount of lipids in the liver, and further induces the incidence of NAFLD. With the study of the mechanism of TM6SF2 gene polymorphism in the pathogenesis of NAFLD, it is helpful to understand the molecular mechanism of the pathogenesis of NAFLD, which has a great value for the treatment of NAFLD.
Collapse
Affiliation(s)
- Wan-Ying Xue
- School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Li Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Chuan-Miao Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yu Gao
- School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Shu-Jing Li
- School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Zi-You Huai
- School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Jing Dai
- School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuan-Yuan Wang
- School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
8
|
Ma Y, Kan C, Qiu H, Liu Y, Hou N, Han F, Shi J, Sun X. Transcriptomic Analysis Reveals the Protective Effects of Empagliflozin on Lipid Metabolism in Nonalcoholic Fatty Liver Disease. Front Pharmacol 2021; 12:793586. [PMID: 34992540 PMCID: PMC8724565 DOI: 10.3389/fphar.2021.793586] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
Empagliflozin is a novel type of sodium-glucose cotransporter two inhibitor with diverse beneficial effects in the treatment of nonalcoholic fatty liver disease (NAFLD). Although empagliflozin impacts NAFLD by regulating lipid metabolism, the underlying mechanism has not been fully elucidated. In this study, we investigated transcriptional regulation pathways affected by empagliflozin in a mouse model of NAFLD. In this study, NAFLD was established in male C57BL/6J mice by administration of a high-fat diet; it was then treated with empagliflozin and whole transcriptome analysis was conducted. Gene expression levels detected by transcriptome analysis were then verified by quantitative real-time polymerase chain reaction, protein levels detected by Western Blot. Differential expression genes screened from RNA-Seq data were enriched in lipid metabolism and synthesis. The Gene Set Enrichment Analysis (GSEA) results showed decreased lipid synthesis and improved lipid metabolism. Empagliflozin improved NAFLD through enhanced triglyceride transfer, triglyceride lipolysis and microsomal mitochondrial β-oxidation. This study provides new insights concerning the mechanisms by which sodium-glucose cotransporter two inhibitors impact NAFLD, particularly in terms of liver lipid metabolism. The lipid metabolism-related genes identified in this experiment provide robust evidence for further analyses of the mechanism by which empagliflozin impacts NAFLD.
Collapse
Affiliation(s)
- Yuting Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yongping Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
9
|
Bhadra S, Chen S, Liu C. Analysis of Differentially Expressed Genes That Aggravate Metabolic Diseases in Depression. Life (Basel) 2021; 11:life11111203. [PMID: 34833079 PMCID: PMC8620538 DOI: 10.3390/life11111203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Depression is considered the second leading cause of the global health burden after cancer. It is recognized as the most common physiological disorder. It affects about 350 million people worldwide to a serious degree. The onset of depression, inadequate food intake, abnormal glycemic control and cognitive impairment have strong associations with various metabolic disorders which are mediated through alterations in diet and physical activities. The regulatory key factors among metabolic diseases and depression are poorly understood. To understand the molecular mechanisms of the dysregulation of genes affected in depressive disorder, we employed an analytical, quantitative framework for depression and related metabolic diseases. In this study, we examined datasets containing patients with depression, obesity, diabetes and NASH. After normalizing batch effects to minimize the heterogeneity of all the datasets, we found differentially expressed genes (DEGs) common to all the datasets. We identified significantly associated enrichment pathways, ontology pathways, protein–protein cluster networks and gene–disease associations among the co-expressed genes co-expressed in depression and the metabolic disorders. Our study suggested potentially active signaling pathways and co-expressed gene sets which may play key roles in crosstalk between metabolic diseases and depression.
Collapse
|
10
|
Niu L, Sulek K, Vasilopoulou CG, Santos A, Wewer Albrechtsen NJ, Rasmussen S, Meier F, Mann M. Defining NASH from a Multi-Omics Systems Biology Perspective. J Clin Med 2021; 10:jcm10204673. [PMID: 34682795 PMCID: PMC8538576 DOI: 10.3390/jcm10204673] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic liver disease affecting up to 6.5% of the general population. There is no simple definition of NASH, and the molecular mechanism underlying disease pathogenesis remains elusive. Studies applying single omics technologies have enabled a better understanding of the molecular profiles associated with steatosis and hepatic inflammation—the commonly accepted histologic features for diagnosing NASH, as well as the discovery of novel candidate biomarkers. Multi-omics analysis holds great potential to uncover new insights into disease mechanism through integrating multiple layers of molecular information. Despite the technical and computational challenges associated with such efforts, a few pioneering studies have successfully applied multi-omics technologies to investigate NASH. Here, we review the most recent technological developments in mass spectrometry (MS)-based proteomics, metabolomics, and lipidomics. We summarize multi-omics studies and emerging omics biomarkers in NASH and highlight the biological insights gained through these integrated analyses.
Collapse
Affiliation(s)
- Lili Niu
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (C.G.V.); (F.M.)
- Correspondence: ; Tel.: +45-3114-6118
| | - Karolina Sulek
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
- Systems Medicine, Steno Diabetes Center Copenhagen, 2820 Gentofte, Denmark
| | - Catherine G. Vasilopoulou
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (C.G.V.); (F.M.)
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
- Center for Health Data Science, University of Copenhagen, 2200 Copenhagen, Denmark
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | - Nicolai J. Wewer Albrechtsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
| | - Florian Meier
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (C.G.V.); (F.M.)
- Functional Proteomics, Jena University Hospital, 07747 Jena, Germany
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (C.G.V.); (F.M.)
| |
Collapse
|
11
|
Zheng J, Wu H, Zhang Z, Yao S. Dynamic co-expression modular network analysis in nonalcoholic fatty liver disease. Hereditas 2021; 158:31. [PMID: 34419146 PMCID: PMC8380347 DOI: 10.1186/s41065-021-00196-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease affecting people’s health worldwide. Exploring the potential biomarkers and dynamic networks during NAFLD progression is urgently important. Material and methods Differentially expressed genes (DEGs) in obesity, NAFL and NASH were screened from GSE126848 and GSE130970, respectively. Gene set enrichment analysis of DEGs was conducted to reveal the Gene Ontology (GO) biological process in each period. Dynamic molecular networks were constructed by DyNet to illustrate the common and distinct progression of health- or obesity-derived NAFLD. The dynamic co-expression modular analysis was carried out by CEMiTool to elucidate the key modulators, networks, and enriched pathways during NAFLD. Results A total of 453 DEGs were filtered from obesity, NAFL and NASH periods. Function annotation showed that health-NAFLD sequence was mainly associated with dysfunction of metabolic syndrome pathways, while obesity-NAFLD sequence exhibited dysregulation of Cell cycle and Cellular senescence pathways. Nine nodes including COL3A1, CXCL9, CYCS, CXCL10, THY1, COL1A2, SAA1, CDKN1A, and JUN in the dynamic networks were commonly identified in health- and obesity-derived NAFLD. Moreover, CYCS, whose role is unknown in NAFLD, possessed the highest correlation with NAFLD activity score, lobular inflammation grade, and the cytological ballooning grade. Dynamic co-expression modular analysis showed that module 4 was activated in NAFL and NASH, while module 3 was inhibited at NAFLD stages. Module 3 was negatively correlated with CXCL10, and module 4 was positively correlated with COL1A2 and THY1. Conclusion Dynamic network analysis and dynamic gene co-expression modular analysis identified a nine-gene signature as the potential key regulator in NAFLD progression, which provided comprehensive regulatory mechanisms underlying NAFLD progression. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00196-8.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Pharmacy, Zhejiang Medical & Health Group Hangzhou Hospital, No.1 Banshan Road, Kangjian nong, Hangzhou, 310022, China
| | - Huizhong Wu
- Department of Pharmacy, Zhejiang Quhua Hospital, Quzhou, 324002, China
| | - Zhiying Zhang
- Department of Pharmacy, Hangzhou Jianggan District People's Hospital, Hangzhou, 310016, China
| | - Songqiang Yao
- Department of Pharmacy, Zhejiang Medical & Health Group Hangzhou Hospital, No.1 Banshan Road, Kangjian nong, Hangzhou, 310022, China.
| |
Collapse
|
12
|
Subudhi S, Drescher HK, Dichtel LE, Bartsch LM, Chung RT, Hutter MM, Gee DW, Meireles OR, Witkowski ER, Gelrud L, Masia R, Osganian SA, Gustafson JL, Rwema S, Bredella MA, Bhatia SN, Warren A, Miller KK, Lauer GM, Corey KE. Distinct Hepatic Gene-Expression Patterns of NAFLD in Patients With Obesity. Hepatol Commun 2021; 6:77-89. [PMID: 34558849 PMCID: PMC8710788 DOI: 10.1002/hep4.1789] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023] Open
Abstract
Approaches to manage nonalcoholic fatty liver disease (NAFLD) are limited by an incomplete understanding of disease pathogenesis. The aim of this study was to identify hepatic gene‐expression patterns associated with different patterns of liver injury in a high‐risk cohort of adults with obesity. Using the NanoString Technologies (Seattle, WA) nCounter assay, we quantified expression of 795 genes, hypothesized to be involved in hepatic fibrosis, inflammation, and steatosis, in liver tissue from 318 adults with obesity. Liver specimens were categorized into four distinct NAFLD phenotypes: normal liver histology (NLH), steatosis only (steatosis), nonalcoholic steatohepatitis without fibrosis (NASH F0), and NASH with fibrosis stage 1‐4 (NASH F1‐F4). One hundred twenty‐five genes were significantly increasing or decreasing as NAFLD pathology progressed. Compared with NLH, NASH F0 was characterized by increased inflammatory gene expression, such as gamma‐interferon‐inducible lysosomal thiol reductase (IFI30) and chemokine (C‐X‐C motif) ligand 9 (CXCL9), while complement and coagulation related genes, such as C9 and complement component 4 binding protein beta (C4BPB), were reduced. In the presence of NASH F1‐F4, extracellular matrix degrading proteinases and profibrotic/scar deposition genes, such as collagens and transforming growth factor beta 1 (TGFB1), were simultaneously increased, suggesting a dynamic state of tissue remodeling. Conclusion: In adults with obesity, distinct states of NAFLD are associated with intrahepatic perturbations in genes related to inflammation, complement and coagulation pathways, and tissue remodeling. These data provide insights into the dynamic pathogenesis of NAFLD in high‐risk individuals.
Collapse
Affiliation(s)
- Sonu Subudhi
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hannah K Drescher
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura E Dichtel
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lea M Bartsch
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raymond T Chung
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew M Hutter
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Denise W Gee
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ozanan R Meireles
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elan R Witkowski
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Louis Gelrud
- Department of Medicine, St. Mary's Hospital Bon Secours, Richmond, VA, USA
| | - Ricard Masia
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephanie A Osganian
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jenna L Gustafson
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Steve Rwema
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Miriam A Bredella
- Division of Musculoskeletal Radiology and Interventions, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sangeeta N Bhatia
- Ludwig Center for Molecular Oncology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew Warren
- Ludwig Center for Molecular Oncology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karen K Miller
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Georg M Lauer
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathleen E Corey
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Graffmann N, Ncube A, Martins S, Fiszl AR, Reuther P, Bohndorf M, Wruck W, Beller M, Czekelius C, Adjaye J. A stem cell based in vitro model of NAFLD enables the analysis of patient specific individual metabolic adaptations in response to a high fat diet and AdipoRon interference. Biol Open 2021; 10:bio.054189. [PMID: 33372064 PMCID: PMC7860118 DOI: 10.1242/bio.054189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease. Its development and progression depend on genetically predisposed susceptibility of the patient towards several ‘hits’ that induce fat storage first and later inflammation and fibrosis. Here, we differentiated induced pluripotent stem cells (iPSCs) derived from four distinct donors with varying disease stages into hepatocyte like cells (HLCs) and determined fat storage as well as metabolic adaptations after stimulations with oleic acid. We could recapitulate the complex networks that control lipid and glucose metabolism and we identified distinct gene expression profiles related to the steatosis phenotype of the donor. In an attempt to reverse the steatotic phenotype, cells were treated with the small molecule AdipoRon, a synthetic analogue of adiponectin. Although the responses varied between cells lines, they suggest a general influence of AdipoRon on metabolism, transport, immune system, cell stress and signalling. Summary: A stem cell based in vitro model of NAFLD recapitulates regulatory networks and suggests a steatosis associated phenotype. AdipoRon treatment influences metabolism, immune system, cell stress and signalling.
Collapse
Affiliation(s)
- Nina Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Audrey Ncube
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Soraia Martins
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Aurelian Robert Fiszl
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Philipp Reuther
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine University Düsseldorf 40225, Düsseldorf, Germany
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.,Systems Biology of Lipid Metabolism, Heinrich-Heine University Düsseldorf 40225, Düsseldorf, Germany
| | - Constantin Czekelius
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine University Düsseldorf 40225, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| |
Collapse
|
14
|
RIP1 kinase activity promotes steatohepatitis through mediating cell death and inflammation in macrophages. Cell Death Differ 2020; 28:1418-1433. [PMID: 33208891 DOI: 10.1038/s41418-020-00668-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte cell death and liver inflammation have been well recognized as central characteristics of nonalcoholic steatohepatitis (NASH), however, the underlying molecular basis remains elusive. The kinase receptor-interacting protein 1 (RIP1) is a multitasking molecule with distinct functions in regulating apoptosis, necroptosis, and inflammation. Dissecting the role of RIP1 distinct functions in different pathophysiology has absorbed huge research enthusiasm. Wild-type and RIP1 kinase-dead (Rip1K45A/K45A) mice were fed with high-fat diet (HFD) to investigate the role of RIP1 kinase activity in the pathogenesis of NASH. Rip1K45A/K45A mice exhibited significantly alleviated NASH phenotype of hepatic steatosis, liver damage, fibrosis as well as reduced hepatic cell death and inflammation compared to WT mice. Our results also indicated that both in vivo lipotoxicity and in vitro saturated fatty acids (palmitic acid) treatment were able to induce the kinase activation of RIP1 in liver macrophages. RIP1 kinase was required for mediating inflammasome activation, apoptotic and necrotic cell death induced by palmitic acid in both bone marrow-derived macrophage and mouse primary Kupffer cells. Results from chimeric mice established through lethal irradiation and bone marrow transplantation further confirmed that the RIP1 kinase in hematopoietic-derived macrophages contributed mostly to the disease progression in NASH. Consistent with murine models, we also found that RIP1 kinase was markedly activated in human NASH, and the kinase activation mainly occurred in liver macrophages as indicated by immunofluorescence double staining. In summary, our study indicated that RIP1 kinase was phosphorylated and activated mainly in liver macrophages in both experimental and clinical NASH. We provided direct genetic evidence that the kinase activity of RIP1 especially in hematopoietic-derived macrophages contributes to the pathogenesis of NASH, through mediating inflammasome activation and cell death induction. Macrophage RIP1 kinase represents a specific and potential therapeutic target for NASH.
Collapse
|
15
|
Gerhard GS, Davis B, Wu X, Hanson A, Wilhelmsen D, Piras IS, Still CD, Chu X, Petrick AT, DiStefano JK. Differentially expressed mRNAs and lncRNAs shared between activated human hepatic stellate cells and nash fibrosis. Biochem Biophys Rep 2020; 22:100753. [PMID: 32258441 PMCID: PMC7109412 DOI: 10.1016/j.bbrep.2020.100753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
We previously reported dysregulated expression of liver-derived messenger RNA (mRNA) and long noncoding RNA (lncRNA) in patients with advanced fibrosis resulting from nonalcoholic fatty liver disease (NAFLD). Here we sought to identify changes in mRNA and lncRNA levels associated with activation of hepatic stellate cells (HSCs), the predominant source of extracellular matrix production in the liver and key to NAFLD-related fibrogenesis. We performed expression profiling of mRNA and lncRNA from LX-2 cells, an immortalized human HSC cell line, treated to induce phenotypes resembling quiescent and myofibroblastic states. We identified 1964 mRNAs (1377 upregulated and 587 downregulated) and 1460 lncRNAs (665 upregulated and 795 downregulated) showing statistically significant evidence (FDR ≤0.05) for differential expression (fold change ≥|2|) between quiescent and activated states. Pathway analysis of differentially expressed genes showed enrichment for hepatic fibrosis (FDR = 1.35E-16), osteoarthritis (FDR = 1.47E-14), and axonal guidance signaling (FDR = 1.09E-09). We observed 127 lncRNAs/nearby mRNA pairs showing differential expression, the majority of which were dysregulated in the same direction. A comparison of differentially expressed transcripts in LX-2 cells with RNA-sequencing results from NAFLD patients with or without liver fibrosis revealed 1047 mRNAs and 91 lncRNAs shared between the two datasets, suggesting that some of the expression changes occurring during HSC activation can be observed in biopsied human tissue. These results identify lncRNA and mRNA expression patterns associated with activated human HSCs that appear to recapitulate human NAFLD fibrosis.
Collapse
Affiliation(s)
- Glenn S. Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Bethany Davis
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | - Xiumei Wu
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | - Amanda Hanson
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | - Danielle Wilhelmsen
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | - Ignazio S. Piras
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | | | - Xin Chu
- Geisinger Obesity Institute, Danville, PA, 17822, USA
| | | | - Johanna K. DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| |
Collapse
|
16
|
De Jesus DF, Orime K, Kaminska D, Kimura T, Basile G, Wang CH, Haertle L, Riemens R, Brown NK, Hu J, Männistö V, Silva AM, Dirice E, Tseng YH, Haaf T, Pihlajamäki J, Kulkarni RN. Parental metabolic syndrome epigenetically reprograms offspring hepatic lipid metabolism in mice. J Clin Invest 2020; 130:2391-2407. [PMID: 32250344 PMCID: PMC7190992 DOI: 10.1172/jci127502] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/22/2020] [Indexed: 12/24/2022] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. Although gene-environment interactions have been implicated in the etiology of several disorders, the impact of paternal and/or maternal metabolic syndrome on the clinical phenotypes of offspring and the underlying genetic and epigenetic contributors of NAFLD have not been fully explored. To this end, we used the liver-specific insulin receptor knockout (LIRKO) mouse, a unique nondietary model manifesting 3 hallmarks that confer high risk for the development of NAFLD: hyperglycemia, insulin resistance, and dyslipidemia. We report that parental metabolic syndrome epigenetically reprograms members of the TGF-β family, including neuronal regeneration-related protein (NREP) and growth differentiation factor 15 (GDF15). NREP and GDF15 modulate the expression of several genes involved in the regulation of hepatic lipid metabolism. In particular, NREP downregulation increases the protein abundance of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and ATP-citrate lyase (ACLY) in a TGF-β receptor/PI3K/protein kinase B-dependent manner, to regulate hepatic acetyl-CoA and cholesterol synthesis. Reduced hepatic expression of NREP in patients with NAFLD and substantial correlations between low serum NREP levels and the presence of steatosis and nonalcoholic steatohepatitis highlight the clinical translational relevance of our findings in the context of recent preclinical trials implicating ACLY in NAFLD progression.
Collapse
Affiliation(s)
- Dario F. De Jesus
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
- Graduate Program in Areas of Basic and Applied Biology (GABBA), Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Kazuki Orime
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Dorota Kaminska
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Tomohiko Kimura
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Giorgio Basile
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Chih-Hao Wang
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Larissa Haertle
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Würzburg, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Renzo Riemens
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Würzburg, Germany
| | - Natalie K. Brown
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiang Hu
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Amélia M. Silva
- Department of Biology and Environment, School of Life and Environmental Sciences, and
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Ercument Dirice
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu-Hua Tseng
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Würzburg, Germany
| | - Jussi Pihlajamäki
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Rohit N. Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Moroldo M, Munyaka PM, Lecardonnel J, Lemonnier G, Venturi E, Chevaleyre C, Oswald IP, Estellé J, Rogel-Gaillard C. Integrative analysis of blood and gut microbiota data suggests a non-alcoholic fatty liver disease (NAFLD)-related disorder in French SLA dd minipigs. Sci Rep 2020; 10:234. [PMID: 31937803 PMCID: PMC6959234 DOI: 10.1038/s41598-019-57127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/18/2019] [Indexed: 11/29/2022] Open
Abstract
Minipigs are a group of small-sized swine lines, which show a broad range of phenotype variation and which often tend to be obese. The SLAdd (DD) minipig line was created by the NIH and selected as homozygous at the SLA locus. It was brought to France more than 30 years ago and maintained inbred ever since. In this report, we characterized the physiological status of a herd of French DD pigs by measuring intermediate phenotypes from blood and faeces and by using Large White (LW) pigs as controls. Three datasets were produced, i.e. complete blood counts (CBCs), microarray-based blood transcriptome, and faecal microbiota obtained by 16S rRNA sequencing. CBCs and expression profiles suggested a non-alcoholic fatty liver disease (NAFLD)-related pathology associated to comorbid cardiac diseases. The characterization of 16S sequencing data was less straightforward, suggesting only a potential weak link to obesity. The integration of the datasets identified several fine-scale associations between CBCs, gene expression, and faecal microbiota composition. NAFLD is a common cause of chronic liver disease in Western countries and is linked to obesity, type 2 diabetes mellitus and cardiac pathologies. Here we show that the French DD herd is potentially affected by this syndrome.
Collapse
Affiliation(s)
- Marco Moroldo
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| | - Peris Mumbi Munyaka
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Jérôme Lecardonnel
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Gaëtan Lemonnier
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | | | - Isabelle P Oswald
- Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toxalim, 31027, Toulouse, France
| | - Jordi Estellé
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
18
|
Jellali R, Lereau Bernier M, Tauran Y, Gilard F, Danoy M, Kido T, Miyajima A, Sakai Y, Leclerc E. Metabolomic profiling during the differentiation of human induced pluripotent stem cells into hepatocyte-like cells. Differentiation 2019; 112:17-26. [PMID: 31869687 DOI: 10.1016/j.diff.2019.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/20/2019] [Accepted: 10/23/2019] [Indexed: 12/25/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are potentially an invaluable source of cells for regenerative medicine, disease modeling and drug discovery. However, the differentiation of hiPSCs into fully functional hepatocytes remains a major challenge. Despite the importance of the information carried by metabolomes, the exploitation of metabolomics for characterizing and understanding hiPSC differentiation remains largely unexplored. Here, to increase knowledge of hiPSC maturation into mature hepatocytes, we investigated their metabolomics profiles during sequential step-by-step differentiation: definitive endoderm (DE), specification into hepatocytes (HB-pro (hepatoblast progenitors)), progenitor hepatocytes (Pro-HEP) and mature hepatocyte-like cells (HLCs). Metabolomics analysis illustrated a switch from glycolysis-based respiration in DE step to oxidative phosphorylation in HLCs step. DE was characterized by fatty acid beta oxidation, sorbitol metabolism and pentose phosphate pathway, and glutamine and glucose metabolisms as various potential energy sources. The complex lipid metabolism switch was monitored via the reduction of lipid production from DE to HLCs step, whereas high glycerol production occurred mainly in HLCs. The nitrogen cycle, via urea production, was also a typical mechanism revealed in HLCs step. Our analysis may contribute to better understanding of differentiation and suggest new targets for improving iPSC maturation into functional hepatocytes.
Collapse
Affiliation(s)
- Rachid Jellali
- CNRS UMR 7338, Laboratoire de Biomécanique et Bioingénierie, Sorbonne Universités, Université de Technologies de Compiègne, France.
| | - Myriam Lereau Bernier
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Yannick Tauran
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; LMI CNRS UMR5615, Université Lyon 1, Villeurbanne, 69622, France
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université D'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Saclay Plant Sciences, Bâtiment 630, 91405, Orsay, France
| | - Mathieu Danoy
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Taketomo Kido
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Atsushi Miyajima
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yasuyuki Sakai
- CIBIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Eric Leclerc
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
19
|
Gene Expression Predicts Histological Severity and Reveals Distinct Molecular Profiles of Nonalcoholic Fatty Liver Disease. Sci Rep 2019; 9:12541. [PMID: 31467298 PMCID: PMC6715650 DOI: 10.1038/s41598-019-48746-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
The heterogeneity of biological processes driving the severity of nonalcoholic fatty liver disease (NAFLD) as reflected in the transcriptome and the relationship between the pathways involved are not well established. Well-defined associations between gene expression profiles and disease progression would benefit efforts to develop novel therapies and to understand disease heterogeneity. We analyzed hepatic gene expression in controls and a cohort with the full histological spectrum of NAFLD. Protein-protein interaction and gene set variation analysis revealed distinct sets of coordinately regulated genes and pathways whose expression progressively change over the course of the disease. The progressive nature of these changes enabled us to develop a framework for calculating a disease progression score for individual genes. We show that, in aggregate, these scores correlate strongly with histological measures of disease progression and can thus themselves serve as a proxy for severity. Furthermore, we demonstrate that the expression levels of a small number of genes (~20) can be used to infer disease severity. Finally, we show that patient subgroups can be distinguished by the relative distribution of gene-level scores in specific gene sets. While future work is required to identify the specific disease characteristics that correspond to patient clusters identified on this basis, this work provides a general framework for the use of high-content molecular profiling to identify NAFLD patient subgroups.
Collapse
|
20
|
Raffaele M, Carota G, Sferrazzo G, Licari M, Barbagallo I, Sorrenti V, Signorelli SS, Vanella L. Inhibition of Heme Oxygenase Antioxidant Activity Exacerbates Hepatic Steatosis and Fibrosis In Vitro. Antioxidants (Basel) 2019; 8:antiox8080277. [PMID: 31387260 PMCID: PMC6719023 DOI: 10.3390/antiox8080277] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022] Open
Abstract
The progression of non-alcoholic fatty liver disease (NAFLD) and the development of hepatic fibrosis is caused by changes in redox balance, leading to an increase of reactive oxygen species (ROS) levels. NAFLD patients are at risk of progressing to non-alcoholic steatohepatitis (NASH), associated to cardiovascular diseases (CVD), coronary heart disease and stroke. Heme Oxygenase-1 (HO-1) is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. The present work was directed to determine whether use of an inhibitor of HO-1 activity affects lipid metabolism and fibrosis process in hepatic cells. Oil Red assay and mRNA analysis were used to evaluate the triglycerides content and the lipid metabolism pathway in HepG2 cells. ROS measurement, RT-PCR and Soluble collagen assay were used to assess the intracellular oxidant, the fibrosis pathway and the soluble collagen in LX2 cells. The activity of HO-1 was inhibited using Tin Mesoporphyrin IX (SnMP). Our study demonstrates that a non-functional HO system results in an increased lipid storage and collagen release in hepatocytes. Consequently, an increase of HO-1 levels may provide a therapeutic approach to address the metabolic alterations associated with NAFLD and its progression to NASH.
Collapse
Affiliation(s)
- Marco Raffaele
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Giuseppe Carota
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Giuseppe Sferrazzo
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Maria Licari
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Salvatore S Signorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
21
|
Ghini V, Quaglio D, Luchinat C, Turano P. NMR for sample quality assessment in metabolomics. N Biotechnol 2019; 52:25-34. [PMID: 31022482 DOI: 10.1016/j.nbt.2019.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 12/11/2022]
Abstract
The EU Framework 7 project SPIDIA was the occasion for development of NMR approaches to evaluate the impact of different pre-analytical treatments on the quality of biological samples dedicated to metabolomics. Systematic simulation of different pre-analytical procedures was performed on urine and blood serum and plasma. Here we review the key aspects of these studies that have led to the development of CEN technical specifications, to be translated into ISO/IS in the course of the EU Horizon 2020 project SPIDIA4P. Inspired by the SPIDIA results, follow-up research was performed, extending the analysis to different sample types and to the different effects of long-term storage. The latter activity was in conjunction with the local European da Vinci Biobank. These results (which partially contributed to the ANNEX of CEN/TS 16945"MOLECULAR IN VITRO DIAGNOSTIC EXAMINATIONS - SPECIFICATIONS FOR PRE-EXAMINATION PROCESSES FOR METABOLOMICS IN URINE, VENOUS BLOOD SERUM AND PLASMA") are presented in detail.
Collapse
Affiliation(s)
- Veronica Ghini
- Center of Magnetic Resonance (CERM), University of Florence, Sesto Fiorentino FI, Italy
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Claudio Luchinat
- Center of Magnetic Resonance (CERM), University of Florence, Sesto Fiorentino FI, Italy; Department of Chemistry, University of Florence, Sesto Fiorentino FI, Italy
| | - Paola Turano
- Center of Magnetic Resonance (CERM), University of Florence, Sesto Fiorentino FI, Italy; Department of Chemistry, University of Florence, Sesto Fiorentino FI, Italy.
| |
Collapse
|
22
|
Suppli MP, Rigbolt KTG, Veidal SS, Heebøll S, Eriksen PL, Demant M, Bagger JI, Nielsen JC, Oró D, Thrane SW, Lund A, Strandberg C, Kønig MJ, Vilsbøll T, Vrang N, Thomsen KL, Grønbæk H, Jelsing J, Hansen HH, Knop FK. Hepatic transcriptome signatures in patients with varying degrees of nonalcoholic fatty liver disease compared with healthy normal-weight individuals. Am J Physiol Gastrointest Liver Physiol 2019; 316:G462-G472. [PMID: 30653341 DOI: 10.1152/ajpgi.00358.2018] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of conditions ranging from simple steatosis (NAFL), over nonalcoholic steatohepatitis (NASH) with or without fibrosis, to cirrhosis with end-stage disease. The hepatic molecular events underlying the development of NAFLD and transition to NASH are poorly understood. The present study aimed to determine hepatic transcriptome dynamics in patients with NAFL or NASH compared with healthy normal-weight and obese individuals. RNA sequencing and quantitative histomorphometry of liver fat, inflammation and fibrosis were performed on liver biopsies obtained from healthy normal-weight ( n = 14) and obese ( n = 12) individuals, NAFL ( n = 15) and NASH ( n = 16) patients. Normal-weight and obese subjects showed normal liver histology and comparable gene expression profiles. Liver transcriptome signatures were largely overlapping in NAFL and NASH patients, however, clearly separated from healthy normal-weight and obese controls. Most marked pathway perturbations identified in both NAFL and NASH were associated with markers of lipid metabolism, immunomodulation, extracellular matrix remodeling, and cell cycle control. Interestingly, NASH patients with positive Sonic hedgehog hepatocyte staining showed distinct transcriptome and histomorphometric changes compared with NAFL. In conclusion, application of immunohistochemical markers of hepatocyte injury may serve as a more objective tool for distinguishing NASH from NAFL, facilitating improved resolution of hepatic molecular changes associated with progression of NAFLD. NEW & NOTEWORTHY Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in Western countries. NAFLD is associated with the metabolic syndrome and can progress to the more serious form, nonalcoholic steatohepatitis (NASH), and ultimately lead to irreversible liver damage. Using gold standard molecular and histological techniques, this study demonstrates that the currently used diagnostic tools are problematic for differentiating mild NAFLD from NASH and emphasizes the marked need for developing improved histological markers of NAFLD progression.
Collapse
Affiliation(s)
- Malte P Suppli
- Department of Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | | | - Sara Heebøll
- Department of Hepatology and Gastroenterology, Aarhus University Hospital , Aarhus , Denmark
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital , Aarhus , Denmark
| | - Mia Demant
- Department of Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jonatan I Bagger
- Department of Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | | | | | - Asger Lund
- Department of Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Charlotte Strandberg
- Department of Radiology, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Merete J Kønig
- Department of Radiology, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Tina Vilsbøll
- Department of Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | | | - Karen L Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital , Aarhus , Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital , Aarhus , Denmark
| | | | | | - Filip K Knop
- Department of Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
23
|
Yamada S, Ito K, Kurotani A, Yamada Y, Chikayama E, Kikuchi J. InterSpin: Integrated Supportive Webtools for Low- and High-Field NMR Analyses Toward Molecular Complexity. ACS OMEGA 2019; 4:3361-3369. [PMID: 31459550 PMCID: PMC6648201 DOI: 10.1021/acsomega.8b02714] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/24/2018] [Indexed: 05/06/2023]
Abstract
InterSpin (http://dmar.riken.jp/interspin/) comprises integrated, supportive, and freely accessible preprocessing webtools and a database to advance signal assignment in low- and high-field NMR analyses of molecular complexities ranging from small molecules to macromolecules for food, material, and environmental applications. To support handling of the broad spectra obtained from solid-state NMR or low-field benchtop NMR, we have developed and evaluated two preprocessing tools: sensitivity improvement with spectral integration, which enhances the signal-to-noise ratio by spectral integration, and peaks separation, which separates overlapping peaks by several algorithms, such as non-negative sparse coding. In addition, the InterSpin Laboratory Information Management System (SpinLIMS) database stores numerous standard spectra ranging from small molecules to macromolecules in solid and solution states (dissolved in polar/nonpolar solvents), and can be searched under various conditions using the following molecular assignment tools. SpinMacro supports easy assignment of macromolecules in natural mixtures via solid-state 13C peaks and dimethyl sulfoxide-dissolved 1H-13C correlation peaks. InterAnalysis improves the accuracy of molecular assignment by integrated analysis of 1H-13C correlation peaks and 1H-J correlation peaks of small molecules dissolved in D2O or deuterated methanol, which supports easy narrowing down of metabolite candidates. Finally, by enabling database interoperability, SpinLIMS's client software will ultimately support scientific discovery by facilitating sharing and reusing of NMR data.
Collapse
Affiliation(s)
- Shunji Yamada
- Graduate
School of Bioagricultural Sciences, Nagoya
University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kengo Ito
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Atsushi Kurotani
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yutaka Yamada
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Eisuke Chikayama
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department
of Information Systems, Niigata University
of International and Information Studies, 3-1-1 Mizukino, Nishi-ku, Niigata-shi, Niigata 950-2292, Japan
| | - Jun Kikuchi
- Graduate
School of Bioagricultural Sciences, Nagoya
University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- E-mail: . Phone/Fax: +81-544039439
| |
Collapse
|
24
|
Šeda O, Cahová M, Míková I, Šedová L, Daňková H, Heczková M, Brátová M, Ďásková N, Erhartová D, Čapek V, Chylíková B, Trunečka P. Hepatic Gene Expression Profiles Differentiate Steatotic and Non-steatotic Grafts in Liver Transplant Recipients. Front Endocrinol (Lausanne) 2019; 10:270. [PMID: 31114547 PMCID: PMC6502969 DOI: 10.3389/fendo.2019.00270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Liver transplantation leads to non-alcoholic fatty liver disease or non-alcoholic steatohepatitis in up to 40% of graft recipients. The aim of our study was to assess transcriptomic profiles of liver grafts and to contrast the hepatic gene expression between the patients after transplantation with vs. without graft steatosis. Methods: Total RNA was isolated from liver graft biopsies of 91 recipients. Clinical characteristics were compared between steatotic (n = 48) and control (n = 43) samples. Their transcriptomic profiles were assessed using Affymetrix HuGene 2.1 ST Array Strips processed in Affymetrix GeneAtlas. Data were analyzed using Partek Genomics Suite 6.6 and Ingenuity Pathway Analysis. Results: The individuals with hepatic steatosis showed higher indices of obesity including weight, waist circumference or BMI but the two groups were comparable in measures of insulin sensitivity and cholesterol concentrations. We have identified 747 transcripts (326 upregulated and 421 downregulated in steatotic samples compared to controls) significantly differentially expressed between grafts with vs. those without steatosis. Among the most downregulated genes in steatotic samples were P4HA1, IGF1, or fetuin B while the most upregulated were PLIN1 and ME1. Most influential upstream regulators included HNF1A, RXRA, and FXR. The metabolic pathways dysregulated in steatotic liver grafts comprised blood coagulation, bile acid synthesis and transport, cell redox homeostasis, lipid and cholesterol metabolism, epithelial adherence junction signaling, amino acid metabolism, AMPK and glucagon signaling, transmethylation reactions, and inflammation-related pathways. The derived mechanistic network underlying major transcriptome differences between steatotic samples and controls featured PPARA and SERPINE1 as main nodes. Conclusions: While there is a certain overlap between the results of the current study and published transcriptomic profiles of non-transplanted livers with steatosis, we have identified discrete characteristics of the non-alcoholic fatty liver disease in liver grafts potentially utilizable for the establishment of predictive signature.
Collapse
Affiliation(s)
- Ondrej Šeda
- First Faculty of Medicine, The General University Hospital, Institute of Biology and Medical Genetics, Charles University, Prague, Czechia
| | - Monika Cahová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
- *Correspondence: Monika Cahová
| | - Irena Míková
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Lucie Šedová
- First Faculty of Medicine, The General University Hospital, Institute of Biology and Medical Genetics, Charles University, Prague, Czechia
| | - Helena Daňková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Marie Heczková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Miriam Brátová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Nikola Ďásková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Denisa Erhartová
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Václav Čapek
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Blanka Chylíková
- First Faculty of Medicine, The General University Hospital, Institute of Biology and Medical Genetics, Charles University, Prague, Czechia
| | - Pavel Trunečka
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| |
Collapse
|
25
|
Meoli L, Gupta NK, Saeidi N, Panciotti CA, Biddinger SB, Corey KE, Stylopoulos N. Nonalcoholic fatty liver disease and gastric bypass surgery regulate serum and hepatic levels of pyruvate kinase isoenzyme M2. Am J Physiol Endocrinol Metab 2018; 315:E613-E621. [PMID: 29462566 PMCID: PMC6230703 DOI: 10.1152/ajpendo.00296.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 12/18/2022]
Abstract
Treatment of nonalcoholic fatty liver disease (NAFLD) focuses on the underlying metabolic syndrome, and Roux-en-Y gastric bypass surgery (RYGB) remains one of the most effective options. In rodents and human patients, RYGB induces an increase in the gene and protein expression levels of the M2 isoenzyme of pyruvate kinase (PKM2) in the jejunum. Since PKM2 can be secreted in the circulation, our hypothesis was that the circulating levels of PKM2 increase after RYGB. Our data, however, revealed an unexpected finding and a potential new role of PKM2 for the natural history of metabolic syndrome and NAFLD. Contrary to our initial hypothesis, RYGB-treated patients had decreased PKM2 blood levels compared with a well-matched group of patients with severe obesity before RYGB. Interestingly, PKM2 serum concentration correlated with body mass index before but not after the surgery. This prompted us to evaluate other potential mechanisms and sites of PKM2 regulation by the metabolic syndrome and RYGB. We found that in patients with NAFLD and nonalcoholic steatohepatitis (NASH), the liver had increased PKM2 expression levels, and the enzyme appears to be specifically localized in Kupffer cells. The study of murine models of metabolic syndrome and NASH replicated this pattern of expression, further suggesting a metabolic link between hepatic PKM2 and NAFLD. Therefore, we conclude that PKM2 serum and hepatic levels increase in both metabolic syndrome and NAFLD and decrease after RYGB. Thus, PKM2 may represent a new target for monitoring and treatment of NAFLD.
Collapse
Affiliation(s)
- Luca Meoli
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Nitin K Gupta
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Nima Saeidi
- Massachusetts General Hospital and Shriners Hospital for Children , Boston, Massachusetts
| | - Courtney A Panciotti
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Sudha B Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Kathleen E Corey
- MGH Fatty Liver Clinic, MGH Gastrointestinal Unit, Massachusetts General Hospital , Boston, Massachusetts
| | - Nicholas Stylopoulos
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
26
|
Green CJ, Parry SA, Gunn PJ, Ceresa CDL, Rosqvist F, Piché ME, Hodson L. Studying non-alcoholic fatty liver disease: the ins and outs of in vivo, ex vivo and in vitro human models. Horm Mol Biol Clin Investig 2018; 41:/j/hmbci.ahead-of-print/hmbci-2018-0038/hmbci-2018-0038.xml. [PMID: 30098284 DOI: 10.1515/hmbci-2018-0038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing. Determining the pathogenesis and pathophysiology of human NAFLD will allow for evidence-based prevention strategies, and more targeted mechanistic investigations. Various in vivo, ex situ and in vitro models may be utilised to study NAFLD; but all come with their own specific caveats. Here, we review the human-based models and discuss their advantages and limitations in regards to studying the development and progression of NAFLD. Overall, in vivo whole-body human studies are advantageous in that they allow for investigation within the physiological setting, however, limited accessibility to the liver makes direct investigations challenging. Non-invasive imaging techniques are able to somewhat overcome this challenge, whilst the use of stable-isotope tracers enables mechanistic insight to be obtained. Recent technological advances (i.e. normothermic machine perfusion) have opened new opportunities to investigate whole-organ metabolism, thus ex situ livers can be investigated directly. Therefore, investigations that cannot be performed in vivo in humans have the potential to be undertaken. In vitro models offer the ability to perform investigations at a cellular level, aiding in elucidating the molecular mechanisms of NAFLD. However, a number of current models do not closely resemble the human condition and work is ongoing to optimise culturing parameters in order to recapitulate this. In summary, no single model currently provides insight into the development, pathophysiology and progression across the NAFLD spectrum, each experimental model has limitations, which need to be taken into consideration to ensure appropriate conclusions and extrapolation of findings are made.
Collapse
Affiliation(s)
- Charlotte J Green
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Siôn A Parry
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Pippa J Gunn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Carlo D L Ceresa
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fredrik Rosqvist
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Marie-Eve Piché
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Quebec Heart and Lung Institute, Laval University, Quebec, Canada
| | - Leanne Hodson
- University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital,Old Road Headington, Oxford OX3 7LE, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
27
|
Gerhard GS, Legendre C, Still CD, Chu X, Petrick A, DiStefano JK. Transcriptomic Profiling of Obesity-Related Nonalcoholic Steatohepatitis Reveals a Core Set of Fibrosis-Specific Genes. J Endocr Soc 2018; 2:710-726. [PMID: 29978150 PMCID: PMC6018672 DOI: 10.1210/js.2018-00122] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is strongly associated with obesity and type 2 diabetes. The molecular factors underlying the development of inflammation and severe fibrosis in NASH remain largely unknown. The purpose of this study was to identify gene expression patterns related to obesity-related NASH inflammation and fibrosis. We performed sequencing-based mRNA profiling analysis of liver samples from individuals with normal histology (n = 24), lobular inflammation (n = 53), or bridging fibrosis, incomplete cirrhosis, or cirrhosis (n = 65). Hepatic expression of a subset of mRNAs was validated using an orthogonal method, analyzed in a hepatic stellate cell line, and used to identify transcriptional patterns shared by other forms of cirrhosis. We observed evidence for differential levels of 3820 and 2980 transcripts in lobular inflammation and advanced fibrosis, respectively, compared with normal histology (false discovery rate ≤0.05), including 176 genes specific to fibrosis. Functional enrichment analysis of these genes revealed participation in pathways involving cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, focal adhesion, and extracellular matrix-receptor interaction. We identified 34 differentially expressed transcripts in comparisons of lobular inflammation and fibrosis, a proportion of which were also upregulated during activation of hepatic stellate cells. A set of 16 genes from a previous independent study of NASH bridging fibrosis/cirrhosis were replicated, several of which have also been associated with advanced fibrosis/cirrhosis due to hepatitis viruses or alcohol in human patients. Dysregulated mRNA expression is associated with inflammation and fibrosis in NASH. Advanced NASH fibrosis is characterized by distinct set of molecular changes that are shared with other causes of cirrhosis.
Collapse
Affiliation(s)
- Glenn S Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | | | | | - Xin Chu
- Geisinger Obesity Institute, Danville, Pennsylvania
| | | | | |
Collapse
|
28
|
Leti F, Legendre C, Still CD, Chu X, Petrick A, Gerhard GS, DiStefano JK. Altered expression of MALAT1 lncRNA in nonalcoholic steatohepatitis fibrosis regulates CXCL5 in hepatic stellate cells. Transl Res 2017; 190:25-39.e21. [PMID: 28993096 PMCID: PMC5705449 DOI: 10.1016/j.trsl.2017.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/15/2017] [Accepted: 09/10/2017] [Indexed: 12/12/2022]
Abstract
In the present study, we sought to identify long noncoding RNA (lncRNA) expression profiles in nonalcoholic steatohepatitis (NASH) patients with histologic evidence of lobular inflammation and advanced fibrosis. We profiled lncRNA expression using RNA-sequencing of wedge liver biopsies from 24 nonalcoholic fatty liver disease (NAFLD) patients with normal liver histology, 53 NAFLD patients with lobular inflammation, and 65 NAFLD patients with advanced fibrosis. Transcript profiling identified 4432 and 4057 differentially expressed lncRNAs in comparisons of normal tissue with lobular inflammation and fibrosis samples, respectively. Functional enrichment analysis revealed lncRNA participation in transforming growth factor beta 1 and tumor necrosis factor signaling, insulin resistance, and extracellular matrix maintenance. Several lncRNAs were highly expressed in fibrosis relative to normal tissue, including nuclear paraspeckle assembly transcript 1, hepatocellular carcinoma upregulated lncRNA, and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). Two potential target mRNAs, syndecan 4 (SDC4), and C-X-C motif chemokine ligand 5 (CXCL5) were identified for hepatocellular carcinoma upregulated lncRNA and MALAT1, respectively, but only CXCL5 showed differential expression among the different histologic classes. Knockdown of MALAT1 expression reduced CXCL5 transcript and protein levels by 50% and 30%, respectively, in HepG2 cells. The expression of MALAT1 and CXCL5 was upregulated in activated hepatic stellate (LX-2) cells compared to cells in the quiescent state, and MALAT1 expression was regulated by hyperglycemia and insulin in HepG2 cells, but only by insulin in LX-2 cells. Dysregulated lncRNA expression is associated with inflammation and fibrosis in NASH. Functionally relevant differences in MALAT1 expression may contribute to the development of fibrosis in NASH through mechanisms involving inflammatory chemokines.
Collapse
Affiliation(s)
| | | | | | - Xin Chu
- Geisinger Obesity Institute, Danville, Pa
| | | | | | | |
Collapse
|
29
|
Tolstikov V, Akmaev VR, Sarangarajan R, Narain NR, Kiebish MA. Clinical metabolomics: a pivotal tool for companion diagnostic development and precision medicine. Expert Rev Mol Diagn 2017; 17:411-413. [DOI: 10.1080/14737159.2017.1308827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Wruck W, Adjaye J. Meta-analysis reveals up-regulation of cholesterol processes in non-alcoholic and down-regulation in alcoholic fatty liver disease. World J Hepatol 2017; 9:443-454. [PMID: 28357032 PMCID: PMC5355767 DOI: 10.4254/wjh.v9.i8.443] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/29/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To compare transcriptomes of non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) in a meta-analysis of liver biopsies. METHODS Employing transcriptome data from patient liver biopsies retrieved from several public repositories we performed a meta-analysis comparing ALD and NAFLD. RESULTS We observed predominating commonalities at the transcriptome level between ALD and NAFLD, most prominently numerous down-regulated metabolic pathways and cytochrome-related pathways and a few up-regulated pathways which include ECM-receptor interaction, phagosome and lysosome. However some pathways were regulated in opposite directions in ALD and NAFLD, for example, glycolysis was down-regulated in ALD and up-regulated in NAFLD. Interestingly, we found rate-limiting genes such as HMGCR, SQLE and CYP7A1 which are associated with cholesterol processes adversely regulated between ALD (down-regulated) and NAFLD (up-regulated). We propose that similar phenotypes in both diseases may be due to a lower level of the enzyme CYP7A1 compared to the cholesterol synthesis enzymes HMGCR and SQLE. Additionally, we provide a compendium of comparative KEGG pathways regulation in ALD and NAFLD. CONCLUSION Our finding of adversely regulated cholesterol processes in ALD and NAFLD draws the focus to regulation of cholesterol secretion into bile. Thus, it will be interesting to further investigate CYP7A1-mediated cholesterol secretion into bile - also as possible drug targets. The list of potential novel biomarkers may assist differential diagnosis of ALD and NAFLD.
Collapse
Affiliation(s)
- Wasco Wruck
- Wasco Wruck, James Adjaye, Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - James Adjaye
- Wasco Wruck, James Adjaye, Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
31
|
A multi-component classifier for nonalcoholic fatty liver disease (NAFLD) based on genomic, proteomic, and phenomic data domains. Sci Rep 2017; 7:43238. [PMID: 28266614 PMCID: PMC5339694 DOI: 10.1038/srep43238] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of conditions that include steatohepatitis and fibrosis that are thought to emanate from hepatic steatosis. Few robust biomarkers or diagnostic tests have been developed for hepatic steatosis in the setting of obesity. We have developed a multi-component classifier for hepatic steatosis comprised of phenotypic, genomic, and proteomic variables using data from 576 adults with extreme obesity who underwent bariatric surgery and intra-operative liver biopsy. Using a 443 patient training set, protein biomarker discovery was performed using the highly multiplexed SOMAscan® proteomic assay, a set of 19 clinical variables, and the steatosis predisposing PNPLA3 rs738409 single nucleotide polymorphism genotype status. The most stable markers were selected using a stability selection algorithm with a L1-regularized logistic regression kernel and were then fitted with logistic regression models to classify steatosis, that were then tested against a 133 sample blinded verification set. The highest area under the ROC curve (AUC) for steatosis of PNPLA3 rs738409 genotype, 8 proteins, or 19 phenotypic variables was 0.913, whereas the final classifier that included variables from all three domains had an AUC of 0.935. These data indicate that multi-domain modeling has better predictive power than comprehensive analysis of variables from a single domain.
Collapse
|
32
|
Kostrzewski T, Cornforth T, Snow SA, Ouro-Gnao L, Rowe C, Large EM, Hughes DJ. Three-dimensional perfused human in vitro model of non-alcoholic fatty liver disease. World J Gastroenterol 2017; 23:204-215. [PMID: 28127194 PMCID: PMC5236500 DOI: 10.3748/wjg.v23.i2.204] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/25/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023] Open
Abstract
AIM To develop a human in vitro model of non-alcoholic fatty liver disease (NAFLD), utilising primary hepatocytes cultured in a three-dimensional (3D) perfused platform.
METHODS Fat and lean culture media were developed to directly investigate the effects of fat loading on primary hepatocytes cultured in a 3D perfused culture system. Oil Red O staining was used to measure fat loading in the hepatocytes and the consumption of free fatty acids (FFA) from culture medium was monitored. Hepatic functions, gene expression profiles and adipokine release were compared for cells cultured in fat and lean conditions. To determine if fat loading in the system could be modulated hepatocytes were treated with known anti-steatotic compounds.
RESULTS Hepatocytes cultured in fat medium were found to accumulate three times more fat than lean cells and fat uptake was continuous over a 14-d culture. Fat loading of hepatocytes did not cause any hepatotoxicity and significantly increased albumin production. Numerous adipokines were expressed by fatty cells and genes associated with NAFLD and liver disease were upregulated including: Insulin-like growth factor-binding protein 1, fatty acid-binding protein 3 and CYP7A1. The metabolic activity of hepatocytes cultured in fatty conditions was found to be impaired and the activities of CYP3A4 and CYP2C9 were significantly reduced, similar to observations made in NAFLD patients. The utility of the model for drug screening was demonstrated by measuring the effects of known anti-steatotic compounds. Hepatocytes, cultured under fatty conditions and treated with metformin, had a reduced cellular fat content compared to untreated controls and consumed less FFA from cell culture medium.
CONCLUSION The 3D in vitro NAFLD model recapitulates many features of clinical NAFLD and is an ideal tool for analysing the efficacy of anti-steatotic compounds.
Collapse
|
33
|
Characterization of iPSCs derived from dermal fibroblasts from a healthy 19year old female. Stem Cell Res 2016; 17:597-599. [PMID: 27934589 DOI: 10.1016/j.scr.2016.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/18/2016] [Indexed: 11/20/2022] Open
Abstract
Primary fibroblasts from a healthy 19years old female were reprogrammed by transduction of retroviruses OCT4, SOX2, c-MYC and KLF4. iPSCs were characterized by immunocytochemistry, embryonic body-formation, DNA-fingerprint and karyotype analysis and comparative transcriptome analyses with the human embryonic stem cell line H1 revealed a Pearsons correlation coefficient of 0.8952.
Collapse
|
34
|
Kawala MA, Bohndorf M, Graffmann N, Wruck W, Zatloukal K, Adjaye J. Characterization of dermal fibroblast-derived iPSCs from a patient with high grade steatosis. Stem Cell Res 2016; 17:568-571. [PMID: 27789412 DOI: 10.1016/j.scr.2016.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/18/2016] [Indexed: 11/17/2022] Open
Abstract
Primary fibroblasts from a high grade steatosis patient were reprogrammed by transduction of retroviruses OCT4, SOX2, c-MYC and KLF4. IPSCs were characterized by immunocytochemistry, embryoid body-formation, DNA-fingerprint, karyotype analysis and comparative transcriptome analyses with the human embryonic stem cell line H1 revealed a Pearsons correlation coefficient of 0.9287. Resource table.
Collapse
Affiliation(s)
- Marie-Ann Kawala
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Nina Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
35
|
Kawala MA, Bohndorf M, Graffmann N, Wruck W, Zatloukal K, Adjaye J. Characterization of dermal fibroblast-derived iPSCs from a patient with low grade steatosis. Stem Cell Res 2016; 17:547-549. [PMID: 27789406 DOI: 10.1016/j.scr.2016.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022] Open
Abstract
Primary fibroblasts from a low grade steatosis patient were reprogrammed by transduction of a combination of two episomal-based plasmids OCT4,SOX2, c-MYC and KLF4. iPSCs were characterized by immunocytochemistry, embryonic body-formation, DNA-fingerprint karyotype analysis and comparative transcriptome analyses with the human embryonic stem cell line H1 revealed a Pearsons correlation of 0.9251.
Collapse
Affiliation(s)
- Marie-Ann Kawala
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Nina Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
36
|
Graffmann N, Ring S, Kawala MA, Wruck W, Ncube A, Trompeter HI, Adjaye J. Modeling Nonalcoholic Fatty Liver Disease with Human Pluripotent Stem Cell-Derived Immature Hepatocyte-Like Cells Reveals Activation of PLIN2 and Confirms Regulatory Functions of Peroxisome Proliferator-Activated Receptor Alpha. Stem Cells Dev 2016; 25:1119-33. [PMID: 27308945 PMCID: PMC4971413 DOI: 10.1089/scd.2015.0383] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD/steatosis) is a metabolic disease characterized by the incorporation of fat into hepatocytes. In this study, we developed an in vitro model for NAFLD based on hepatocyte-like cells (HLCs) differentiated from human pluripotent stem cells. We induced fat storage in these HLCs and detected major expression changes of metabolism-associated genes, as well as an overall reduction of liver-related microRNAs. We observed an upregulation of the lipid droplet coating protein Perilipin 2 (PLIN2), as well as of numerous genes of the peroxisome proliferator-activated receptor (PPAR) pathway, which constitutes a regulatory hub for metabolic processes. Interference with PLIN2 and PPARα resulted in major alterations in gene expression, especially affecting lipid, glucose, and purine metabolism. Our model recapitulates many metabolic changes that are characteristic for NAFLD. It permits the dissection of disease-promoting molecular pathways and allows us to investigate the influences of distinct genetic backgrounds on disease progression.
Collapse
Affiliation(s)
- Nina Graffmann
- 1 Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Sarah Ring
- 1 Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Marie-Ann Kawala
- 1 Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Wasco Wruck
- 1 Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Audrey Ncube
- 1 Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Hans-Ingo Trompeter
- 2 Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - James Adjaye
- 1 Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
37
|
Wruck W, Graffmann N, Kawala MA, Adjaye J. Concise Review: Current Status and Future Directions on Research Related to Nonalcoholic Fatty Liver Disease. Stem Cells 2016; 35:89-96. [PMID: 27374784 DOI: 10.1002/stem.2454] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/27/2016] [Accepted: 06/18/2016] [Indexed: 02/06/2023]
Abstract
Considered a feature of the metabolic syndrome, nonalcoholic fatty liver disease (NAFLD), is associated with insulin resistance, type 2 diabetes, obesity and drug toxicity. Its prevalence is estimated at about 30% in western countries mainly due to sedentary life styles and high fat diets. Genome-wide association studies have identified polymorphisms in several genes, for example, PNPLA3, and TM6SF2 which confer susceptibility to NAFLD. Here, we review recent findings in the NAFLD field with a particular focus on published transcriptomics datasets which we subject to a meta-analysis. We reveal a common gene signature correlating with the progression of the disease from steatosis and steatohepatitis and reveal that lipogenic and cholesterol metabolic pathways are main actors in this signature. We propose the use of disease-in-a-dish models based on hepatocyte-like cells derived from patient-specific induced pluripotent stem cells (iPSC). These will enable investigations into the contribution of genetic background in the progression from NALFD to non-alcoholic steatohepatitis. Furthermore, an iPSC-based approach should aid in the elucidation of the function of new biomarkers, thus enabling better diagnostic tests and validation of potential drug targets. Stem Cells 2017;35:89-96.
Collapse
Affiliation(s)
- Wasco Wruck
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Nina Graffmann
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Marie-Ann Kawala
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - James Adjaye
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
38
|
Noninvasive metabolic profiling for painless diagnosis of human diseases and disorders. Future Sci OA 2016; 2:FSO106. [PMID: 28031956 PMCID: PMC5137983 DOI: 10.4155/fsoa-2015-0014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/29/2016] [Indexed: 12/16/2022] Open
Abstract
Metabolic profiling provides a powerful diagnostic tool complementary to genomics and proteomics. The pain, discomfort and probable iatrogenic injury associated with invasive or minimally invasive diagnostic methods, render them unsuitable in terms of patient compliance and participation. Metabolic profiling of biomatrices like urine, breath, saliva, sweat and feces, which can be collected in a painless manner, could be used for noninvasive diagnosis. This review article covers the noninvasive metabolic profiling studies that have exhibited diagnostic potential for diseases and disorders. Their potential applications are evident in different forms of cancer, metabolic disorders, infectious diseases, neurodegenerative disorders, rheumatic diseases and pulmonary diseases. Large scale clinical validation of such diagnostic methods is necessary in future.
Collapse
|
39
|
Mayoral Monibas R, Johnson AMF, Osborn O, Traves PG, Mahata SK. Distinct Hepatic Macrophage Populations in Lean and Obese Mice. Front Endocrinol (Lausanne) 2016; 7:152. [PMID: 27999564 PMCID: PMC5138231 DOI: 10.3389/fendo.2016.00152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022] Open
Abstract
Obesity is a complex metabolic disorder associated with the development of non-communicable diseases such as cirrhosis, non-alcoholic fatty liver disease, and type 2 diabetes. In humans and rodents, obesity promotes hepatic steatosis and inflammation, which leads to increased production of pro-inflammatory cytokines and acute-phase proteins. Liver macrophages (resident as well as recruited) play a significant role in hepatic inflammation and insulin resistance (IR). Interestingly, depletion of hepatic macrophages protects against the development of high-fat-induced steatosis, inflammation, and IR. Kupffer cells (KCs), liver-resident macrophages, are the first-line defense against invading pathogens, clear toxic or immunogenic molecules, and help to maintain the liver in a tolerogenic immune environment. During high fat diet feeding and steatosis, there is an increased number of recruited hepatic macrophages (RHMs) in the liver and activation of KCs to a more inflammatory or M1 state. In this review, we will focus on the role of liver macrophages (KCs and RHMs) during obesity.
Collapse
Affiliation(s)
- Rafael Mayoral Monibas
- Merck Research Laboratories, Kenilworth, NJ, USA
- CIBERehd – Networked Biomedical Research Center, Hepatic and Digestive Diseases, Madrid, Spain
- *Correspondence: Rafael Mayoral Monibas, ; Sushil K. Mahata,
| | - Andrew M. F. Johnson
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| | - Olivia Osborn
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| | - Paqui G. Traves
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA, USA
| | - Sushil K. Mahata
- Metabolic Physiology & Ultrastructural Biology Laboratory, Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
- Metabolic Physiology & Ultrastructural Biology Laboratory, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- *Correspondence: Rafael Mayoral Monibas, ; Sushil K. Mahata,
| |
Collapse
|