1
|
Xi X, Qi Y, Zhang M, Yang P, Huang X. Unveiling 8,12-Dimethoxysanguinarine: A Potent Inhibitor of Breast Cancer Metastasis via Fibronectin 1 Downregulation. Chem Biodivers 2025; 22:e202402489. [PMID: 39676589 DOI: 10.1002/cbdv.202402489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/17/2024]
Abstract
This study investigated the effects of 8,12-dimethoxysanguinarine (DSG) from Eomecon chionantha Hance on the malignant biological activity of breast cancer cells. RNA-sequencing measure analysis revealed that metastasis-related genes were significantly downregulated in DSG-treated MCF-7 cells. DSG significantly inhibits the migration ability in MCF-7 cells. Molecular docking studies demonstrated significant interactions between DSG and the Fibronectin 1 (FN1) protein, with a binding energy of -8.91 kcal/mol. Additionally, FN1 messenger RNA expression was significantly upregulated in 1085 breast tumor samples compared to normal tissue in the Cancer Genome Atlas Breast Invasive Carcinoma Collection dataset. DSG also suppressed MCF-7 cell metastasis by downregulating FN1 expression. Furthermore, DSG was identified as a promising candidate based on absorption distribution metabolism excretion toxicity and drug-likeness assessments. Combination studies indicated that DSG synergized with the conventional chemotherapeutic agent doxorubicin to suppress MCF-7 cell migration, as confirmed by wound-healing and transwell assays. Collectively, these findings suggest that DSG may serve as a potential agent for inhibiting breast cancer cell metastasis by decreasing FN1 expression.
Collapse
Affiliation(s)
- Xiuli Xi
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Yuxin Qi
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Mingli Zhang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Peng Yang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
2
|
de Bakker T, Maes A, Dragan T, Martinive P, Penninckx S, Van Gestel D. Strategies to Overcome Intrinsic and Acquired Resistance to Chemoradiotherapy in Head and Neck Cancer. Cells 2024; 14:18. [PMID: 39791719 PMCID: PMC11719474 DOI: 10.3390/cells14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Definitive chemoradiotherapy (CRT) is a cornerstone of treatment for locoregionally advanced head and neck cancer (HNC). Research is ongoing on how to improve the tumor response to treatment and limit normal tissue toxicity. A major limitation in that regard is the growing occurrence of intrinsic or acquired treatment resistance in advanced cases. In this review, we will discuss how overexpression of efflux pumps, perturbation of apoptosis-related factors, increased expression of antioxidants, glucose metabolism, metallotheionein expression, increased DNA repair, cancer stem cells, epithelial-mesenchymal transition, non-coding RNA and the tumour microenvironment contribute towards resistance of HNC to chemotherapy and/or radiotherapy. These mechanisms have been investigated for years and been exploited for therapeutic gain in resistant patients, paving the way to the development of new promising drugs. Since in vitro studies on resistance requires a suitable model, we will also summarize published techniques and treatment schedules that have been shown to generate acquired resistance to chemo- and/or radiotherapy that most closely mimics the clinical scenario.
Collapse
Affiliation(s)
- Tycho de Bakker
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Anouk Maes
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Tatiana Dragan
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Philippe Martinive
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Sébastien Penninckx
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| |
Collapse
|
3
|
Aizawa Y, Haga K, Yoshiba N, Yortchan W, Takada S, Tanaka R, Naito E, Abé T, Maruyama S, Yamazaki M, Tanuma JI, Igawa K, Tomihara K, Togo S, Izumi K. Development and Characterization of a Three-Dimensional Organotypic In Vitro Oral Cancer Model with Four Co-Cultured Cell Types, Including Patient-Derived Cancer-Associated Fibroblasts. Biomedicines 2024; 12:2373. [PMID: 39457685 PMCID: PMC11505046 DOI: 10.3390/biomedicines12102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Cancer organoids have emerged as a valuable tool of three-dimensional (3D) cell cultures to investigate tumor heterogeneity and predict tumor behavior and treatment response. We developed a 3D organotypic culture model of oral squamous cell carcinoma (OSCC) to recapitulate the tumor-stromal interface by co-culturing four cell types, including patient-derived cancer-associated fibroblasts (PD-CAFs). Methods: A stainless-steel ring was used twice to create the horizontal positioning of the cancer stroma (adjoining normal oral mucosa connective tissue) and the OSCC layer (surrounding normal oral mucosa epithelial layer). Combined with a structured bi-layered model of the epithelial component and the underlying stroma, this protocol enabled us to construct four distinct portions mimicking the oral cancer tissue arising in the oral mucosa. Results: In this model, α-smooth muscle actin-positive PD-CAFs were localized in close proximity to the OSCC layer, suggesting a crosstalk between them. Furthermore, a linear laminin-γ2 expression was lacking at the interface between the OSCC layer and the underlying stromal layer, indicating the loss of the basement membrane-like structure. Conclusions: Since the specific 3D architecture and polarity mimicking oral cancer in vivo provides a more accurate milieu of the tumor microenvironment (TME), it could be crucial in elucidating oral cancer TME.
Collapse
Affiliation(s)
- Yuka Aizawa
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.A.); (W.Y.); (S.T.)
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (E.N.)
| | - Kenta Haga
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Nagako Yoshiba
- Department of Oral Health and Welfare, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Witsanu Yortchan
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.A.); (W.Y.); (S.T.)
| | - Sho Takada
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.A.); (W.Y.); (S.T.)
| | - Rintaro Tanaka
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.A.); (W.Y.); (S.T.)
| | - Eriko Naito
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (E.N.)
| | - Tatsuya Abé
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan (J.-i.T.)
| | - Satoshi Maruyama
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan (J.-i.T.)
| | - Manabu Yamazaki
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan (J.-i.T.)
| | - Jun-ichi Tanuma
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan (J.-i.T.)
| | - Kazuyo Igawa
- Neutron Therapy Research Center, Okayama University, Okayama 700-8558, Japan;
| | - Kei Tomihara
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (E.N.)
| | - Shinsaku Togo
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Kenji Izumi
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.A.); (W.Y.); (S.T.)
| |
Collapse
|
4
|
Pomella S, Melaiu O, Dri M, Martelli M, Gargari M, Barillari G. Effects of Angiogenic Factors on the Epithelial-to-Mesenchymal Transition and Their Impact on the Onset and Progression of Oral Squamous Cell Carcinoma: An Overview. Cells 2024; 13:1294. [PMID: 39120324 PMCID: PMC11311310 DOI: 10.3390/cells13151294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
High levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)-2 and angiopoietin (ANG)-2 are found in tissues from oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs). As might be expected, VEGF, FGF-2, and ANG-2 overexpression parallels the development of new blood and lymphatic vessels that nourish the growing OPMDs or OSCCs and provide the latter with metastatic routes. Notably, VEGF, FGF-2, and ANG-2 are also linked to the epithelial-to-mesenchymal transition (EMT), a trans-differentiation process that respectively promotes or exasperates the invasiveness of normal and neoplastic oral epithelial cells. Here, we have summarized published work regarding the impact that the interplay among VEGF, FGF-2, ANG-2, vessel generation, and EMT has on oral carcinogenesis. Results from the reviewed studies indicate that VEGF, FGF-2, and ANG-2 spark either protein kinase B (AKT) or mitogen-activated protein kinases (MAPK), two signaling pathways that can promote both EMT and new vessels' formation in OPMDs and OSCCs. Since EMT and vessel generation are key to the onset and progression of OSCC, as well as to its radio- and chemo-resistance, these data encourage including AKT or MAPK inhibitors and/or antiangiogenic drugs in the treatment of this malignancy.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Maria Dri
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Mirko Martelli
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Marco Gargari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| |
Collapse
|
5
|
Cappelletto A, Alfì E, Volf N, Vu TVA, Bortolotti F, Ciucci G, Vodret S, Fantuz M, Perin M, Colliva A, Rozzi G, Rossi M, Ruozi G, Zentilin L, Vuerich R, Borin D, Lapasin R, Piazza S, Chiesa M, Lorizio D, Triboli L, Kumar S, Morello G, Tripodo C, Pinamonti M, Piperno GM, Benvenuti F, Rustighi A, Jo H, Piccolo S, Del Sal G, Carrer A, Giacca M, Zacchigna S. EMID2 is a novel biotherapeutic for aggressive cancers identified by in vivo screening. J Exp Clin Cancer Res 2024; 43:15. [PMID: 38195652 PMCID: PMC10777502 DOI: 10.1186/s13046-023-02942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND New drugs to tackle the next pathway or mutation fueling cancer are constantly proposed, but 97% of them are doomed to fail in clinical trials, largely because they are identified by cellular or in silico screens that cannot predict their in vivo effect. METHODS We screened an Adeno-Associated Vector secretome library (> 1000 clones) directly in vivo in a mouse model of cancer and validated the therapeutic effect of the first hit, EMID2, in both orthotopic and genetic models of lung and pancreatic cancer. RESULTS EMID2 overexpression inhibited both tumor growth and metastatic dissemination, consistent with prolonged survival of patients with high levels of EMID2 expression in the most aggressive human cancers. Mechanistically, EMID2 inhibited TGFβ maturation and activation of cancer-associated fibroblasts, resulting in more elastic ECM and reduced levels of YAP in the nuclei of cancer cells. CONCLUSION This is the first in vivo screening, precisely designed to identify proteins able to interfere with cancer cell invasiveness. EMID2 was selected as the most potent protein, in line with the emerging relevance of the tumor extracellular matrix in controlling cancer cell invasiveness and dissemination, which kills most of cancer patients.
Collapse
Affiliation(s)
- Ambra Cappelletto
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Edoardo Alfì
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Nina Volf
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Thi Van Anh Vu
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Francesca Bortolotti
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giulio Ciucci
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Simone Vodret
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Marco Fantuz
- Veneto Institute of Molecular Medicine, Padova, Italy
- University of Padova, Padova, Italy
| | - Martina Perin
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Andrea Colliva
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giacomo Rozzi
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Matilde Rossi
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giulia Ruozi
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Lorena Zentilin
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Roman Vuerich
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Daniele Borin
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Romano Lapasin
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Silvano Piazza
- Bioinformatics, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Bioinformatics Facility, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | | | | | - Luca Triboli
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Cancer Cell Signaling, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gaia Morello
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
- Histopathology Unit, Institute of Molecular Oncology Foundation (IFOM), ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Maurizio Pinamonti
- Pathology Department Azienda Sanitaria Universitaria Giuliano-Isontina and University of Trieste, Trieste, Italy
| | - Giulia Maria Piperno
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alessandra Rustighi
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Cancer Cell Signaling, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Cancer Cell Signaling, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Alessandro Carrer
- Veneto Institute of Molecular Medicine, Padova, Italy
- University of Padova, Padova, Italy
| | - Mauro Giacca
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- King's College London, British Heart Foundation Centre of Research Excellence, London, UK
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
6
|
Çelenk F, Saruhan BG, Sağsöz H. Differential distribution of intermediate filament proteins in the bovine and ovine tongues. Anat Histol Embryol 2024; 53:e13013. [PMID: 38230836 DOI: 10.1111/ahe.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024]
Abstract
Intermediate filaments constitute the most heterogeneous class among the major classes of cytoskeletal proteins of mammalian cells. The 40 or more intermediate filament proteins have been classified into five types which show very specific rules of expression in specialized cell types. This study aimed to investigate the immunohistochemical distribution of cytokeratins (CKs) 8, 18, and 19 as well as the intermediate filaments vimentin, laminin, and desmin in bovine and ovine tongues. Immunohistochemical staining was performed for CKs 8, 18, 19, vimentin, laminin, and desmin. Our results revealed similar immunostaining intensity and distribution among various CKs, contrasting with distinct patterns for vimentin, laminin, and desmin. Immunoreactions were primarily localized in serous acini and ductal epithelium for cytokeratins, while vimentin and laminin were evident in connective tissue, endothelium, serous acini, and desmin in striated and smooth muscles. This study highlighted the absence of CKs 8, 18, 19, vimentin, and desmin in the lingual epithelium of bovine and ovine tongues. These findings enabled the classification of epithelial cells based on their specific cytokeratin patterns. Furthermore, vimentin was identified in mesodermal tissues and organs, desmin in muscle tissue, and laminin played crucial roles in basement membrane formation, nerve tissue regeneration, innervation of epithelial taste buds, and tissue separation and connection. Our findings provide essential insights into intermediate filament dynamics at the cellular and tissue levels. They serve as a foundation for future studies using systematic molecular biological techniques in this field.
Collapse
Affiliation(s)
- Fatma Çelenk
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| | - Berna Güney Saruhan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| | - Hakan Sağsöz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
7
|
Jiang Y, Liu Y, Zhang Y, Ouyang J, Feng Y, Li S, Wang J, Zhang C, Tan L, Zhong J, Zou L. MicroRNA-142-3P suppresses the progression of papillary thyroid carcinoma by targeting FN1 and inactivating FAK/ERK/PI3K signaling. Cell Signal 2023:110792. [PMID: 37406787 DOI: 10.1016/j.cellsig.2023.110792] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
OBJECTIVES miR-142-3P is a tumor suppressor in various malignant cancers. However, the function of miR-142-3P in papillary thyroid carcinoma (PTC) remains to be elucidated. The aim of this study was to explore the function and mechanism of miR-142-3P in PTC. METHODS Real Time Quantitative PCR (RT-qPCR) was used to assess the expression of miR-142-3P and Fibronectin 1 (FN1) in PTC. The correlation between FN1 and miR-142-3P expression was analyzed by Spearman's correlation analysis. Cell Counting Kit 8 (CCK8), 5-ethynyl-2'-deoxyuridine (EDU) assay, cell migration and invasion assay and wound healing measures evaluated the effect of miR-142-3P and FN1 on cell proliferation, migration and invasion. Dural Luciferase reported gene assay evaluated the interaction between miR-142-3P and 3' untranslated region (UTR) of FN1. The Epithelial-Mesenchymal-Transition (EMT) and apoptosis related marker genes were measured using western blot analysis (WB). RESULTS miR-142-3P was significantly decreased in both PTC specimens and relevant cell lines. Functionally, miR-142-3P inhibited cell proliferation, migration, invasion and EMT, and induced the cell apoptosis in PTC. In addition, miR-142-3P bound directly with 3' UTR of FN1 and negatively regulated the expression of FN1 in PTC. FN1 expression is elevated in PTC, and its aberrant high correlated with declines in recurrence-free survival (RFS). Moreover, FN1 promoted cell proliferation, migration, invasion and EMT, induced cell apoptosis in PTC cells. Depletion of FN1 rescues the effect of miR-142-3P inhibitor on cell proliferation, invasion, apoptosis and EMT via inactivating Focal Adhesion Kinase (FAK)/Extracellular Signal-Regulated Kinase (ERK) / Phosphoinostide 3-kinase (P13K) signaling. CONCLUSION miR-142-3P suppressed cell proliferation, migration, invasion and EMT through modulating FN1/FAK/ERK/PI3K signaling in PTC, suggesting it as a potential therapeutic target for PTC.
Collapse
Affiliation(s)
- Yufei Jiang
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China; Aculty of Healty Science, University of Macau, Macau 999078, People's Republic of China
| | - Yarong Liu
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Yiyuan Zhang
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Jielin Ouyang
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Yang Feng
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Shumei Li
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Jingjing Wang
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Chaojie Zhang
- Department of Papillary Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Lihong Tan
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China.
| | - Jie Zhong
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China.
| | - Lianhong Zou
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China.
| |
Collapse
|
8
|
Dzobo K, Dandara C. The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics (Basel) 2023; 8:146. [PMID: 37092398 PMCID: PMC10123695 DOI: 10.3390/biomimetics8020146] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
The extracellular matrix (ECM) is a ubiquitous member of the body and is key to the maintenance of tissue and organ integrity. Initially thought to be a bystander in many cellular processes, the extracellular matrix has been shown to have diverse components that regulate and activate many cellular processes and ultimately influence cell phenotype. Importantly, the ECM's composition, architecture, and stiffness/elasticity influence cellular phenotypes. Under normal conditions and during development, the synthesized ECM constantly undergoes degradation and remodeling processes via the action of matrix proteases that maintain tissue homeostasis. In many pathological conditions including fibrosis and cancer, ECM synthesis, remodeling, and degradation is dysregulated, causing its integrity to be altered. Both physical and chemical cues from the ECM are sensed via receptors including integrins and play key roles in driving cellular proliferation and differentiation and in the progression of various diseases such as cancers. Advances in 'omics' technologies have seen an increase in studies focusing on bidirectional cell-matrix interactions, and here, we highlight the emerging knowledge on the role played by the ECM during normal development and in pathological conditions. This review summarizes current ECM-targeted therapies that can modify ECM tumors to overcome drug resistance and better cancer treatment.
Collapse
Affiliation(s)
- Kevin Dzobo
- Medical Research Council, SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Collet Dandara
- Division of Human Genetics and Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
- The South African Medical Research Council-UCT Platform for Pharmacogenomics Research and Translation, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
9
|
Hall RC, Vaidya AM, Schiemann WP, Pan Q, Lu ZR. RNA-Seq Analysis of Extradomain A and Extradomain B Fibronectin as Extracellular Matrix Markers for Cancer. Cells 2023; 12:cells12050685. [PMID: 36899821 PMCID: PMC10000746 DOI: 10.3390/cells12050685] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Alternatively spliced forms of fibronectin, called oncofetal fibronectin, are aberrantly expressed in cancer, with little to no expression in normal tissue, making them attractive biomarkers to exploit for tumor-targeted therapeutics and diagnostics. While prior studies have explored oncofetal fibronectin expression in limited cancer types and limited sample sizes, no studies have performed a large-scale pan-cancer analysis in the context of clinical diagnostics and prognostics to posit the utility of these biomarkers across multiple cancer types. In this study, RNA-Seq data sourced from the UCSC Toil Recompute project were extracted and analyzed to determine the correlation between the expression of oncofetal fibronectin, including extradomain A and extradomain B fibronectin, and patient diagnosis and prognosis. We determined that oncofetal fibronectin is significantly overexpressed in most cancer types relative to corresponding normal tissues. In addition, strong correlations exist between increasing oncofetal fibronectin expression levels and tumor stage, lymph node activity, and histological grade at the time of diagnosis. Furthermore, oncofetal fibronectin expression is shown to be significantly associated with overall patient survival within a 10-year window. Thus, the results presented in this study suggest oncofetal fibronectin as a commonly upregulated biomarker in cancer with the potential to be used for tumor-selective diagnosis and treatment applications.
Collapse
Affiliation(s)
- Ryan C. Hall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amita M. Vaidya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Quintin Pan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University Hospitals, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-368-0187; Fax: +1-216-368-4969
| |
Collapse
|
10
|
Aleman J, Young CD, Karam SD, Wang XJ. Revisiting laminin and extracellular matrix remodeling in metastatic squamous cell carcinoma: What have we learned after more than four decades of research? Mol Carcinog 2023; 62:5-23. [PMID: 35596706 PMCID: PMC9676410 DOI: 10.1002/mc.23417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
Patients with squamous cell carcinoma (SCC) have significantly lower survival upon the development of distant metastases. The extracellular matrix (ECM) is a consistent yet dynamic influence on the metastatic capacity of SCCs. The ECM encompasses a milieu of structural proteins, signaling molecules, and enzymes. Just over 40 years ago, the fibrous ECM glycoprotein laminin was identified. Roughly four decades of research have revealed a pivotal role of laminins in metastasis. However, trends in ECM alterations in some cancers have been applied broadly to all metastatic diseases, despite evidence that these characteristics vary by tumor type. We will summarize how laminins influence the SCC metastatic process exclusively. Enhanced laminin protein deposition occurs at the invasive edge of SCC tumors, which correlates with elevated levels of laminin-binding β1 integrins on SCC cells, increased MMP-3 presence, worse prognosis, and lymphatic dissemination. Although these findings are significant, gaps in knowledge of the formation of a premetastatic niche, the processes of intra- and extravasation, and the contributions of the ECM to SCC metastatic cell dormancy persist. Bridging these gaps requires novel in vitro systems and animal models that reproduce tumor-stromal interactions and spontaneous metastasis seen in the clinic. These advances will allow accurate assessment of laminins to predict responders to transforming growth factor-β inhibitors and immunotherapy, as well as potential combinatorial therapies with the standard of care. Such clinical interventions may drastically improve quality of life and patient survival by explicitly targeting SCC metastasis.
Collapse
Affiliation(s)
- John Aleman
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christian D. Young
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado, USA
| |
Collapse
|
11
|
Hurst JR, Shannon BA, Craig HC, Rishi A, Tuffs SW, McCormick JK. The Streptococcus pyogenes hyaluronic acid capsule promotes experimental nasal and skin infection by preventing neutrophil-mediated clearance. PLoS Pathog 2022; 18:e1011013. [PMID: 36449535 PMCID: PMC9744330 DOI: 10.1371/journal.ppat.1011013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/12/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Streptococcus pyogenes is a globally prominent human-specific pathogen responsible for an enormous burden of human illnesses, including >600 million pharyngeal and >100 million skin infections each year. Despite intensive efforts that focus on invasive indications, much remains unknown about this bacterium in its natural state during colonization of the nasopharynx and skin. Using acute experimental infection models in HLA-transgenic mice, we evaluated how the hyaluronic acid (HA) capsule contributes to S. pyogenes MGAS8232 infection within these limited biological niches. Herein, we demonstrate that HA capsule expression promotes bacterial burden in murine nasal turbinates and skin lesions by resisting neutrophil-mediated killing. HA capsule production is encoded by the hasABC operon and compared to wildtype S. pyogenes infections, mice infected with a ΔhasA mutant exhibited over a 1000-fold CFU reduction at 48-hours post-nasal challenge, and a 10,000-fold CFU reduction from skin lesions 72-hours post-skin challenge. HA capsule expression contributed substantially to skin lesion size development following subdermal inoculations. In the absence of capsule expression, S. pyogenes revealed drastically impeded growth in whole human blood and increased susceptibility to killing by isolated neutrophils ex vivo, highlighting its important role in resisting phagocytosis. Furthermore, we establish that neutrophil depletion in mice recovered the reduced burden by the ΔhasA mutant in both the nasopharynx and skin. Together, this work confirms that the HA capsule is a key virulence determinant during acute infections by S. pyogenes and demonstrates that its predominant function is to protect S. pyogenes against neutrophil-mediated killing.
Collapse
Affiliation(s)
- Jacklyn R. Hurst
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Blake A. Shannon
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Heather C. Craig
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Aanchal Rishi
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Stephen W. Tuffs
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - John K. McCormick
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
12
|
Berndt A, Gaßler N, Franz M. Invasion-Associated Reorganization of Laminin 332 in Oral Squamous Cell Carcinomas: The Role of the Laminin γ2 Chain in Tumor Biology, Diagnosis, and Therapy. Cancers (Basel) 2022; 14:4903. [PMID: 36230826 PMCID: PMC9564360 DOI: 10.3390/cancers14194903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
Invasion of the connective tissue by carcinoma cells is accompanied by disintegration and reorganization of the hemidesmosomes, which connect the basement membrane to the basal epithelial cells. In terms of mediating the basement membrane, i.e., basal cell interactions, the heterotrimeric laminin 332 is the most important bridging molecule. Due to this distinct function, laminin 332, especially its gamma 2 chain, came into the focus of cancer research. Specific de novo synthesis and deposition patterns of laminin 332 are evident upon development and progression of oral squamous cell carcinomas (OSCCs). Loss from the basement membrane, cytoplasmic accumulation, and extracellular deposition are associated with crucial processes such as stromal activation and immune response, epithelial to mesenchymal transition, and tumor cell budding. In networks with components of the tumor microenvironment, altered expression of laminin 332 chains, proteolytic processing, and interaction with integrin receptors seem to promote cancer cell migration. Indeed, reorganization patterns are shown to have a high diagnostic and prognostic value. Here, we summarize the current knowledge on laminin 332 reorganization in OSCCs with special focus on its gamma 2 chain and provide, based on the current literature, evidence on its promising role as a grading and monitoring parameter and as a potential therapeutic target.
Collapse
Affiliation(s)
- Alexander Berndt
- Section Pathology, Institute of Legal Medicine, University Hospital Jena, 07747 Jena, Germany
| | - Nikolaus Gaßler
- Section Pathology, Institute of Legal Medicine, University Hospital Jena, 07747 Jena, Germany
| | - Marcus Franz
- Department of Internal Medicine I, University Hospital Jena, 07747 Jena, Germany
| |
Collapse
|
13
|
Kesharani P, Kansara P, Kansara T, Kini A, Bhat R, Shetty P, Penugonda B. Is Periodontitis a Risk Factor for Lung Cancer? A Meta-Analysis and Detailed Review of Mechanisms of Association. Contemp Clin Dent 2022; 13:297-306. [PMID: 36686995 PMCID: PMC9855255 DOI: 10.4103/ccd.ccd_117_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022] Open
Abstract
Background Numerous studies have explored the correlation of periodontal disease (PD) with the risk of lung cancers, but the findings were inconsistent. Therefore, we did a meta-analysis to ascertain the correlation of PD with the risk of incident lung cancer. Methods The authors searched relevant studies in databases (PubMed, Web of Science, Scopus, Embase, and MEDLINE) till November 2020. We registered the study at the International database of Prospectively Registered Systemic Reviews under the CRD42020198119. The summary relative risk (RR) along with a 95% confidence interval (CI) was calculated using fixed-effects models. Results Twelve studies were included in the qualitative synthesis. The pooled analysis revealed that PD was significantly associated with an increased risk of lung cancer (RR 1.71; 95%CI 1.61-1.81; P < 0.01). Subgroup analysis was performed based on gender distribution, geographic location, and type of studies. Conclusion From this current evidence, PD is a potential risk factor for the development of lung cancer. The risk for incidence of lung cancer is surged twice in the patients with PD, even though age and smoking are controlled in the studies.
Collapse
Affiliation(s)
- Pooja Kesharani
- College of Dental Sciences & Research Centre, Ahmedabad, India
| | | | | | - Arjun Kini
- New York University College of Dentistry, New York, USA
| | - Raksha Bhat
- Nitte (Deemed to be University), AB Shetty Memorial Institute of Dental Sciences(ABSMIDS), Department of Conservative Dentistry and Endodontics, Mangaluru, Karnataka, India
| | - Preethesh Shetty
- Nitte (Deemed to be University), AB Shetty Memorial Institute of Dental Sciences(ABSMIDS), Department of Conservative Dentistry and Endodontics, Mangaluru, Karnataka, India
| | | |
Collapse
|
14
|
Phosphorylation of Arl4A/D promotes their binding by the HYPK chaperone for their stable recruitment to the plasma membrane. Proc Natl Acad Sci U S A 2022; 119:e2207414119. [PMID: 35857868 PMCID: PMC9335210 DOI: 10.1073/pnas.2207414119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Arl4 small GTPases participate in a variety of cellular events, including cytoskeleton remodeling, vesicle trafficking, cell migration, and neuronal development. Whereas small GTPases are typically regulated by their GTPase cycle, Arl4 proteins have been found to act independent of this canonical regulatory mechanism. Here, we show that Arl4A and Arl4D (Arl4A/D) are unstable due to proteasomal degradation, but stimulation of cells by fibronectin (FN) inhibits this degradation to promote Arl4A/D stability. Proteomic analysis reveals that FN stimulation induces phosphorylation at S143 of Arl4A and at S144 of Arl4D. We identify Pak1 as the responsible kinase for these phosphorylations. Moreover, these phosphorylations promote the chaperone protein HYPK to bind Arl4A/D, which stabilizes their recruitment to the plasma membrane to promote cell migration. These findings not only advance a major mechanistic understanding of how Arl4 proteins act in cell migration but also achieve a fundamental understanding of how these small GTPases are modulated by revealing that protein stability, rather than the GTPase cycle, acts as a key regulatory mechanism.
Collapse
|
15
|
Integration of collagen fibers in connective tissue with dental implant in the transmucosal region. Int J Biol Macromol 2022; 208:833-843. [PMID: 35367473 DOI: 10.1016/j.ijbiomac.2022.03.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
Abstract
Dental implants have been widely accepted as an ideal therapy to replace the missing teeth for its good performance in aspects of mechanical properties and aesthetic outcomes. Its restorative success is contributed by not only the successful osseointegration of the implant but also the tight soft tissue integration, especially the collagen fibers, in the transmucosal region. Soft tissue attaching to the dental implant/abutment is overall similar, but in some aspects distinct with that seen around natural teeth and soft tissue integration can be enhanced via several surface modification methods. This review is going to focus on the current knowledge of the transmucosal zone around the dental implants (compared with natural teeth), and latest strategies in use to fine-tune the collagen fibers assembly in the connective tissue, in an attempt to enhance soft tissue integration.
Collapse
|
16
|
Label-free plasma proteomics for the identification of the putative biomarkers of oral squamous cell carcinoma. J Proteomics 2022; 259:104541. [DOI: 10.1016/j.jprot.2022.104541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
|
17
|
Sheng S, Guo B, Wang Z, Zhang Z, Zhou J, Huo Z. Aberrant Methylation and Immune Microenvironment Are Associated With Overexpressed Fibronectin 1: A Diagnostic and Prognostic Target in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:753563. [PMID: 34746236 PMCID: PMC8563786 DOI: 10.3389/fmolb.2021.753563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Fibronectin 1 (FN1) is involved in cell adhesion and migration processes such as metastasis, wound healing, embryogenesis, blood coagulation, and host defense. However, the role of FN1 in the diagnosis and prognosis of head and neck squamous cell carcinoma (HNSCC) is far from understood. Methods: FN1 expression profiles and clinical parameters from multiple HNSCC datasets were applied to evaluate the association between FN1 expression and HNSCC survival. We also identified FN1 expression in the mRNA and protein levels in 20 pairs of clinical samples by quantitative polymerase chain reaction (qPCR) and immunohistochemistry. Receiver operator characteristic (ROC) analysis was used to demonstrate the potential diagnostic value of FN1 in HNSCC. Aberrant methylation PPI networks were established using multiple bioinformatic tools based on TCGA database. The immune microenvironment and levels of immune checkpoints were investigated between groups with high and low FN1 expression. Results: FN1 was significantly upregulated in HNSCC compared with para-carcinoma tissues on the basis of TCGA database and our clinical samples. Univariate and multivariate Cox regression analysis revealed that FN1 could be an independent indicator for prognosis of HNSCC. GO enrichment and KEGG pathway analysis demonstrated that cell adhesion, focal adhesion, and the PI3K-Akt signaling pathway might be involved in the potential mechanisms of FN1's prognostic performance in HNSCC. Methylation of FN1 was also higher and closely associated with poorer survival in HNSCC. In addition, FN1 expression was positively correlated with three DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B). Furthermore, FN1 was positively associated with CD4+ T cells, endothelial cells, macrophages, and NK cells and negatively correlated with CD8+ T cells Conclusion: FN1 might be an independent prognostic biomarker for HNSCC patients. Hypermethylation, the aberrant proportions of immune cells, and the PI3K/Akt signaling pathway might be involved in the mechanism of FN1's oncogene role in HNSCC.
Collapse
Affiliation(s)
- Surui Sheng
- Shanghai Key Laboratory of Stomatology, Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Guo
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhentao Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhihua Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jieyu Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zirong Huo
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Shetty SS, Padam KSR, Hunter KD, Kudva A, Radhakrishnan R. Biological implications of the immune factors in the tumour microenvironment of oral cancer. Arch Oral Biol 2021; 133:105294. [PMID: 34735925 DOI: 10.1016/j.archoralbio.2021.105294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The objective of this review is to decipher the biological implications of the immune factors in the tumour microenvironment in oral cancer. The restoration of balance between tumour tolerance and tumour eradication by the host immune cells is critical to provide effective therapeutic strategies. DESIGN The specific role of the stromal and the immune components in oral cancer was reviewed with a tailored search strategy using relevant keywords. The articles were retrieved from bibliometric databases indexed in PubMed, Scopus, and Embase. An in silico analysis was performed to identify potential drug candidates for immunotherapy, by accessing the Drug-Gene Interactions Database (DGIdb) using the rDGIdb package. RESULTS There is compelling evidence for the role of the cellular and extracellular components of the tumour microenvironment in inducing immunosuppression and progression of oral cancer. The druggable candidates specifically targeting the immune system are a viable option in the treatment of oral cancer as they can regulate the tumour microenvironment. CONCLUSION A complex interaction between the tumour and the immunological microenvironment influences the disease outcome in oral cancer. Targeting specific components of the immune system might be relevant, as immunotherapy may become the new standard of care for oral cancer.
Collapse
Affiliation(s)
- Smitha Sammith Shetty
- Department of Oral Pathology, Faculty of Dentistry, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Kanaka Sai Ram Padam
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Adarsh Kudva
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
19
|
Theranostics for Breast Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1187:267-281. [PMID: 33983583 DOI: 10.1007/978-981-32-9620-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Effectively targeting and treating breast cancer stem cells (BCSCs), which have been linked to tumor development and metastasis, and recurrence still remains a challenging issue in preclinic and clinic. Screening and identifying characteristic BCSC biomarkers is important for distinguishing BCSCs from differentiated tumor cells within the tumor mass. Molecular imaging and nanotechnology are evolving as new fields that have a potentially high research and clinical impact. Developing the biocompatible contrast agents conjugated with high-affinity biomarker to selectively target BCSCs and is one of the key prerequisites for image-guided diagnosis and monitoring therapy of BCSCs. Very recently, we documented the extra domain-B fibronectin (EDB-FN), which is considered as a new putative biomarker for BCSCs (NDY-1 cell) derived from human breast carcinosarcoma. We here review BCSC-targeted theranostics in vitro and in vivo by delivering siRNA or drug using the nanoparticles conjugated with a small peptide specific to EDB-FN.
Collapse
|
20
|
Potential Therapeutic Significance of Laminin in Head and Neck Squamous Carcinomas. Cancers (Basel) 2021; 13:cancers13081890. [PMID: 33920762 PMCID: PMC8071176 DOI: 10.3390/cancers13081890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Head and neck cancers (HNC) account for approximately 500,000 new cases of tumors annually worldwide and are represented by upper aerodigestive tract malignant neoplasms, which particularly arise in oral cavity, larynx, and pharynx tissues. Thus, due to the biological diversity between the upper aerodigestive organs, and to the heterogeneity of risk factors associated with their malignant transformation, HNC behavior, and prognosis seem to strongly vary according to the tumor site. However, despite to the heterogeneity which characterizes head and neck tumors, squamous cell carcinomas (SCC) represent the predominant histopathologic HNC subtype. In this sense, it has been reported that SCC tumor biology is strongly associated with deregulations within the extracellular matrix compartment. Accordingly, it has been shown that laminin plays a remarkable role in the regulation of crucial events associated with head and neck squamous cell carcinomas (HNSCC) progression, which opens the possibility that laminin may represent a convergence point in HNSCC natural history. Abstract Head and neck squamous cell carcinomas (HNSCC) are among the most common and lethal tumors worldwide, occurring mostly in oral cavity, pharynx, and larynx tissues. The squamous epithelia homeostasis is supported by the extracellular matrix (ECM), and alterations in this compartment are crucial for cancer development and progression. Laminin is a fundamental component of ECM, where it represents one of the main components of basement membrane (BM), and data supporting its contribution to HNSCC genesis and progression has been vastly explored in oral cavity squamous cell carcinoma. Laminin subtypes 111 (LN-111) and 332 (LN-332) are the main isoforms associated with malignant transformation, contributing to proliferation, adhesion, migration, invasion, and metastasis, due to its involvement in the regulation of several pathways associated with HNSCC carcinogenesis, including the activation of the EGFR/MAPK signaling pathway. Therefore, it draws attention to the possibility that laminin may represent a convergence point in HNSCC natural history, and an attractive potential therapeutic target for these tumors.
Collapse
|
21
|
Regulation of FN1 degradation by the p62/SQSTM1-dependent autophagy-lysosome pathway in HNSCC. Int J Oral Sci 2020; 12:34. [PMID: 33318468 PMCID: PMC7736930 DOI: 10.1038/s41368-020-00101-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/23/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is involved in both physiological and pathological processes. EMT plays an essential role in the invasion, migration and metastasis of tumours. Autophagy has been shown to regulate EMT in a variety of cancers but not in head and neck squamous cell carcinoma (HNSCC). Herein, we investigated whether autophagy also regulates EMT in HNSCC. Analyses of clinical data from three public databases revealed that higher expression of fibronectin-1 (FN1) correlated with poorer prognosis and higher tumour pathological grade in HNSCC. Data from SCC-25 cells demonstrated that rapamycin and Earle’s balanced salt solution (EBSS) promoted autophagy, leading to increased FN1 degradation, while 3-methyladenine (3-MA), bafilomycin A1 (Baf A1) and chloroquine (CQ) inhibited autophagy, leading to decreased FN1 degradation. On the other hand, autophagic flux was blocked in BECN1 mutant HNSCC Cal-27 cells, and rapamycin did not promote autophagy in Cal-27 cells; also in addition, FN1 degradation was inhibited. Further, we identified FN1 degradation through the lysosome-dependent degradation pathway using the proteasome inhibitor MG132. Data from immunoprecipitation assays also showed that p62/SQSTM1 participated as an autophagy adapter in the autophagy–lysosome pathway of FN1 degradation. Finally, data from immunoprecipitation assays demonstrated that the interaction between p62 and FN1 was abolished in p62 mutant MCF-7 and A2780 cell lines. These results indicate that autophagy significantly promotes the degradation of FN1. Collectively, our findings clearly suggest that FN1, as a marker of EMT, has adverse effects on HNSCC and elucidate the autophagy–lysosome degradation mechanism of FN1.
Collapse
|
22
|
Sequeira I, Rashid M, Tomás IM, Williams MJ, Graham TA, Adams DJ, Vigilante A, Watt FM. Genomic landscape and clonal architecture of mouse oral squamous cell carcinomas dictate tumour ecology. Nat Commun 2020; 11:5671. [PMID: 33168804 PMCID: PMC7652942 DOI: 10.1038/s41467-020-19401-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/06/2020] [Indexed: 01/10/2023] Open
Abstract
To establish whether 4-nitroquinoline N-oxide-induced carcinogenesis mirrors the heterogeneity of human oral squamous cell carcinoma (OSCC), we have performed genomic analysis of mouse tongue lesions. The mutational signatures of human and mouse OSCC overlap extensively. Mutational burden is higher in moderate dysplasias and invasive SCCs than in hyperplasias and mild dysplasias, although mutations in p53, Notch1 and Fat1 occur in early lesions. Laminin-α3 mutations are associated with tumour invasiveness and Notch1 mutant tumours have an increased immune infiltrate. Computational modelling of clonal dynamics indicates that high genetic heterogeneity may be a feature of those mild dysplasias that are likely to progress to more aggressive tumours. These studies provide a foundation for exploring OSCC evolution, heterogeneity and progression.
Collapse
Affiliation(s)
- Inês Sequeira
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Mamunur Rashid
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Inês M Tomás
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Marc J Williams
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Trevor A Graham
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - David J Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Alessandra Vigilante
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
23
|
Weiss T, Puca E, Silginer M, Hemmerle T, Pazahr S, Bink A, Weller M, Neri D, Roth P. Immunocytokines are a promising immunotherapeutic approach against glioblastoma. Sci Transl Med 2020; 12:12/564/eabb2311. [DOI: 10.1126/scitranslmed.abb2311] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma is a poorly immunogenic cancer, and the successes with recent immunotherapies in extracranial malignancies have, so far, not been translated to this devastating disease. Therefore, there is an urgent need for new strategies to convert the immunologically cold glioma microenvironment into a hot one to enable effective antitumor immunity. Using the L19 antibody, which is specific to a tumor-associated epitope of extracellular fibronectin, we developed antibody-cytokine fusions—immunocytokines—with interleukin-2 (IL2), IL12, or tumor necrosis factor (TNF). We showed that L19 accumulated in the tumor microenvironment of two orthotopic immunocompetent mouse glioma models. Furthermore, intravenous administration of L19-mIL12 or L19-mTNF cured a proportion of tumor-bearing mice, whereas L19-IL2 did not. This therapeutic activity was abolished in RAG−/− mice or upon depletion of CD4 or CD8 T cells, suggesting adaptive immunity. Mechanistically, both immunocytokines promoted tumor-infiltrating lymphocytes and increased the amounts of proinflammatory cytokines within the tumor microenvironment. In addition, L19-mTNF induced tumor necrosis. Systemic administration of the fully human L19-TNF fusion protein to patients with glioblastoma (NCT03779230) was safe, decreased regional blood perfusion within the tumor, and was associated with increasing tumor necrosis and an increase in tumor-infiltrating CD4 and CD8 T cells. The extensive preclinical characterization and subsequent clinical translation provide a robust basis for future studies with immunocytokines to treat malignant brain tumors.
Collapse
Affiliation(s)
- Tobias Weiss
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
| | - Emanuele Puca
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Manuela Silginer
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
| | | | - Shila Pazahr
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| | - Andrea Bink
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Patrick Roth
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
| |
Collapse
|
24
|
Rousselle P, Scoazec JY. Laminin 332 in cancer: When the extracellular matrix turns signals from cell anchorage to cell movement. Semin Cancer Biol 2020; 62:149-165. [PMID: 31639412 DOI: 10.1016/j.semcancer.2019.09.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/22/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
Laminin 332 is crucial in the biology of epithelia. This large extracellular matrix protein consists of the heterotrimeric assembly of three subunits - α3, β3, and γ2 - and its multifunctionality relies on a number of extracellular proteolytic processing events. Laminin 332 is central to normal epithelium homeostasis by sustaining cell adhesion, polarity, proliferation, and differentiation. It also supports a major function in epithelial tissue formation, repair, and regeneration by buttressing cell migration and survival and basement membrane assembly. Interest in this protein increased after the discovery that its expression is perturbed in tumor cells, cancer-associated fibroblasts, and the tumor microenvironment. This review summarizes current knowledge regarding the established involvement of the laminin 332 γ2 chain in tumor invasiveness and discusses the role of its α3 and β3 subunits.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France.
| | - Jean Yves Scoazec
- Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94805 Villejuif cedex, France; Université Paris Sud, Faculté de Médecine de Bicêtre, 94270 Le Kremlin Bicêtre, France
| |
Collapse
|
25
|
Xiao J, Yang W, Xu B, Zhu H, Zou J, Su C, Rong J, Wang T, Chen Z. Expression of fibronectin in esophageal squamous cell carcinoma and its role in migration. BMC Cancer 2018; 18:976. [PMID: 30314454 PMCID: PMC6186055 DOI: 10.1186/s12885-018-4850-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/24/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Fibronectin (FN) is a high-molecular-weight glycoprotein component of the extracellular matrix involved in cell adhesion, migration, metastasis, proliferation and differentiation, as well as embryogenesis, wound healing, and blood coagulation. Considerable recent research has established that tumor expression of FN is closely associated with tumor formation and development as well as disease prognosis. However, the mechanisms underlying this relationship have remained unclear. The aim of this study was to investigate FN protein expression in esophageal squamous cell carcinoma (ESCC) and determine its potential prognostic relevance, while also elucidating the source and function of FN. METHODS We conducted immunohistochemical analyses of protein expression in primary tumors of ESCC patients and analyzed their association with standard prognostic parameters and clinical outcomes. Expression of FN in two ESCC cell lines (Eca-109 and TE-1) was also examined by RT-PCR, immunofluorescence, and ELISA. ESCC cells were cultured in a microenvironment containing a high FN content, and changes in their morphology and migration ability were assessed by microscopy, wound-healing assays, and Transwell assays. RESULTS FN expression in ESCC specimens was mainly detected in the tumor stroma, with very little FN detected in tumor cells. Stromal FN content in ESCC specimens was associated with lymphatic metastasis (P = 0.032) and prognosis. In this latter context, patients with high tumor stromal expression of FN showed worse overall survival (P = 0.002) and progression-free survival (P < 0.001) than those with low expression of FN. Interestingly, FN expression and secretion in ESCC cell lines (Eca-109 and TE-1) was found to be low, but these cells adopted a more migratory phenotype when cultured in vitro in a microenvironment containing high levels of FN. CONCLUSIONS High FN expression in the stroma of ESCC tumors is closely associated with poor prognosis of patients. High stromal FN content facilitates tumor cell metastasis by promoting morphological changes and improving the motility and migratory ability of ESCC cells.
Collapse
Affiliation(s)
- Jiefei Xiao
- Department of Extracorporeal Circulation, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, 510080, China
| | - Weilin Yang
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Bo Xu
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Haoshuai Zhu
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China.,Lung Cancer Research Center of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Jianyong Zou
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China.,Lung Cancer Research Center of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Chunhua Su
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China.,Lung Cancer Research Center of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Jian Rong
- Department of Extracorporeal Circulation, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, 510080, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, 510080, Guangdong, China. .,Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Zhenguang Chen
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China. .,Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, Guangdong, China. .,Lung Cancer Research Center of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
26
|
Abstract
The worldwide annual incidence of oral squamous cell carcinoma (OSCC) is over 300,000 cases with a mortality rate of 48%. This cancer type accounts for 90% of all oral cancers, with the highest incidence in men over 50 years of age. A significantly increased risk of developing OSCC exists among smokers and people who consume alcohol daily. OSCC is an aggressive cancer that metastasizes rapidly. Despite the development of new therapies in the treatment of OSCC, no significant increase in 5-year survival has been recorded in the past decades. The latest research suggests focus should be put on examining tumor stroma activation within OSCC, as the stroma may contain cells that can produce signal molecules and a microenvironment crucial for the development of metastases. The aim of this review is to provide an insight into the factors that activate OSCC stroma and hence faciliate neoplastic progression. It is based on the currently available data on the role and interaction between metalloproteinases, cytokines, growth factors, hypoxia factor and extracellular adhesion proteins in the stroma of OSCC and neoplastic cells. Their interplay is additionally presented using the Systems Biology Graphical Notation in order to sublimate the collected knowledge and enable the more efficient recognition of possible new biomarkers in the diagnostics and follow-up of OSCC or in finding new therapeutic targets.
Collapse
|
27
|
Sapudom J, Pompe T. Biomimetic tumor microenvironments based on collagen matrices. Biomater Sci 2018; 6:2009-2024. [DOI: 10.1039/c8bm00303c] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review provides an overview of the current approaches to engineer defined 3D matrices for the investigation of tumor cell behaviorin vitro, with a focus on collagen-based fibrillar systems.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Biophysical Chemistry Group
- Institute of Biochemistry
- Faculty of Life Sciences
- Leipzig University
- Leipzig 04103
| | - Tilo Pompe
- Biophysical Chemistry Group
- Institute of Biochemistry
- Faculty of Life Sciences
- Leipzig University
- Leipzig 04103
| |
Collapse
|
28
|
The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer. Int J Mol Sci 2017; 18:ijms18071586. [PMID: 28754000 PMCID: PMC5536073 DOI: 10.3390/ijms18071586] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance is a leading cause of morbidity and mortality in cancer and it continues to be a challenge in cancer treatment. Chemoresistance is influenced by genetic and epigenetic alterations which affect drug uptake, metabolism and export of drugs at the cellular levels. While most research has focused on tumor cell autonomous mechanisms of chemoresistance, the tumor microenvironment has emerged as a key player in the development of chemoresistance and in malignant progression, thereby influencing the development of novel therapies in clinical oncology. It is not surprising that the study of the tumor microenvironment is now considered to be as important as the study of tumor cells. Recent advances in technological and analytical methods, especially ‘omics’ technologies, has made it possible to identify specific targets in tumor cells and within the tumor microenvironment to eradicate cancer. Tumors need constant support from previously ‘unsupportive’ microenvironments. Novel therapeutic strategies that inhibit such microenvironmental support to tumor cells would reduce chemoresistance and tumor relapse. Such strategies can target stromal cells, proteins released by stromal cells and non-cellular components such as the extracellular matrix (ECM) within the tumor microenvironment. Novel in vitro tumor biology models that recapitulate the in vivo tumor microenvironment such as multicellular tumor spheroids, biomimetic scaffolds and tumor organoids are being developed and are increasing our understanding of cancer cell-microenvironment interactions. This review offers an analysis of recent developments on the role of the tumor microenvironment in the development of chemoresistance and the strategies to overcome microenvironment-mediated chemoresistance. We propose a systematic analysis of the relationship between tumor cells and their respective tumor microenvironments and our data show that, to survive, cancer cells interact closely with tumor microenvironment components such as mesenchymal stem cells and the extracellular matrix.
Collapse
|
29
|
Montenegro CF, Casali BC, Lino RLB, Pachane BC, Santos PK, Horwitz AR, Selistre-de-Araujo HS, Lamers ML. Inhibition of αvβ3 integrin induces loss of cell directionality of oral squamous carcinoma cells (OSCC). PLoS One 2017; 12:e0176226. [PMID: 28437464 PMCID: PMC5402964 DOI: 10.1371/journal.pone.0176226] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/08/2017] [Indexed: 11/23/2022] Open
Abstract
The connective tissue formed by extracellular matrix (ECM) rich in fibronectin and collagen consists a barrier that cancer cells have to overpass to reach blood vessels and then a metastatic site. Cell adhesion to fibronectin is mediated by αvβ3 and α5β1 integrins through an RGD motif present in this ECM protein, thus making these receptors key targets for cell migration studies. Here we investigated the effect of an RGD disintegrin, DisBa-01, on the migration of human fibroblasts (BJ) and oral squamous cancer cells (OSCC, SCC25) on a fibronectin-rich environment. Time-lapse images were acquired on fibronectin-coated glass-bottomed dishes. Migration speed and directionality analysis indicated that OSCC cells, but not fibroblasts, showed significant decrease in both parameters in the presence of DisBa-01 (1μM and 2μM). Integrin expression levels of the α5, αv and β3 subunits were similar in both cell lines, while β1 subunit is present in lower levels on the cancer cells. Next, we examined whether the effects of DisBa-01 were related to changes in adhesion properties by using paxillin immunostaining and total internal reflection fluorescence TIRF microscopy. OSCCs in the presence of DisBa-01 showed increased adhesion sizes and number of maturing adhesion. The same parameters were analyzed usingβ3-GFP overexpressing cells and showed that β3 overexpression restored cell migration velocity and the number of maturing adhesion that were altered by DisBa-01. Surface plasmon resonance analysis showed that DisBa-01 has 100x higher affinity for αvβ3 integrin than forα5β1 integrin. In conclusion, our results suggest that the αvβ3 integrin is the main receptor involved in cell directionality and its blockage may be an interesting alternative against metastasis.
Collapse
Affiliation(s)
- Cyntia F. Montenegro
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Bruna C. Casali
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Rafael L. B. Lino
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Bianca C. Pachane
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Patty K. Santos
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Alan R. Horwitz
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, Virginia, United States of America
| | - Heloisa S. Selistre-de-Araujo
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
- * E-mail:
| | - Marcelo L. Lamers
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, Porto Alegre, RS, Brazil, CEP
| |
Collapse
|
30
|
Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, Camoin L, Baudelet E, Radwanska A, Beghelli-de la Forest Divonne S, Violette SM, Weinreb PH, Rekima S, Ilie M, Sudaka A, Hofman P, Van Obberghen-Schilling E. Fibronectin-guided migration of carcinoma collectives. Nat Commun 2017; 8:14105. [PMID: 28102238 PMCID: PMC5253696 DOI: 10.1038/ncomms14105] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
Functional interplay between tumour cells and their neoplastic extracellular matrix plays a decisive role in malignant progression of carcinomas. Here we provide a comprehensive data set of the human HNSCC-associated fibroblast matrisome. Although much attention has been paid to the deposit of collagen, we identify oncofetal fibronectin (FN) as a major and obligate component of the matrix assembled by stromal fibroblasts from head and neck squamous cell carcinomas (HNSCC). FN overexpression in tumours from 435 patients corresponds to an independent unfavourable prognostic indicator. We show that migration of carcinoma collectives on fibrillar FN-rich matrices is achieved through αvβ6 and α9β1 engagement, rather than α5β1. Moreover, αvβ6-driven migration occurs independently of latent TGF-β activation and Smad-dependent signalling in tumour epithelial cells. These results provide insights into the adhesion-dependent events at the tumour–stroma interface that govern the collective mode of migration adopted by carcinoma cells to invade surrounding stroma in HNSCC. Tumour microenvironment influences the migration of cancer cells. Here the authors analyse the proteomic constitution of the extracellular matrix and identify a role for fibronectin in regulating the collective migration of squamous cell carcinoma cells.
Collapse
Affiliation(s)
- Sandeep Gopal
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | - Laurence Veracini
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | - Dominique Grall
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | - Catherine Butori
- Université Côte d'Azur, Laboratoire de Pathologie Clinique et Expérimentale, Biobank [BB-0033-00025] CHU Nice-Pasteur, 06001 Nice, France
| | - Sébastien Schaub
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | - Stéphane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Luc Camoin
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Emilie Baudelet
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Agata Radwanska
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | | | | | | | - Samah Rekima
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | - Marius Ilie
- Université Côte d'Azur, Laboratoire de Pathologie Clinique et Expérimentale, Biobank [BB-0033-00025] CHU Nice-Pasteur, 06001 Nice, France
| | - Anne Sudaka
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France.,Centre Antoine Lacassagne, 06189 Nice, France
| | - Paul Hofman
- Université Côte d'Azur, Laboratoire de Pathologie Clinique et Expérimentale, Biobank [BB-0033-00025] CHU Nice-Pasteur, 06001 Nice, France
| | - Ellen Van Obberghen-Schilling
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France.,Centre Antoine Lacassagne, 06189 Nice, France
| |
Collapse
|
31
|
Luksic I, Suton P. Predictive markers for delayed lymph node metastases and survival in early-stage oral squamous cell carcinoma. Head Neck 2016; 39:694-701. [PMID: 28006084 DOI: 10.1002/hed.24667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/02/2016] [Accepted: 11/04/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The purpose of this study was to identify clinicopathological and immunohistochemical factors predicting delayed lymph node metastases and survival in early oral squamous cell carcinoma (OSCC). METHODS The study included 85 consecutive patients with clinically T1 to T2N0 OSCC who were primarily surgically treated between 2000 and 2004. RESULTS There were 68 men and 17 women (median age, 61 years; range, 34-82 years). Of all the patients, 25 (29.4%) developed delayed lymph node metastases within 3 to 42 months after treatment of the primary tumor. Multivariate logistic regression analysis identified poorly differentiated tumors, low laminin, and high fibronectin expression as prognosticators of delayed lymph node metastases. Cox's proportional hazards regression analysis demonstrated that moderately differentiated tumors and delayed lymph node metastases had predictive value regarding survival. CONCLUSION Large prospective investigations with reproducibility and the clinical translatability of immunohistochemical methods are needed in order to provide new and effective therapeutic strategies in the future. © 2016 Wiley Periodicals, Inc. Head Neck 39: 694-701, 2017.
Collapse
Affiliation(s)
- Ivica Luksic
- Department of Maxillofacial Surgery, University of Zagreb School of Medicine, University Hospital Dubrava, Zagreb, Croatia
| | - Petar Suton
- Division of Radiation Oncology, Department of Radiotherapy and Medical Oncology, University Hospital for Tumors, University Hospital Centre Sisters of Mercy, Zagreb, Croatia
| |
Collapse
|
32
|
Meucci S, Keilholz U, Tinhofer I, Ebner OA. Mutational load and mutational patterns in relation to age in head and neck cancer. Oncotarget 2016; 7:69188-69199. [PMID: 27596625 PMCID: PMC5342469 DOI: 10.18632/oncotarget.11312] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/23/2016] [Indexed: 11/25/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a cancer with well-defined tumor causes such as HPV infection, smoking and drinking. Using The Cancer Genome Atlas (TCGA) HNSCC cohort we systematically studied the mutational load as well as patterns related to patient age in HNSCC. To obtain a homogenous set we excluded all patients with HPV infection as well as wild type TP53. We found that the overall mutational load is higher in patients of old age. Through unsupervised hierarchical clustering, we detected distinct mutational clusters in very young as well as very old patients. In the group of old patients, we identified four enriched pathways ("Axon Guidance", "ECM-Receptor Interaction", "Focal Adhesion" and "Notch Signaling") that are only sporadically mutated in the other age groups. Our findings indicate that the four pathways regulate cell motility, tumor invasion and angiogenesis supposedly leading to less aggressive tumors in older age patients. Importantly, we did not see a strict pattern of genes always mutated in older age but rather an accumulation of mutations in the same pathways. Our study provides indications of age-dependent differences in mutational backgrounds of tumors that might be relevant for treatment approaches of HNSCCs patients.
Collapse
Affiliation(s)
- Stefano Meucci
- Charité Comprehensive Cancer Center, Charité University Hospital, Charitéplatz, Berlin, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité University Hospital, Charitéplatz, Berlin, Germany
| | - Ingeborg Tinhofer
- Department of Radiation Oncology and Radiotherapy, Charité University Hospital Berlin, Translational Radiation Oncology Research Laboratory, Charitéplatz, Berlin, Germany
| | - Oliva A. Ebner
- Charité Comprehensive Cancer Center, Charité University Hospital, Charitéplatz, Berlin, Germany
| |
Collapse
|
33
|
Sackey-Aboagye B, Olsen AL, Mukherjee SM, Ventriglia A, Yokosaki Y, Greenbaum LE, Lee GY, Naga H, Wells RG. Fibronectin Extra Domain A Promotes Liver Sinusoid Repair following Hepatectomy. PLoS One 2016; 11:e0163737. [PMID: 27741254 PMCID: PMC5065221 DOI: 10.1371/journal.pone.0163737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/13/2016] [Indexed: 11/19/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are the main endothelial cells in the liver and are important for maintaining liver homeostasis as well as responding to injury. LSECs express cellular fibronectin containing the alternatively spliced extra domain A (EIIIA-cFN) and increase expression of this isoform after liver injury, although its function is not well understood. Here, we examined the role of EIIIA-cFN in liver regeneration following partial hepatectomy. We carried out two-thirds partial hepatectomies in mice lacking EIIIA-cFN and in their wild type littermates, studied liver endothelial cell adhesion on decellularized, EIIIA-cFN-containing matrices and investigated the role of cellular fibronectins in liver endothelial cell tubulogenesis. We found that liver weight recovery following hepatectomy was significantly delayed and that sinusoidal repair was impaired in EIIIA-cFN null mice, especially females, as was the lipid accumulation typical of the post-hepatectomy liver. In vitro, we found that liver endothelial cells were more adhesive to cell-deposited matrices containing the EIIIA domain and that cellular fibronectin enhanced tubulogenesis and vascular cord formation. The integrin α9β1, which specifically binds EIIIA-cFN, promoted tubulogenesis and adhesion of liver endothelial cells to EIIIA-cFN. Our findings identify a role for EIIIA-cFN in liver regeneration and tubulogenesis. We suggest that sinusoidal repair is enhanced by increased LSEC adhesion, which is mediated by EIIIA-cFN.
Collapse
Affiliation(s)
- Bridget Sackey-Aboagye
- Department of Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abby L. Olsen
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarmistha M. Mukherjee
- Department of Physiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexander Ventriglia
- Department of Bioengineering, School of Engineering and Applied Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | | - Gi Yun Lee
- Department of Bioengineering, School of Engineering and Applied Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hani Naga
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecca G. Wells
- Department of Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
34
|
Čunderlíková B. Clinical significance of immunohistochemically detected extracellular matrix proteins and their spatial distribution in primary cancer. Crit Rev Oncol Hematol 2016; 105:127-44. [DOI: 10.1016/j.critrevonc.2016.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 04/03/2016] [Accepted: 04/27/2016] [Indexed: 02/07/2023] Open
|
35
|
Ramos GDO, Bernardi L, Lauxen I, Sant’Ana Filho M, Horwitz AR, Lamers ML. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma. PLoS One 2016; 11:e0151338. [PMID: 26978651 PMCID: PMC4792484 DOI: 10.1371/journal.pone.0151338] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 02/27/2016] [Indexed: 12/02/2022] Open
Abstract
Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization.
Collapse
Affiliation(s)
- Grasieli de Oliveira Ramos
- Basic Research Center, Dentistry School, Federal University of Rio Grande of Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lisiane Bernardi
- Basic Research Center, Dentistry School, Federal University of Rio Grande of Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Isabel Lauxen
- Basic Research Center, Dentistry School, Federal University of Rio Grande of Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Manoel Sant’Ana Filho
- Basic Research Center, Dentistry School, Federal University of Rio Grande of Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alan Rick Horwitz
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Marcelo Lazzaron Lamers
- Basic Research Center, Dentistry School, Federal University of Rio Grande of Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
36
|
Sun Y, Kim HS, Saw PE, Jon S, Moon WK. Targeted Therapy for Breast Cancer Stem Cells by Liposomal Delivery of siRNA against Fibronectin EDB. Adv Healthc Mater 2015; 4:1675-80. [PMID: 26097122 DOI: 10.1002/adhm.201500190] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/20/2015] [Indexed: 12/20/2022]
Abstract
Targeted therapy for breast cancer stem cell (BCSC): A novel liposomal system (APTEDB -LS-siRNA(EDB) ) that enables simultaneous targeting and knockdown of extra domain B of fibronectin (EDB-FN) shows potent therapeutic efficacy in the BCSC-derived tumors in vivo.
Collapse
Affiliation(s)
- Yujin Sun
- Department of Radiology; Seoul National University Hospital; 101 Daehak-ro, Jongno-gu Seoul 110-744 South Korea
- Department of Radiology; Yanbian University Hospital; 1327 JuZi Street Yanji City JiLin Province 133000 China
| | - Hoe Suk Kim
- Department of Radiology; Seoul National University Hospital; 101 Daehak-ro, Jongno-gu Seoul 110-744 South Korea
| | - Phei Er Saw
- Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu Daejeon 305-701 South Korea
| | - Sangyong Jon
- Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu Daejeon 305-701 South Korea
| | - Woo Kyung Moon
- Department of Radiology; Seoul National University Hospital; 101 Daehak-ro, Jongno-gu Seoul 110-744 South Korea
| |
Collapse
|
37
|
Saeed AA, Sims AH, Prime SS, Paterson I, Murray PG, Lopes VR. Gene expression profiling reveals biological pathways responsible for phenotypic heterogeneity between UK and Sri Lankan oral squamous cell carcinomas. Oral Oncol 2015; 51:237-46. [DOI: 10.1016/j.oraloncology.2014.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 11/26/2014] [Accepted: 12/07/2014] [Indexed: 12/13/2022]
|
38
|
The role of components of the extracellular matrix and inflammation on oral squamous cell carcinoma metastasis. Arch Oral Biol 2014; 59:1155-63. [DOI: 10.1016/j.archoralbio.2014.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/25/2014] [Accepted: 07/13/2014] [Indexed: 11/18/2022]
|
39
|
Sharma M, Sah P, Sharma SS, Radhakrishnan R. Molecular changes in invasive front of oral cancer. J Oral Maxillofac Pathol 2014; 17:240-7. [PMID: 24250086 PMCID: PMC3830234 DOI: 10.4103/0973-029x.119740] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Treatment planning for oral squamous cell carcinoma (OSCC) is based on the clinical TNM (Tumor, Node and Metastasis) classification. This system operates on the assumption that small tumours without clinical spread have a better prognosis than larger tumours with metastases. However, it is a well-known fact that some tumours with the same clinical staging show different growth patterns and clinical behaviour. This makes the prognosis for patients with OSCC difficult to predict on the basis of clinical staging alone. Although many histopathological characteristics of OSCC have been identified as prognostic factors, none is believed to be completely infallible. Therefore, a great need exists for more reliable prognostic markers, which will assist in treatment decisions. It is now well documented that several molecular events of significance for tumour spread, such as gain and loss of adhesion molecules, secretion of proteolytic enzymes, increased cell proliferation and initiation of angiogenesis occur at the tumour–host interface or invasive front, where the deepest and presumably most aggressive cells reside. This review describes the various molecular events and interactions, which take place in the invasive front of the OSCC, and elucidates their role as prognostic markers.
Collapse
Affiliation(s)
- Mohit Sharma
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Bareilly, Uttar Pradesh, India
| | | | | | | |
Collapse
|
40
|
Sun Y, Kim HS, Park J, Li M, Tian L, Choi Y, Choi BI, Jon S, Moon WK. MRI of breast tumor initiating cells using the extra domain-B of fibronectin targeting nanoparticles. Theranostics 2014; 4:845-57. [PMID: 24955145 PMCID: PMC4063982 DOI: 10.7150/thno.8343] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/19/2014] [Indexed: 01/16/2023] Open
Abstract
The identification of breast tumor initiating cells (BTICs) is important for the diagnosis and therapy of breast cancers. This study was undertaken to evaluate whether the extra domain-B of fibronectin (EDB-FN) could be used as a new biomarker for BTICs and whether EDB-FN targeting superparamagnetic iron oxide nanoparticles (SPIONs) could be used as a magnetic resonance imaging (MRI) contrast agent for BTIC imaging in vitro and in vivo. BTICs (NDY-1) exhibited high EDB-FN expression, whereas non-BTICs (MCF-7, BT-474, SUM-225, MDA-MB-231) did not exhibit EDB-FN expression. Furthermore, Cy3.3-labeled EDB-FN specific peptides (APTEDB) showed preferential binding to the targeted NDY-1 cells. To construct an EDB-FN targeted imaging probe, APTEDB was covalently attached to a thermally cross-linked SPION (TCL-SPION) to yield APTEDB-TCL-SPION. In the in vitro MRI of cell phantoms, selective binding of APTEDB-TCL-SPION to NDY-1 cells was evident, but little binding was observed in MCF-7 cells. After the intravenous injection of APTEDB-TCL-SPION into the NDY-1 mouse tumor xenograft model, a significant decrease in the signal within the tumor was observed in the T2*-weighted images; however, there was only a marginal change in the signal of non-targeting SPIONs such as APTscramble-TCL-SPION or TCL-SPION. Taken together, we report for the first time that EDB-FN was abundantly expressed in BTICs and may therefore be useful as a new biomarker for identifying BTICs. Our study also suggests that APTEDB-TCL-SPION could be used as an MRI contrast agent for BTIC imaging.
Collapse
Affiliation(s)
- Yujin Sun
- 1. Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea
- 2. Department of Radiology, Yanbian University Hospital, 1327 JuZi Street, Yanji City, JiLin Province 133000, China
| | - Hoe Suk Kim
- 1. Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea
| | - Jinho Park
- 3. KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
| | - Mulan Li
- 1. Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea
| | - Lianji Tian
- 1. Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea
| | - YoonSeok Choi
- 1. Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea
| | - Byung Ihn Choi
- 1. Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea
| | - Sangyong Jon
- 3. KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
| | - Woo Kyung Moon
- 1. Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea
| |
Collapse
|
41
|
Locher R, Erba PA, Hirsch B, Bombardieri E, Giovannoni L, Neri D, Dürkop H, Menssen HD. Abundant in vitro expression of the oncofetal ED-B-containing fibronectin translates into selective pharmacodelivery of (131)I-L19SIP in a prostate cancer patient. J Cancer Res Clin Oncol 2014; 140:35-43. [PMID: 24132461 DOI: 10.1007/s00432-013-1538-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE The extradomain B of fibronectin (ED-B) is a promising vascular target for selective pharmacodelivery in cancer patients. We analyzed a large series of prostatectomies from patients with prostate cancer, hyperplastic prostate disease, and normal prostates to study extent and tumor-selectivity of ED-B expression. METHODS Using immunohistology, 68 adenocarcinomas of the prostate or prostate cancer-inflicted lymph nodes, 4 samples of benign prostatic hyperplasia, and 6 normal prostate glands were studied for ED-B expressing newly formed blood vessels. Further, we treated an advanced prostate cancer patient with the anti-ED-B antibody (131)I-L19SIP to study in vivo target accessibility. RESULTS ED-B-positive blood vessels were found significantly more frequent in prostate cancers as compared with peritumoral prostate tissues or normal prostate glands, independent of tumor differentiation. The ED-B-positive blood vessels' density was 97 (±23), 65 (±9), and 59 (±9)/mm(2) in G3, G2, and G1 prostate cancers, respectively, and 7 (±5)/mm(2) in normal prostate glands. In high-grade (G3) prostate cancers, also the peritumoral tissue showed a higher density of ED-B vessels than normal prostate glands. Similar results were obtained when ED-B-positive vessel density was expressed as a fraction of CD34-positive vessel density. Finally, selective uptake of ED-B-binding (131)I-L19SIP to tumor lesions was found in an advanced prostate cancer patient by whole-body planar scintigraphy. CONCLUSIONS ED-B-positive blood vessels were found to a large extent in prostate cancer tissues, but only rarely in normal prostates or benign prostatic hyperplasia. Whole-body planar scintigraphy in a prostate cancer patient confirmed selective uptake of (131)I-L19SIP in the prostate cancer tissues, qualifying ED-B as a promising target for selective pharmacodelivery of anticancer agents in prostate cancer.
Collapse
|
42
|
Shruthy R, Sharada P, Swaminathan U, Nagamalini B. Immunohistochemical expression of basement membrane laminin in histological grades of oral squamous cell carcinoma: A semiquantitative analysis. J Oral Maxillofac Pathol 2013; 17:185-9. [PMID: 24250076 PMCID: PMC3830224 DOI: 10.4103/0973-029x.119755] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To determine the immunohistochemical (IHC) localization of basement membrane component laminin in histological grades of oral squamous cell carcinoma (OSCC). The purpose of this study was to demonstrate the loss of continuity of the basement membrane in OSCC using an antibody directed against laminin using advanced polymer staining system. MATERIALS AND METHODS A total of 30 cases of OSCC: 10 cases of well differentiated squamous cell carcinom (WDSCC), 10 cases of moderately differentiated squamous cell carcinoma (MDSCC), and 10 cases of poorly differentiated squamous cell carcinoma (PDSCC) were subjected to heat-induced antigen retrieval method using ethylene-di-amine-tetraacetic acid buffer in a microwave oven. Then the sections were stained with anti-laminin polyclonal antibody and visualized using super sensitive polymer horseradish peroxidase detection system. In each case, the integrity of the basement membrane laminin was assessed by using statistical analysis. RESULTS Statistical analysis showed a decreased distribution of laminin from WDSCC to MDSCC to PDSCC (P value 0.0573). The intracytoplasmic staining of laminin gradually increased from WDSCC to MDSCC to PDSCC (P value 0.0198). INTERPRETATION AND CONCLUSION WDSCC cases showed more laminin expression in basement membrane around the tumor islands and less loss of continuity compared to MDSCC and PDSCC cases suggesting a greater enzymatic degradation of basement membrane components in MDSCC and PDSCC than WDSCC. The loss of structural basement membrane laminin and the presence of laminin in the tumor cells of PDSCC cases suggest that laminin helps in tumor invasion. The expression of laminin in the basement membrane may be a useful parameter to evaluate tumor histologic differentiation and aggressiveness.
Collapse
Affiliation(s)
- R Shruthy
- Department of Oral and Maxillofacial Pathology, Sharavathi Dental College and Hospital, Shimoga, Karnataka, India
| | | | | | | |
Collapse
|
43
|
Kang SG, Ha YR, Ko YH, Kang SH, Joo KJ, Cho HY, Park HS, Kim CH, Kwon SY, Kim JJ, Cheon J, Lee JG. Effect of laminin 332 on motility and invasion in bladder cancer. Kaohsiung J Med Sci 2013; 29:422-9. [PMID: 23906232 DOI: 10.1016/j.kjms.2012.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/28/2011] [Indexed: 01/05/2023] Open
Abstract
We examined the correlation between laminin 332 and malignancy in bladder cancer patients, and, using a strain of invasive bladder cancer cells, determined whether laminin 332 causes bladder cancer motility and invasion. To investigate the correlation between laminin 332 g2 distribution and patient outcome, we performed a semiquantitative immunohistochemical analysis of 35 paraffin-embedded samples using the antibody D4B5, which is specific for the laminin 5 γ2 chain. To evaluate the role of laminin 332 in NBT-II cell motility and invasion, we used a scratch assay and the Boyden chamber chemoinvasion system. Tumor stage and grade were significantly correlated with a loss of laminin 332 γ2 chain from the basement membrane (p = 0.001) and its retention in the cytoplasm (p = 0.001) (Kruskal-Wallis test). Kaplan-Meier survival curves revealed an association between the risk of progression and cytoplasmic retention of the laminin 332 γ2 chain. In addition, an in vitro scratch assay showed an increase in the migration of cells treated with laminin 332 from their cluster. The Boyden chamber assay showed that laminin 332 potentiated NBT-II cell invasion. Immunohistochemistry results showed that bladder cancer patients with a higher malignancy expressed more laminin 332. The in vitro scratch and invasion assay showed that laminin 332 stimulated the motility and invasion of bladder cancer cells. The invasion assay explains the correlation between laminin 332 expression and bladder cancer malignancy.
Collapse
Affiliation(s)
- Sung-Gu Kang
- Department of Urology, Korea University School of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Takuwa T, Ishii G, Nagai K, Yoshida J, Nishimura M, Hishida T, Neri S, Hasegawa S, Ochiai A. Characteristic immunophenotype of solid subtype component in lung adenocarcinoma. Ann Surg Oncol 2012; 19:3943-52. [PMID: 22669454 DOI: 10.1245/s10434-012-2428-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND Lung adenocarcinomas represent a morphologically heterogeneous tumor composed of an admixture of different histologic subtypes (lepidic, papillary, acinar, and solid subtype). The presence of a solid subtype component is reported to be associated with a poorer prognosis. The aim of this study was to evaluate the characteristic immunophenotype of the solid subtype component compared with the immunophenotypes of other components. METHODS We analyzed the clinicopathological characteristics of stage I adenocarcinoma patients with predominant solid subtype disease. Furthermore, we immunostained adenocarcinomas with predominant lepidic, papillary, acinar, and solid subtype components (n = 23 each) for 10 molecular markers of tumor invasiveness and scored the results. RESULTS Patients showing predominance of the solid subtype component (solid subtype adenocarcinoma) had a poorer prognosis than those showing predominance of the lepidic, papillary, or acinar component. Lymphovascular invasion was more often detected in solid subtype tumors than in others. The solid subtype component showed a significantly stronger staining intensity of laminin-5 expression than the lepidic, papillary, and acinar components (P < 0.001, P < 0.001, and P = 0.016, respectively). The fibronectin and vimentin expression levels were also significantly higher in the solid subtype component than in other components. This immunostaining character was validated by using mixed-subtype adenocarcinomas containing all four components in the same tumor. CONCLUSIONS This study concluded that the solid subtype component in lung adenocarcinomas exhibit the invasive immunophenotype, including increased laminin-5 expression, compared with the other components, which may be associated with a poorer prognosis.
Collapse
Affiliation(s)
- Teruhisa Takuwa
- Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mehrotra R. The role of cytology in oral lesions: a review of recent improvements. Diagn Cytopathol 2012; 40:73-83. [PMID: 21442772 DOI: 10.1002/dc.21581] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/29/2010] [Indexed: 11/08/2022]
Abstract
Historically, sensitivity and specificity of oral cytology is poor. Using conventional oral cytology for the diagnosis of cancer and its precursors has not had the success that cytologists had hoped for; however, with improved methodology, oral cytology has enjoyed a resurgence of interest. This renewed interest is partly due to the introduction of a specialized brush that collects a full-thickness epithelial sample and not just superficially sloughed cells, as well as analysis of that sample with computer assistance; in addition, a variety of adjunctive techniques have been introduced to potentially enhance the diagnosis of the cytologic specimens including DNA analysis, immunocytochemistry, molecular analysis, and liquid-based preparations. An increase in sensitivity (>96%) and specificity (>90%) of the oral brush biopsy with computer-assisted diagnosis has been reported for identification of malignant and premalignant lesions. Brush cytology is valuable to prevent misdiagnosing doubtful oral lesions, i.e., those lesions without a definitive etiology, diagnosing large lesions where excision of the entire tissue is not possible or practicable, evaluating patients with recurrent malignancies, and monitoring premalignant lesions.
Collapse
Affiliation(s)
- Ravi Mehrotra
- Department of Pathology, Division of Cytopathology, Moti Lal Nehru Medical College, Allahabad, Uttar Pradesh, India. rm8509@rediffmail. com
| |
Collapse
|
46
|
To WS, Midwood KS. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. FIBROGENESIS & TISSUE REPAIR 2011; 4:21. [PMID: 21923916 PMCID: PMC3182887 DOI: 10.1186/1755-1536-4-21] [Citation(s) in RCA: 421] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/16/2011] [Indexed: 01/01/2023]
Abstract
Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate aberrant tissue-repair processes.
Collapse
Affiliation(s)
- Wing S To
- Department of Matrix Biology, Kennedy Institute of Rheumatology Division, Nuffield Department of Orthopedic Rheumatology and Musculoskeletal Sciences, Oxford University, 65 Aspenlea Road, London, W6 8LH, UK.
| | | |
Collapse
|
47
|
Czabanka M, Parmaksiz G, Bayerl SH, Nieminen M, Trachsel E, Menssen HD, Erber R, Neri D, Vajkoczy P. Microvascular biodistribution of L19-SIP in angiogenesis targeting strategies. Eur J Cancer 2011; 47:1276-84. [PMID: 21396810 DOI: 10.1016/j.ejca.2011.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/31/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Various strategies using L19-mediated fibronectin targeting have become useful clinical tools in anti-tumour therapy and diagnostics. The aim of our study was to characterise the microvascular biodistribution and binding process during tumour angiogenesis and after anti-angiogenic therapy. MATERIALS AND METHODS SF126 glioma and F9 teratocarcinoma cells were implanted into dorsal skin fold chambers (SF126: n = 4; F9: n = 6). Using fluorescence and confocal intravital microscopy the biodistribution process was assessed at t = 0 h, t = 4 h and t = 24 h after intravenous application of Cy3-L19-SIP. Sunitinib treatment was applied for six days and microscopy was performed 2 and 6 days after treatment initiation. Analysed parameters included: vascular and interstitial binding, preferential binding sites of L19-SIP, microvascular blood flow rate, microvascular permeability. Histological analysis included CD31 and DAPI. RESULTS L19-SIP showed a specific and time-dependent neovascular binding with a secondary extravasation process reaching optimal vascular/interstitial binding ratio 4 hours after iv administration (F9: L19-SIP: vascular binding: 74.6 ± 14.5; interstitial binding: 46.8 ± 12.1; control vascular: 22,2 ± 16.6). Angiogenic sprouts were preferred binding sites (F9: L19-SIP: 188 ± 15.5; RTV: 90.6 ± 13.5). Anti-angiogenic therapy increased microvascular hemodynamics (SF126: Su: 106.6 ± 13.3 μl/sec; Untreated: 19.7 ± 9.1 μl/sec) and induced increased L19-SIP accumulation (SF 126: t24; Su: 92.6 ± 2.7; Untreated: 71.9 ± 5.9) in therapy resistant tumour vessels. CONCLUSION L19-SIP shows a time and blood-flow dependent microvascular biodistribution process with angiogenic sprouts as preferential binding sites followed by secondary extravasation of the antibody. Microvascular biodistribution is enhanced in anti-angiogenic-therapy resistant tumour vessels.
Collapse
Affiliation(s)
- Marcus Czabanka
- Department of Neurosurgery, Universitätsmedizin Charitè, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Richter P, Umbreit C, Franz M, Berndt A, Grimm S, Uecker A, Böhmer FD, Kosmehl H, Berndt A. EGF/TGFβ1 co-stimulation of oral squamous cell carcinoma cells causes an epithelial-mesenchymal transition cell phenotype expressing laminin 332. J Oral Pathol Med 2011; 40:46-54. [PMID: 20819124 DOI: 10.1111/j.1600-0714.2010.00936.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is suggested to be crucial for the development of an invasive and metastatic carcinoma cell phenotype. Therefore, the definition of this phenotype is of great clinical interest. We recently evidenced vimentin positive cells in oral squamous cell carcinoma (OSCC) invasive front expressing laminin γ2 chain mRNA implicating an EMT origin of these cells. To further elucidate the nature of these cells, we have investigated the relation between EMT criteria and laminin-332 expression in a cell culture model of transforming growth factor beta-1 (TGFβ1)/epithelial growth factor (EGF) long time co-stimulation. We demonstrate that in contrast to TGFβ1 or EGF alone, co-stimulation induces phenotype transition in OSCC cells which fulfils the criteria of EMT in terms of vimentin up-regulation and E-cadherin down-regulation on protein level as well as cell scattering. Furthermore, cells displayed a strongly enhanced invasiveness and adhesion to type I-IV collagens. Phenotype transition is accompanied by an enhanced expression of laminin-332, especially of its γ2 chain. We further analyse the expression of extracellular matrix related genes by RT-PCR profiling. With respect to strongly enhanced proteins, data confirm the EMT phenotype of co-stimulated OSCC cells and expression of laminin-332. Furthermore, alpha catenin, collagen type 16, the integrin α7 and β1 chains, and MMP11 are suggested as candidates with potential role in EMT in OSCC. In summary we are able to show that EMT in OSCC is mediated by multiple growth factors and is accompanied by laminin γ2 chain up-regulation evidencing the existence of an intermediate Vim(+) /Ln332(+) EMT phenotype as seen in situ.
Collapse
Affiliation(s)
- Petra Richter
- Institute of Pathology, University Hospital Jena, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Brusevold IJ, Husvik C, Schreurs O, Schenck K, Bryne M, Søland TM. Induction of invasion in an organotypic oral cancer model by CoCl2, a hypoxia mimetic. Eur J Oral Sci 2010; 118:168-76. [PMID: 20487006 DOI: 10.1111/j.1600-0722.2010.00720.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Invasion is a hallmark of malignancy. The aim of this study was to develop an in vitro model that can be used for experimental studies of cancer cell invasion. The organotypic oral cancer model was constructed by growing oral squamous cell carcinoma (OSCC) cells on a collagen matrix in which normal human fibroblasts were incorporated. Immunohistochemical staining of the model showed that the expression of invasion-related molecules such as phosphorylated extracellular signal-regulated kinases 1 and 2 (p-ERK1/2), cyclooxygenase-2 (COX-2), p75(NTR), and hepatocyte growth factor receptor (Met) was similar to that seen in OSCC. Treatment of the model with cobalt chloride (CoCl(2)) to mimic hypoxic conditions increased cancer cell invasion, defined as the appearance of cancer cell islands protruding into the matrix. Models treated with CoCl(2) showed increased expression of p75(NTR) and laminin-5 in the cancer cells, and a more pronounced fragmentation of collagen IV in the basal membrane area, in contrast to models that were left untreated. The results indicate that the present model is well suited for studies on cancer cell invasion in the matrix and that the addition of CoCl(2) on day 3 of the experiment is indicated because it markedly increases the invasion and improves the model.
Collapse
Affiliation(s)
- Ingvild J Brusevold
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
50
|
Mishra R. Glycogen synthase kinase 3 beta: can it be a target for oral cancer. Mol Cancer 2010; 9:144. [PMID: 20537194 PMCID: PMC2906469 DOI: 10.1186/1476-4598-9-144] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 06/11/2010] [Indexed: 12/30/2022] Open
Abstract
Despite progress in treatment approaches for oral cancer, there has been only modest improvement in patient outcomes in the past three decades. The frequent treatment failure is due to the failure to control tumor recurrence and metastasis. These failures suggest that new targets should be identified to reverse oral epithelial dysplastic lesions. Recent developments suggest an active role of glycogen synthase kinase 3 beta (GSK3 β) in various human cancers either as a tumor suppressor or as a tumor promoter. GSK3β is a Ser/Thr protein kinase, and there is emerging evidence that it is a tumor suppressor in oral cancer. The evidence suggests a link between key players in oral cancer that control transcription, accelerated cell cycle progression, activation of invasion/metastasis and anti-apoptosis, and regulation of these factors by GSK3β. Moreover, the major upstream kinases of GSK3β and their oncogenic activation by several etiological agents of oral cancer support this hypothesis. In spite of all this evidence, a detailed analysis of the role of GSK3β in oral cancer and of its therapeutic potential has yet to be conducted by the scientific community. The focus of this review is to discuss the multitude of roles of GSK3β, its possible role in controlling different oncogenic events and how it can be targeted in oral cancer.
Collapse
Affiliation(s)
- Rajakishore Mishra
- Dept, of Molecular Pharmacology and Therapeutics, Loyola University Medical Center, 2160 South First Avenue, Bldg 102, Maywood, IL-60153, USA.
| |
Collapse
|