1
|
Lupacchini L, Mollinari C, Tancredi V, Garaci E, Merlo D. Impaired synaptic transmission and long-term potentiation in severe combined immunodeficient (SCID) mice. Neuroreport 2025; 36:290-296. [PMID: 40177827 PMCID: PMC11949230 DOI: 10.1097/wnr.0000000000002149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/10/2025] [Indexed: 04/05/2025]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is one of the key enzymes involved in DNA double-strand break (DSB) repair. However, recent studies using DNA-PKcs knockout mice revealed that DNA-PKcs plays an important role in neuronal plasticity. The aim of this study was to examine the role of DNA-PKcs on synaptic plasticity in severe combined immunodeficiency disease (SCID) mice that carry a mutation resulting in a DNA-PKcs protein devoid of kinase activity but still expressed in cells, although with a small COOH-terminal truncation. To this aim, we carried out electrophysiological and molecular analysis on hippocampal slices from wild-type (WT) and SCID mice. Electrophysiological analysis showed an impairment in the basal synaptic transmission in SCID mice compared with WT, whereas paired-pulse facilitation, caused by presynaptic mechanisms, was not different in the two groups of animals. By contrast, tetanic stimulation induced long-term potentiation (LTP) with values that were approximately 43% lower in slices from SCID mice compared with WT. The same slices used for electrophysiology were analyzed to study the phosphorylation state of cAMP response element-binding protein (CREB) and extracellular signal-regulated kinases and to evaluate mRNA expression levels of CREB-target genes at different times after LTP induction. In conclusion, molecular analysis did not show significant differences between SCID and WT brain slices, thus confirming the evidence that DNA-PKcs kinase activity directly regulates neuronal functions and plays a novel role beyond DSB repair. Moreover, these results indicate that studies using SCID mice involving analysis of synaptic function need to be interpreted with caution.
Collapse
Affiliation(s)
| | - Cristiana Mollinari
- Institute of Translational Pharmacology (IFT), National Research Council
- Department of Neuroscience, Istituto Superiore di Sanità
| | - Virginia Tancredi
- Department of Systems Medicine, ‘Tor Vergata’ University of Rome
- Centre of Space Bio-Medicine, ‘Tor Vergata’ University of Rome, Rome
| | | | - Daniela Merlo
- Department of Neuroscience, Istituto Superiore di Sanità
| |
Collapse
|
2
|
Talibova G, Bilmez Y, Tire B, Ozturk S. The DNA double-strand break repair proteins γH2AX, RAD51, BRCA1, RPA70, KU80, and XRCC4 exhibit follicle-specific expression differences in the postnatal mouse ovaries from early to older ages. J Assist Reprod Genet 2024; 41:2419-2439. [PMID: 39023827 PMCID: PMC11405603 DOI: 10.1007/s10815-024-03189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
PURPOSE Ovarian aging is closely related to a decrease in follicular reserve and oocyte quality. The precise molecular mechanisms underlying these reductions have yet to be fully elucidated. Herein, we examine spatiotemporal distribution of key proteins responsible for DNA double-strand break (DSB) repair in ovaries from early to older ages. Functional studies have shown that the γH2AX, RAD51, BRCA1, and RPA70 proteins play indispensable roles in HR-based repair pathway, while the KU80 and XRCC4 proteins are essential for successfully operating cNHEJ pathway. METHODS Female Balb/C mice were divided into five groups as follows: Prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). The expression of DSB repair proteins, cellular senescence (β-GAL) and apoptosis (cCASP3) markers was evaluated in the ovaries using immunohistochemistry. RESULT β-GAL and cCASP3 levels progressively increased from prepuberty to aged groups (P < 0.05). Notably, γH2AX levels varied in preantral and antral follicles among the groups (P < 0.05). In aged groups, RAD51, BRCA1, KU80, and XRCC4 levels increased (P < 0.05), while RPA70 levels decreased (P < 0.05) compared to the other groups. CONCLUSIONS The observed alterations were primarily attributed to altered expression in oocytes and granulosa cells of the follicles and other ovarian cells. As a result, the findings indicate that these DSB repair proteins may play a role in the repair processes and even other related cellular events in ovarian cells from early to older ages.
Collapse
Affiliation(s)
- Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
3
|
Mollinari C, Cardinale A, Lupacchini L, Martire A, Chiodi V, Martinelli A, Rinaldi AM, Fini M, Pazzaglia S, Domenici MR, Garaci E, Merlo D. The DNA repair protein DNA-PKcs modulates synaptic plasticity via PSD-95 phosphorylation and stability. EMBO Rep 2024; 25:3707-3737. [PMID: 39085642 PMCID: PMC11315936 DOI: 10.1038/s44319-024-00198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The key DNA repair enzyme DNA-PKcs has several and important cellular functions. Loss of DNA-PKcs activity in mice has revealed essential roles in immune and nervous systems. In humans, DNA-PKcs is a critical factor for brain development and function since mutation of the prkdc gene causes severe neurological deficits such as microcephaly and seizures, predicting yet unknown roles of DNA-PKcs in neurons. Here we show that DNA-PKcs modulates synaptic plasticity. We demonstrate that DNA-PKcs localizes at synapses and phosphorylates PSD-95 at newly identified residues controlling PSD-95 protein stability. DNA-PKcs -/- mice are characterized by impaired Long-Term Potentiation (LTP), changes in neuronal morphology, and reduced levels of postsynaptic proteins. A PSD-95 mutant that is constitutively phosphorylated rescues LTP impairment when over-expressed in DNA-PKcs -/- mice. Our study identifies an emergent physiological function of DNA-PKcs in regulating neuronal plasticity, beyond genome stability.
Collapse
Affiliation(s)
- Cristiana Mollinari
- Istituto Superiore di Sanita', Department of Neuroscience, 00161, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, 00133, Rome, Italy
| | | | | | - Alberto Martire
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Valentina Chiodi
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Andrea Martinelli
- Istituto Superiore di Sanita', Experimental Animal Welfare Sector, 00161, Rome, Italy
| | - Anna Maria Rinaldi
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133, Rome, Italy
| | | | - Simonetta Pazzaglia
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123, Rome, Italy
| | - Maria Rosaria Domenici
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Enrico Garaci
- IRCCS San Raffaele Roma, 00163, Rome, Italy
- MEBIC Consortium, 00166, Rome, Italy
| | - Daniela Merlo
- Istituto Superiore di Sanita', Department of Neuroscience, 00161, Rome, Italy.
| |
Collapse
|
4
|
Jeffries AM, Marriott I. Cytosolic DNA Sensors and CNS Responses to Viral Pathogens. Front Cell Infect Microbiol 2020; 10:576263. [PMID: 33042875 PMCID: PMC7525022 DOI: 10.3389/fcimb.2020.576263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Viral central nervous system (CNS) infections can lead to life threatening encephalitis and long-term neurological deficits in survivors. Resident CNS cell types, such as astrocytes and microglia, are known to produce key inflammatory and antiviral mediators following infection with neurotropic DNA viruses. However, the mechanisms by which glia mediate such responses remain poorly understood. Recently, a class of intracellular pattern recognition receptors (PRRs), collectively known as DNA sensors, have been identified in both leukocytic and non-leukocytic cell types. The ability of such DNA sensors to initiate immune mediator production and contribute to infection resolution in the periphery is increasingly recognized, but our understanding of their role in the CNS remains limited at best. In this review, we describe the evidence for the expression and functionality of DNA sensors in resident brain cells, with a focus on their role in neurotropic virus infections. The available data indicate that glia and neurons can constitutively express, and/or can be induced to express, various disparate DNA sensing molecules previously described in peripheral cell types. Furthermore, multiple lines of investigation suggest that these sensors are functional in resident CNS cells and are required for innate immune responses to viral infections. However, it is less clear whether DNA sensormediated glial responses are beneficial or detrimental, and the answer to this question appears to dependent on the context of the infection with regard to the identity of the pathogen, host cell type, and host species. Defining such parameters will be essential if we are to successfully target these molecules to limit damaging inflammation while allowing beneficial host responses to improve patient outcomes.
Collapse
Affiliation(s)
- Austin M Jeffries
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
5
|
Forrer Charlier C, Martins RAP. Protective Mechanisms Against DNA Replication Stress in the Nervous System. Genes (Basel) 2020; 11:E730. [PMID: 32630049 PMCID: PMC7397197 DOI: 10.3390/genes11070730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
The precise replication of DNA and the successful segregation of chromosomes are essential for the faithful transmission of genetic information during the cell cycle. Alterations in the dynamics of genome replication, also referred to as DNA replication stress, may lead to DNA damage and, consequently, mutations and chromosomal rearrangements. Extensive research has revealed that DNA replication stress drives genome instability during tumorigenesis. Over decades, genetic studies of inherited syndromes have established a connection between the mutations in genes required for proper DNA repair/DNA damage responses and neurological diseases. It is becoming clear that both the prevention and the responses to replication stress are particularly important for nervous system development and function. The accurate regulation of cell proliferation is key for the expansion of progenitor pools during central nervous system (CNS) development, adult neurogenesis, and regeneration. Moreover, DNA replication stress in glial cells regulates CNS tumorigenesis and plays a role in neurodegenerative diseases such as ataxia telangiectasia (A-T). Here, we review how replication stress generation and replication stress response (RSR) contribute to the CNS development, homeostasis, and disease. Both cell-autonomous mechanisms, as well as the evidence of RSR-mediated alterations of the cellular microenvironment in the nervous system, were discussed.
Collapse
Affiliation(s)
| | - Rodrigo A. P. Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
6
|
Gabriel E, Ramani A, Altinisik N, Gopalakrishnan J. Human Brain Organoids to Decode Mechanisms of Microcephaly. Front Cell Neurosci 2020; 14:115. [PMID: 32457578 PMCID: PMC7225330 DOI: 10.3389/fncel.2020.00115] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Brain organoids are stem cell-based self-assembling 3D structures that recapitulate early events of human brain development. Recent improvements with patient-specific 3D brain organoids have begun to elucidate unprecedented details of the defective mechanisms that cause neurodevelopmental disorders of congenital and acquired microcephaly. In particular, brain organoids derived from primary microcephaly patients have uncovered mechanisms that deregulate neural stem cell proliferation, maintenance, and differentiation. Not only did brain organoids reveal unknown aspects of neurogenesis but also have illuminated surprising roles of cellular structures of centrosomes and primary cilia in regulating neurogenesis during brain development. Here, we discuss how brain organoids have started contributing to decoding the complexities of microcephaly, which are unlikely to be identified in the existing non-human models. Finally, we discuss the yet unresolved questions and challenges that can be addressed with the use of brain organoids as in vitro models of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elke Gabriel
- Laboratory for Centrosome and Cytoskeleton Biology, Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Anand Ramani
- Laboratory for Centrosome and Cytoskeleton Biology, Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Nazlican Altinisik
- Laboratory for Centrosome and Cytoskeleton Biology, Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Laboratory for Centrosome and Cytoskeleton Biology, Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
7
|
Abstract
Primary microcephaly (MCPH, for "microcephaly primary hereditary") is a disorder of brain development that results in a head circumference more than 3 standard deviations below the mean for age and gender. It has a wide variety of causes, including toxic exposures, in utero infections, and metabolic conditions. While the genetic microcephaly syndromes are relatively rare, studying these syndromes can reveal molecular mechanisms that are critical in the regulation of neural progenitor cells, brain size, and human brain evolution. Many of the causative genes for MCPH encode centrosomal proteins involved in centriole biogenesis. However, other MCPH genes fall under different mechanistic categories, notably DNA replication and repair. Recent gene discoveries and functional studies have implicated novel cellular processes, such as cytokinesis, centromere and kinetochore function, transmembrane or intracellular transport, Wnt signaling, and autophagy, as well as the apical polarity complex. Thus, MCPH genes implicate a wide variety of molecular and cellular mechanisms in the regulation of cerebral cortical size during development.
Collapse
Affiliation(s)
- Divya Jayaraman
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Harvard-MIT MD-PhD Program, Harvard Medical School, Boston, Massachusetts 02115, USA.,Current affiliation: Boston Combined Residency Program (Child Neurology), Boston Children's Hospital, Boston, Massachusetts 02115, USA;
| | - Byoung-Il Bae
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
8
|
Enriquez-Rios V, Dumitrache LC, Downing SM, Li Y, Brown EJ, Russell HR, McKinnon PJ. DNA-PKcs, ATM, and ATR Interplay Maintains Genome Integrity during Neurogenesis. J Neurosci 2017; 37:893-905. [PMID: 28123024 PMCID: PMC5296783 DOI: 10.1523/jneurosci.4213-15.2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 11/14/2016] [Accepted: 11/26/2016] [Indexed: 12/15/2022] Open
Abstract
The DNA damage response (DDR) orchestrates a network of cellular processes that integrates cell-cycle control and DNA repair or apoptosis, which serves to maintain genome stability. DNA-PKcs (the catalytic subunit of the DNA-dependent kinase, encoded by PRKDC), ATM (ataxia telangiectasia, mutated), and ATR (ATM and Rad3-related) are related PI3K-like protein kinases and central regulators of the DDR. Defects in these kinases have been linked to neurodegenerative or neurodevelopmental syndromes. In all cases, the key neuroprotective function of these kinases is uncertain. It also remains unclear how interactions between the three DNA damage-responsive kinases coordinate genome stability, particularly in a physiological context. Here, we used a genetic approach to identify the neural function of DNA-PKcs and the interplay between ATM and ATR during neurogenesis. We found that DNA-PKcs loss in the mouse sensitized neuronal progenitors to apoptosis after ionizing radiation because of excessive DNA damage. DNA-PKcs was also required to prevent endogenous DNA damage accumulation throughout the adult brain. In contrast, ATR coordinated the DDR during neurogenesis to direct apoptosis in cycling neural progenitors, whereas ATM regulated apoptosis in both proliferative and noncycling cells. We also found that ATR controls a DNA damage-induced G2/M checkpoint in cortical progenitors, independent of ATM and DNA-PKcs. These nonoverlapping roles were further confirmed via sustained murine embryonic or cortical development after all three kinases were simultaneously inactivated. Thus, our results illustrate how DNA-PKcs, ATM, and ATR have unique and essential roles during the DDR, collectively ensuring comprehensive genome maintenance in the nervous system. SIGNIFICANCE STATEMENT The DNA damage response (DDR) is essential for prevention of a broad spectrum of different human neurologic diseases. However, a detailed understanding of the DDR at a physiological level is lacking. In contrast to many in vitro cellular studies, here we demonstrate independent biological roles for the DDR kinases DNA-PKcs, ATM, and ATR during neurogenesis. We show that DNA-PKcs is central to DNA repair in nonproliferating cells, and restricts DNA damage accumulation, whereas ATR controls damage-induced G2 checkpoint control and apoptosis in proliferating cells. Conversely, ATM is critical for controlling apoptosis in immature noncycling neural cells after DNA damage. These data demonstrate functionally distinct, but cooperative, roles for each kinase in preserving genome stability in the nervous system.
Collapse
Affiliation(s)
- Vanessa Enriquez-Rios
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, and
| | - Lavinia C Dumitrache
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Susanna M Downing
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Yang Li
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Eric J Brown
- Abramson Family Cancer Research Institute and the Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Helen R Russell
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Peter J McKinnon
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105,
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, and
| |
Collapse
|
9
|
De Chiara G, Racaniello M, Mollinari C, Marcocci ME, Aversa G, Cardinale A, Giovanetti A, Garaci E, Palamara AT, Merlo D. Herpes Simplex Virus-Type1 (HSV-1) Impairs DNA Repair in Cortical Neurons. Front Aging Neurosci 2016; 8:242. [PMID: 27803664 PMCID: PMC5067485 DOI: 10.3389/fnagi.2016.00242] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/03/2016] [Indexed: 11/13/2022] Open
Abstract
Several findings suggest that Herpes simplex virus-1 (HSV-1) infection plays a role in the neurodegenerative processes that characterize Alzheimer’s disease (AD), but the underlying mechanisms have yet to be fully elucidated. Here we show that HSV-1 productive infection in cortical neurons causes the accumulation of DNA lesions that include both single (SSBs) and double strand breaks (DSBs), which are reported to be implicated in the neuronal loss observed in neurodegenerative diseases. We demonstrate that HSV-1 downregulates the expression level of Ku80, one of the main components of non-homologous end joining (NHEJ), a major pathway for the repair of DSBs. We also provide data suggesting that HSV-1 drives Ku80 for proteasomal degradation and impairs NHEJ activity, leading to DSB accumulation. Since HSV-1 usually causes life-long recurrent infections, it is possible to speculate that cumulating damages, including those occurring on DNA, may contribute to virus induced neurotoxicity and neurodegeneration, further suggesting HSV-1 as a risk factor for neurodegenerative conditions.
Collapse
Affiliation(s)
- Giovanna De Chiara
- Department of Cell Biology and Neuroscience, Istituto Superiore di SanitàRome, Italy; Institute of Translational Pharmacology, National Research CouncilRome, Italy
| | - Mauro Racaniello
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Cristiana Mollinari
- Department of Cell Biology and Neuroscience, Istituto Superiore di SanitàRome, Italy; Institute of Translational Pharmacology, National Research CouncilRome, Italy
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Rome, Italy
| | - Giorgia Aversa
- Laboratory of Biosafety and Risk Assessment, Division of Health Technologies, Department of Sustainable Territorial and Production Systems, ENEA Casaccia Research Center Rome, Italy
| | - Alessio Cardinale
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Pisana Rome, Italy
| | - Anna Giovanetti
- Laboratory of Biosafety and Risk Assessment, Division of Health Technologies, Department of Sustainable Territorial and Production Systems, ENEA Casaccia Research Center Rome, Italy
| | | | - Anna Teresa Palamara
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele PisanaRome, Italy; Department of Public Health and Infectious Diseases, Institute Pasteur Cenci Bolognetti Foundation, Sapienza University of RomeRome, Italy
| | - Daniela Merlo
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| |
Collapse
|
10
|
Knibbe-Hollinger JS, Fields NR, Chaudoin TR, Epstein AA, Makarov E, Akhter SP, Gorantla S, Bonasera SJ, Gendelman HE, Poluektova LY. Influence of age, irradiation and humanization on NSG mouse phenotypes. Biol Open 2015; 4:1243-52. [PMID: 26353862 PMCID: PMC4610222 DOI: 10.1242/bio.013201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Humanized mice are frequently utilized in bench to bedside therapeutic tests to combat human infectious, cancerous and degenerative diseases. For the fields of hematology-oncology, regenerative medicine, and infectious diseases, the immune deficient mice have been used commonly in basic research efforts. Obstacles in true translational efforts abound, as the relationship between mouse and human cells in disease pathogenesis and therapeutic studies requires lengthy investigations. The interplay between human immunity and mouse biology proves ever more complicated when aging, irradiation, and human immune reconstitution are considered. All can affect a range of biochemical and behavioral functions. To such ends, we show age- and irradiation-dependent influences for the development of macrocytic hyper chromic anemia, myelodysplasia, blood protein reductions and body composition changes. Humanization contributes to hematologic abnormalities. Home cage behavior revealed day and dark cycle locomotion also influenced by human cell reconstitutions. Significant age-related day-to-day variability in movement, feeding and drinking behaviors were observed. We posit that this data serves to enable researchers to better design translational studies in this rapidly emerging field of mouse humanization.
Collapse
Affiliation(s)
- Jaclyn S Knibbe-Hollinger
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Natasha R Fields
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Tammy R Chaudoin
- Department of Internal Medicine, Geriatrics Division, 986155 Nebraska Medical Center, Omaha, NE 68198-6155, USA
| | - Adrian A Epstein
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Edward Makarov
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Sidra P Akhter
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Stephen J Bonasera
- Department of Internal Medicine, Geriatrics Division, 986155 Nebraska Medical Center, Omaha, NE 68198-6155, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| |
Collapse
|
11
|
Nhej1 Deficiency Causes Abnormal Development of the Cerebral Cortex. Mol Neurobiol 2014; 52:771-82. [PMID: 25288157 DOI: 10.1007/s12035-014-8919-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022]
Abstract
DNA double-strand breaks (DSBs) frequently occur in rapidly dividing cells such as proliferating progenitors during central nervous system development. If they cannot be repaired, these lesions will cause cell death. The non-homologous end joining (NHEJ) DNA repair pathway is the only pathway available to repair DSBs in post-mitotic neurons. The non-homologous end joining factor 1 (Nhej1) protein is a key component of the NHEJ pathway. Nhej1 interacts with Xrcc4 and Lig4 to repair DSBs. Loss of function of Xrcc4 or Lig4 is embryonic lethal in the mouse while the loss of Nhej1 is not. Surprisingly, the brains of Nhej1-deficient mice appear to be normal although NHEJ1 deficiency in humans causes severe neurological dysfunction and microcephaly. Here, we studied the consequences of Nhej1 dysfunction for the development of the cerebral cortex using in utero electroporation of inactivating small hairpin RNAs (shRNAs) in the developing rat brain. We found that decreasing Nhej1 expression during neuronal migration phases causes severe neuronal migration defects visualized at embryonic stages by an accumulation of heterotopic neurons in the intermediate zone. Knocked-down cells die by 7 days after birth and the brain regions where RNA interference was achieved are structurally abnormal, suffering from a reduction of the width of the external cortical layers. These results indicate that the Nhej1 protein is necessary for proper rat cortical development. Neurons unable to properly repair DNA DSBs are unable to reach their final destination during the development and undergo apoptosis, leading to an abnormal cortical development.
Collapse
|
12
|
Identification of sexually dimorphic genes in the neonatal mouse cortex and hippocampus. Brain Res 2014; 1562:23-38. [PMID: 24661915 DOI: 10.1016/j.brainres.2014.03.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/08/2014] [Accepted: 03/15/2014] [Indexed: 01/01/2023]
Abstract
The cerebral cortex and hippocampus are important for the control of cognitive functions and social behaviors, many of which are sexually dimorphic and tightly regulated by gonadal steroid hormones via activation of their respective nuclear receptors. As different levels of sex steroid hormones are present between the sexes during early development and their receptors act as transcription factors to regulate gene expression, we hypothesize that sexually dimorphic gene expression in the developing mouse cortex and hippocampus might result in sex differences in brain structures and neural circuits governing distinct behaviors between the sexes as adults. To test our hypothesis, we used gene expression microarrays to identify 90 candidate genes differentially expressed in the neonatal cortex/hippocampus between male and female mice, including 55 male-biased and 35 female-biased genes. Among these genes, sexually dimorphic expression of eight sex chromosome genes was confirmed by reverse transcription with quantitative PCR (RT-qPCR), including three located on the X chromosome (Xist, Eif2s3x, and Kdm6a), three on the Y chromosome (Ddx3y, Eif2s3y, and Kdm5d), and two in the pseudoautosomal region of the X and Y chromosomes (Erdr1 and Mid1). In addition, five autosomal genes (Cd151, Dab2, Klk8, Meg3, and Prkdc) were also validated for their sexually dimorphic expression in the neonatal mouse cortex/hippocampus. Gene Ontology annotation analysis suggests that many of these sexually dimorphic genes are involved in histone modifications, cell proliferation/death, androgen/estrogen signaling pathways, and synaptic organization, and these biological processes have been implicated in differential neural development, cognitive function, and neurological diseases between the sexes.
Collapse
|
13
|
Rodrigues PMG, Grigaravicius P, Remus M, Cavalheiro GR, Gomes AL, Martins MR, Frappart L, Reuss D, McKinnon PJ, von Deimling A, Martins RAP, Frappart PO. Nbn and atm cooperate in a tissue and developmental stage-specific manner to prevent double strand breaks and apoptosis in developing brain and eye. PLoS One 2013; 8:e69209. [PMID: 23935957 PMCID: PMC3728324 DOI: 10.1371/journal.pone.0069209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/06/2013] [Indexed: 01/30/2023] Open
Abstract
Nibrin (NBN or NBS1) and ATM are key factors for DNA Double Strand Break (DSB) signaling and repair. Mutations in NBN or ATM result in Nijmegen Breakage Syndrome and Ataxia telangiectasia. These syndromes share common features such as radiosensitivity, neurological developmental defects and cancer predisposition. However, the functional synergy of Nbn and Atm in different tissues and developmental stages is not yet understood. Here, we show in vivo consequences of conditional inactivation of both genes in neural stem/progenitor cells using Nestin-Cre mice. Genetic inactivation of Atm in the central nervous system of Nbn-deficient mice led to reduced life span and increased DSBs, resulting in increased apoptosis during neural development. Surprisingly, the increase of DSBs and apoptosis was found only in few tissues including cerebellum, ganglionic eminences and lens. In sharp contrast, we showed that apoptosis associated with Nbn deletion was prevented by simultaneous inactivation of Atm in developing retina. Therefore, we propose that Nbn and Atm collaborate to prevent DSB accumulation and apoptosis during development in a tissue- and developmental stage-specific manner.
Collapse
Affiliation(s)
- Paulo M. G. Rodrigues
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulius Grigaravicius
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Remus
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gabriel R. Cavalheiro
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anielle L. Gomes
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio R. Martins
- Programa de Pós Graduação em Biofísica, IBCCF, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Lucien Frappart
- Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - David Reuss
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Peter J. McKinnon
- Department of Genetics, St.Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Rodrigo A. P. Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (POF); (RAPM)
| | - Pierre-Olivier Frappart
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (POF); (RAPM)
| |
Collapse
|
14
|
Gilmore EC, Walsh CA. Genetic causes of microcephaly and lessons for neuronal development. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2013; 2:461-78. [PMID: 24014418 PMCID: PMC3767923 DOI: 10.1002/wdev.89] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The study of human developmental microcephaly is providing important insights into brain development. It has become clear that developmental microcephalies are associated with abnormalities in cellular production, and that the pathophysiology of microcephaly provides remarkable insights into how the brain generates the proper number of neurons that determine brain size. Most of the genetic causes of 'primary' developmental microcephaly (i.e., not associated with other syndromic features) are associated with centrosomal abnormalities. In addition to other functions, centrosomal proteins control the mitotic spindle, which is essential for normal cell proliferation during mitosis. However, the brain is often uniquely affected when microcephaly genes are mutated implying special centrosomal-related functions in neuronal production. Although models explaining how this could occur have some compelling data, they are not without controversy. Interestingly, some of the microcephaly genes show evidence that they were targets of evolutionary selection in primates and human ancestors, suggesting potential evolutionary roles in controlling neuronal number and brain volume across species. Mutations in DNA repair pathway genes also lead to microcephaly. Double-stranded DNA breaks appear to be a prominent type of damage that needs to be repaired during brain development, yet why defects in DNA repair affect the brain preferentially and if DNA repair relates to centrosome function, are not clearly understood.
Collapse
Affiliation(s)
- Edward C Gilmore
- Division of Pediatric Neurology, Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
15
|
|
16
|
DNA-PK promotes the survival of young neurons in the embryonic mouse retina. Cell Death Differ 2010; 17:1697-706. [PMID: 20448641 DOI: 10.1038/cdd.2010.46] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Programmed cell death is a crucial process in neural development that affects mature neurons and glial cells, as well as proliferating precursors and recently born neurons at earlier stages. However, the regulation of the early phase of neural cell death and its function remain relatively poorly understood. In mouse models defective in homologous recombination or nonhomologous end-joining (NHEJ), which are both DNA double-strand break (DSB) repair pathways, there is massive cell death during neural development, even leading to embryonic lethality. These observations suggest that natural DSBs occur frequently in the developing nervous system. In this study, we have found that several components of DSB repair pathways are activated in the developing mouse retina at stages that coincide with the onset of neurogenesis. In short-term organotypic retinal cultures, we confirmed that the repair pathways can be modulated pharmacologically. Indeed, inhibiting the DNA-dependent protein kinase (DNA-PK) catalytic subunit, which is involved in NHEJ, with NU7026 increased caspase-dependent cell death and selectively reduced the neuron population. This observation concurs with an increase in the number of apoptotic neurons found after NU7026 treatment, as also observed in the embryonic scid mouse retina, a mutant that lacks DNA-PK catalytic subunit activity. Therefore, our results implicate the generation of DSB and DNA-PK-mediated repair in neurogenesis in the developing retina.
Collapse
|
17
|
Shen J, Gilmore EC, Marshall CA, Haddadin M, Reynolds JJ, Eyaid W, Bodell A, Allen K, Chang BS, Grix A, Hill RS, Topcu M, Caldecott KW, Barkovich AJ, Walsh CA. Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. Nat Genet 2010; 42:245-9. [PMID: 20118933 PMCID: PMC2835984 DOI: 10.1038/ng.526] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 12/23/2009] [Indexed: 12/18/2022]
Abstract
Maintenance of DNA integrity is crucial for all cell types, but neurons are particularly sensitive to mutations in DNA repair genes, which lead to both abnormal development and neurodegeneration. We describe a previously unknown autosomal recessive disease characterized by microcephaly, early-onset, intractable seizures and developmental delay (denoted MCSZ). Using genome-wide linkage analysis in consanguineous families, we mapped the disease locus to chromosome 19q13.33 and identified multiple mutations in PNKP (polynucleotide kinase 3'-phosphatase) that result in severe neurological disease; in contrast, a splicing mutation is associated with more moderate symptoms. Unexpectedly, although the cells of individuals carrying this mutation are sensitive to radiation and other DNA-damaging agents, no such individual has yet developed cancer or immunodeficiency. Unlike other DNA repair defects that affect humans, PNKP mutations universally cause severe seizures. The neurological abnormalities in individuals with MCSZ may reflect a role for PNKP in several DNA repair pathways.
Collapse
Affiliation(s)
- Jun Shen
- Howard Hughes Medical Institute, Department of Neurology, Beth Israel Deaconess Medical Center and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Edward C. Gilmore
- Division of Genetics and The Manton Center for Orphan Disease Research, Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
- Division of Child Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christine A. Marshall
- Howard Hughes Medical Institute, Department of Neurology, Beth Israel Deaconess Medical Center and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Mary Haddadin
- Department of Pathology, Cytogenetics Laboratory, Al-Bashir Hospital, Ministry of Health, Amman, Jordan
| | - John J. Reynolds
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Wafaa Eyaid
- Genetics & Endocrinology, Department of Pediatrics Mail Code 1510, King Fahad National Guard Hospital, King Abdul Aziz Medical City, Saudi Arabia
| | - Adria Bodell
- Howard Hughes Medical Institute, Department of Neurology, Beth Israel Deaconess Medical Center and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics and The Manton Center for Orphan Disease Research, Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn Allen
- Howard Hughes Medical Institute, Department of Neurology, Beth Israel Deaconess Medical Center and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Bernard S. Chang
- Howard Hughes Medical Institute, Department of Neurology, Beth Israel Deaconess Medical Center and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Arthur Grix
- Department of Medical Genetics, Kaiser-Permanente Point West Medical Offices, Sacramento, USA
| | - R. Sean Hill
- Division of Genetics and The Manton Center for Orphan Disease Research, Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Meral Topcu
- Hacettepe University, Medical Faculty, Ihsan Dogramaci Children's Hospital, Department of Pediatrics, Section of Pediatric Neurology, Sihhiye 06100, Ankara, Turkey
| | - Keith W. Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - A. James Barkovich
- Department of Radiology, Department of Neurology, and Department of Pediatrics, University of California at San Francisco, San Francisco, CA 94143-0628, USA
| | - Christopher A. Walsh
- Howard Hughes Medical Institute, Department of Neurology, Beth Israel Deaconess Medical Center and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics and The Manton Center for Orphan Disease Research, Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
18
|
Zhang Y, Parsanejad M, Huang E, Qu D, Aleyasin H, Rousseaux MWC, Gonzalez YR, Cregan SP, Slack RS, Park DS. Pim-1 kinase as activator of the cell cycle pathway in neuronal death induced by DNA damage. J Neurochem 2009; 112:497-510. [PMID: 19895669 DOI: 10.1111/j.1471-4159.2009.06476.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
DNA damage is a critical component of neuronal death underlying neurodegenerative diseases and injury. Neuronal death evoked by DNA damage is characterized by inappropriate activation of multiple cell cycle components. However, the mechanism regulating this activation is not fully understood. We demonstrated previously that the cell division cycle (Cdc) 25A phosphatase mediates the activation of cyclin-dependent kinases and neuronal death evoked by the DNA damaging agent camptothecin. We also showed that Cdc25A activation is blocked by constitutive checkpoint kinase 1 activity under basal conditions in neurons. Presently, we report that an additional factor is central to regulation of Cdc25A phosphatase in neuronal death. In a gene array screen, we first identified Pim-1 as a potential factor up-regulated following DNA damage. We confirmed the up-regulation of Pim-1 transcript, protein and kinase activity following DNA damage. This induction of Pim-1 is regulated by the nuclear factor kappa beta (NF-kappaB) pathway as Pim-1 expression and activity are significantly blocked by siRNA-mediated knockdown of NF-kappaB or NF-kappaB pharmacological inhibitors. Importantly, Pim-1 activity is critical for neuronal death in this paradigm and its deficiency blocks camptothecin-mediated neuronal death. It does so by activating Cdc25A with consequent activation of cyclin D1-associated kinases. Taken together, our results demonstrate that Pim-1 kinase plays a central role in DNA damage-evoked neuronal death by regulating aberrant neuronal cell cycle activation.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Meek K, Jutkowitz A, Allen L, Glover J, Convery E, Massa A, Mullaney T, Stanley B, Rosenstein D, Bailey SM, Johnson C, Georges G. SCID dogs: similar transplant potential but distinct intra-uterine growth defects and premature replicative senescence compared with SCID mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:2529-36. [PMID: 19635917 DOI: 10.4049/jimmunol.0801406] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have previously described DNA-dependent protein kinase (DNA-PKcs) mutations in horses and dogs that result in deficits in V(D)J recombination, DNA repair, and SCID. In this paper, we document substantial developmental growth defects in DNA-PKcs-deficient dogs that are not apparent in SCID mice. Fibroblast cell strains derived from either fetal or adult SCID dogs proliferate poorly in culture and undergo premature replicative senescence, somewhat reminiscent of cells derived from Ku-deficient mice. A limited number of animals have been immune reconstituted (by bone marrow transplantation) so that they can be maintained in a normal environment for long periods. Several of these animals have developed conditions associated with premature ageing at 2-3 years of age, roughly 20% of their expected lifespan. These conditions include intestinal malabsorption and primary neural cell neoplasia. These results suggest that DNA-PKcs deficiency is not tolerated equally in all species, perhaps providing insight into why DNA-PKcs deficiency has not been observed in humans. Finally, this study demonstrates the feasibility of maintaining SCID dogs for extended periods of time and documents their utility for bone marrow transplantation studies and as hosts for the propagation of xenografts. In sum, SCID dogs may present researchers with new possibilities for the development of animal models of human disease.
Collapse
Affiliation(s)
- Katheryn Meek
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan StateUniversity, East Lansing, MI 48824, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Barzilai A, Biton S, Shiloh Y. The role of the DNA damage response in neuronal development, organization and maintenance. DNA Repair (Amst) 2008; 7:1010-27. [DOI: 10.1016/j.dnarep.2008.03.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Abstract
Neurodegeneration in limbic circuits is a hallmark feature of chronic temporal lobe epilepsy (TLE). Studies in experimental animal models and human patients indicate that seizure-induced neuronal injury involves some active, as well as passive cell death processes. Experimental approaches that inhibit active steps in cell death programs have been shown to reduce neuronal cell death and sclerosis, but not to prevent epileptogenesis in animal models of TLE. These findings suggest that we need additional research using both animal models and brain slices from human patients to understand the pathological mechanisms underlying seizure generation. Such comparative studies will also aid in evaluating the potential therapeutic value of inhibiting cell death in seizure disorders.
Collapse
Affiliation(s)
- Janice R Naegele
- Department of Biology, Room 257, Hall-Atwater Laboratory, Lawn Avenue, Wesleyan University, Middletown, CT 06459, USA.
| |
Collapse
|
22
|
Sharma S. Age-related nonhomologous end joining activity in rat neurons. Brain Res Bull 2007; 73:48-54. [PMID: 17499636 DOI: 10.1016/j.brainresbull.2007.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 01/30/2007] [Accepted: 02/01/2007] [Indexed: 11/17/2022]
Abstract
DNA double strand break (DSB) represents a potentially lethal form of DNA damage. Reports suggest that DSBs are introduced in neurons during the course of normal development, and repair of such DSBs is essential for neuronal survival. The molecular mechanisms of DSB repair by nonhomologous end joining (NHEJ) have been described in several cell types. The present study describes age-related NHEJ activity in the isolated neurons from rat cerebral cortex. Cell-free extracts prepared from rat cortical neurons support efficient NHEJ of linearized plasmid DNA in an in vitro DSB repair assay. End joining efficiency of young neurons is dependent on DNA end structure. A linear plasmid with blunt ends was joined less efficiently by the neuronal extracts than the cohesive or non-matching protruding DNA ends. NHEJ in neurons was blocked by the DNA-PKcs inhibitor wortmannin, and dNTP, and could occur in the absence of exogenously added ATP. The end joining process in young rat neurons is nonfaithful. In vitro NHEJ activity was considerably lower in adult brain, and neurons from old brain failed to support significant end joining. The age-dependent profile of neuronal NHEJ indicates that neurons in postnatal brain utilize error-prone NHEJ to repair DNA double strand breaks accumulated within the genome and this activity declines gradually with age.
Collapse
Affiliation(s)
- Sudha Sharma
- ICMR Center for Research on Aging and Brain (CRAB), Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
23
|
Abstract
Neurons are extremely active cells and metabolize up to 20% of the oxygen that was consumed by the organism. Despite their highly oxygenic metabolism, neuronal cells have a lower capacity to neutralize the reactive oxygen species (ROS) that they generate or to which they are exposed. High levels of ROS can lead to accumulation of damage to various cellular macromolecules. One of the cellular macromolecules highly affected by intracellular as well as extracellular insults is DNA. Neurons are also highly differentiated, postmitotic cells that cannot be replenished after disease or trauma. Since neurons are irreplaceable and should survive as long as the organism does, they need elaborate defense mechanisms to ensure their longevity. This review article mainly focuses on certain mechanisms that contribute to neuronal longevity, and concentrates on the DNA damage response in neuronal cells. The various mechanisms of DNA repair are briefly described, and focus is on those mechanisms that are activated in neuronal cells following DNA damage. Evidence is presented to show that proper DNA damage response is critically important, not just for normal neuronal development but throughout the entire life of any organism. Defective DNA damage response in older human age can generate neurodegenerative disorders such as Alzheimer's or Parkinson diseases.
Collapse
Affiliation(s)
- Ari Barzilai
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.
| |
Collapse
|
24
|
Crowe SL, Movsesyan VA, Jorgensen TJ, Kondratyev A. Rapid phosphorylation of histone H2A.X following ionotropic glutamate receptor activation. Eur J Neurosci 2006; 23:2351-61. [PMID: 16706843 PMCID: PMC1534119 DOI: 10.1111/j.1460-9568.2006.04768.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Excessive activation of ionotropic glutamate receptors increases oxidative stress, contributing to the neuronal death observed following neurological insults such as ischemia and seizures. Post-translational histone modifications may be key mediators in the detection and repair of damage resulting from oxidative stress, including DNA damage, and may thus affect neuronal survival in the aftermath of insults characterized by excessive glutamate release. In non-neuronal cells, phosphorylation of histone variant H2A.X (termed gamma-H2AX) occurs rapidly following DNA double-strand breaks. We investigated gamma-H2AX formation in rat cortical neurons (days in vitro 14) following activation of N-methyl-D-aspartate (NMDA) or alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate glutamate receptors using fluorescent immunohistochemical techniques. Moreover, we evaluated the co-localization of gamma-H2AX 'foci' with Mre11, a double-strand break repair protein, to provide further evidence for the activation of this DNA damage response pathway. Here we show that minimally cytotoxic stimulation of ionotropic glutamate receptors was sufficient to evoke gamma-H2AX in neurons, and that NMDA-induced gamma-H2AX foci formation was attenuated by pretreatment with the antioxidant, Vitamin E, and the intracellular calcium chelator, BAPTA-AM. Moreover, a subset of gamma-H2AX foci co-localized with Mre11, indicating that at least a portion of gamma-H2AX foci is damage dependent. The extent of gamma-H2AX induction following glutamate receptor activation corresponded to the increases we observed following conventional DNA damaging agents [i.e. non-lethal doses of gamma-radiation (1 Gy) and hydrogen peroxide (10 microm)]. These data suggest that insults not necessarily resulting in neuronal death induce the DNA damage-evoked chromatin modification, gamma-H2AX, and implicate a role for histone alterations in determining neuronal vulnerability following neurological insults.
Collapse
MESH Headings
- 2-Amino-5-phosphonovalerate/pharmacology
- Animals
- Animals, Newborn
- Cell Survival/drug effects
- Cerebral Cortex/cytology
- DNA Repair Enzymes
- DNA-Binding Proteins/metabolism
- Dizocilpine Maleate/pharmacology
- Dose-Response Relationship, Drug
- Dose-Response Relationship, Radiation
- Drug Interactions
- Fluorescent Antibody Technique/methods
- Gamma Rays
- Gene Expression/drug effects
- Gene Expression/radiation effects
- Histones/metabolism
- Hydrogen Peroxide/pharmacology
- MRE11 Homologue Protein
- N-Methylaspartate/pharmacology
- Neurons/drug effects
- Neurons/physiology
- Neurons/radiation effects
- Phosphorylation/drug effects
- Phosphorylation/radiation effects
- Rats
- Rats, Sprague-Dawley
- Receptors, AMPA/agonists
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/physiology
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
Collapse
Affiliation(s)
- Samantha L. Crowe
- Interdisciplinary Program in Neuroscience Georgetown University, Washington, D.C., USA
- Departments of Pharmacology Georgetown University, Washington, D.C., USA
| | - Vilen A. Movsesyan
- Departments of Neuroscience, Georgetown University, Washington, D.C., USA
| | | | - Alexei Kondratyev
- Departments of Pharmacology Georgetown University, Washington, D.C., USA
- Departments of Pediatrics, Georgetown University, Washington, D.C., USA
| |
Collapse
|
25
|
Niimi N, Sugo N, Aratani Y, Koyama H. Genetic interaction between DNA polymerase beta and DNA-PKcs in embryogenesis and neurogenesis. Cell Death Differ 2005; 12:184-91. [PMID: 15647757 DOI: 10.1038/sj.cdd.4401543] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
DNA polymerase beta (Polbeta) has been implicated in base excision repair. Polbeta knockout mice exhibit apoptosis in postmitotic neuronal cells and die at birth. Also, mice deficient in nonhomologous end-joining (NHEJ), a major pathway for DNA double-strand break repair, cause massive neuronal apoptosis. Severe combined immunodeficiency (SCID) mice have a mutation in the gene encoding DNA-dependent protein kinase catalytic subunit (DNA-PKcs), the component of NHEJ, and exhibit defective lymphogenesis. To study the interaction between Polbeta and DNA-PKcs, we generated mice doubly deficient in Polbeta and DNA-PKcs. Polbeta(-/-)DNA-PKcs(scid/scid) embryos displayed greater developmental delay, more extensive neuronal apoptosis, and earlier lethality than Polbeta(-/-) and DNA-PKcs(scid/scid) embryos. Furthermore, to study the involvement of p53 in the phenotype, we generated Polbeta(-/-)DNA-PKcs(scid/scid)p53(-/-) triple-mutant mice. The mutants did not exhibit apoptosis but were lethal with defective neurulation at midgestation. These results suggest a genetic interaction between Polbeta and DNA-PKcs in embryogenesis and neurogenesis.
Collapse
Affiliation(s)
- N Niimi
- Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | | | |
Collapse
|
26
|
Neema M, Navarro-Quiroga I, Chechlacz M, Gilliams-Francis K, Liu J, Lamonica K, Lin SL, Naegele JR. DNA damage and nonhomologous end joining in excitotoxicity: neuroprotective role of DNA-PKcs in kainic acid-induced seizures. Hippocampus 2005; 15:1057-71. [PMID: 16216017 DOI: 10.1002/hipo.20123] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DNA repair plays a critical, but imprecisely defined role in excitotoxic injury and neuronal survival throughout adulthood. We utilized an excitotoxic injury model to compare the location and phenotype of degenerating neurons in mice (strain 129-C57BL) deficient in the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), an enzyme required for nonhomologous end joining (NHEJ). Brains from untreated adult heterozygous and DNA-PKcs null mice displayed comparable cytoarchitecture and undetectable levels of cell death. By day 1, and extending through 4 days following kainic acid-induced seizures, brains from DNA-PKcs null mice showed widespread neurodegeneration that encompassed the entire hippocampal CA1-CA3 pyramidal cell layer, entorhinal cortex, and lateral septum, with relative sparing of the dentate gyrus granule cell layer and hilus, as judged by toluidine blue, Fluoro-Jade B, and terminal dUTP nick end labeling staining. In contrast, seizure-related neurodegeneration in heterozygous littermates was limited to the CA3 region of the hippocampus. NeuN and calbindin staining revealed a selective decrease in the number and density of NeuN-positive neurons in the pyramidal layers of degenerating regions in both heterozygous and DNA-PKcs null mice. To elucidate the mechanisms leading to cell death, we examined an involvement of the p53 pathway, known to be induced by DNA damage. Addition of pifithrin-alpha, a p53 inhibitor, or expression of a dominant-negative p53 rescued neurons from kainate-induced excitotoxic cell death in primary cortical cultures derived from wildtype, DNA-PKcs heterozygous, or DNA-PKcs null neonatal mice. Moreover, pifithrin-alpha prevented kainate-induced loss of mitochondrial membrane potential, dendrite degeneration, and cell death. Results suggest that NHEJ plays a neuroprotective role in excitotoxicity, within the perforant, Schaffer collateral, hippocampal-septal, and temperoammonic pathways, in part by repairing DNA damage that would otherwise result in activation of a p53-dependent apoptotic cascade.
Collapse
Affiliation(s)
- Mohit Neema
- Department of Biology and Program in Neuroscience and Behavior, Wesleyan University, Middletown, CT 06459-0170, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Narasimhaiah R, Tuchman A, Lin SL, Naegele JR. Oxidative damage and defective DNA repair is linked to apoptosis of migrating neurons and progenitors during cerebral cortex development in Ku70-deficient mice. ACTA ACUST UNITED AC 2004; 15:696-707. [PMID: 15342428 PMCID: PMC2801560 DOI: 10.1093/cercor/bhh171] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
DNA repair plays a critical, but imprecisely defined role in neuronal survival during cortical neurogenesis. We examined cortical development in mice deficient for the DNA end-joining protein, Ku70. At gestational day 14.5, corresponding to the peak of neurogenesis, the Ku70(-/-) embryonic cerebral cortex displayed 25- to 30-fold more cell death than heterozygous littermates, as judged by DNA breaks, pyknosis and active caspase-3. In Ku70(-/-) embryos only, large clusters of dying neurons were found in the intermediate zone. Cell death declined until P4, when the number of dying cells became comparable to that in heterozygous mice. Two groups of dying cells were evident: a GLAST(+) neural progenitor population in the subventricular and ventricular zones, and a doublecortin(+) immature neuron population in the intermediate zone, the latter exhibiting strong staining for oxidative DNA damage. Antioxidants and lower oxygen tension reduced the high levels of neuronal death in primary cortical cultures derived from Ku70(-/-) mice, but not the low levels of cell death in wildtype cortical cultures. Results indicate migrating cortical neurons undergo oxidative DNA damage, which is normally repaired by non-homologous end joining. Failure to repair oxidative damage triggers a form of apoptosis involving caspase-3 activation.
Collapse
Affiliation(s)
- Roopashree Narasimhaiah
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown, CT 06459-0171, USA
| | - Alexander Tuchman
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown, CT 06459-0171, USA
| | - Stanley L. Lin
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown, CT 06459-0171, USA
- Department of Psychiatry, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA
| | - Janice R. Naegele
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown, CT 06459-0171, USA
| |
Collapse
|
28
|
Gilliams-Francis KL, Quaye AA, Naegele JR. PARP cleavage, DNA fragmentation, and pyknosis during excitotoxin-induced neuronal death. Exp Neurol 2004; 184:359-72. [PMID: 14637106 DOI: 10.1016/j.expneurol.2003.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Poly(ADP-ribose)polymerase-1 (PARP-1) is a nuclear enzyme activated by DNA breaks and serves a role in DNA repair through the formation of polymers (poly(ADP)ribosylation) at sites of DNA damage. PARP-1 is activated by DNA damage in neurons of the hippocampus and cerebral cortex following excessive exposure to glutamate receptor agonists such as NMDA or kainic acid. In addition, recent studies suggest that degradation of PARP-1 occurs in cells that undergo apoptotic versus nonapoptotic forms of cell death. To investigate this process further, we examined the spatiotemporal aspects of excitotoxic injury in the rodent visual cortex by making focal intracerebral injections of kainic acid. These injections resulted in DNA damage, PARP-1 activation, and neuronal cell death over a 5-day period. Rapid neuronal cell injury assessed by Fluoro-Jade staining appeared within hours, but increased TUNEL staining occurred only after 24 h. A dramatic increase in caspase-3 activity, as well as an increase in the number of neurons containing active caspase-3, peaked 2 days after injury. Last, increased PARP-1 immunoreactivity and PARP-1 cleavage reached peak levels 2 to 3 days after delivering the excitotoxin. These findings suggest that increased caspase-3 activity may regulate the degradation of PARP-1 in subsets of cortical neurons during excitotoxic cell death.
Collapse
Affiliation(s)
- Karen L Gilliams-Francis
- Department of Biology and Program in Neuroscience and Behavior, Wesleyan University, Middletown, CT 06459, USA
| | | | | |
Collapse
|
29
|
Chechlacz M, Naegele J. Genetics of childhood disorders: XL. Stem cell research, part 4: neural horticulture. J Am Acad Child Adolesc Psychiatry 2002; 41:882-5. [PMID: 12108815 DOI: 10.1097/00004583-200207000-00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Morrison RS, Kinoshita Y, Johnson MD, Ghatan S, Ho JT, Garden G. Neuronal survival and cell death signaling pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 513:41-86. [PMID: 12575817 DOI: 10.1007/978-1-4615-0123-7_2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuronal viability is maintained through a complex interacting network of signaling pathways that can be perturbed in response to a multitude of cellular stresses. A shift in the balance of signaling pathways after stress or in response to pathology can have drastic consequences for the function or the fate of a neuron. There is significant evidence that acutely injured and degenerating neurons may die by an active mechanism of cell death. This process involves the activation of discrete signaling pathways that ultimately compromise mitochondrial structure, energy metabolism and nuclear integrity. In this review we examine recent evidence pertaining to the presence and activation of anti- and pro-cell death regulatory pathways in nervous system injury and degeneration.
Collapse
Affiliation(s)
- Richard S Morrison
- Department of Neurological Surgery, University of Washington School of Medicine, Box 356470, Seattle, Washington 98195-6470, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
DNA-dependent protein kinase (DNA-PK) is a DNA repair enzyme composed of a DNA-binding component called Ku70/80 and a catalytic subunit called DNA-PKcs. Many investigators have utilized DNA-PKcs-deficient cells and cell lines derived from severe combined immunodeficiency (scid) mice to study DNA repair and apoptosis. However, little is known about the CNS of these mice. This study was carried out using primary neuronal cultures derived from the cerebral hemispheres of new-born wild-type and scid mice to investigate the effects of loss of DNA-PK function on neuronal maturation and survival. Purified neuronal cultures developed comparably in terms of neurite formation and expression of neuronal markers, but scid cultures showed a significant increase in the percentage of dying cells. Furthermore, when apoptosis was induced by staurosporine, scid neurons died more rapidly and in higher numbers. Apoptotic scid neurons exhibited nuclear condensation, DNA fragmentation and caspase-3 activation, but treatment with the general caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-(O-methyl) fluoromethyl ketone did not prevent staurosporine-induced apoptosis. We conclude that a DNA-PK deficiency in cultured scid neurons may cause an accumulation of DNA damage and increased susceptibility to caspase-independent forms of programmed cell death.
Collapse
Affiliation(s)
- M Chechlacz
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | |
Collapse
|