1
|
Bhandari S, Kyrrestad I, Simón-Santamaría J, Li R, Szafranska KJ, Dumitriu G, Sánchez Romano J, Smedsrød B, Sørensen KK. Mouse liver sinusoidal endothelial cell responses to the glucocorticoid receptor agonist dexamethasone. Front Pharmacol 2024; 15:1377136. [PMID: 39439887 PMCID: PMC11494038 DOI: 10.3389/fphar.2024.1377136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) which make up the fenestrated wall of the hepatic sinusoids, are active scavenger cells involved in blood waste clearance and liver immune functions. Dexamethasone is a synthetic glucocorticoid commonly used in the clinic and as cell culture supplement. However, the response is dependent on tissue, cell type, and cell state. The aim of this study was to investigate the effect of dexamethasone on primary mouse LSECs (C57BL/6J); their viability (live-dead, LDH release, caspase 3/7 assays), morphology (scanning electron microscopy), release of inflammatory markers (ELISA), and scavenging functions (endocytosis assays), and associated biological processes and pathways. We have characterized and catalogued the proteome of LSECs cultured for 1, 10, or 48 h to elucidate time-dependent and dexamethasone-specific cell responses. More than 6,000 protein IDs were quantified using tandem mass tag technology and advanced mass spectrometry (synchronous precursor selection multi-notch MS3). Enrichment analysis showed a culture-induced upregulation of stress and inflammatory markers, and a significant shift in cell metabolism already at 10 h, with enhancement of glycolysis and concomitant repression of oxidative phosphorylation. At 48 h, changes in metabolic pathways were more pronounced with dexamethasone compared to time-matched controls. Dexamethasone repressed the activation of inflammatory pathways (IFN-gamma response, TNF-alpha signaling via NF-kB, Cell adhesion molecules), and culture-induced release of interleukin-6, VCAM-1, and ICAM-1, and improved cell viability partly through inhibition of apoptosis. The mouse LSECs did not proliferate in culture. Dexamethasone treated cells showed upregulation of xanthine dehydrogenase/oxidase (Xdh), and the transcription regulator Foxo1. The drug further delayed but did not block the culture-induced loss of LSEC fenestration. The LSEC capacity for endocytosis was significantly reduced at 48 h, independent of dexamethasone, which correlated with diminished expression of several scavenger receptors and C-type lectins and altered expression of proteins in the endocytic machinery. The glucocorticoid receptor (NR3C1) was suppressed by dexamethasone at 48 h, suggesting limited effect of the drug in prolonged LSEC culture. Conclusion: The study presents a detailed overview of biological processes and pathways affected by dexamethasone in mouse LSECs in vitro.
Collapse
|
2
|
Afshari AR, Sanati M, Aminyavari S, Shakeri F, Bibak B, Keshavarzi Z, Soukhtanloo M, Jalili-Nik M, Sadeghi MM, Mollazadeh H, Johnston TP, Sahebkar A. Advantages and drawbacks of dexamethasone in glioblastoma multiforme. Crit Rev Oncol Hematol 2022; 172:103625. [PMID: 35158070 DOI: 10.1016/j.critrevonc.2022.103625] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
The most widespread, malignant, and deadliest type of glial tumor is glioblastoma multiforme (GBM). Despite radiation, chemotherapy, and radical surgery, the median survival of afflicted individuals is about 12 months. Unfortunately, existing therapeutic interventions are abysmal. Dexamethasone (Dex), a synthetic glucocorticoid, has been used for many years to treat brain edema and inflammation caused by GBM. Several investigations have recently shown that Dex also exerts antitumoral effects against GBM. On the other hand, more recent disputed findings have questioned the long-held dogma of Dex treatment for GBM. Unfortunately, steroids are associated with various undesirable side effects, including severe immunosuppression and metabolic changes like hyperglycemia, which may impair the survival of GBM patients. Current ideas and concerns about Dex's effects on GBM cerebral edema, cell proliferation, migration, and its clinical outcomes were investigated in this study.
Collapse
Affiliation(s)
- Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Shakeri
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Montazami Sadeghi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Gährs M, Schrenk D. Suppression of apoptotic signaling in rat hepatocytes by non-dioxin-like polychlorinated biphenyls depends on the receptors CAR and PXR. Toxicology 2021; 464:153023. [PMID: 34743025 DOI: 10.1016/j.tox.2021.153023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) represent a sub-group of persistent organic pollutants found in food, environmental samples and human and animal tissues. Promotion of pre-neoplastic lesions in rodent liver has been suggested as an indicator for a possible increased risk of liver cancer in humans exposed to NDL-PCBs. In rodent hepatocytes, suppression of DNA damage-triggered apoptosis is a typical mode of action of liver tumor promoters. Here, we report that NDL-PCBs suppress apoptosis in rat hepatocytes treated in culture with an apoptogenic dose of UV light. Suppression became less pronounced when the constitutive androstane receptor (CAR) and/or the pregnane-X-receptor (PXR) where knocked-out using siRNAs, while knocking-out both receptors led to a full reconstitution of apoptosis. In contrast, suppression of apoptosis by the CAR or PXR activators phenobarbital or dexamethasone were CAR- or PXR-specific. Induction and suppression of apoptosis were paralleled by changes in caspase 3/7, 8 and 9 activities. Our findings indicate that NDL-PCBs can suppress UV-induced apoptosis in rat hepatocytes by activating CAR and PXR. It needs further investigation if these mechanisms of action are also of relevance for human liver.
Collapse
Affiliation(s)
- Maike Gährs
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
4
|
Tabernilla A, dos Santos Rodrigues B, Pieters A, Caufriez A, Leroy K, Van Campenhout R, Cooreman A, Gomes AR, Arnesdotter E, Gijbels E, Vinken M. In Vitro Liver Toxicity Testing of Chemicals: A Pragmatic Approach. Int J Mol Sci 2021; 22:5038. [PMID: 34068678 PMCID: PMC8126138 DOI: 10.3390/ijms22095038] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
The liver is among the most frequently targeted organs by noxious chemicals of diverse nature. Liver toxicity testing using laboratory animals not only raises serious ethical questions, but is also rather poorly predictive of human safety towards chemicals. Increasing attention is, therefore, being paid to the development of non-animal and human-based testing schemes, which rely to a great extent on in vitro methodology. The present paper proposes a rationalized tiered in vitro testing strategy to detect liver toxicity triggered by chemicals, in which the first tier is focused on assessing general cytotoxicity, while the second tier is aimed at identifying liver-specific toxicity as such. A state-of-the-art overview is provided of the most commonly used in vitro assays that can be used in both tiers. Advantages and disadvantages of each assay as well as overall practical considerations are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.T.); (B.d.S.R.); (A.P.); (A.C.); (K.L.); (R.V.C.); (A.C.); (A.R.G.); (E.A.); (E.G.)
| |
Collapse
|
5
|
Ferro I, Gavini J, Gallo S, Bracher L, Landolfo M, Candinas D, Stroka DM, Polacek N. The human vault RNA enhances tumorigenesis and chemoresistance through the lysosome in hepatocellular carcinoma. Autophagy 2021; 18:191-203. [PMID: 33960270 PMCID: PMC8865259 DOI: 10.1080/15548627.2021.1922983] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The small non-coding VTRNA1-1 (vault RNA 1–1) is known to confer resistance to apoptosis in several malignant cell lines and to also modulate the macroautophagic/autophagic flux in hepatocytes, thus highlighting its pro-survival role. Here we describe a new function of VTRNA1-1 in regulating in vitro and in vivo tumor cell proliferation, tumorigenesis and chemoresistance. Knockout (KO) of VTRNA1-1 in human hepatocellular carcinoma cells reduced nuclear localization of TFEB (transcription factor EB), leading to a downregulation of the coordinated lysosomal expression and regulation (CLEAR) network genes and lysosomal compartment dysfunction. We demonstrate further that impaired lysosome function due to loss of VTRNA1-1 potentiates the anticancer effect of conventional chemotherapeutic drugs. Finally, loss of VTRNA1-1 reduced drug lysosomotropism allowing higher intracellular compound availability and thereby significantly reducing tumor cell proliferation in vitro and in vivo. These findings reveal a so far unknown role of VTRNA1-1 in the intracellular catabolic compartment and describe its contribution to lysosome-mediated chemotherapy resistance. Abbreviations: ATP6V0D2: ATPase H+ transporting V0 subunit d2; BafA: bafilomycin A1; CLEAR: coordinated lysosomal expression and regulation; CQ: chloroquine; DMSO: dimethyl sulfoxide; GST-BHMT: glutathionine S-transferase N-terminal to betaine–homocysteine S-methyltransferase; HCC: hepatocellular carcinoma; LAMP1: lysosomal associated membrane protein 1; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MAPK: mitogen-activated protein kinase; MITF: melanocyte inducing transcription factor; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; ncRNA: non-coding RNA; RNP: ribonucleoprotein; SF: sorafenib; SQSTM1/p62: sequestosome 1; STS: staurosporine; tdRs: tRNA-derived RNAs; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcription factor EB; vtRNA: vault RNA transcript.
Collapse
Affiliation(s)
- Iolanda Ferro
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Jacopo Gavini
- Department of Visceral Surgery and Medicine, Department for BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Stefano Gallo
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lisamaria Bracher
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Marc Landolfo
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Daniel Candinas
- Department of Visceral Surgery and Medicine, Department for BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Deborah M Stroka
- Department of Visceral Surgery and Medicine, Department for BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Pirc Marolt T, Kramar B, Bulc Rozman K, Šuput D, Milisav I. Aripiprazole reduces liver cell division. PLoS One 2020; 15:e0240754. [PMID: 33104743 PMCID: PMC7588089 DOI: 10.1371/journal.pone.0240754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022] Open
Abstract
Effects of aripiprazole on dopamine regulation are being tested as a treatment for patients with a dual diagnosis of schizophrenia and addictions, often cocaine dependence. Aripiprazole has one of the fewest side-effects among the second-generation antipsychotics. Nevertheless, severe aripiprazole hepatotoxicity was reported in persons with a history of cocaine and alcohol abuse. Here we report that therapeutically relevant aripiprazole concentrations, equal to laboratory alert levels in patients' serum, reduce the rate of hepatocytes' division. This could be an underlying mechanism of severe liver injury development in the patients with a history of alcohol and cocaine abuse, the two hepatotoxic agents that require increased ability of liver self-regeneration. Monitoring liver functions is, therefore, important in the cases when aripiprazole is co-prescribed or used with drugs with potential hepatotoxic effects.
Collapse
Affiliation(s)
- Tinkara Pirc Marolt
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Kramar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Klara Bulc Rozman
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Kim JS, Hwang SI, Ryu JL, Hong HS, Lee JM, Lee SM, Jin X, Han C, Kim JH, Han J, Lee MR, Woo DH. ER stress reliever enhances functionalities of in vitro cultured hepatocytes. Stem Cell Res 2020; 43:101732. [DOI: 10.1016/j.scr.2020.101732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022] Open
|
8
|
Dexmedetomidine Attenuates Lung Injury in Obstructive Jaundice Rats Through PI3K/Akt/HIF-1α Signaling Pathway. Arch Med Res 2019; 50:233-240. [DOI: 10.1016/j.arcmed.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/03/2019] [Accepted: 08/21/2019] [Indexed: 11/20/2022]
|
9
|
VanLith CJ, Guthman RM, Nicolas CT, Allen KL, Liu Y, Chilton JA, Tritz ZP, Nyberg SL, Kaiser RA, Lillegard JB, Hickey RD. Ex Vivo Hepatocyte Reprograming Promotes Homology-Directed DNA Repair to Correct Metabolic Disease in Mice After Transplantation. Hepatol Commun 2019; 3:558-573. [PMID: 30976745 PMCID: PMC6442694 DOI: 10.1002/hep4.1315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/22/2018] [Indexed: 02/02/2023] Open
Abstract
Ex vivo CRISPR/Cas9-mediated gene editing in hepatocytes using homology-directed repair (HDR) is a potential alternative curative therapy to organ transplantation for metabolic liver disease. However, a major limitation of this approach in quiescent adult primary hepatocytes is that nonhomologous end-joining is the predominant DNA repair pathway for double-strand breaks (DSBs). This study explored the hypothesis that ex vivo hepatocyte culture could reprogram hepatocytes to favor HDR after CRISPR/Cas9-mediated DNA DSBs. Quantitative PCR (qPCR), RNA sequencing, and flow cytometry demonstrated that within 24 hours, primary mouse hepatocytes in ex vivo monolayer culture decreased metabolic functions and increased expression of genes related to mitosis progression and HDR. Despite the down-regulation of hepatocyte function genes, hepatocytes cultured for up to 72 hours could robustly engraft in vivo. To assess functionality long-term, primary hepatocytes from a mouse model of hereditary tyrosinemia type 1 bearing a single-point mutation were transduced ex vivo with two adeno-associated viral vectors to deliver the Cas9 nuclease, target guide RNAs, and a 1.2-kb homology template. Adeno-associated viral Cas9 induced robust cutting at the target locus, and, after delivery of the repair template, precise correction of the point mutation occurred by HDR. Edited hepatocytes were transplanted into recipient fumarylacetoacetate hydrolase knockout mice, resulting in engraftment, robust proliferation, and prevention of liver failure. Weight gain and biochemical assessment revealed normalization of metabolic function. Conclusion: The results of this study demonstrate the potential therapeutic effect of ex vivo hepatocyte-directed gene editing after reprogramming to cure metabolic disease in a preclinical model of hereditary tyrosinemia type 1.
Collapse
Affiliation(s)
- Caitlin J. VanLith
- Department of SurgeryMayo ClinicRochesterMN
- Department of Molecular MedicineMayo ClinicRochesterMN
| | - Rebekah M. Guthman
- Department of SurgeryMayo ClinicRochesterMN
- Department of Molecular MedicineMayo ClinicRochesterMN
| | | | | | - Yuanhang Liu
- Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMN
| | | | - Zachariah P. Tritz
- Department of ImmunologyMayo ClinicRochesterMN
- Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicRochesterMN
| | - Scott L. Nyberg
- Department of SurgeryMayo ClinicRochesterMN
- William J. von Liebig Center for Transplantation and Clinical RegenerationMayo ClinicRochesterMN
| | - Robert A. Kaiser
- Department of SurgeryMayo ClinicRochesterMN
- Midwest Fetal Care CenterChildren’s Hospital and Clinics of MinnesotaMinneapolisMN
| | - Joseph B. Lillegard
- Department of SurgeryMayo ClinicRochesterMN
- Midwest Fetal Care CenterChildren’s Hospital and Clinics of MinnesotaMinneapolisMN
- Pediatric Surgical AssociatesMinneapolisMN
| | - Raymond D. Hickey
- Department of SurgeryMayo ClinicRochesterMN
- Department of Molecular MedicineMayo ClinicRochesterMN
| |
Collapse
|
10
|
Vilas-Boas V, Cooreman A, Gijbels E, Van Campenhout R, Gustafson E, Ballet S, Annaert P, Cogliati B, Vinken M. Primary hepatocytes and their cultures for the testing of drug-induced liver injury. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 85:1-30. [PMID: 31307583 DOI: 10.1016/bs.apha.2018.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Drug-induced liver injury is a major reason for discontinuation of drug development and withdrawal of drugs from the market. Intensive efforts in the last decades have focused on the establishment and finetuning of liver-based in vitro models for reliable prediction of hepatotoxicity triggered by drug candidates. Of those, primary hepatocytes and their cultures still are considered the gold standard, as they provide an acceptable reflection of the hepatic in vivo situation. Nevertheless, these in vitro systems cope with gradual deterioration of the differentiated morphological and functional phenotype. The present paper gives an overview of traditional and more recently introduced strategies to counteract this dedifferentiation process in an attempt to set up culture models that can be used for long-term testing purposes. The relevance and applicability of such optimized cultures of primary hepatocytes for the testing of drug-induced cholestatic liver injury is demonstrated.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Emma Gustafson
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
11
|
Kageyama S, Nakamura K, Ke B, Busuttil RW, Kupiec-Weglinski JW. Serelaxin induces Notch1 signaling and alleviates hepatocellular damage in orthotopic liver transplantation. Am J Transplant 2018; 18:1755-1763. [PMID: 29464890 PMCID: PMC6035063 DOI: 10.1111/ajt.14706] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/18/2018] [Accepted: 01/28/2018] [Indexed: 01/25/2023]
Abstract
Liver ischemia-reperfusion injury (IRI) represents a risk factor for early graft dysfunction and an obstacle to expanding donor pool in orthotopic liver transplantation (OLT). We have reported on the crucial role of macrophage Notch1 signaling in mouse warm hepatic IRI model. However, its clinical relevance or therapeutic potential remain unknown. Here, we used Serelaxin (SER), to verify Notch1 induction and putative hepatoprotective function in ischemia-reperfusion-stressed OLT. C57BL/6 mouse livers subjected to extended (18-hour) cold storage were transplanted to syngeneic recipients. SER treatment at reperfusion ameliorated IRI, improved post-OLT survival, decreased neutrophil/macrophage infiltration, and suppressed proinflammatory cytokine programs, while simultaneously increasing Notch intracellular domain (NICD) and hairy and enhancer of split 1 (Hes1) target genes. In bone marrow-derived macrophage cultures, SER suppressed proinflammatory while enhancing antiinflammatory gene expression concomitantly with increased NICD and Hes1. Hepatic biopsies from 21 adult primary liver transplant patients (2 hours postreperfusion) were divided into low-NICD (n = 11) and high-NICD (n = 10) expression groups (western blots). Consistent with our murine findings, human livers characterized by high NICD were relatively IRI resistant, as shown by serum alanine aminotransferase (ALT) levels at day 1 post-OLT. Our study documents the efficacy of SER-Notch1 signaling in mouse OLT and highlights the protective function of Notch1 in liver transplant patients.
Collapse
Affiliation(s)
- Shoichi Kageyama
- Correspondence: Jerzy W. Kupiec-Weglinski, M.D. Ph. D., Dumont-UCLA Transplant Center, 77-120 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095, Tel.: (310) 8254196; Fax: (310) 2672358.,
| | - Kojiro Nakamura
- Correspondence: Jerzy W. Kupiec-Weglinski, M.D. Ph. D., Dumont-UCLA Transplant Center, 77-120 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095, Tel.: (310) 8254196; Fax: (310) 2672358.,
| | | | | | | |
Collapse
|
12
|
Kageyama S, Nakamura K, Fujii T, Ke B, Sosa RA, Reed EF, Datta N, Zarrinpar A, Busuttil RW, Kupiec-Weglinski JW. Recombinant relaxin protects liver transplants from ischemia damage by hepatocyte glucocorticoid receptor: From bench-to-bedside. Hepatology 2018; 68:258-273. [PMID: 29350771 PMCID: PMC6033647 DOI: 10.1002/hep.29787] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/09/2017] [Accepted: 01/12/2018] [Indexed: 12/18/2022]
Abstract
UNLABELLED Hepatic ischemia-reperfusion injury (IRI) represents a major risk factor of early graft dysfunction and acute/chronic rejection as well as a key obstacle to expanding the donor pool in orthotopic liver transplantation (OLT). Although glucocorticoid receptor (GR) signaling may enhance cytoprotective programs, clinical use of glucocorticoid is limited because of adverse effects, whereas clinical relevance of GR-facilitated cytoprotection in OLT remains unknown. We aimed to evaluate the significance of hepatic GR in clinical OLT and verify the impact of recombinant human relaxin (rhRLX), which may function as a GR agonist in a tissue/disease-specific manner. Fifty-one OLT patients were recruited under an institutional research board (IRB) protocol. Liver biopsies were collected after cold storage (presurgery) and 2 hours postreperfusion (before abdominal closure), followed by western blotting-assisted hepatic analyses. Forty-three percent of OLTs failed to increase GR perioperatively under surgical stress. Post-/pre-GR ratios at postoperative day 1 correlated negatively with serum aspartate aminotransferase (AST)/cleaved caspase-3 and positively with B-cell lymphoma-extra large (Bcl-xL)/B-cell lymphoma 2 (Bcl-2) levels. In a murine OLT model with extended (18-hour) cold storage, treatment with rhRLX ameliorated ischemia-reperfusion (IR) damage and improved survival while up-regulating hepatocyte GR and Bcl-xL/Bcl-2 expression in OLT. rhRLX-induced GR suppressed hepatocyte high-mobility group box 1 (HMGB1) translocation/release, accompanied by decreased Toll-like receptor 4 (TLR4)/receptor for advanced glycation end products (RAGE), suppressed interleukin 1 beta (IL1β), chemokine (C-C motif) ligand 2 (CCL2), C-X-C motif chemokine (CXCL)10, tumor necrosis factor alpha (TNFα), CXCL1, and CXCL2 levels, and attenuated neutrophil/macrophage accumulation in OLT. Inhibition of GR in hepatocyte culture and in OLT diminished rhRLX-mediated cytoprotection. CONCLUSION This translational study underscores the role of rhRLX-GR signaling as a regulator of hepatocellular protection against IR stress in OLT. In the context of a recent phase III clinical trial demonstrating positive outcomes of rhRLX in patients with acute heart failure, studies on rhRLX for the management of IRI in OLT recipients are warranted. (Hepatology 2018;68:258-273).
Collapse
Affiliation(s)
- Shoichi Kageyama
- The Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, CA 90095
| | - Kojiro Nakamura
- The Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, CA 90095
| | - Takehiro Fujii
- The Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, CA 90095
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, CA 90095
| | - Rebecca A Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Nakul Datta
- The Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, CA 90095
| | - Ali Zarrinpar
- The Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, CA 90095
| | - Ronald W. Busuttil
- The Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, CA 90095
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, CA 90095
| |
Collapse
|
13
|
Liu HQ, Li RJ, Sun X, Li J. High-fat diet enhances hepatic ischemia-reperfusion injury-induced apoptosis: Role of glucocorticoid receptors. Life Sci 2017; 191:227-235. [PMID: 28986096 DOI: 10.1016/j.lfs.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 01/07/2023]
Abstract
AIMS The present study was designed to evaluate whether and how glucocorticoids can affect obesity-regulated hepatic ischemia-reperfusion (I/R) injury. MAIN METHODS To this end, we first examined whether hydrocortisone (HCT) has protective effects on liver damage induced by hepatic I/R injury in mice receiving high fat diet treatment. We then explored the role of GR expression and phosphorylation in the anti-apoptotic effects of hydrocortisone upon hepatic I/R injury. KEY FINDINGS We found that HCT reduced hepatic necrosis and inflammatory infiltration after hepatic I/R injury in mice that received high fat diet treatment. However, HCT lost the anti-apoptotic effects in high-fat diet treated mice. This phenomenon was associated with increased GRβ expression, decreased basal levels of GR phosphorylation at Ser220 and lack of HCT-induced GR phosphorylation at Ser220 in high-fat diet treated mice. Additionally, basal levels of ERK phosphorylation was increased in high-fat diet treated mice, and I/R injury was associated with robustly increased ERK phosphorylation in high-fat diet treated mice, compared to normal diet treated mice. Furthermore, we demonstrated that high fat diet treated ERK1-/- mice exhibited robustly reduced apoptosis rate at 24h after reperfusion, compared to high fat diet treated wild-type mice. Importantly, there was a decreased level of GRβ after high fat diet treatment in ERK1-/- mice. SIGNIFICANCE These results together suggested that ERK1 phosphorylation plays a critical role in regulating GRβ expression and HCT-induce GR phosphorylation at Ser220, which is critical for the anti-apoptotic effects HCT on hepatic I/R injury.
Collapse
Affiliation(s)
- Huan-Qiu Liu
- Department of Anaesthesiology, The First Hospital of Jilin University, China
| | - Rui-Jun Li
- Department of Hand Surgery, The First Hospital of Jilin University, China
| | - Xin Sun
- Department of Neurology, The First Hospital of Jilin University, China
| | - Ji Li
- Department of Anaesthesiology, The First Hospital of Jilin University, China.
| |
Collapse
|
14
|
Abstract
Glucocorticoid eye drops are one of the most widely used medications in ophthalmology. However, little is known about the effects of glucocorticoids on corneal epithelial cells that are directly exposed to topically-administered glucocorticoids. Here we investigated the effects of prednisolone, a synthetic glucocorticoid analogue frequently used in the clinic, on corneal epithelial cells. Results showed that prednisolone decreased survival of corneal epithelial cells by inhibiting proliferation and inducing apoptosis in a dose-dependent manner. The levels of mitochondrial reactive oxygen species (mtROS), cleaved caspase-3, and -9 were increased by prednisolone. The effects of prednisolone on apoptosis and mtROS were blocked 1) by the glucocorticoid receptor (GR) antagonist RU-38486, 2) in cells with GR siRNA knockdown, and 3) by treatment with N-acetylcysteine. Transcript levels of pro-inflammatory cytokines were increased in corneal epithelial cells upon hyperosmolar stress, but repressed by prednisolone. In NOD.B10.H2b mice, topical administration of 1% prednisolone increased apoptotic cells in the corneal epithelium. Together, data indicate that prednisolone induces apoptosis in corneal epithelial cells through GR and the intrinsic pathway involving mtROS, caspase-9, and -3. The pro-apoptotic effects of glucocorticoids along with their anti-inflammatory effects should be considered when glucocorticoid eye drops are used in patients with ocular surface disease.
Collapse
|
15
|
Vinken M, Blaauboer BJ. In vitro testing of basal cytotoxicity: Establishment of an adverse outcome pathway from chemical insult to cell death. Toxicol In Vitro 2016; 39:104-110. [PMID: 27939612 DOI: 10.1016/j.tiv.2016.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/11/2016] [Accepted: 12/02/2016] [Indexed: 12/20/2022]
Abstract
In this paper, an in vitro basal cytotoxicity testing strategy is described for new chemical entities that lack any pre-existing information on potential toxicity. Special attention is paid to the selection of the cellular system, cytotoxicity assay and exposure conditions. This approach is based on a newly proposed generic adverse outcome pathway from chemical insult to cell death that consists of 3 steps, including initial cell injury, mitochondrial dysfunction and cell demise. The suggested strategy to consider in vitro basal cytotoxicity as a first step in evaluating the toxicity of new chemical entities can be placed in a tiered strategy that could be continued by evaluating more specific types of toxicity.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Bas J Blaauboer
- Institute for Risk Assessment Sciences, Division of Toxicology, Utrecht University, PO Box 80.177, 3508, TD, Utrecht, The Netherlands
| |
Collapse
|
16
|
High-content screening imaging and real-time cellular impedance monitoring for the assessment of chemical’s bio-activation with regards hepatotoxicity. Toxicol In Vitro 2015; 29:1916-31. [DOI: 10.1016/j.tiv.2015.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/29/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023]
|
17
|
Lebeaupin C, Proics E, de Bieville CHD, Rousseau D, Bonnafous S, Patouraux S, Adam G, Lavallard VJ, Rovere C, Le Thuc O, Saint-Paul MC, Anty R, Schneck AS, Iannelli A, Gugenheim J, Tran A, Gual P, Bailly-Maitre B. ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Dis 2015; 6:e1879. [PMID: 26355342 PMCID: PMC4650444 DOI: 10.1038/cddis.2015.248] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 01/18/2023]
Abstract
The incidence of chronic liver disease is constantly increasing, owing to the obesity epidemic. However, the causes and mechanisms of inflammation-mediated liver damage remain poorly understood. Endoplasmic reticulum (ER) stress is an initiator of cell death and inflammatory mechanisms. Although obesity induces ER stress, the interplay between hepatic ER stress, NLRP3 inflammasome activation and hepatocyte death signaling has not yet been explored during the etiology of chronic liver diseases. Steatosis is a common disorder affecting obese patients; moreover, 25% of these patients develop steatohepatitis with an inherent risk for progression to hepatocarcinoma. Increased plasma LPS levels have been detected in the serum of patients with steatohepatitis. We hypothesized that, as a consequence of increased plasma LPS, ER stress could be induced and lead to NLRP3 inflammasome activation and hepatocyte death associated with steatohepatitis progression. In livers from obese mice, administration of LPS or tunicamycin results in IRE1α and PERK activation, leading to the overexpression of CHOP. This, in turn, activates the NLRP3 inflammasome, subsequently initiating hepatocyte pyroptosis (caspase-1, -11, interleukin-1β secretion) and apoptosis (caspase-3, BH3-only proteins). In contrast, the LPS challenge is blocked by the ER stress inhibitor TUDCA, resulting in: CHOP downregulation, reduced caspase-1, caspase-11, caspase-3 activities, lowered interleukin-1β secretion and rescue from cell death. The central role of CHOP in mediating the activation of proinflammatory caspases and cell death was characterized by performing knockdown experiments in primary mouse hepatocytes. Finally, the analysis of human steatohepatitis liver biopsies showed a correlation between the upregulation of inflammasome and ER stress markers, as well as liver injury. We demonstrate here that ER stress leads to hepatic NLRP3 inflammasome pyroptotic death, thus contributing as a novel mechanism of inflammation-mediated liver injury in chronic liver diseases. Inhibition of ER-dependent inflammasome activation and cell death pathways may represent a potential therapeutic approach in chronic liver diseases.
Collapse
Affiliation(s)
- C Lebeaupin
- INSERM, U1065, Equipe 8 « Complications hépatiques de l'obésité », Bâtiment Universitaire ARCHIMED, Nice, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
| | - E Proics
- INSERM, U1065, Equipe 8 « Complications hépatiques de l'obésité », Bâtiment Universitaire ARCHIMED, Nice, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
| | - C H D de Bieville
- INSERM, U1065, Equipe 8 « Complications hépatiques de l'obésité », Bâtiment Universitaire ARCHIMED, Nice, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
| | - D Rousseau
- INSERM, U1065, Equipe 8 « Complications hépatiques de l'obésité », Bâtiment Universitaire ARCHIMED, Nice, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
| | - S Bonnafous
- INSERM, U1065, Equipe 8 « Complications hépatiques de l'obésité », Bâtiment Universitaire ARCHIMED, Nice, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France.,Centre Hospitalier Universitaire Nice, Hôpital l'Archet, Département Digestif, Nice, France
| | - S Patouraux
- INSERM, U1065, Equipe 8 « Complications hépatiques de l'obésité », Bâtiment Universitaire ARCHIMED, Nice, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France.,Centre Hospitalier Universitaire Nice, Hôpital l'Archet, Département Biologie, Nice, France
| | - G Adam
- INSERM, U1065, Equipe 8 « Complications hépatiques de l'obésité », Bâtiment Universitaire ARCHIMED, Nice, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
| | - V J Lavallard
- INSERM, U1065, Equipe 8 « Complications hépatiques de l'obésité », Bâtiment Universitaire ARCHIMED, Nice, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
| | - C Rovere
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, UMR7275, Valbonne, France
| | - O Le Thuc
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, UMR7275, Valbonne, France
| | - M C Saint-Paul
- INSERM, U1065, Equipe 8 « Complications hépatiques de l'obésité », Bâtiment Universitaire ARCHIMED, Nice, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France.,Centre Hospitalier Universitaire Nice, Hôpital l'Archet, Département Digestif, Nice, France
| | - R Anty
- INSERM, U1065, Equipe 8 « Complications hépatiques de l'obésité », Bâtiment Universitaire ARCHIMED, Nice, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France.,Centre Hospitalier Universitaire Nice, Hôpital l'Archet, Département Digestif, Nice, France
| | - A S Schneck
- INSERM, U1065, Equipe 8 « Complications hépatiques de l'obésité », Bâtiment Universitaire ARCHIMED, Nice, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France.,Centre Hospitalier Universitaire Nice, Hôpital l'Archet, Département Digestif, Nice, France
| | - A Iannelli
- INSERM, U1065, Equipe 8 « Complications hépatiques de l'obésité », Bâtiment Universitaire ARCHIMED, Nice, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France.,Centre Hospitalier Universitaire Nice, Hôpital l'Archet, Département Digestif, Nice, France
| | - J Gugenheim
- INSERM, U1065, Equipe 8 « Complications hépatiques de l'obésité », Bâtiment Universitaire ARCHIMED, Nice, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France.,Centre Hospitalier Universitaire Nice, Hôpital l'Archet, Département Digestif, Nice, France
| | - A Tran
- INSERM, U1065, Equipe 8 « Complications hépatiques de l'obésité », Bâtiment Universitaire ARCHIMED, Nice, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France.,Centre Hospitalier Universitaire Nice, Hôpital l'Archet, Département Digestif, Nice, France
| | - P Gual
- INSERM, U1065, Equipe 8 « Complications hépatiques de l'obésité », Bâtiment Universitaire ARCHIMED, Nice, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
| | - B Bailly-Maitre
- INSERM, U1065, Equipe 8 « Complications hépatiques de l'obésité », Bâtiment Universitaire ARCHIMED, Nice, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
| |
Collapse
|
18
|
Corlu A, Loyer P. Culture Conditions Promoting Hepatocyte Proliferation and Cell Cycle Synchronization. Methods Mol Biol 2015; 1250:27-51. [PMID: 26272133 DOI: 10.1007/978-1-4939-2074-7_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The liver overcomes damages induced by harmful substances or viral infections and allows the use of extended resection in human therapy through its remarkable ability to regenerate. The regeneration process relies on the massive proliferation of differentiated hepatocytes that exit quiescence and undergo a limited number of cell cycles to restore the hepatic mass. Many discoveries on the regulation of hepatocyte proliferation have benefited from the use of in vitro models of cultures of primary hepatocytes as well as hepatoma cells as opposed to data obtained from in vivo models of liver regeneration, such as following partial hepatectomy in rodents. In this chapter, the most pertinent in vitro models used to promote the proliferation of hepatocytes and technical procedures to synchronize their progression throughout the cell cycle are presented with the goal to investigate the regulation of the hepatocyte cell cycle and the molecular pathways regulating liver regeneration.
Collapse
Affiliation(s)
- Anne Corlu
- Inserm, UMR 991, Liver, Metabolisms and Cancer, Hôpital Pontchaillou, University of Rennes 1, Rennes Cedex, 35033, France
| | | |
Collapse
|
19
|
Vinken M, Maes M, Crespo Yanguas S, Willebrords J, Vanhaecke T, Rogiers V. Establishment and Characterization of an In Vitro Model of Fas-Mediated Hepatocyte Cell Death. Methods Mol Biol 2015; 1250:95-103. [PMID: 26272136 DOI: 10.1007/978-1-4939-2074-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fas-mediated apoptosis underlies a plethora of liver pathologies and toxicities. As a consequence, this process is a major research topic in the field of experimental and clinical hepatology. The present chapter describes the setup of an in vitro model of hepatocellular apoptotic cell death. In essence, this system consists of freshly isolated hepatocytes cultured in a monolayer configuration, which are exposed to a combination of Fas ligand and cycloheximide. This in vitro model has been characterized by using a set of well-acknowledged cell death markers. This experimental system allows the study of the entire course of Fas-mediated hepatocellular cell death, going from early apoptosis to secondary necrosis, and hence can serve a broad range of in vitro pharmaco-toxicological purposes.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium,
| | | | | | | | | | | |
Collapse
|
20
|
Primary hepatocytes and their cultures in liver apoptosis research. Arch Toxicol 2013; 88:199-212. [PMID: 24013573 DOI: 10.1007/s00204-013-1123-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/29/2013] [Indexed: 01/18/2023]
Abstract
Apoptosis not only plays a key role in physiological demise of defunct hepatocytes, but is also associated with a plethora of acute and chronic liver diseases as well as with hepatotoxicity. The present paper focuses on the modelling of this mode of programmed cell death in primary hepatocyte cultures. Particular attention is paid to the activation of spontaneous apoptosis during the isolation of hepatocytes from the liver, its progressive manifestation upon the subsequent establishment of cell cultures and simultaneously to strategies to counteract this deleterious process. In addition, currently applied approaches to experimentally induce controlled apoptosis in this in vitro setting for mechanistic research purposes and thereby its detection using relevant biomarkers are reviewed.
Collapse
|
21
|
Ditewig AC, Cugier DJ, Liguori MJ, Yang Y, Blomme EAG. Transcriptomic evaluation of canine suspension-shipped and pre-plated hepatocytes: comparison to liver. Toxicol Mech Methods 2013; 23:479-90. [PMID: 23581556 DOI: 10.3109/15376516.2013.796031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION In vitro assays using rat and human hepatocytes are used for hepatotoxicity studies; however, in vitro methods are less established for canine hepatocytes. In particular, little is known about the effects of plating and culture on canine hepatocytes. The goal of this study was to conduct a descriptive analysis of an in vitro canine hepatocyte system to evaluate its utility and limitations. The study objectives were to determine if canine hepatocytes shipped in suspension or pre-plated were transcriptomically different from one another and their liver of origin, and to understand temporal transcriptomic changes. MATERIALS AND METHODS Frozen canine liver samples were delivered on dry ice; hepatocytes from these livers were delivered in a cell/media suspension (S) or pre-plated (P). Hepatocytes were harvested at arrival and after up to 120 hr of culture in naïve media, or after 48 hr treatment with prototypical enzyme inducing xenobiotics (phenobarbital or rifampin). RESULTS A global transcriptomic comparison between liver and hepatocyte preparations indicated that the transcriptome was affected post-plating; transporters and genes involved in xenobiotic metabolism were generally down-regulated. Basal mRNA levels of CYP3A12 and CYP2B11 decreased temporally; after 120 hr CYP3A12 levels decreased by 1000-fold. CYP3A12 and CYP2B11 induction after phenobarbital or rifampin treatment was robust in both cell types but stronger in S cells. CONCLUSIONS These results indicate that S and P hepatocytes cultured under the current conditions are appropriate for specific in vitro tests. Further characterization of endpoints should be conducted for a thorough understanding of the model's limitations.
Collapse
Affiliation(s)
- Amy C Ditewig
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA.
| | | | | | | | | |
Collapse
|
22
|
Gruver-Yates AL, Cidlowski JA. Tissue-specific actions of glucocorticoids on apoptosis: a double-edged sword. Cells 2013; 2:202-23. [PMID: 24709697 PMCID: PMC3972684 DOI: 10.3390/cells2020202] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 12/20/2022] Open
Abstract
First described for their metabolic and immunosuppressive effects, glucocorticoids are widely prescribed in clinical settings of inflammation. However, glucocorticoids are also potent inducers of apoptosis in many cell types and tissues. This review will focus on the established mechanisms of glucocorticoid-induced apoptosis and outline what is known about the apoptotic response in cells and tissues of the body after exposure to glucocorticoids. Glucocorticoid-induced apoptosis affects the skeletal system, muscular system, circulatory system, nervous system, endocrine system, reproductive system, and the immune system. Interestingly, several cell types have an anti-apoptotic response to glucocorticoids that is cytoprotective. Lastly, we will discuss the pro- and anti-apoptotic effects of glucocorticoids in cancers and their clinical implications.
Collapse
Affiliation(s)
- Amanda L Gruver-Yates
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
23
|
Corlu A, Loyer P. Regulation of the g1/s transition in hepatocytes: involvement of the cyclin-dependent kinase cdk1 in the DNA replication. Int J Hepatol 2012; 2012:689324. [PMID: 23091735 PMCID: PMC3471441 DOI: 10.1155/2012/689324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/29/2012] [Indexed: 12/16/2022] Open
Abstract
A singular feature of adult differentiated hepatocytes is their capacity to proliferate allowing liver regeneration. This review emphasizes the literature published over the last 20 years that established the most important pathways regulating the hepatocyte cell cycle. Our article also aimed at illustrating that many discoveries in this field benefited from the combined use of in vivo models of liver regeneration and in vitro models of primary cultures of human and rodent hepatocytes. Using these models, our laboratory has contributed to decipher the different steps of the progression into the G1 phase and the commitment to S phase of proliferating hepatocytes. We identified the mitogen dependent restriction point located at the two-thirds of the G1 phase and the concomitant expression and activation of both Cdk1 and Cdk2 at the G1/S transition. Furthermore, we demonstrated that these two Cdks contribute to the DNA replication. Finally, we provided strong evidences that Cdk1 expression and activation is correlated to extracellular matrix degradation upon stimulation by the pro-inflammatory cytokine TNFα leading to the identification of a new signaling pathway regulating Cdk1 expression at the G1/S transition. It also further confirms the well-orchestrated regulation of liver regeneration via multiple extracellular signals and pathways.
Collapse
Affiliation(s)
- Anne Corlu
- Inserm UMR S 991, Foie Métabolismes et Cancer, Université de Rennes 1, Hôpital Pontchaillou, 35033 Rennes Cedex, France
| | - Pascal Loyer
- Inserm UMR S 991, Foie Métabolismes et Cancer, Université de Rennes 1, Hôpital Pontchaillou, 35033 Rennes Cedex, France
| |
Collapse
|
24
|
Zucchini-Pascal N, Peyre L, de Sousa G, Rahmani R. Organochlorine pesticides induce epithelial to mesenchymal transition of human primary cultured hepatocytes. Food Chem Toxicol 2012; 50:3963-70. [PMID: 22902829 DOI: 10.1016/j.fct.2012.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/03/2012] [Accepted: 08/05/2012] [Indexed: 12/13/2022]
Abstract
Persistent organic pollutants (POPs) are a group of organic or chemicals that adversely affect human health and are persistent in the environment. These highly toxic compounds include industrial chemicals, pesticides such as organochlorines, and unwanted wastes such as dioxins. Although studies have described the general toxicity effects of organochlorine pesticides, the mechanisms underlying its potential carcinogenic effects in the liver are not well understood. In this study, we analyzed the effect of three organochlorine pesticides (dichlorodiphenyltrichloroethane, heptachlore and endosulfan) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the epithelial to mesenchymal transition (EMT) in primary cultured human hepatocytes. We found that these compounds modified the hepatocyte phenotype, inducing cell spread, formation of lamellipodia structures and reorganization of the actin cytoskeleton in stress fibers. These morphological alterations were accompanied by disruption of cell-cell junctions, E-cadherin repression and albumin down-regulation. Interestingly, these characteristic features of dedifferentiating hepatocytes were correlated with the gain of expression of various mesenchymal genes, including vimentin, fibronectin and its receptor ITGA5. These various results show that organochlorines and TCDD accelerate cultured human hepatocyte dedifferentiation and EMT processes. These events could account, at least in part, for the carcionogenic and/or fibrogenic activities of these POPs.
Collapse
Affiliation(s)
- Nathalie Zucchini-Pascal
- Laboratoire de Toxicologie Cellulaire et Moléculaire des Xénobiotiques, INRA, UMR 1331 TOXALIM (Research Center in Food Toxicology), 06903 Sophia Antipolis, France.
| | | | | | | |
Collapse
|
25
|
Combined Stimulation with the Tumor Necrosis Factor α and the Epidermal Growth Factor Promotes the Proliferation of Hepatocytes in Rat Liver Cultured Slices. Int J Hepatol 2012; 2012:785786. [PMID: 23119170 PMCID: PMC3480011 DOI: 10.1155/2012/785786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 11/17/2022] Open
Abstract
The culture liver slices are mainly used to investigate drug metabolism and xenobiotic-mediated liver injuries while apoptosis and proliferation remain unexplored in this culture model. Here, we show a transient increase in LDH release and caspase activities indicating an ischemic injury during the slicing procedure. Then, caspase activities decrease and remain low in cultured slices demonstrating a low level of apoptosis. The slicing procedure is also associated with the G0/G1 transition of hepatocytes demonstrated by the activation of stress and proliferation signalling pathways including the ERK1/2 and JNK1/2/3 MAPKinases and the transient upregulation of c-fos. The cells further progress up to mid-G1 phase as indicated by the sequential induction of c-myc and p53 mRNA levels after the slicing procedure and at 24 h of culture, respectively. The stimulation by epidermal growth factor induces the ERK1/2 phosphorylation but fails to activate expression of late G1 and S phase markers such as cyclin D1 and Cdk1 indicating that hepatocytes are arrested in mid-G1 phase of the cell cycle. However, we found that combined stimulation by the proinflammatory cytokine tumor necrosis factor α and the epidermal growth factor promotes the commitment to DNA replication as observed in vivo during the liver regeneration.
Collapse
|
26
|
Vinken M, Decrock E, Vanhaecke T, Leybaert L, Rogiers V. Connexin43 signaling contributes to spontaneous apoptosis in cultures of primary hepatocytes. Toxicol Sci 2012; 125:175-86. [PMID: 22003192 DOI: 10.1093/toxsci/kfr277] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Primary hepatocyte cultures suffer from the progressive occurrence of dedifferentiation followed by spontaneous apoptosis. This is associated with modifications in the expression of connexins (Cxs), which are the building stones of hemichannels that in turn form gap junctions between neighboring cells. Specifically, a shift is observed from the adult hepatocellular Cx32 species toward the fetal Cx43 isoform. The current study was set up to investigate the role of Cx43 in spontaneous apoptosis taking place in primary hepatocyte cultures. For this purpose, freshly isolated adult rat hepatocytes were cultivated in conventional conditions for 4 days with daily monitoring of Cx expression, Cx localization, and gap junction channel and hemichannel functionality. Gap junction activity was low shortly after isolation, whereas the inverse was observed for hemichannel functionality. Both channel types displayed high activity near the end stages of the cultivation period. The Cx32-to-Cx43 switch became progressively manifested at the translational level. At the transcriptional level, a fivefold decrease in Cx32 messenger RNA abundance and a twofold increase in Cx43 expression were noticed within the first 24 h of cultivation. Throughout the cultivation period, Cx32 was mainly located at the plasma membrane surface, whereas Cx43 immunostaining was more diffuse. Application of three Cx43 inhibitors resulted in the downregulation of both hemichannel functionality and gap junction activity. This was paralleled by decreased expression and activity of caspase 3 as well as by reduced expression of Bid. Collectively, these data show that Cx43 signaling actively contributes to the occurrence of spontaneous apoptosis in cultures of primary hepatocytes.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Toxicology-Center for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, B-1090 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
27
|
Jing Y, Qian Y, Ghandi M, He A, Borys MC, Pan SH, Li ZJ. A mechanistic study on the effect of dexamethasone in moderating cell death in Chinese Hamster Ovary cell cultures. Biotechnol Prog 2011; 28:490-6. [PMID: 22140034 DOI: 10.1002/btpr.747] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/30/2011] [Indexed: 11/08/2022]
Abstract
Dexamethasone (DEX) was previously shown (Jing et al., Biotechnol Bioeng. 2010;107:488-496) to play a dual role in increasing sialylation of recombinant glycoproteins produced by Chinese Hamster Ovary (CHO) cells. DEX addition increased sialic acid levels of a recombinant fusion protein through increased expression of α2,3-sialyltransferase and β1,4-galactosyltransferase, but also decreased the sialidase-mediated, extracellular degradation of sialic acid through slowing cell death at the end of the culture period. This study examines the underlying mechanism for this cytoprotective action by studying the transcriptional response of the CHO cell genome upon DEX treatment using DNA microarrays and gene ontology term analysis. Many of those genes showing a significant transcriptional response were associated with the regulation of programmed cell death. The gene with the highest change in expression level, as validated by Quantitative PCR assays with TaqMan® probes and confirmed by Western Blot analysis, was the antiapoptotic gene Tsc22d3, also referred to as GILZ (glucocorticoid-induced leucine zipper). The pathway by which DEX suppressed cell death towards the end of the culture period was also confirmed by showing involvement of glucocorticoid receptors and GILZ through studies using the glucocorticoid antagonist mifepristone (RU-486). These findings advance the understanding of the mechanism by which DEX suppresses cell death in CHO cells and provide a rationale for the application of glucocorticoids in CHO cell culture processes.
Collapse
Affiliation(s)
- Ying Jing
- Biologics Process and Product Development, Technical Operations, Bristol-Myers Squibb Company, East Syracuse, NY 13057, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Iannelli A, de Sousa G, Zucchini N, Saint-Paul MC, Gugenheim J, Rahmani R. Anti-Apoptotic Pro-Survival Effect of Clotrimazole in a Normothermic Ischemia Reperfusion Injury Animal Model. J Surg Res 2011; 171:101-7. [DOI: 10.1016/j.jss.2010.03.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 02/19/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
29
|
Saffar AS, Ashdown H, Gounni AS. The molecular mechanisms of glucocorticoids-mediated neutrophil survival. Curr Drug Targets 2011; 12:556-62. [PMID: 21504070 PMCID: PMC3267167 DOI: 10.2174/138945011794751555] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neutrophil-dominated inflammation plays an important role in many airway diseases including asthma, chronic obstructive pulmonary disease (COPD), bronchiolitis and cystic fibrosis. In cases of asthma where neutrophil-dominated inflammation is a major contributing factor to the disease, treatment with corticosteroids can be problematic as corticosteroids have been shown to promote neutrophil survival which, in turn, accentuates neutrophilic inflammation. In light of such cases, novel targeted medications must be developed that could control neutrophilic inflammation while still maintaining their antibacterial/anti-fungal properties, thus allowing individuals to maintain effective innate immune responses to invading pathogens. The aim of this review is to describe the molecular mechanisms of neutrophil apoptosis and how these pathways are modulated by glucocorticoids. These new findings are of potential clinical value and provide further insight into treatment of neutrophilic inflammation in lung disease.
Collapse
Affiliation(s)
- Arash S Saffar
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
30
|
Iannelli A, de Sousa G, Zucchini N, Peyre L, Gugenheim J, Rahmani R. Clotrimazole protects the liver against normothermic ischemia-reperfusion injury in rats. Transplant Proc 2010; 41:4099-104. [PMID: 20005348 DOI: 10.1016/j.transproceed.2009.08.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 06/28/2009] [Accepted: 08/17/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the possible antiapoptotic prosurvival role of the pregnane X receptor (PXR) in hepatic ischemia-reperfusion injury in rats using clotrimazole (CTZ), a strong PXR transactivator. MATERIALS AND METHODS Male Sprague-Dawley rats were divided into 3 groups of 6 each: sham-treated, control, and CTZ-treated animals. Control and CTZ-treated animals were subjected to 30 minutes of normothermic ischemia of the whole liver followed by 6 hours of reperfusion. The animals were then killed, and the liver was excised and blood samples collected. RESULTS Clotrimazole induced a significant increase in expression of the CYP3A gene, indicating PXR transactivation, whereas expression of the antiapoptotic Bcl-xL gene was not increased. Serum concentrations of aspartate aminotransaminase and alanine aminotransaminase were lower in CTZ-treated animals than in control animals (difference not significant). Levels of poly(adenosine diphosphate-ribose) polymerase, a caspase-3 substrate, remained significantly higher in the CTZ-treated group compared with controls (P < .05). Clotrimazole increased the expression of phospho-p 44/42 extracellular signal-regulated kinase 1,2 (P < .05). The gene expression of the heat shock proteins 27, 70 and 90 was significantly lower in CTZ-treated animals than in controls (P < .05). CONCLUSION Clotrimazole-mediated PXR transactivation protects the liver against ischemia-reperfusion apoptosis in rats. Phospho-p 44/42 extracellular signal-regulated kinase 1,2 is activated, whereas gene expression of heat shock proteins 27, 70, and 90 is downregulated by induction of PXR.
Collapse
Affiliation(s)
- A Iannelli
- Service de Chirurgie Digestive et Transplantation Hépatique, Hôpital Archet 2, 151 Rte Saint Antoine de Ginestière BP 3079, Nice Cedex 3, France.
| | | | | | | | | | | |
Collapse
|
31
|
Lindane and cell death: At the crossroads between apoptosis, necrosis and autophagy. Toxicology 2009; 256:32-41. [DOI: 10.1016/j.tox.2008.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/30/2008] [Accepted: 11/01/2008] [Indexed: 11/18/2022]
|
32
|
Bresgen N, Ohlenschläger I, Wacht N, Afazel S, Ladurner G, Eckl PM. Ferritin and FasL (CD95L) mediate density dependent apoptosis in primary rat hepatocytes. J Cell Physiol 2008; 217:800-8. [PMID: 18726999 DOI: 10.1002/jcp.21555] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Based on a recent description of an apoptosis stimulating property for hepatocyte derived isoferritins, this investigation demonstrates that ferritin, released in vitro from hepatocytes substantially contributes to density dependent apoptosis in primary hepatocytes and is significantly (P < or = 0.05) inhibited by anti-H-ferritin antibody rH02. Furthermore, total protein release and albumin secretion rapidly decline in a time and density dependent mode under serum-free conditions, whereas ferritin secretion, which is upregulated at initial stages of primary culture is not affected by cell density. Supplementation with dexamethasone (DEX) or proliferative stimulation by epidermal growth factor (EGF) and insulin strongly suppresses density dependent apoptosis. Both regimens have previously been shown to inhibit isoferritin mediated apoptosis in hepatocytes, most likely by interrupting proapotitc mitochondrial signalling. Finally, FasL/Fas also participates in density dependent apoptosis, since apoptosis is significantly (P < or = 0.005) reduced in high density cultures supplemented with an anti-FasL antibody. This antibody has also been shown to neutralise ferritin mediated apoptosis in primary hepatocytes, suggesting a linkage of ferritin and Fas in density dependent apoptosis. In conclusion, ferritin contributes to apoptosis in primary hepatocytes in an autocrine, density dependent mode, involving Fas stimulation and proapoptotic mitochondrial signalling. With respect to liver physiology, these findings may indicate that ferritin plays a yet unrecognised role as an acute phase signalling molecule in early stages of tissue repair and liver regeneration, and may also be responsible for the limited ability to propagate human hepatocytes in culture and the limited expansion of donor cells in the recipient liver upon cell transplantation.
Collapse
Affiliation(s)
- N Bresgen
- Department of Cell Biology, University of Salzburg, Salzburg, Austria.
| | | | | | | | | | | |
Collapse
|
33
|
Papeleu P, Wullaert A, Elaut G, Henkens T, Vinken M, Laus G, Tourwé D, Beyaert R, Rogiers V, Vanhaecke T. Inhibition of NF-kappaB activation by the histone deacetylase inhibitor 4-Me2N-BAVAH induces an early G1 cell cycle arrest in primary hepatocytes. Cell Prolif 2007; 40:640-55. [PMID: 17877607 PMCID: PMC6496027 DOI: 10.1111/j.1365-2184.2007.00466.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Benzoylaminoalkanohydroxamic acids, including 5-(4-dimethylaminobenzoyl)aminovaleric acid hydroxamide (4-Me(2)N-BAVAH), are structural analogues of Trichostatin A, a naturally occurring histone deacetylase inhibitor (HDACi). 4-Me(2)N-BAVAH has been shown to induce histone hyperacetylation and to inhibit proliferation in Friend erythroleukaemia cells in vitro. However, the molecular mechanisms have remained unidentified. MATERIALS AND METHODS In this study, we evaluated the effects of 4-Me(2)N-BAVAH on proliferation in non-malignant cells, namely epidermal growth factor-stimulated primary rat hepatocytes. RESULTS AND CONCLUSION We have found that 4-Me(2)N-BAVAH inhibits HDAC activity at non-cytotoxic concentrations and prevents cells from responding to the mitogenic stimuli of epidermal growth factor. This results in an early G(1) cell cycle arrest that is independent of p21 activity, but instead can be attributed to inhibition of cyclin D1 transcription through a mechanism involving inhibition of nuclear factor-kappaB activation. In addition, 4-Me(2)N-BAVAH delays the onset of spontaneous apoptosis in primary rat hepatocyte cultures as evidenced by down-regulation of the pro-apoptotic proteins Bid and Bax, and inhibition of caspase-3 activation.
Collapse
Affiliation(s)
- P Papeleu
- Department of Toxicology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bresgen N, Ohlenschläger I, Fiedler B, Wacht N, Zach S, Dunkelmann B, Arosio P, Kuffner E, Lottspeich F, Eckl PM. Ferritin-a mediator of apoptosis? J Cell Physiol 2007; 212:157-64. [PMID: 17348034 DOI: 10.1002/jcp.21009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previously we have demonstrated an apoptosis inducing activity for a rat hepatocyte conditioned medium (CM) presumably mediated by acidic isoferritins. Here, we present support for this assumption since isoferritins purified from different rat hepatocyte CM significantly enhanced the frequency of apoptotic cells in primary rat hepatocytes, an effect completely inhibited by a neutralizing anti-H-ferritin antibody. The apoptosis induction appears to be related to a 43 kDa ferritin subunit contained in the isoferritins released from primary hepatocytes, presumably representing a ferritin heavy/light chain heterodimer. In addition, these isoferritins immunologically crossreact with antibodies raised against placental isoferritin p43-PLF (which also contains a 43 kDa ferritin subunit) and melanoma-derived H-chain ferritin, representing ferritin isoforms which reveal immunomodulatory properties. Furthermore, p53 and FasL are upregulated upon isoferritin treatment in a time dependent mode, and apoptosis induction can be suppressed by neutralizing anti-FasL antibodies. Proapoptotic Bid is upregulated too and translocated into mitochondria in primary hepatocytes exposed to the isoferritins purified from the CM. Finally, epidermal growth factor (EGF) and dexamethasone (DEX), which counteract proapoptotic mitochondrial signalling, almost completely abolished the proapoptotic effect of the hepatocyte derived isoferritins. In conclusion, our findings demonstrate that acidic isoferritins with homology to immunomodulatory ferritin isoforms (p43-PLF, melanoma-derived-H-chain ferritin) are released from hepatocytes in vitro, and are able to stimulate upregulation of p53 and mediate apoptosis involving Fas (CD95) signalling as well as addressing the intrinsic mitochondrial proapoptotic pathway.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Cell Biology, University of Salzburg, Salzburg, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bailly-Maitre B, Bard-Chapeau E, Luciano F, Droin N, Bruey JM, Faustin B, Kress C, Zapata JM, Reed JC. Mice Lackingbi-1Gene Show Accelerated Liver Regeneration. Cancer Res 2007; 67:1442-50. [PMID: 17308082 DOI: 10.1158/0008-5472.can-06-0850] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The liver has enormous regenerative capacity such that, after partial hepatectomy, hepatocytes rapidly replicate to restore liver mass, thus providing a context for studying in vivo mechanisms of cell growth regulation. Bax inhibitor-1 (BI-1) is an evolutionarily conserved endoplasmic reticulum (ER) protein that suppresses cell death. Interestingly, the BI-1 protein has been shown to regulate Ca(2+) handling by the ER similar to antiapoptotic Bcl-2 family proteins. Effects on cell cycle entry by Bcl-2 family proteins have been described, prompting us to explore whether bi-1-deficient mice display alterations in the in vivo regulation of cell cycle entry using a model of liver regeneration. Accordingly, we compared bi-1(+/+) and bi-1(-/-) mice subjected to partial hepatectomy with respect to the kinetics of liver regeneration and molecular events associated with hepatocyte proliferation. We found that bi-1 deficiency accelerates liver regeneration after partial hepatectomy. Regenerating hepatocytes in bi-1(-/-) mice enter cell cycle faster, as documented by more rapid incorporation of deoxynucleotides, associated with earlier increases in cyclin D1, cyclin D3, cyclin-dependent kinase (Cdk) 2, and Cdk4 protein levels, more rapid hyperphosphorylation of retinoblastoma protein, and faster degradation of p27(Kip1). Dephosphorylation and nuclear translocation of nuclear factor of activated T cells 1 (NFAT1), a substrate of the Ca(2+)-sensitive phosphatase calcineurin, were also accelerated following partial hepatectomy in BI-1-deficient hepatocytes. These findings therefore reveal additional similarities between BI-1 and Bcl-2 family proteins, showing a role for BI-1 in regulating cell proliferation in vivo, in addition to its previously described actions as a regulator of cell survival.
Collapse
Affiliation(s)
- Béatrice Bailly-Maitre
- Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gesina E, Blondeau B, Milet A, Le Nin I, Duchene B, Czernichow P, Scharfmann R, Tronche F, Breant B. Glucocorticoid signalling affects pancreatic development through both direct and indirect effects. Diabetologia 2006; 49:2939-47. [PMID: 17001468 PMCID: PMC1885455 DOI: 10.1007/s00125-006-0449-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 08/04/2006] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Beta cell development is sensitive to glucocorticoid levels. Although direct effects of glucocorticoids on pancreatic precursors have been shown to control beta cell mass expansion, indirect effects of these hormones on pancreatic development remain unexplored. This issue was addressed in mice lacking the glucocorticoid receptor (GR) in the whole organism. MATERIALS AND METHODS The pancreatic phenotype of GR(null/null) mice was studied at fetal ages (embryonic day [E]) E15.5 and E18 by immunohistochemistry and beta cell fraction measurements. To distinguish between direct and indirect effects, mutant E15.5 fetal pancreata were grafted under the kidney capsule of immunodeficient mice and analysed after 1 week. RESULTS E18 GR(null/null) fetuses had smaller digestive tracts and tiny pancreata. Massive pancreatic disorganisation and apoptosis were observed despite the presence of all cell types. E15.5 GR(null/null) mutants were indistinguishable from wild-type regarding pancreatic size, tissue structure and organisation, beta cell fraction and production of exocrine transcription factor Ptf1a, neurogenin 3 and Pdx-1. Grafting E15.5 GR(null/null) pancreata into a GR-expressing environment rescued the increased apoptosis and mature islets were observed, suggesting that GR(null/null) pancreatic cell death can be attributed to indirect effects of glucocorticoids on this tissue. Heterozygous GR(+/null) mutants with reduced GR numbers showed no apoptosis but increased beta cell fraction at E18 and the adult age, strengthening the importance of an accurate GR dosage on beta cell mass expansion. CONCLUSIONS/INTERPRETATION Our results provide evidence for GR involvement in pancreatic tissue organisation and survival through indirect effects. GR does not appear necessary for early phases, but its accurate dosage is critical to modulate beta cell mass expansion at later fetal stages, presumably through direct effects.
Collapse
Affiliation(s)
- Emilie Gesina
- Diabète de l'enfant et développement
INSERM : U690 IFR2Université Denis Diderot - Paris VIIHopital Robert Debré
48, Boulevard Serurier
75935 PARIS CEDEX 19,FR
| | - Bertrand Blondeau
- Diabète de l'enfant et développement
INSERM : U690 IFR2Université Denis Diderot - Paris VIIHopital Robert Debré
48, Boulevard Serurier
75935 PARIS CEDEX 19,FR
- Pathologies nutritionnelles et métaboliques : obésité et diabète
INSERM : U671IFR58Université Pierre et Marie Curie - Paris VIInstitut Biomedical Des Cordeliers
15, Rue de L'Ecole de Medecine
75270 PARIS CEDEX 06,FR
| | - Aude Milet
- Génétique moléculaire, neurophysiologie et comportement
CNRS : UMR714811 place Marcelin Berthelot
75231 PARIS CEDEX 05,FR
| | - Isabelle Le Nin
- Développement normal et pathologique des organes endocrines
INSERM : E363Université René Descartes - Paris VFac de Medecine Necker-Enfants Malades
156, Rue de Vaugirard
75730 PARIS CEDEX 15,FR
| | - Belinda Duchene
- Diabète de l'enfant et développement
INSERM : U690 IFR2Université Denis Diderot - Paris VIIHopital Robert Debré
48, Boulevard Serurier
75935 PARIS CEDEX 19,FR
| | - Paul Czernichow
- Diabète de l'enfant et développement
INSERM : U690 IFR2Université Denis Diderot - Paris VIIHopital Robert Debré
48, Boulevard Serurier
75935 PARIS CEDEX 19,FR
| | - Raphaël Scharfmann
- Développement normal et pathologique des organes endocrines
INSERM : E363Université René Descartes - Paris VFac de Medecine Necker-Enfants Malades
156, Rue de Vaugirard
75730 PARIS CEDEX 15,FR
| | - François Tronche
- Génétique moléculaire, neurophysiologie et comportement
CNRS : UMR714811 place Marcelin Berthelot
75231 PARIS CEDEX 05,FR
| | - Bernadette Breant
- Diabète de l'enfant et développement
INSERM : U690 IFR2Université Denis Diderot - Paris VIIHopital Robert Debré
48, Boulevard Serurier
75935 PARIS CEDEX 19,FR
- Pathologies nutritionnelles et métaboliques : obésité et diabète
INSERM : U671IFR58Université Pierre et Marie Curie - Paris VIInstitut Biomedical Des Cordeliers
15, Rue de L'Ecole de Medecine
75270 PARIS CEDEX 06,FR
- * Correspondence should be adressed to: Bernadette Breant
| |
Collapse
|
37
|
Oh HY, Namkoong S, Lee SJ, Por E, Kim CK, Billiar TR, Han JA, Ha KS, Chung HT, Kwon YG, Lee H, Kim YM. Dexamethasone protects primary cultured hepatocytes from death receptor-mediated apoptosis by upregulation of cFLIP. Cell Death Differ 2006; 13:512-23. [PMID: 16167066 DOI: 10.1038/sj.cdd.4401771] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dexamethasone (DEX) pretreatment protected hepatocytes from TNF-alpha plus actinomycin D (ActD)-induced apoptosis by suppressing caspase-8 activation and the mitochondria-dependent apoptosis pathway. DEX treatment upregulated cellular FLICE inhibitory protein (cFLIP) expression, but did not alter the protein levels of Bcl-2, Bcl-xL, Mcl-1, and cIAP as well as Akt activation. The increased cFLIP mRNA level by DEX was inhibited by ActD, indicating that DEX upregulates cFLIP expression at the transcriptional step. DEX also inhibited Jo2-mediated hepatocyte apoptosis by blocking the formation of the death-inducing signaling complex and caspase-8 activation. Specific downregulation of cFLIP expression using siRNA reversed the antiapoptotic effect of DEX by increasing caspase-8 activation. Moreover, DEX administration into mice increased cFLIP expression in the liver and prevented Jo2-induced hepatic injury by inhibiting caspase-8 and -3 activities. Our results indicate that DEX exerts a protective role in death receptor-induced in vitro and in vivo hepatocyte apoptosis by upregulating cFLIP expression.
Collapse
Affiliation(s)
- H-Y Oh
- Vascular System Research Center, College of Medicine, Kangwon National University, Chunchon, Kangwon-Do, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Machuca C, Mendoza-Milla C, Córdova E, Mejía S, Covarrubias L, Ventura J, Zentella A. Dexamethasone protection from TNF-alpha-induced cell death in MCF-7 cells requires NF-kappaB and is independent from AKT. BMC Cell Biol 2006; 7:9. [PMID: 16504042 PMCID: PMC1395311 DOI: 10.1186/1471-2121-7-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 02/21/2006] [Indexed: 11/24/2022] Open
Abstract
Background The biochemical bases for hormone dependence in breast cancer have been recognized as an important element in tumor resistance, proliferation and metastasis. On this respect, dexamethasone (Dex) dependent protection against TNF-alpha-mediated cell death in the MCF-7 cell line has been demonstrated to be a useful model for the study of this type of cancer. Recently, cytoplasmic signaling induced by steroid receptors has been described, such as the activation of the PI3K/Akt and NF-kappaB pathways. We evaluated their possible participation in the Dex-dependent protection against TNF-alpha-mediated cell death. Results Cellular cultures of the MCF-7 cell line were exposed to either, TNF-alpha or TNF-alpha and Dex, and cell viability was evaluated. Next, negative dominants of PI3K and IkappaB-alpha, designed to block the PI3K/Akt and NF-kappaB pathways, respectively, were transfected and selection and evaluation of several clones overexpressing the mutants were examined. Also, correlation with inhibitor of apoptosis proteins (IAPs) expression was examined. Independent inhibition of these two pathways allowed us to test their participation in Dex-dependent protection against TNF-alpha-cytotoxicity in MCF-7 cells. Expression of the PI3K dominant negative mutant did not alter the protection conferred by Dex against TNF-alpha mediated cell death. Contrariwise, clones expressing the IkappaB-alpha dominant negative mutant lost the Dex-conferred protection against TNF-alpha. In these clones degradation of c-IAP was accelerated, while that of XIAP was remained unaffected. Conclusion NF-kappaB, but not PI3K/Akt activation, is required for the Dex protective effect against TNF-alpha-mediated cell death, and correlates with lack of degradation of the anti-apoptotic protein c-IAP1.
Collapse
Affiliation(s)
- Catalina Machuca
- Carrera de Biología, Facultad de Estudios Superiores ZARAGOZA, UNAM. C.P. 09230, México D.F., México
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Secretaría de Salud, C.P. 14000, México, D.F., México
| | - Criselda Mendoza-Milla
- Instituto Nacional de Enfermedades Respiratorias, Secretaría de Salud, C.P. 14000, México D.F., México
| | - Emilio Córdova
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM. C.P. 04510, México D.F., México
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Secretaría de Salud, C.P. 14000, México, D.F., México
| | - Salvador Mejía
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Secretaría de Salud, C.P. 14000, México, D.F., México
| | - Luis Covarrubias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM. C.P. 62210, Cuernavaca Mor. México
| | - José Ventura
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM. C.P. 04510, México D.F., México
| | - Alejandro Zentella
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM. C.P. 04510, México D.F., México
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Secretaría de Salud, C.P. 14000, México, D.F., México
| |
Collapse
|
39
|
Bailly-Maitre B, Fondevila C, Kaldas F, Droin N, Luciano F, Ricci JE, Croxton R, Krajewska M, Zapata JM, Kupiec-Weglinski JW, Farmer D, Reed JC. Cytoprotective gene bi-1 is required for intrinsic protection from endoplasmic reticulum stress and ischemia-reperfusion injury. Proc Natl Acad Sci U S A 2006; 103:2809-14. [PMID: 16478805 PMCID: PMC1413773 DOI: 10.1073/pnas.0506854103] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ischemia-reperfusion (IR) injury induces endoplasmic reticulum (ER) stress and cell death. Bax Inhibitor-1 (BI-1) is an evolutionarily conserved ER protein that suppresses cell death and that is abundantly expressed in both liver and kidney. We explored the role of BI-1 in protection from ER stress and IR injury by using bi-1 knockout mice, employing models of transient hepatic or renal artery occlusion. Compared to wild-type bi-1 mice, bi-1 knockout mice subjected to hepatic IR injury exhibited these characteristics: (i) increased histological injury; (ii) increased serum transaminases, indicative of more hepatocyte death; (iii) increased percentages of TUNEL-positive hepatocytes; (iv) greater elevations in caspase activity; and (v) more activation of ER stress proteins inositol-requiring enzyme 1 and activating transcription factor 6 and greater increases in expression of ER stress proteins C/EBP homologous protein and spliced XBP-1 protein. Moreover, hepatic IR injury induced elevations in bi-1 mRNA in wild-type liver, suggesting a need for bi-1 gene induction to limit tissue injury. Similar sensitization of kidney to ER stress and IR injury was observed in bi-1(-/-) mice. We conclude that bi-1 provides endogenous protection of liver and kidney from ER stress and IR injury. Analysis of components of the bi-1-dependent pathway for protection from IR injury may therefore reveal new strategies for organ preservation.
Collapse
Affiliation(s)
| | | | - Fady Kaldas
- Dumont-UCLA Transplant Center, University of California, Los Angeles, CA 90095; and
| | - Nathalie Droin
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92121
| | | | | | - Rhonda Croxton
- *Burnham Institute for Medical Research, La Jolla, CA 92037
| | | | - Juan M. Zapata
- *Burnham Institute for Medical Research, La Jolla, CA 92037
| | | | - Douglas Farmer
- Dumont-UCLA Transplant Center, University of California, Los Angeles, CA 90095; and
| | - John C. Reed
- *Burnham Institute for Medical Research, La Jolla, CA 92037
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Coleman MA, Yin E, Peterson LE, Nelson D, Sorensen K, Tucker JD, Wyrobek AJ. Low-dose irradiation alters the transcript profiles of human lymphoblastoid cells including genes associated with cytogenetic radioadaptive response. Radiat Res 2005; 164:369-82. [PMID: 16187739 DOI: 10.1667/rr3356.1] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Low-dose ionizing radiation alters the gene expression profiles of mammalian cells, yet there is little understanding of the underlying cellular mechanisms responsible for these changes or of their consequences for genomic stability. We investigated the cytogenetic adaptive response of human lymphoblastoid cell lines exposed to 5 cGy (priming dose) followed by 2 Gy (challenge dose) compared to cells that received a single 2-Gy dose to (a) determine how the priming dose influences subsequent gene transcript expression in reproducibly adapting and non-adapting cell lines, and (b) identify gene transcripts that are associated with reductions in the magnitude of chromosomal damage after the challenge dose. The transcript profiles were evaluated using oligonucleotide arrays and RNA obtained 4 h after the challenge dose. A set of 145 genes (false discovery rate = 5%) with transcripts that were affected by the 5-cGy priming dose fell into two categories: (a) a set of common genes that were similarly modulated by the 5-cGy priming dose irrespective of whether the cells subsequently adapted or not and (b) genes with differential transcription in accordance with the cell lines that showed either adaptive or non-adaptive outcomes. The common priming-dose response genes showed up-regulation for protein synthesis genes and down-regulation of metabolic and signal transduction genes (>10-fold differences). The genes associated with subsequent adaptive and non-adaptive outcomes involved DNA repair, stress response, cell cycle control and apoptosis. Our findings support the importance of TP53-related functions in the control of the low-dose cytogenetic radioadaptive response and suggest that certain low-dose-induced alterations in cellular functions are predictive for the risk of subsequent genomic damage.
Collapse
Affiliation(s)
- Matthew A Coleman
- Biology and Biotechnology Research Program, Lawrence Livermore, National Laboratory, Livermore, California 94551, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Desmots F, Loyer P, Rissel M, Guillouzo A, Morel F. Activation of C-Jun N-terminal kinase is required for glutathione transferase A4 induction during oxidative stress, not during cell proliferation, in mouse hepatocytes. FEBS Lett 2005; 579:5691-6. [PMID: 16223495 DOI: 10.1016/j.febslet.2005.08.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 08/30/2005] [Indexed: 11/19/2022]
Abstract
Expression of the mouse glutathione transferase Alpha 4 (mGSTA4) has been studied during hepatocyte isolation and in cultured hepatocytes. Transient mGSTA4 induction during liver disruption correlated to strong oxidative stress and induction of the Jun N-terminal kinase (JNK) pathway. Similarly, tumor necrosis factor alpha induced both JNK phosphorylation and mGSTA4 expression while specific JNK inhibitor JNKI1 prevented these two events and JNK activator anisomycin strongly induced mGSTA4 expression. We also found that endogenous JNK and mGSTA4 co-immunoprecipitate. A second mGSTA4 induction occurred 2 days after cell seeding concomitantly to DNA replication and was prevented by treatment with mitogen-activated protein kinase (MEK) inhibitor U0126. Our data demonstrate that mGSTA4 is strongly increased during oxidative stress possibly via JNK pathway and during proliferation via MEK/extracellular signal-regulated kinase pathway, and suggest that mGSTA4 might be an endogenous regulator of JNK activity by direct binding.
Collapse
|
42
|
Zucchini N, de Sousa G, Bailly-Maitre B, Gugenheim J, Bars R, Lemaire G, Rahmani R. Regulation of Bcl-2 and Bcl-xL anti-apoptotic protein expression by nuclear receptor PXR in primary cultures of human and rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:48-58. [PMID: 16085054 DOI: 10.1016/j.bbamcr.2005.02.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 02/18/2005] [Accepted: 02/23/2005] [Indexed: 01/28/2023]
Abstract
The pregnane X receptor (PXR) plays a major role in the protection of the body by regulating the genes involved in the metabolism and elimination of potentially toxic xeno- and endobiotics. We previously described that PXR activator dexamethasone protects hepatocytes from spontaneous apoptosis. We hypothesise a PXR-dependent co-regulation process between detoxication and programmed cell death. Using primary cultured human and rat hepatocytes, we investigated to determine if PXR is implicated in the regulation of Bcl-2 and Bcl-xL, two crucial apoptosis inhibitors. In the present study we demonstrated that the treatment of primary cultured hepatocytes with PXR agonists increased hepatocyte viability and protects them from staurosporine-induced apoptosis. The anti-apoptotic capacity of PXR activation was correlated with Bcl-2 and Bcl-xL induction at both the transcriptional and protein levels in man and rats, respectively. The inhibition of PXR expression by antisense oligonucleotide abolished PXR activators Bcl-xL induction. Accordingly, PXR overexpression in HepG2 cells led to bcl-2 induction upon clotrimazole treatment and protects cells against Fas-induced apoptosis. Our results demonstrate that PXR expression is required for Bcl-2 and Bcl-xL up-regulation upon PXR activators treatment in human and rat hepatocytes. They also suggest that PXR may protect the liver against chemicals by simultaneously regulating detoxication and the apoptotic pathway.
Collapse
Affiliation(s)
- Nathalie Zucchini
- Laboratoire de Toxicologie Cellulaire et Moléculaire, INRA, UMR 1112, 06903 Sophia Antipolis, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Wu W, Pew T, Zou M, Pang D, Conzen SD. Glucocorticoid receptor-induced MAPK phosphatase-1 (MPK-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. J Biol Chem 2004; 280:4117-24. [PMID: 15590693 DOI: 10.1074/jbc.m411200200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoid receptor (GR) activation has recently been shown to inhibit apoptosis in breast epithelial cells. We have previously described a group of genes that is rapidly up-regulated in these cells following dexamethasone (Dex) treatment. In an effort to dissect the mechanisms of GR-mediated breast epithelial cell survival, we now examine the molecular events downstream of GR activation. Here we show that GR activation leads to both the rapid induction of MAPK phosphatase-1 (MKP-1) mRNA and its sustained expression. Induction of the MKP-1 protein in the MCF10A-Myc and MDA-MB-231 breast epithelial cell lines was also seen. Paclitaxel treatment resulted in MAPK activation and apoptosis of MDA-MB-231 breast cancer cells, and both processes were inhibited by Dex pretreatment. Furthermore, induction of MKP-1 correlated with the inhibition of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) activity, whereas p38 activity was minimally affected. Blocking Dex-induced MKP-1 induction using small interfering RNA increased ERK1/2 and JNK phosphorylation and decreased cell survival. ERK1/2 and JNK inactivation was associated with Ets-like transcription factor-1 (ELK-1) dephosphorylation. To explore the gene expression changes that occur downstream of ELK-1 dephosphorylation, we used a combination of temporal gene expression data and promoter element analyses. This approach revealed a previously unrecognized transcriptional target of ELK-1, the human tissue plasminogen activator (tPA). We verified the predicted ELK-1--> tPA transcriptional regulatory relationship using a luciferase reporter assay. We conclude that GR-mediated MAPK inactivation contributes to cell survival and that the potential transcriptional targets of this inhibition can be identified from large scale gene array analysis.
Collapse
MESH Headings
- Amino Acid Motifs
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis
- Blotting, Northern
- Blotting, Western
- Breast/metabolism
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/physiology
- Cell Line, Tumor
- Cell Survival
- DNA-Binding Proteins/biosynthesis
- Down-Regulation
- Dual Specificity Phosphatase 1
- Enzyme Activation
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Humans
- Immediate-Early Proteins/metabolism
- Immediate-Early Proteins/physiology
- JNK Mitogen-Activated Protein Kinases/biosynthesis
- JNK Mitogen-Activated Protein Kinases/metabolism
- Luciferases/metabolism
- MAP Kinase Kinase 4
- MAP Kinase Signaling System
- Mitogen-Activated Protein Kinase 1/biosynthesis
- Mitogen-Activated Protein Kinase 3/biosynthesis
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Models, Biological
- Oligonucleotide Array Sequence Analysis
- Paclitaxel/pharmacology
- Phosphoprotein Phosphatases/metabolism
- Phosphoprotein Phosphatases/physiology
- Phosphorylation
- Protein Binding
- Protein Phosphatase 1
- Protein Tyrosine Phosphatases/metabolism
- Protein Tyrosine Phosphatases/physiology
- Proto-Oncogene Proteins/biosynthesis
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Glucocorticoid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Tissue Plasminogen Activator/metabolism
- Transcription Factors/biosynthesis
- Transcription, Genetic
- Transfection
- ets-Domain Protein Elk-1
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine and the Committee on Cancer Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
44
|
Wanke I, Schwarz M, Buchmann A. Insulin and dexamethasone inhibit TGF-beta-induced apoptosis of hepatoma cells upstream of the caspase activation cascade. Toxicology 2004; 204:141-54. [PMID: 15388240 DOI: 10.1016/j.tox.2004.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 06/18/2004] [Accepted: 06/21/2004] [Indexed: 12/11/2022]
Abstract
Insulin and dexamethasone are potent inhibitors of apoptosis induced by transforming growth factor-beta1 (TGF-beta) in hepatoma cells. Using FTO-2B rat hepatoma cells, we determined whether the anti-apoptotic effects of these agents result from interference within or upstream of the TGF-beta-induced caspase cascade. Activation of different initiator and effector caspases, Bax and Bcl-xL expression, mitochondrial cytochrome c release and activation of PKB/Akt were analyzed by use of synthetic caspase substrates and Western blotting, respectively. TGF-beta-induced apoptosis was characterized by release of cytochrome c from mitochondria and activation of caspases-3, -7, -8 and -9. These effects were observable as early as 8-12 h after start of treatment and increased with time of observation. Inhibition of TGF-beta-induced apoptosis by insulin and dexamethasone was paralleled by a strong reduction of caspase-3-like activity. Caspase-8 activation was almost completely suppressed by these agents, and caspase-9 activity was decreased to levels within or slightly above unstimulated control cells. In addition, cytochrome c release from mitochondria was efficiently repressed, which was associated with upregulation of Bcl-xL by dexamethasone and activation of PKB/Akt by insulin. Thus, both anti-apoptotic compounds exert their inhibitory effects through modulation of anti-apoptotic signalling pathways involved in regulation of cytochrome c release and activation of the caspase machinery.
Collapse
Affiliation(s)
- Ines Wanke
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Tübingen, Wilhelmstr. 56, 72074 Tübingen, Germany
| | | | | |
Collapse
|
45
|
Jaume M, Jacquet S, Cavaillès P, Macé G, Stephan L, Blanpied C, Demur C, Brousset P, Dietrich G. Opioid receptor blockade reduces Fas-induced hepatitis in mice. Hepatology 2004; 40:1136-43. [PMID: 15389866 DOI: 10.1002/hep.20428] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fas (CD95)-induced hepatocyte apoptosis and cytotoxic activity of neutrophils infiltrating the injured liver are two major events leading to hepatitis. Because it has been reported that opioids, via a direct interaction, sensitize splenocytes to Fas-mediated apoptosis by upregulating Fas messenger RNA (mRNA) and modulated neutrophil activity, we assumed that opioids may participate in the pathophysiology of hepatitis. Using the hepatitis model induced by agonistic anti-Fas antibody in mice, we showed that opioid receptor blockade reduced liver damage and consequently increased the survival rate of animals when the antagonist naltrexone was injected simultaneously or prior to antibody administration. Treatment of mice with morphine enhanced mortality. Naloxone methiodide-a selective peripheral opioid antagonist-had a protective effect, but the absence of opioid receptors in the liver, together with lack of morphine effect in Fas-induced apoptosis of primary cultured hepatocytes, ruled out a direct effect of opioids on hepatocytes. In addition, the neutralization of opioid activity by naltrexone did not modify Fas mRNA expression in the liver as assessed with real-time quantitative polymerase chain reaction. Injured livers were infiltrated by neutrophils, but granulocyte-depleted mice were not protected against the enhancing apoptotic effect of morphine. In conclusion, opioid receptor blockade improves the resistance of mice to Fas-induced hepatitis via a peripheral mechanism that does not involve a down-modulation of Fas mRNA in hepatocytes nor a decrease in proinflammatory activity of neutrophils.
Collapse
Affiliation(s)
- Martial Jaume
- INSERM U563, Institut Claude de Préval, IFR 30, Hôpital Purpan, Université Paul Sabatier Toulouse III, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chae HJ, Kim HR, Xu C, Bailly-Maitre B, Krajewska M, Krajewski S, Banares S, Cui J, Digicaylioglu M, Ke N, Kitada S, Monosov E, Thomas M, Kress CL, Babendure JR, Tsien RY, Lipton SA, Reed JC. BI-1 Regulates an Apoptosis Pathway Linked to Endoplasmic Reticulum Stress. Mol Cell 2004; 15:355-66. [PMID: 15304216 DOI: 10.1016/j.molcel.2004.06.038] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 05/26/2004] [Accepted: 05/28/2004] [Indexed: 12/25/2022]
Abstract
Bax inhibitor-1 (BI-1) is an evolutionarily conserved endoplasmic reticulum (ER) protein that suppresses cell death in both animal and plant cells. We characterized mice in which the bi-1 gene was ablated. Cells from BI-1-deficient mice, including fibroblasts, hepatocytes, and neurons, display selective hypersensitivity to apoptosis induced by ER stress agents (thapsigargin, tunicamycin, brefeldin A), but not to stimulators of mitochondrial or TNF/Fas-death receptor apoptosis pathways. Conversely, BI-1 overexpression protects against apoptosis induced by ER stress. BI-1-mediated protection from apoptosis induced by ER stress correlated with inhibition of Bax activation and translocation to mitochondria, preservation of mitochondrial membrane potential, and suppression of caspase activation. BI-1 overexpression also reduces releasable Ca(2+) from the ER. In vivo, bi-1(-/-) mice exhibit increased sensitivity to tissue damage induced by stimuli that trigger ER stress, including stroke and tunicamycin injection. Thus, BI-1 regulates a cell death pathway important for cytopreservation during ER stress.
Collapse
Affiliation(s)
- Han-Jung Chae
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bresgen N, Rolinek R, Hochleitner E, Lottspeich F, Eckl PM. Induction of apoptosis by a hepatocyte conditioned medium. J Cell Physiol 2004; 198:452-60. [PMID: 14755550 DOI: 10.1002/jcp.10439] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Incubation of primary cultures of parenchymal hepatocytes in a conditioned medium (CM), collected over the first 3 h of serum-free rat hepatocyte culture (CM(0-3)), induces a time dependent increase of the frequency of apoptotic cells which is accompanied by prominent changes of cell morphology. Short-term treatment with CM(0-3) for the first 3 h of culture is sufficient to significantly (P < 0.05) increase the frequency of apoptotic cells, however, the effect is more pronounced upon long-term treatment. Although apoptosis induction by CM(0-3) is independent of the timepoint when cultivation in CM(0-3) starts, our results suggest that the sensitivity for apoptosis induction by CM(0-3) is increased during the phase of attachment. Purification of CM(0-3) resulted in a fraction which significantly (P < 0.05) induced apoptosis at concentrations >/=10 ng/ml. Exposure of cultures to concentrations >/=1 microg/ml of purified CM(0-3) gave rise to a prominent cytotoxic effect as indicated by the massive occurrence of necrotic cells. Biochemical analysis showed that the purified fraction of CM(0-3) contains acidic ferritins with molecular weight of 23 and 43 kDa. Strikingly, both share homologies with placental isoferritins (PLF), for which growth inhibitory and immunosuppressive effects have been demonstrated by several investigations. Therefore, our results provide evidence that rat hepatocytes produce PLF or PLF-related acidic isoferritins which are able to induce apoptosis.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Institute of Genetics and General Biology, University of Salzburg, Salzburg, Austria.
| | | | | | | | | |
Collapse
|
48
|
Ichiyoshi H, Kiyozuka Y, Kishimoto Y, Fukuhara S, Tsubura A. Massive telomere loss and telomerase RNA expression in dexamethasone-induced apoptosis in mouse thymocytes. Exp Mol Pathol 2003; 75:178-86. [PMID: 14516782 DOI: 10.1016/s0014-4800(03)00050-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Apoptosis is a well-recognized process of cell death occurring under several physiological and pathological conditions and represents the principal mechanism involved in cell selection in the thymus. Glucocorticoids are well known to stimulate apoptosis in rat thymocytes. However, it is unclear whether the same changes occur after in vivo glucocorticoid treatment in mice. Chromosomal stability and cell viability require a proficient telomeric end-capping function. Cells with critical telomere shortening and telomerase dysfunction undergo increased apoptosis. In turn, the change in telomere function in cells undergoing apoptosis is not fully characterized. In order to investigate this, we studied the changes in thymocytes after dexamethasone administration in BALB/c mice. The loss of normal thymocytes coincided with the appearance of small dense cells with characteristic features of apoptosis including condensed chromatin, internucleosomal DNA cleavage, and a "hypodiploid" peak on flow cytometry, which suggested that dexamethasone-induced thymocyte apoptosis in BALB/c mice could be considered a well-defined experimental model for studying apoptotic processes. Dexamethasone-treated thymocytes exhibited rapid and dynamic loss of telomeric sequences and up-regulation of telomerase RNA as an early event in the apoptotic process. Telomerase activity was unchanged in this event. Thereafter, telomere gain associated with an increase in telomerase activity occurred in the regenerative process of the thymus. These results suggest a role of telomere loss and up-regulation of telomerase RNA as key apoptosis sensors.
Collapse
Affiliation(s)
- Hiroshi Ichiyoshi
- Department of Pathology II, Kansai Medical University, 10-15 Fumizono, Moriguchi, Osaka 570-8506, Japan
| | | | | | | | | |
Collapse
|