1
|
Shi J, Liu W, Song A, Sanni T, Van Deusen A, Zunder ER, Deppmann CD. Extrinsic Apoptosis and Necroptosis in Telencephalic Development: A Single-Cell Mass Cytometry Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.01.640843. [PMID: 40093055 PMCID: PMC11908208 DOI: 10.1101/2025.03.01.640843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Regulated cell death is integral to sculpting the developing brain, yet the relative contributions of extrinsic apoptosis and necroptosis remain unclear. Here, we leverage single-cell mass cytometry (CyTOF) to characterize the cellular landscape of the mouse telencephalon in wild-type (WT), RIPK3 knockout (RIPK3 KO), and RIPK3/Caspase-8 double knockout (DKO) mice. Strikingly, combined deletion of RIPK3 and Caspase-8 leads to a 12.6% increase in total cell count, challenging the prevailing notion that intrinsic apoptosis exclusively governs developmental cell elimination. Detailed subpopulation analysis reveals that DKO mice display selective enrichment of Tbr2⁺ intermediate progenitors and endothelial cells, underscoring distinct, cell type-specific roles for extrinsic apoptotic and necroptotic pathways. These findings provide a revised framework for understanding the coordinated regulation of cell number during telencephalic development and suggest potential mechanistic links to neurodevelopmental disorders characterized by aberrant cell death.
Collapse
|
2
|
Sandech N, Yang MC, Juntranggoor P, Rukthong P, Gorelkin P, Savin N, Timoshenko R, Vaneev A, Erofeev A, Wichaiyo S, Pradidarcheep W, Maiuthed A. Benja-ummarit induces ferroptosis with cell ballooning feature through ROS and iron-dependent pathway in hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118672. [PMID: 39127118 DOI: 10.1016/j.jep.2024.118672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/22/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Benja-ummarit (BU), a traditional Thai herbal formula, has been prescribed by traditional Thai practitioners for the treatment of liver cancer. Clinical trials of BU have shown an increase in overall survival in hepatocellular carcinoma (HCC) patients, including stage 1-3 (with or without prior standard chemotherapy) and terminal stage. The clinical outcomes differ from those of other apoptosis-based conventional chemotherapies. The molecular mechanisms underlying the anti-cancer properties of BU remain unclear. AIM OF STUDY To investigate BU-induced ferroptosis through morphological and molecular analyses of HCC cell lines and HCC rat tissues. METHODOLOGY Cytotoxicity of BU extract in HepG2 and HuH-7 cells, with or without LX-2 in 2D and 3D cultures, was determined through MTT assay and by observing spheroid formation, respectively, as compared to sorafenib. Morphological changes and the cellular ultrastructure of the treated cells were evaluated by light microscopy and transmission electron microscopy (TEM), respectively. In addition, alterations in ferroptosis protein markers in both cell lines and rat liver tissue were determined using western blot analysis and immunohistochemical staining, respectively. To investigate the pathways mediating ferroptosis, cells were pretreated with an iron chelator to confirm the iron-dependent ferroptosis induced by the BU extract. Intracellular ROS, a mediator of ferroptosis, was measured using a scanning ion conductance microscope (SICM). SICM was also used to determine cellular stiffness. The lipid profiles of BU-treated cells were studied using LC-MS/MS. RESULTS The BU extract induced cell death under all HCC cell culture conditions. The BU-IC50 in HepG2 and HuH-7 were 31.24 ± 4.46 μg/mL and 23.35 ± 0.27 μg/mL, respectively as determined by MTT assay. In co-culture with LX-2, BU exhibited a similar trend of cytotoxicity in both HepG2 and HuH-7 cells. Light microscopy showed cell ballooning features with intact plasma membranes, and TEM microscopy showed mitochondrial swelling and reduced mitochondrial cristae in BU-treated cells. BU promotes intracellular iron levels by increasing DMT1 and NCOA4 expression and decreasing FTH1 expression. BU also suppressed the cellular antioxidant system by lowering CD98, NRF2, and GPX4 expression, and promoting KEAP1 expression. IHC results of HCC rat liver tissues showed the absence of DMT1 and high expression of GPX4 in the tumor area. Pre-treatment with an iron chelator partially restored cell viability and shifted the mode of cell death to a more apoptosis-like morphology in the BU-treated group. The SICM showed increased intracellular ROS levels and cellular stiffness 24 h after BU treatment. In more detail of BU-mediated ferroptosis, cellular lipid profiling revealed increased expression of 3 polyunsaturated lipids, which are highly susceptible to lipid peroxidation, in BU-treated cells. DISCUSSION Alterations in intracellular iron levels, ROS levels, and cellular lipid composition have been previously reported in cancer cells. Therefore, targeting the iron-dependent ROS pathway and polyunsaturated lipids via BU-induced ferroptosis may be more cancer-specific than apoptosis-based cancer drugs. These observations are in accordance with the clinical outcomes of BU. The ferroptosis-inducing mechanism of BU makes it an extremely promising novel drug candidate for the treatment of HCC.
Collapse
Affiliation(s)
- Nichawadee Sandech
- Doctor of Philosophy Program in Innovative Anatomy, Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand; Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Meng Chieh Yang
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Pichakorn Juntranggoor
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Pattarawit Rukthong
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Srinakharinwirot University, Nakornnayok, 26120, Thailand; Center for Excellence in Plant and Herbal Innovation Research, Strategic Wisdom and Research Institute, Srinakharinwirot University, Nakornnayok, 26120, Thailand
| | - Petr Gorelkin
- ICAPPIC Limited, London, E8 3PN, United Kingdom; Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Nikita Savin
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Roman Timoshenko
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Alexander Vaneev
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander Erofeev
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Surasak Wichaiyo
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand; Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Wisuit Pradidarcheep
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand.
| | - Arnatchai Maiuthed
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand; Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Hu B, Zhang J, Huang J, Luo B, Zeng X, Jia J. NLRP3/1-mediated pyroptosis: beneficial clues for the development of novel therapies for Alzheimer's disease. Neural Regen Res 2024; 19:2400-2410. [PMID: 38526276 PMCID: PMC11090449 DOI: 10.4103/1673-5374.391311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 03/26/2024] Open
Abstract
The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis, which is a lytic, inflammatory form of cell death. There is accumulating evidence that nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome-mediated microglial pyroptosis and NLRP1 inflammasome-mediated neuronal pyroptosis in the brain are closely associated with the pathogenesis of Alzheimer's disease. In this review, we summarize the possible pathogenic mechanisms of Alzheimer's disease, focusing on neuroinflammation. We also describe the structures of NLRP3 and NLRP1 and the role their activation plays in Alzheimer's disease. Finally, we examine the neuroprotective activity of small-molecule inhibitors, endogenous inhibitor proteins, microRNAs, and natural bioactive molecules that target NLRP3 and NLRP1, based on the rationale that inhibiting NLRP3 and NLRP1 inflammasome-mediated pyroptosis can be an effective therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Bairu Luo
- Department of Clinical Pathology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing, Zhejiang Province, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| |
Collapse
|
4
|
Zhou X, Qian Y, Ling C, He Z, Shi P, Gao Y, Sui X. An integrated framework for prognosis prediction and drug response modeling in colorectal liver metastasis drug discovery. J Transl Med 2024; 22:321. [PMID: 38555418 PMCID: PMC10981831 DOI: 10.1186/s12967-024-05127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/23/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most prevalent cancer globally, and liver metastasis (CRLM) is the primary cause of death. Hence, it is essential to discover novel prognostic biomarkers and therapeutic drugs for CRLM. METHODS This study developed two liver metastasis-associated prognostic signatures based on differentially expressed genes (DEGs) in CRLM. Additionally, we employed an interpretable deep learning model utilizing drug sensitivity databases to identify potential therapeutic drugs for high-risk CRLM patients. Subsequently, in vitro and in vivo experiments were performed to verify the efficacy of these compounds. RESULTS These two prognostic models exhibited superior performance compared to previously reported ones. Obatoclax, a BCL-2 inhibitor, showed significant differential responses between high and low risk groups classified by prognostic models, and demonstrated remarkable effectiveness in both Transwell assay and CT26 colorectal liver metastasis mouse model. CONCLUSIONS This study highlights the significance of developing specialized prognostication approaches and investigating effective therapeutic drugs for patients with CRLM. The application of a deep learning drug response model provides a new drug discovery strategy for translational medicine in precision oncology.
Collapse
Affiliation(s)
- Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Yuzhen Qian
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen Ling
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Zhuoying He
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Peishang Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China.
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China.
| |
Collapse
|
5
|
Kang JY, Gu JY, Baek DC, Son CG, Lee JS. A Capsicum annuum L. seed extract exerts anti-neuroexcitotoxicity in HT22 hippocampal neurons. Food Funct 2024; 15:2144-2153. [PMID: 38305768 DOI: 10.1039/d3fo04501c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The hippocampal memory deficit stands out as a primary symptom in neurodegenerative diseases, including Alzheimer's disease. While numerous therapeutic candidates have been proposed, they primarily serve to delay disease progression. Given the irreversible brain atrophy or injury associated with these conditions, current research efforts are concentrated on preventive medicine strategies. Herein, we investigated whether the extracts of Capsicum annuum L. seeds (CSE) and Capsicum annuum L. pulp (CPE) have preventive properties against glutamate-induced neuroexcitotoxicity (one of the main causes of Alzheimer's disease) in HT22 hippocampal neuronal cells. Pretreatment with CSE demonstrated significant anti-neuroexcitotoxic activity, whereas CPE did not exhibit such effects. Specifically, CSE pretreatment dose-dependently inhibited the elevation of excitotoxic elements (intracellular calcium influx and reactive oxygen species; ROS) and apoptotic elements (p53 and cleaved caspase-3). In addition, the glutamate-induced alterations of neuronal activity indicators (brain-derived neurotrophic factor; BDNF and cAMP response element-binding protein phosphorylation; CREB) were significantly attenuated by CSE treatment. We also found that luteolin is the main bioactive compound corresponding to the anti-neuroexcitotoxic effects of CSE. Our results strongly suggest that Capsicum annuum L. seeds (but not its pulp) could be candidates for neuro-protective resources especially under conditions of neuroexcitotoxicity. Its underlying mechanisms may involve the amelioration of ROS-mediated cell death and BDNF-related neuronal inactivity and luteolin would be an active compound.
Collapse
Affiliation(s)
- Ji-Yun Kang
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea.
| | - Ji-Yeon Gu
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea.
| | - Dong-Cheol Baek
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea.
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea.
- Research Center for CFS/ME, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Jin-Seok Lee
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea.
- Research Center for CFS/ME, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Abd El-Hameed RH, Mohamed MS, Awad SM, Hassan BB, Khodair MAEF, Mansour YE. Novel benzo chromene derivatives: design, synthesis, molecular docking, cell cycle arrest, and apoptosis induction in human acute myeloid leukemia HL-60 cells. J Enzyme Inhib Med Chem 2023; 38:405-422. [DOI: 10.1080/14756366.2022.2151592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Rania H. Abd El-Hameed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mosaad S. Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Samir M. Awad
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Bardes B. Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Yara E. Mansour
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
7
|
Lin HLH, Mermillod P, Grasseau I, Brillard JP, Gérard N, Reynaud K, Chen LR, Blesbois E, Carvalho AV. Is glycerol a good cryoprotectant for sperm cells? New exploration of its toxicity using avian model. Anim Reprod Sci 2023; 258:107330. [PMID: 37734123 DOI: 10.1016/j.anireprosci.2023.107330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
Glycerol is a cryoprotectant used widely for the cryopreservation of animal sperm, but it is linked to a decrease in fertility. The mechanism underlying the negative effects of glycerol remains unclear. Therefore, in this study, we aimed to gain a better understanding by using the chicken model. First, we investigated the impact of increasing the concentration of glycerol during insemination on hen fertility. Our findings revealed that 2% glycerol resulted in partial infertility, while 6% glycerol led to complete infertility. Subsequently, we examined the ability of sperm to colonize sperm storage tubules (SST) during in vivo insemination and in vitro incubation. The sperm used in the experiment were stained with Hoechst and contained 0, 2, or 6% glycerol. Furthermore, we conducted perivitelline membrane lysis tests and investigated sperm motility, mitochondrial function, ATP concentration, membrane integrity, and apoptosis after 60 min of incubation with different glycerol concentrations (0%, 1%, 2%, 6%, and 11%) at two temperatures to simulate pre-freezing (4 °C) and post-insemination (41 °C) conditions. Whereas 2% glycerol significantly reduced 50% of sperm containing SST, 6% glycerol completely inhibited SST colonization in vivo. On the other hand, in vitro incubation of sperm with SST revealed no effect of 2% glycerol, and 6% glycerol showed only a 17% reduction in sperm-filled SST. Moreover, glycerol reduced sperm-egg penetration rates and also affected sperm motility, bioenergetic metabolism, and cell death at 4 °C. These effects were observed when the concentration of glycerol exceeded 6%. Furthermore, at 41 °C, glycerol caused even greater damage, particularly in terms of reducing sperm motility. These data altogether reveal important effects of glycerol on sperm biology, sperm migration, SST colonization, and oocyte penetration. This suggests that glycerol plays a role in reducing fertility and presents opportunities for improving sperm cryopreservation.
Collapse
Affiliation(s)
- Hsiu-Lien Herbie Lin
- INRAE, CNRS, IFCE, Université de Tours, PRC, 37380 Nouzilly, France; Division of Physiology, LRI, COA, 71246 Tainan, Taiwan
| | - Pascal Mermillod
- INRAE, CNRS, IFCE, Université de Tours, PRC, 37380 Nouzilly, France
| | | | | | - Nadine Gérard
- INRAE, CNRS, IFCE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Karine Reynaud
- INRAE, CNRS, IFCE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Lih-Ren Chen
- Division of Physiology, LRI, COA, 71246 Tainan, Taiwan
| | | | | |
Collapse
|
8
|
Singh P, Katkar PK, Walski T, Bohara RA. Three in-one fenestrated approaches of yolk-shell, silver-silica nanoparticles: A comparative study of antibacterial, antifungal and anti-cancerous applications. Heliyon 2023; 9:e18034. [PMID: 37576197 PMCID: PMC10412894 DOI: 10.1016/j.heliyon.2023.e18034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Yolk-shell-based silica-coated silver nanoparticles are prominently used in the biomedical field aas well as bare silver nanoparticles for various biological applications. The present work narrates the synthesis and silica coating of metallic silver nanoparticles and investigates their antibacterial, antifungal, and anticancerous activity. Both synthesized nanoparticles were characterized by TEM, and SEM-EDX. The average size of silver nanoparticles was 50 nm, while after coating with silica, the average size of silica-coated silver nanoparticles was 80 nm. The nanoparticles' antibacterial, antifungal, and anticancer properties were comparatively examined in vitro. Agar well diffusion method was employed to explore the antibacterial activity against gram-positive bacteria (Bacillus cereus) and gram-negative bacteria (Escherichia coli) at different concentrations and antifungal activity against Candida Albicans. To understand the minimum concentration of both nanoparticles, we employed the minimum inhibitory concentration (MIC) test, against bacterial and fungal strains, which was dose dependent. We learned that bare silver nanoparticles showed high antibacterial activity, whereas silica-coated silver nanoparticles surpassed their antifungal capability over bare silver nanoparticles against Candida albicans. The anticancer activity of the as-prepared nanoparticles was executed in opposition to the prostate cancer cell (PC-3) line by MTT assay, which showed meaningful activity. Following this, flow cytometry was also effectuated to learn about the number of apoptotic and necrotic cells. The results of this study demonstrate the dynamic anti-cancerous, antibacterial, and antifungal activities of bare silver nanoparticles and silica-coated silver nanoparticles for a long-lasting period.
Collapse
Affiliation(s)
- Priyanka Singh
- Centre for Interdisciplinary Research, D.Y. Patil Educational Society, Kolhapur, India
| | | | - Tomasz Walski
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland
| | - Raghvendra A. Bohara
- Centre for Interdisciplinary Research, D.Y. Patil Educational Society, Kolhapur, India
- CURAM, SFI Research Centre for Medical Devices, University of Galway, Ireland
| |
Collapse
|
9
|
Elfarnawany A, Dehghani F. Time- and Concentration-Dependent Adverse Effects of Paclitaxel on Non-Neuronal Cells in Rat Primary Dorsal Root Ganglia. TOXICS 2023; 11:581. [PMID: 37505547 PMCID: PMC10385404 DOI: 10.3390/toxics11070581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
Paclitaxel is a chemotherapeutic agent used to treat a wide range of malignant tumors. Although it has anti-tumoral properties, paclitaxel also shows significant adverse effects on the peripheral nervous system, causing peripheral neuropathy. Paclitaxel has previously been shown to exert direct neurotoxic effects on primary DRG neurons. However, little is known about paclitaxel's effects on non-neuronal DRG cells. They provide mechanical and metabolic support and influence neuronal signaling. In the present study, paclitaxel effects on primary DRG non-neuronal cells were analyzed and their concentration or/and time dependence investigated. DRGs of Wister rats (6-8 weeks old) were isolated, and non-neuronal cell populations were separated by the density gradient centrifugation method. Different concentrations of Paclitaxel (0.01 µM-10 µM) were tested on cell viability by MTT assay, cell death by lactate dehydrogenase (LDH) assay, and propidium iodide (PI) assay, as well as cell proliferation by Bromodeoxyuridine (BrdU) assay at 24 h, 48 h, and 72 h post-treatment. Furthermore, phenotypic effects have been investigated by using immunofluorescence techniques. Paclitaxel exhibited several toxicological effects on non-neuronal cells, including a reduction in cell viability, an increase in cell death, and an inhibition of cell proliferation. These effects were concentration- and time-dependent. Cellular and nuclear changes such as shrinkage, swelling of cell bodies, nuclear condensation, chromatin fragmentation, retraction, and a loss in processes were observed. Paclitaxel showed adverse effects on primary DRG non-neuronal cells, which might have adverse functional consequences on sensory neurons of the DRG, asking for consideration in the management of peripheral neuropathy.
Collapse
Affiliation(s)
- Amira Elfarnawany
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany;
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany;
| |
Collapse
|
10
|
Ke Q, Greenawalt AN, Manukonda V, Ji X, Tisch RM. The regulation of self-tolerance and the role of inflammasome molecules. Front Immunol 2023; 14:1154552. [PMID: 37081890 PMCID: PMC10110889 DOI: 10.3389/fimmu.2023.1154552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Inflammasome molecules make up a family of receptors that typically function to initiate a proinflammatory response upon infection by microbial pathogens. Dysregulation of inflammasome activity has been linked to unwanted chronic inflammation, which has also been implicated in certain autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, type 1 diabetes, systemic lupus erythematosus, and related animal models. Classical inflammasome activation-dependent events have intrinsic and extrinsic effects on both innate and adaptive immune effectors, as well as resident cells in the target tissue, which all can contribute to an autoimmune response. Recently, inflammasome molecules have also been found to regulate the differentiation and function of immune effector cells independent of classical inflammasome-activated inflammation. These alternative functions for inflammasome molecules shape the nature of the adaptive immune response, that in turn can either promote or suppress the progression of autoimmunity. In this review we will summarize the roles of inflammasome molecules in regulating self-tolerance and the development of autoimmunity.
Collapse
Affiliation(s)
- Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ashley Nicole Greenawalt
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Veera Manukonda
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xingqi Ji
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland Michael Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Morello G, La Cognata V, Guarnaccia M, D’Agata V, Cavallaro S. Cracking the Code of Neuronal Cell Fate. Cells 2023; 12:1057. [PMID: 37048129 PMCID: PMC10093029 DOI: 10.3390/cells12071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Transcriptional regulation is fundamental to most biological processes and reverse-engineering programs can be used to decipher the underlying programs. In this review, we describe how genomics is offering a systems biology-based perspective of the intricate and temporally coordinated transcriptional programs that control neuronal apoptosis and survival. In addition to providing a new standpoint in human pathology focused on the regulatory program, cracking the code of neuronal cell fate may offer innovative therapeutic approaches focused on downstream targets and regulatory networks. Similar to computers, where faults often arise from a software bug, neuronal fate may critically depend on its transcription program. Thus, cracking the code of neuronal life or death may help finding a patch for neurodegeneration and cancer.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Velia D’Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| |
Collapse
|
12
|
Nojima Y, Aoki M, Re S, Hirano H, Abe Y, Narumi R, Muraoka S, Shoji H, Honda K, Tomonaga T, Mizuguchi K, Boku N, Adachi J. Integration of pharmacoproteomic and computational approaches reveals the cellular signal transduction pathways affected by apatinib in gastric cancer cell lines. Comput Struct Biotechnol J 2023; 21:2172-2187. [PMID: 37013003 PMCID: PMC10066531 DOI: 10.1016/j.csbj.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Apatinib is known to be a highly selective vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor with anti-angiogenic and anti-tumor properties. In a phase III study, the objective response rate to apatinib was low. It remains unclear why the effectivity of apatinib varies among patients and what type of patients are candidates for the treatment. In this study, we investigated the anti-tumor efficacy of apatinib against 13 gastric cancer cell lines and found that it differed depending on the cell line. Using integrated wet and dry approaches, we showed that apatinib was a multi-kinase inhibitor of c-Kit, RAF1, VEGFR1, VEGFR2, and VEGFR3, predominantly inhibiting c-Kit. Notably, KATO-III, which was the most apatinib-sensitive among the gastric cancer cell lines investigated, was the only cell line expressing c-Kit, RAF1, VEGFR1, and VEGFR3 but not VEGFR2. Furthermore, we identified SNW1 as a molecule affected by apatinib that plays an important role in cell survival. Finally, we identified the molecular network related to SNW1 that was affected by treatment with apatinib. These results suggest that the mechanism of action of apatinib in KATO-III cells is independent of VEGFR2 and that the differential efficacy of apatinib was due to differences in expression patterns of receptor tyrosine kinases. Furthermore, our results suggest that the differential efficacy of apatinib in gastric cell lines may be attributed to SNW1 phosphorylation levels at a steady state. These findings contribute to a deeper understanding of the mechanism of action of apatinib in gastric cancer cells.
Collapse
Affiliation(s)
- Yosui Nojima
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Center for Mathematical Modeling and Data Science, Osaka University, Osaka 560–8531, Japan
| | - Masahiko Aoki
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104–0045, Japan
- Department of Early Clinical Development, Graduate School of Medicine, Kyoto University Hospital, Kyoto 606–8507, Japan
| | - Suyong Re
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104–0045, Japan
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
| | - Yuichi Abe
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
- Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya 464–8681, Japan
| | - Ryohei Narumi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
| | - Satoshi Muraoka
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104–0045, Japan
| | - Kazufumi Honda
- Department of Biomarkers for Early Detection of Cancer, National Cancer Center Research Institute, Tokyo 104–0045, Japan
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113–8602, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
- Proteobiologics Co., Ltd., Osaka 567–0085, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Institute for Protein Research, Osaka University, Osaka 565–0871, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104–0045, Japan
- Department of Medical Oncology and General Medicine, IMSUT Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108–8639, Japan
- Correspondence to: Department of Medical Oncology and General Medicine, IMSUT Hospital, Institute of Medical Science, University of Tokyo, 4–6-1 Minato-ku, Shiroganedai, Tokyo 108–8639, Japan.
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
- Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Correspondence to: Laboratory of Proteomics for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, 7–6-8 Saito-asagi, Ibaraki, Osaka 567–0085, Japan.
| |
Collapse
|
13
|
The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life (Basel) 2023; 13:life13020466. [PMID: 36836823 PMCID: PMC9965924 DOI: 10.3390/life13020466] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
Collapse
|
14
|
Role of NLRP3 Inflammasome and Its Inhibitors as Emerging Therapeutic Drug Candidate for Alzheimer's Disease: a Review of Mechanism of Activation, Regulation, and Inhibition. Inflammation 2023; 46:56-87. [PMID: 36006570 PMCID: PMC9403980 DOI: 10.1007/s10753-022-01730-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. The etiology and pathology of AD are complicated, variable, and yet to be completely discovered. However, the involvement of inflammasomes, particularly the NLRP3 inflammasome, has been emphasized recently. NLRP3 is a critical pattern recognition receptor involved in the expression of immune responses and has been found to play a significant role in the development of various immunological and neurological disorders such as multiple sclerosis, ulcerative colitis, gout, diabetes, and AD. It is a multimeric protein which releases various cytokines and causes caspase-1 activation through the process known as pyroptosis. Increased levels of cytokines (IL-1β and IL-18), caspase-1 activation, and neuropathogenic stimulus lead to the formation of proinflammatory microglial M1. Progressive researches have also shown that besides loss of neurons, the pathophysiology of AD primarily includes amyloid beta (Aβ) accumulation, generation of oxidative stress, and microglial damage leading to activation of NLRP3 inflammasome that eventually leads to neuroinflammation and dementia. It has been suggested in the literature that suppressing the activity of the NLRP3 inflammasome has substantial potential to prevent, manage, and treat Alzheimer's disease. The present review discusses the functional composition, various models, signaling molecules, pathways, and evidence of NLRP3 activation in AD. The manuscript also discusses the synthetic drugs, their clinical status, and projected natural products as a potential therapeutic approach to manage and treat NLRP3 mediated AD.
Collapse
|
15
|
Bencze M. Mechanisms of Myofibre Death in Muscular Dystrophies: The Emergence of the Regulated Forms of Necrosis in Myology. Int J Mol Sci 2022; 24:ijms24010362. [PMID: 36613804 PMCID: PMC9820579 DOI: 10.3390/ijms24010362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Myofibre necrosis is a central pathogenic process in muscular dystrophies (MD). As post-lesional regeneration cannot fully compensate for chronic myofibre loss, interstitial tissue accumulates and impairs muscle function. Muscle regeneration has been extensively studied over the last decades, however, the pathway(s) controlling muscle necrosis remains largely unknown. The recent discovery of several regulated cell death (RCD) pathways with necrotic morphology challenged the dogma of necrosis as an uncontrolled process, opening interesting perspectives for many degenerative disorders. In this review, we focus on how cell death affects myofibres in MDs, integrating the latest research in the cell death field, with specific emphasis on Duchenne muscular dystrophy, the best-known and most common hereditary MD. The role of regulated forms of necrosis in myology is still in its infancy but there is increasing evidence that necroptosis, a genetically programmed form of necrosis, is involved in muscle degenerating disorders. The existence of apoptosis in myofibre demise will be questioned, while other forms of non-apoptotic RCDs may also have a role in myonecrosis, illustrating the complexity and possibly the heterogeneity of the cell death pathways in muscle degenerating conditions.
Collapse
Affiliation(s)
- Maximilien Bencze
- “Biology of the Neuromuscular System” Team, Institut Mondor de Recherche Biomédicale (IMRB), University Paris-Est Créteil, INSERM, U955 IMRB, 94010 Créteil, France;
- École Nationale Vétérinaire d’Alfort, IMRB, 94700 Maisons-Alfort, France
| |
Collapse
|
16
|
Srivastava S, Dubey AK, Madaan R, Bala R, Gupta Y, Dhiman BS, Kumar S. Emergence of nutrigenomics and dietary components as a complementary therapy in cancer prevention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89853-89873. [PMID: 36367649 DOI: 10.1007/s11356-022-24045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Cancer is an illness characterized by abnormal cell development and the capability to infiltrate or spread to rest of the body. A tumor is the term for this abnormal growth that develops in solid tissues like an organ, muscle, or bone and can spread to other parts of the body through the blood and lymphatic systems. Nutrition is a critical and immortal environmental component in the development of all living organisms encoding the relationship between a person's nutrition and their genes. Nutrients have the ability to modify gene expression and persuade alterations in DNA and protein molecules which is researched scientifically in nutrigenomics. These interactions have a significant impact on the pharmacokinetic properties of bioactive dietary components as well as their site of action/molecular targets. Nutrigenomics encompasses nutrigenetics, epigenetics, and transcriptomics as well as other "omic" disciplines like proteomics and metabolomics to explain the vast disparities in cancer risk among people with roughly similar life style. Clinical trials and researches have evidenced that alternation of dietary habits is potentially one of the key approaches for reducing cancer risk in an individual. In this article, we will target how nutrigenomics and functional food work as preventive therapy in reducing the risk of cancer.
Collapse
Affiliation(s)
| | - Ankit Kumar Dubey
- Institute of Scholars, Bengaluru, 577102, Karnataka, India.
- iGlobal Research and Publishing Foundation, New Delhi, 110059, India.
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rajni Bala
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Yugam Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| |
Collapse
|
17
|
Pan L, Tang WD, Wang K, Fang QF, Liu MR, Wu ZX, Wang Y, Cui SL, Hu G, Hou TJ, Hu WW, Chen Z, Zhang XN. Novel Caspase-1 inhibitor CZL80 improves neurological function in mice after progressive ischemic stroke within a long therapeutic time-window. Acta Pharmacol Sin 2022; 43:2817-2827. [PMID: 35501362 PMCID: PMC9622895 DOI: 10.1038/s41401-022-00913-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/16/2022] [Indexed: 11/09/2022]
Abstract
Progressive ischemic stroke (PIS) is featured by progressive neurological dysfunction after ischemia. Ischemia-evoked neuroinflammation is implicated in the progressive brain injury after cerebral ischemia, while Caspase-1, an active component of inflammasome, exaggerates ischemic brain injury. Current Caspase-1 inhibitors are inadequate in safety and druggability. Here, we investigated the efficacy of CZL80, a novel Caspase-1 inhibitor, in mice with PIS. Mice and Caspase-1-/- mice were subjected to photothrombotic (PT)-induced cerebral ischemia. CZL80 (10, 30 mg·kg-1·d-1, i.p.) was administered for one week after PT onset. The transient and the progressive neurological dysfunction (as foot faults in the grid-walking task and forelimb symmetry in the cylinder task) was assessed on Day1 and Day4-7, respectively, after PT onset. Treatment with CZL80 (30 mg/kg) during Day1-7 significantly reduced the progressive, but not the transient neurological dysfunction. Furthermore, we showed that CZL80 administered on Day4-7, when the progressive neurological dysfunction occurred, produced significant beneficial effects against PIS, suggesting an extended therapeutic time-window. CZL80 administration could improve the neurological function even as late as Day43 after PT. In Caspase-1-/- mice with PIS, the beneficial effects of CZL80 were abolished. We found that Caspase-1 was upregulated during Day4-7 after PT and predominantly located in activated microglia, which was coincided with the progressive neurological deficits, and attenuated by CZL80. We showed that CZL80 administration did not reduce the infarct volume, but significantly suppressed microglia activation in the peri-infarct cortex, suggesting the involvement of microglial inflammasome in the pathology of PIS. Taken together, this study demonstrates that Caspase-1 is required for the progressive neurological dysfunction in PIS. CZL80 is a promising drug to promote the neurological recovery in PIS by inhibiting Caspase-1 within a long therapeutic time-window.
Collapse
Affiliation(s)
- Ling Pan
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Dong Tang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ke Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi-Feng Fang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng-Ru Liu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhan-Xun Wu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Sun-Liang Cui
- Department of Pharmachemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Ting-Jun Hou
- Department of Pharmachemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Wei Hu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiang-Nan Zhang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Huang C, Huang W, Ji P, Song F, Liu T, Li M, Guo H, Huang Y, Yu C, Wang C, Ni W. A Pyrazolate Osmium(VI) Nitride Exhibits Anticancer Activity through Modulating Protein Homeostasis in HepG2 Cells. Int J Mol Sci 2022; 23:ijms232112779. [PMID: 36361570 PMCID: PMC9656236 DOI: 10.3390/ijms232112779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 02/05/2023] Open
Abstract
Interest in the third-row transition metal osmium and its compounds as potential anticancer agents has grown in recent years. Here, we synthesized the osmium(VI) nitrido complex Na[OsVI(N)(tpm)2] (tpm = [5-(Thien-2-yl)-1H-pyrazol-3-yl]methanol), which exhibited a greater inhibitory effect on the cell viabilities of the cervical, ovarian, and breast cancer cell lines compared with cisplatin. Proteomics analysis revealed that Na[OsVI(N)(tpm)2] modulates the expression of protein-transportation-associated, DNA-metabolism-associated, and oxidative-stress-associated proteins in HepG2 cells. Perturbation of protein expression activity by the complex in cancer cells affects the functions of the mitochondria, resulting in high levels of cellular oxidative stress and low rates of cell survival. Moreover, it caused G2/M phase cell cycle arrest and caspase-mediated apoptosis of HepG2 cells. This study reveals a new high-valent osmium complex as an anticancer agent candidate modulating protein homeostasis.
Collapse
Affiliation(s)
- Chengyang Huang
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Wanqiong Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Pengchao Ji
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Fuling Song
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Tao Liu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Meiyang Li
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Hongzhi Guo
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Yongliang Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Cuicui Yu
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Chuanxian Wang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Wenxiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
- Correspondence:
| |
Collapse
|
19
|
Bae JM, Kim WJ, Kim W, Kim SJ. Valrubicin decreases cell proliferation in gastric cancer through the apoptosis induction. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Ortega-Forte E, Hernández-García S, Vigueras G, Henarejos-Escudero P, Cutillas N, Ruiz J, Gandía-Herrero F. Potent anticancer activity of a novel iridium metallodrug via oncosis. Cell Mol Life Sci 2022; 79:510. [PMID: 36066676 PMCID: PMC9448686 DOI: 10.1007/s00018-022-04526-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Oncosis (from Greek ónkos, meaning "swelling") is a non-apoptotic cell death process related to energy depletion. In contrast to apoptosis, which is the main form of cell death induced by anticancer drugs, oncosis has been relatively less explored but holds potential to overcome drug resistance phenomena. In this study, we report a novel rationally designed mitochondria-targeted iridium(III) complex (OncoIr3) with advantageous properties as a bioimaging agent. OncoIr3 exhibited potent anticancer activity in vitro against cancer cells and displayed low toxicity to normal dividing cells. Flow cytometry and fluorescence-based assays confirmed an apoptosis-independent mechanism involving energy depletion, mitochondrial dysfunction and cellular swelling that matched with the oncotic process. Furthermore, a Caenorhabditis elegans tumoral model was developed to test this compound in vivo, which allowed us to prove a strong oncosis-derived antitumor activity in animals (with a 41% reduction of tumor area). Indeed, OncoIr3 was non-toxic to the nematodes and extended their mean lifespan by 18%. Altogether, these findings might shed new light on the development of anticancer metallodrugs with non-conventional modes of action such as oncosis, which could be of particular interest for the treatment of apoptosis-resistant cancers.
Collapse
Affiliation(s)
- Enrique Ortega-Forte
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| | - Gloria Vigueras
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Paula Henarejos-Escudero
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| | - Natalia Cutillas
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| |
Collapse
|
21
|
Yin H, Liu N, Sigdel KR, Duan L. Role of NLRP3 Inflammasome in Rheumatoid Arthritis. Front Immunol 2022; 13:931690. [PMID: 35833125 PMCID: PMC9271572 DOI: 10.3389/fimmu.2022.931690] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by multi-articular, symmetrical and invasive arthritis resulting from immune system abnormalities involving T and B lymphocytes. Although significant progress has been made in the understanding of RA pathogenesis, the underlying mechanisms are not fully understood. Recent studies suggest that NLRP3 inflammasome, a regulator of inflammation, might play an important role in the development of RA. There have been increasing clinical and pre-clinical evidence showing the treatment of NLRP3/IL-1β in inflammatory diseases. To provide a foundation for the development of therapeutic strategies, we will briefly summarize the roles of NLRP3 inflammasome in RA and explore its potential clinical treatment.
Collapse
Affiliation(s)
- Hui Yin
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Na Liu
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Keshav Raj Sigdel
- Department of Internal Medicine, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- *Correspondence: Lihua Duan,
| |
Collapse
|
22
|
Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022; 74:1085-1116. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Lau TY, Kwan HY. Fucoxanthin Is a Potential Therapeutic Agent for the Treatment of Breast Cancer. Mar Drugs 2022; 20:md20060370. [PMID: 35736173 PMCID: PMC9229252 DOI: 10.3390/md20060370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers diagnosed and the leading cause of cancer-related death in women. Although there are first-line treatments for BC, drug resistances and adverse events have been reported. Given the incidence of BC keeps increasing, seeking novel therapeutics is urgently needed. Fucoxanthin (Fx) is a dietary carotenoid commonly found in seaweeds and diatoms. Both in vitro and in vivo studies show that Fx and its deacetylated metabolite fucoxanthinol (Fxol) inhibit and prevent BC growth. The NF-κB signaling pathway is considered the major pathway contributing to the anti-proliferation, anti-angiogenesis and pro-apoptotic effects of Fx and Fxol. Other signaling molecules such as MAPK, MMP2/9, CYP and ROS are also involved in the anti-cancer effects by regulating the tumor microenvironment, cancer metastasis, carcinogen metabolism and oxidation. Besides, Fx also possesses anti-obesity effects by regulating UCP1 levels and lipid metabolism, which may help to reduce BC risk. More importantly, mounting evidence demonstrates that Fx overcomes drug resistance. This review aims to give an updated summary of the anti-cancer effects of Fx and summarize the underlying mechanisms of action, which will provide novel strategies for the development of Fx as an anti-cancer therapeutic agent.
Collapse
|
24
|
Passeri G, Northcote-Smith J, Perera R, Gubic N, Suntharalingam K. An Osteosarcoma Stem Cell Potent Nickel(II)-Polypyridyl Complex Containing Flufenamic Acid. Molecules 2022; 27:3277. [PMID: 35630754 PMCID: PMC9143476 DOI: 10.3390/molecules27103277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Apoptosis resistance is inherent to stem cell-like populations within tumours and is one of the major reasons for chemotherapy failures in the clinic. Necroptosis is a non-apoptotic mode of programmed cell death that could help bypass apoptosis resistance. Here we report the synthesis, characterisation, biophysical properties, and anti-osteosarcoma stem cell (OSC) properties of a new nickel(II) complex bearing 3,4,7,8-tetramethyl-1,10-phenanthroline and two flufenamic acid moieties, 1. The nickel(II) complex 1 is stable in both DMSO and cell media. The nickel(II) complex 1 kills bulk osteosarcoma cells and OSCs grown in monolayer cultures and osteospheres grown in three-dimensional cultures within the micromolar range. Remarkably, 1 exhibits higher potency towards osteospheres than the metal-based drugs used in current osteosarcoma treatment regimens, cisplatin and carboplatin, and an established anti-cancer stem cell agent, salinomycin (up to 7.7-fold). Cytotoxicity studies in the presence of prostaglandin E2 suggest that 1 kills OSCs in a cyclooxygenase-2 (COX-2) dependent manner. Furthermore, the potency of 1 towards OSCs decreased significantly upon co-treatment with necrostatin-1 or dabrafenib, well-known necroptosis inhibitors, implying that 1 induces necroptosis in OSCs. To the best of our knowledge, 1 is the first compound to implicate both COX-2 and necroptosis in its mechanism of action in OSCs.
Collapse
|
25
|
Cell Death and Ischemia-Reperfusion Injury in Lung Transplantation. J Heart Lung Transplant 2022; 41:1003-1013. [DOI: 10.1016/j.healun.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
|
26
|
Fus-Kujawa A, Sieroń Ł, Dobrzyńska E, Chajec Ł, Mendrek B, Jarosz N, Głowacki Ł, Dubaj K, Dubaj W, Kowalczuk A, Bajdak-Rusinek K. Star Polymers as Non-Viral Carriers for Apoptosis Induction. Biomolecules 2022; 12:biom12050608. [PMID: 35625536 PMCID: PMC9139127 DOI: 10.3390/biom12050608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Apoptosis is a widely controlled, programmed cell death, defects in which are the source of various diseases such as neurodegenerative diseases as well as cancer. The use of apoptosis in the therapy of various human diseases is of increasing interest, and the analysis of the factors involved in its regulation is valuable in designing specific carriers capable of targeting cell death. Highly efficient and precisely controlled delivery of genetic material by low-toxic carriers is one of the most important challenges of apoptosis-based gene therapy. In this work, we investigate the effect of the star polymer with 28 poly(N,N′-dimethylaminoethyl methacrylate) arms (STAR) on human cells, according to its concentration and structure. We show that star polymer cytotoxicity increases within its concentration and time of cells treatment. Except for cytotoxic effect, we observe morphological changes such as a shrinkage, loss of shape and begin to detach. We also prove DNA condensation after star polymer treatment, one of the most characteristic feature of apoptosis. The results indicate that the use of STAR triggers apoptosis in cancer cells compared to various normal cells, what makes these nanoparticles a promising drug in therapeutic strategy, which targets apoptosis. We demonstrate highlighting potential of star polymers as an innovative tool for anti-cancer therapy.
Collapse
Affiliation(s)
- Agnieszka Fus-Kujawa
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland; (A.F.-K.); (Ł.S.); (E.D.); (N.J.); (Ł.G.); (K.D.); (W.D.)
| | - Łukasz Sieroń
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland; (A.F.-K.); (Ł.S.); (E.D.); (N.J.); (Ł.G.); (K.D.); (W.D.)
| | - Estera Dobrzyńska
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland; (A.F.-K.); (Ł.S.); (E.D.); (N.J.); (Ł.G.); (K.D.); (W.D.)
| | - Łukasz Chajec
- Animal Histology and Embryology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland;
| | - Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (B.M.); (A.K.)
| | - Natalia Jarosz
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland; (A.F.-K.); (Ł.S.); (E.D.); (N.J.); (Ł.G.); (K.D.); (W.D.)
| | - Łukasz Głowacki
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland; (A.F.-K.); (Ł.S.); (E.D.); (N.J.); (Ł.G.); (K.D.); (W.D.)
- Students Scientific Society, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Kamila Dubaj
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland; (A.F.-K.); (Ł.S.); (E.D.); (N.J.); (Ł.G.); (K.D.); (W.D.)
- Students Scientific Society, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Wojciech Dubaj
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland; (A.F.-K.); (Ł.S.); (E.D.); (N.J.); (Ł.G.); (K.D.); (W.D.)
- Students Scientific Society, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (B.M.); (A.K.)
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland; (A.F.-K.); (Ł.S.); (E.D.); (N.J.); (Ł.G.); (K.D.); (W.D.)
- Correspondence:
| |
Collapse
|
27
|
Lorente L, Martín MM, Ortiz-López R, Pérez-Cejas A, Ferrer-Moure C, González O, Jiménez A, González-Rivero AF. Blood Bcl-2 levels to predict the mortality of septic patients. Biomark Med 2022; 16:427-433. [PMID: 35315283 DOI: 10.2217/bmm-2021-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To determine whether blood concentrations of Bcl-2 during the 1st week of sepsis could help predict mortality. Methods: Serum Bcl-2 concentrations were determined at the 1st, 4th and 8th days of sepsis diagnosis. Results: Thirty-day surviving patients (n = 168) showed higher serum Bcl-2 levels at the 1st (p = 0.002), 4th (p < 0.001) and 8th days (p < 0.001) of sepsis diagnosis than non-surviving patients (n = 91). An association between serum Bcl-2 concentrations at the 1st (p = 0.003), 4th (p < 0.001) and 8th days (p = 0.01) and 30-day mortality after controlling for diabetes mellitus, Sepsis-related Organ Failure Assessment, lactic acid and age was found in the multiple logistic regression analysis. Conclusions: The novel finding is that blood Bcl-2 concentrations at any time in the 1st week of sepsis are associated with mortality.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, Tenerife, 38320, Spain
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora Candelaria, Crta Rosario s/n. Santa Cruz Tenerife, 38010, Spain
| | - Raquel Ortiz-López
- Intensive Care Unit, Hospital General de La Palma, Buenavista de Arriba s/n, Breña Alta, La Palma, 38713, Spain
| | - Antonia Pérez-Cejas
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, Tenerife, 38320, Spain
| | - Carmen Ferrer-Moure
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, Tenerife, 38320, Spain
| | - Oswaldo González
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, Tenerife, 38320, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, Tenerife, 38320, Spain
| | - Agustín F González-Rivero
- Department of Laboratory, Hospital Universitario de Canarias. Ofra, s/n. La Laguna, Santa Cruz de Tenerife, 38320, Spain
| |
Collapse
|
28
|
Palanisamy CP, Cui B, Zhang H, Jayaraman S, Rajagopal P, Veeraraghavan VP. (5E,7E)-4,5,6 Trihydroxy-3-(hydroxymethyl)tetrahydro-2H-pyran-2-ylheptadeca-5,7-dienoate from Euclea crispa (L.) Inhibits Ovarian Cancer Cell Growth by Controlling Apoptotic and Metastatic Signaling Mechanisms. Bioinorg Chem Appl 2022; 2022:4464056. [PMID: 35132312 PMCID: PMC8817890 DOI: 10.1155/2022/4464056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Bioactive compound (5E,7E)-4,5,6 trihydroxy-3-(hydroxymethyl)tetrahydro-2H-pyran-2-ylheptadeca-5,7-dienoate (compound 2) was isolated from Euclea crispa (E. crispa) by the chromatographic methods. Further, the compound was confirmed by spectroscopic techniques such as ultraviolet-visible (UV/Vis) spectrometer, Fourier transform infrared (FTIR) spectrometer, and 1H and 13C nuclear magnetic resonance (NMR). Compound 2 exhibited a significant antioxidant activity with IC50 values. It restrained the auxesis of HO-8910 cells in a shot-dependent mode. CXCR4, HER2, and Akt proteins involved in cell proliferation and metastasis were found to be significantly reduced (p < 0.05). The protein that is responsible for the death of cells (Bcl-2 and Bcl-xL) was reduced (p < 0.05), while the protein expression of p53 and caspase-9 was increased (p < 0.05) in compound 2-treated HO-8910 cells. The results of molecular docking analysis showed the binding affinity with CXCR4 and HER2. Thus, compound 2 can serve as a promising chemotherapeutic agent for the intervention of ovarian cancer. The findings of this study conclude that compound 2 from E. crispa might work as a potential antioxidative and chemotherapeutic agent. The in vivo studies and attempts will pave way for this compound to be an effective drug hereafter.
Collapse
Affiliation(s)
- Chella Perumal Palanisamy
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai 600 078, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| |
Collapse
|
29
|
Jiang C, Xie S, Yang G, Wang N. Spotlight on NLRP3 Inflammasome: Role in Pathogenesis and Therapies of Atherosclerosis. J Inflamm Res 2022; 14:7143-7172. [PMID: 34992411 PMCID: PMC8711145 DOI: 10.2147/jir.s344730] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation is an intricate biological response of body tissues to detrimental stimuli. Cardiovascular disease (CVD) is the leading cause of death worldwide, and inflammation is well documented to play a role in the development of CVD, especially atherosclerosis (AS). Emerging evidence suggests that activation of the NOD-like receptor (NLR) family and the pyridine-containing domain 3 (NLRP3) inflammasome is instrumental in inflammation and may result in AS. The NLRP3 inflammasome acts as a molecular platform that triggers the activation of caspase-1 and the cleavage of pro-interleukin (IL)-1β, pro-IL-18, and gasdermin D (GSDMD). The cleaved GSDMD forms pores in the cell membrane and initiates pyroptosis, inducing cell death and the discharge of intracellular pro-inflammatory factors. Hence, the NLRP3 inflammasome is a promising target for anti-inflammatory therapy against AS. In this review, we systematically summarized the current understanding of the activation mechanism of NLRP3 inflammasome, and the pathological changes in AS involving NLRP3. We also discussed potential therapeutic strategies targeting NLRP3 inflammasome to combat AS.
Collapse
Affiliation(s)
- Chunteng Jiang
- Department of Internal Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China.,Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Santuan Xie
- Department of Internal Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Guang Yang
- Department of Food Nutrition and Safety, School of Public Health, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Ningning Wang
- Department of Food Nutrition and Safety, School of Public Health, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
30
|
Mortality prediction of septic patients by blood caspase-8 levels. Diagn Microbiol Infect Dis 2022; 102:115639. [DOI: 10.1016/j.diagmicrobio.2022.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 11/21/2022]
|
31
|
Cell-to-cell variability in inducible Caspase9-mediated cell death. Cell Death Dis 2022; 13:34. [PMID: 35013114 PMCID: PMC8748834 DOI: 10.1038/s41419-021-04468-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
iCasp9 suicide gene has been widely used as a promising killing strategy in various cell therapies. However, different cells show significant heterogeneity in response to apoptosis inducer, posing challenges in clinical applications of killing strategy. The cause of the heterogeneity remains elusive so far. Here, by simultaneously monitoring the dynamics of iCasp9 dimerization, Caspase3 activation, and cell fate in single cells, we found that the heterogeneity was mainly due to cell-to-cell variability in initial iCasp9 expression and XIAP/Caspase3 ratio. Moreover, multiple-round drugging cannot increase the killing efficiency. Instead, it will place selective pressure on protein levels, especially on the level of initial iCasp9, leading to drug resistance. We further show this resistance can be largely eliminated by combinatorial drugging with XIAP inhibitor at the end, but not at the beginning, of the multiple-round treatments. Our results unveil the source of cell fate heterogeneity and drug resistance in iCasp9-mediated cell death, which may enlighten better therapeutic strategies for optimized killing.
Collapse
|
32
|
Lorente L, Martín MM, Ortiz-López R, González-Rivero AF, Pérez-Cejas A, Pastor E, Domínguez-Curell C, Raja L, Lorenzo L, Jiménez A. Association of serum soluble Fas concentrations and mortality of septic patients. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2021; 39:493-497. [PMID: 34865710 DOI: 10.1016/j.eimce.2020.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/12/2020] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Scarce data on Fas, one of the main receptors that activates the apoptosis extrinsic pathway, in septic patients exists. Higher blood soluble Fas (sFas) concentrations in non-survivor septic patients compared with survivors have been found in small studies; however, the association of blood sFas concentrations with mortality controlling for sepsis severity has not been stablished due to this small sample size in those studies. Thus, our main objective study was to determine whether an association between blood sFas concentrations and sepsis mortality controlling for sepsis severity exists. METHODS We included septic patients in this observational and prospective study carried out in three Spanish Intensive Care Units. We obtained serum samples at sepsis diagnosis sepsis for sFas levels determination. RESULTS Thirty-day non-surviving patients (n=85) compared to surviving patients (n=151) had higher serum sFas levels (p<0.001). We found in multiple logistic regression analysis an association of serum sFas levels with mortality controlling for age and SOFA (OR=1.004; 95% CI=1.002-1.006; p<0.001), and for age and APACHE-II (OR=1.004; 95% CI=1.002-1.006; p<0.001). Serum sFas levels showed and area under the curve for mortality prediction of 71% (95% CI=65-71%; p<0.001). Kaplan-Meier analysis showed higher mortality rate in patients with serum sFas levels>83.5ng/mL (Hazard ratio=3.2; 95% CI=2.1-5.0; p<0.001). CONCLUSIONS That an association between blood sFas concentrations and sepsis mortality controlling for sepsis severity exists was our main new finding study.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n., La Laguna, Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora Candelaria, Crta Rosario s/n., Santa Cruz Tenerife, Spain
| | - Raquel Ortiz-López
- Intensive Care Unit, Hospital General de La Palma, Buenavista de Arriba s/n, Breña Alta, La Palma, Spain
| | - Agustín F González-Rivero
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n., La Laguna, Santa Cruz de Tenerife, Spain
| | - Antonia Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n., La Laguna, Tenerife, Spain
| | - Eduardo Pastor
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n., La Laguna, Santa Cruz de Tenerife, Spain
| | - Claudia Domínguez-Curell
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n., La Laguna, Santa Cruz de Tenerife, Spain
| | - Lorena Raja
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n., La Laguna, Santa Cruz de Tenerife, Spain
| | - Lisset Lorenzo
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n., La Laguna, Santa Cruz de Tenerife, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n., La Laguna, Tenerife, Spain
| |
Collapse
|
33
|
Sirajunnisa AR, Surendhiran D, Kozani PS, Kozani PS, Hamidi M, Cabrera-Barjas G, Delattre C. An overview on the role of microalgal metabolites and pigments in apoptosis induction against copious diseases. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Nunes PR, Mattioli SV, Sandrim VC. NLRP3 Activation and Its Relationship to Endothelial Dysfunction and Oxidative Stress: Implications for Preeclampsia and Pharmacological Interventions. Cells 2021; 10:cells10112828. [PMID: 34831052 PMCID: PMC8616099 DOI: 10.3390/cells10112828] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia (PE) is a specific syndrome of human pregnancy, being one of the main causes of maternal death. Persistent inflammation in the endothelium stimulates the secretion of several inflammatory mediators, activating different signaling patterns. One of these mechanisms is related to NLRP3 activation, initiated by high levels of danger signals such as cholesterol, urate, and glucose, producing IL-1, IL-18, and cell death by pyroptosis. Furthermore, reactive oxygen species (ROS), act as an intermediate to activate NLRP3, contributing to subsequent inflammatory cascades and cell damage. Moreover, increased production of ROS may elevate nitric oxide (NO) catabolism and consequently decrease NO bioavailability. NO has many roles in immune responses, including the regulation of signaling cascades. At the site of inflammation, vascular endothelium is crucial in the regulation of systemic inflammation with important implications for homeostasis. In this review, we present the important role of NLRP3 activation in exacerbating oxidative stress and endothelial dysfunction. Considering that the causes related to these processes and inflammation in PE remain a challenge for clinical practice, the use of drugs related to inhibition of the NLRP3 may be a good option for future solutions for this disease.
Collapse
|
35
|
Dhani S, Zhao Y, Zhivotovsky B. A long way to go: caspase inhibitors in clinical use. Cell Death Dis 2021; 12:949. [PMID: 34654807 PMCID: PMC8519909 DOI: 10.1038/s41419-021-04240-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022]
Abstract
Caspases are an evolutionary conserved family of cysteine-dependent proteases that are involved in many vital cellular processes including apoptosis, proliferation, differentiation and inflammatory response. Dysregulation of caspase-mediated apoptosis and inflammation has been linked to the pathogenesis of various diseases such as inflammatory diseases, neurological disorders, metabolic diseases, and cancer. Multiple caspase inhibitors have been designed and synthesized as a potential therapeutic tool for the treatment of cell death-related pathologies. However, only a few have progressed to clinical trials because of the consistent challenges faced amongst the different types of caspase inhibitors used for the treatment of the various pathologies, namely an inadequate efficacy, poor target specificity, or adverse side effects. Importantly, a large proportion of this failure lies in the lack of understanding various caspase functions. To overcome the current challenges, further studies on understanding caspase function in a disease model is a fundamental requirement to effectively develop their inhibitors as a treatment for the different pathologies. Therefore, the present review focuses on the descriptive properties and characteristics of caspase inhibitors known to date, and their therapeutic application in animal and clinical studies. In addition, a brief discussion on the achievements, and current challenges faced, are presented in support to providing more perspectives for further development of successful therapeutic caspase inhibitors for various diseases.
Collapse
Affiliation(s)
- Shanel Dhani
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Yun Zhao
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
36
|
Sahebazzamani F, Hosseinkhani S, Eriksson LA, Fearnhead HO. Apoptosome Formation through Disruption of the K192-D616 Salt Bridge in the Apaf-1 Closed Form. ACS OMEGA 2021; 6:22551-22558. [PMID: 34514227 PMCID: PMC8427654 DOI: 10.1021/acsomega.1c02274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The molecular mechanism of apoptosome activation through conformational changes of Apaf-1 auto-inhibited form remains largely enigmatic. The crystal structure of Apaf-1 suggests that some ionic bonds, including the bond between K192 and D616, are critical for the preservation of the inactive "closed" form of Apaf-1. Here, a split luciferase complementation assay was used to monitor the effect of disrupting this ionic bond on apoptosome activation and caspase-3 activity in cells. The K192E mutation, predicted to disrupt the ionic interaction with D616, increased apoptosome formation and caspase activity, suggesting that this mutation favors the "open"/active form of Apaf-1. However, mutation of D616 to alanine or lysine had different effects. While both mutants favored apoptosome formation such as K192E, D616K cannot activate caspases and D616A activates caspases poorly, and not as well as wild-type Apaf-1. Thus, our data show that the ionic bond between K192 and D616 is critical for maintaining the closed form of Apaf-1 and that disrupting the interaction enhances apoptosome formation. However, our data also reveal that after apoptosome formation, D616 and K192 play a previously unsuspected role in caspase activation. The molecular explanation for this observation is yet to be elucidated.
Collapse
Affiliation(s)
- Fatemeh Sahebazzamani
- Department
of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department
of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leif A. Eriksson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Göteborg 405 30, Sweden
| | - Howard O. Fearnhead
- Pharmacology
and Therapeutics, School of Medicine, NUI
Galway, Galway, Ireland
| |
Collapse
|
37
|
Lee J, Lee D, Kim Y. Mathematical model of STAT signalling pathways in cancer development and optimal control approaches. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210594. [PMID: 34631119 PMCID: PMC8479343 DOI: 10.1098/rsos.210594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/03/2021] [Indexed: 06/10/2023]
Abstract
In various diseases, the STAT family display various cellular controls over various challenges faced by the immune system and cell death programs. In this study, we investigate how an intracellular signalling network (STAT1, STAT3, Bcl-2 and BAX) regulates important cellular states, either anti-apoptosis or apoptosis of cancer cells. We adapt a mathematical framework to illustrate how the signalling network can generate a bi-stability condition so that it will induce either apoptosis or anti-apoptosis status of tumour cells. Then, we use this model to develop several anti-tumour strategies including IFN-β infusion. The roles of JAK-STATs signalling in regulation of the cell death program in cancer cells and tumour growth are poorly understood. The mathematical model unveils the structure and functions of the intracellular signalling and cellular outcomes of the anti-tumour drugs in the presence of IFN-β and JAK stimuli. We identify the best injection order of IFN-β and DDP among many possible combinations, which may suggest better infusion strategies of multiple anti-cancer agents at clinics. We finally use an optimal control theory in order to maximize anti-tumour efficacy and minimize administrative costs. In particular, we minimize tumour volume and maximize the apoptotic potential by minimizing the Bcl-2 concentration and maximizing the BAX level while minimizing total injection amount of both IFN-β and JAK2 inhibitors (DDP).
Collapse
Affiliation(s)
- Jonggul Lee
- Pierre Louis Institute of Epidemiology and Public Health, Paris 75012, France
| | - Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
- Mathematical Biosciences Institute, Columbus, OH 43210, USA
- Department of Neurosurgery, Harvard Medical School & Brigham and Women’s Hospital, Boston MA 02115, USA
| |
Collapse
|
38
|
Lorente L, Martín MM, Ortiz-López R, González-Rivero AF, Pérez-Cejas A, Martín M, Gonzalez V, Pérez A, Rodin M, Jiménez A. Circulating Bcl-2 concentrations and septic patient mortality. ACTA ACUST UNITED AC 2021; 39:330-334. [PMID: 34353509 DOI: 10.1016/j.eimce.2020.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 10/20/2022]
Abstract
INTRODUCTION There are not data on blood B-cell lymphoma 2 (Bcl-2) concentrations (one of the antiapoptotic molecules of the Bcl-2 family in the intrinsic apoptosis pathway) in septic patients. Therefore, this study was carried with the aims to explore whether blood Bcl-2 concentrations at diagnosis of sepsis are different in survivor and non-survivor septic patients, are associated with mortality, and are useful for the mortality prediction. METHODS Intensive Care Units from 3 Spanish hospitals participated in this observational and prospective study with septic patients and serum Bcl-2 concentrations at diagnosis of sepsis were determined. Mortality at 30 days was as outcome variable. RESULTS We found that 30-day non-surviving patients (n=81) showed lower serum Bcl-2 levels (p=0.003) than surviving patients (n=140). We found that serum concentrations of Bcl-2<4.4ng/mL were associated with mortality (OR=3.228; 95% CI=1.406-7.415; p=0.006) in the multiple logistic regression analysis, and that showed an area under the curve for mortality prediction of 62% (95% CI=55-68%; p=0.003). CONCLUSIONS In our study appears novel findings such as higher blood Bcl-2 concentrations in survivor than in non-survivor septic patients, the association between low blood Bcl-2 concentrations and mortality of septic patients, and the ability of blood Bcl-2 concentrations for the prediction of septic patient mortality.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora Candelaria, , Santa Cruz Tenerife, Spain
| | - Raquel Ortiz-López
- Intensive Care Unit, Hospital General de La Palma, Breña Alta, La Palma, Spain
| | | | - Antonia Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - María Martín
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Verónica Gonzalez
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Alejandra Pérez
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Mario Rodin
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| |
Collapse
|
39
|
Malhão F, Macedo AC, Costa C, Rocha E, Ramos AA. Fucoxanthin Holds Potential to Become a Drug Adjuvant in Breast Cancer Treatment: Evidence from 2D and 3D Cell Cultures. Molecules 2021; 26:molecules26144288. [PMID: 34299562 PMCID: PMC8304772 DOI: 10.3390/molecules26144288] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/16/2022] Open
Abstract
Fucoxanthin (Fx) is a carotenoid derived from marine organisms that exhibits anticancer activities. However, its role as a potential drug adjuvant in breast cancer (BC) treatment is still poorly explored. Firstly, this study investigated the cytotoxic effects of Fx alone and combined with doxorubicin (Dox) and cisplatin (Cis) on a panel of 2D-cultured BC cell lines (MCF7, SKBR3 and MDA-MB-231) and one non-tumoral cell line (MCF12A). Fucoxanthin induced cytotoxicity against all the cell lines and potentiated Dox cytotoxic effects towards the SKBR3 and MDA-MB-231 cells. The combination triggering the highest cytotoxicity (Fx 10 µM + Dox 1 µM in MDA-MB-231) additionally showed significant induction of cell death and genotoxic effects, relative to control. In sequence, the same combination was tested on 3D cultures using a multi-endpoint approach involving bioactivity assays and microscopy techniques. Similar to 2D cultures, the combination of Fx and Dox showed higher cytotoxic effects on 3D cultures compared to the isolated compounds. Furthermore, this combination increased the number of apoptotic cells, decreased cell proliferation, and caused structural and ultrastructural damages on the 3D models. Overall, our findings suggest Fx has potential to become an adjuvant for Dox chemotherapy regimens in BC treatment.
Collapse
Affiliation(s)
- Fernanda Malhão
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (F.M.); (A.C.M.); (A.A.R.)
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR), University of Porto (U.Porto), Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Ana Catarina Macedo
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (F.M.); (A.C.M.); (A.A.R.)
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR), University of Porto (U.Porto), Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Carla Costa
- Environmental Health Department, National Health Institute Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal;
- EPIUnit—Instituto de Saúde Pública, University of Porto (U.Porto), Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Eduardo Rocha
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (F.M.); (A.C.M.); (A.A.R.)
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR), University of Porto (U.Porto), Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
- Correspondence:
| | - Alice Abreu Ramos
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (F.M.); (A.C.M.); (A.A.R.)
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR), University of Porto (U.Porto), Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| |
Collapse
|
40
|
Gajić M, Ilić BS, Bondžić BP, Džambaski Z, Kojić VV, Jakimov DS, Kocić G, Šmelcerović A. 1,2,3,4-Tetrahydroisoquinoline Derivatives as a Novel Deoxyribonuclease I Inhibitors. Chem Biodivers 2021; 18:e2100261. [PMID: 34170076 DOI: 10.1002/cbdv.202100261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Herein we report an assessment of 24 1,2,3,4-tetrahydroisoquinoline derivatives for potential DNase I (deoxyribonuclease I) inhibitory properties in vitro. Four of them inhibited DNase I with IC50 values below 200 μM. The most potent was 1-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-2-one (2) (IC50 =134.35±11.38 μM) exhibiting slightly better IC50 value compared to three other active compounds, 2-[2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]-1-phenylethan-1-one (15) (IC50 =147.51±14.87 μM), 2-[2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]cyclohexan-1-one (18) (IC50 =149.07±2.98 μM) and 2-[6,7-dimethoxy-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]cyclohexan-1-one (22) (IC50 =148.31±2.96 μM). Cytotoxicity assessment of the active DNase I inhibitors revealed a lack of toxic effects on the healthy cell lines MRC-5. Molecular docking and molecular dynamics simulations suggest that interactions with Glu 39, His 134, Asn 170, Tyr 211, Asp 251 and His 252 are an important factor for inhibitors affinity toward the DNase I. Observed interactions would be beneficial for the discovery of new active 1,2,3,4-tetrahydroisoquinoline-based inhibitors of DNase I, but might also encourage researchers to further explore and utilize potential therapeutic application of DNase I inhibitors, based on a versatile role of DNase I during apoptotic cell death.
Collapse
Affiliation(s)
- Mihajlo Gajić
- University of Niš, Faculty of Medicine, Department of Pharmacy, Blvd. Dr. Zorana Đinđića 81, 18000, Niš, Serbia
| | - Budimir S Ilić
- University of Niš, Faculty of Medicine, Department of Chemistry, Blvd. Dr. Zorana Đinđića 81, 18000, Niš, Serbia
| | - Bojan P Bondžić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
| | - Zdravko Džambaski
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
| | - Vesna V Kojić
- University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Put Dr. Goldmana 4, 21204, Sremska Kamenica, Serbia
| | - Dimitar S Jakimov
- University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Put Dr. Goldmana 4, 21204, Sremska Kamenica, Serbia
| | - Gordana Kocić
- University of Niš, Faculty of Medicine, Department of Biochemistry, Blvd. Dr. Zorana Đinđića 81, 18000, Niš, Serbia
| | - Andrija Šmelcerović
- University of Niš, Faculty of Medicine, Department of Chemistry, Blvd. Dr. Zorana Đinđića 81, 18000, Niš, Serbia
| |
Collapse
|
41
|
Abstract
Heamatang (HMT) is a classic medicinal formula used in traditional Chinese and Korean medicine; it contains seven distinct components, mainly of herbal origin. HMT is used as an antiaging remedy, treating urinary disorders and increasing energy and vitality. However, the therapeutic applications of this formula have not been evaluated with evidence-based science. Therefore, we assessed HMT through various in vitro methods, including cell viability assay, fluorescence-activated cell sorting assay (FACS), Western blotting, migration assay, three-dimensional (3D) cell culture, siRNA-mediated PAK-1 knockdown, and crystal violet assays. HMT decreased PAK-1 expression in PC-3 cells and inhibited cell viability, growth, and motility. The inhibition of cell motility by HMT was correlated with PAK-1-mediated inhibition of Lim domain kinase (LIMK) and cofilin. HMT induced G1 arrest and apoptosis through the transcriptional regulation of cell cycle regulatory proteins and apoptosis-related proteins (increase in c-cas3 and inhibition of PARP and BCL-2). Moreover, HMT suppressed PAK-1 expression, leading to the inhibition of AKT activities. Finally, we showed that decursin was the active ingredient involved in the inhibitory effect of HMT on PAK-1. Our findings demonstrated that HMT exerts its anticancer influence through the inhibition of PAK-1. The HMT formula could be applied in various fields, including functional health food and pharmaceutical development.
Collapse
|
42
|
Olowofolahan AO, Adewoye FO, Olorunsogo OO. Modulatory effect of methanol extract of Annona muricata stem bark on mitochondrial membrane permeability transition pore in normal rat liver and monosodium glutamate-induced uterine hyperplasia. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 18:355-361. [PMID: 33787189 DOI: 10.1515/jcim-2019-0341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Uterine fibroids are benign tumors that develop in many women of reproductive age. Surgery is the main approach to treatment while other options are also associated with adverse effects. Studies have shown that certain bioactive agents present in medicinal plants elicit their anti-tumor activity by induction of mitochondrial permeability transition (mPT) opening. This research therefore aimed at investigating the effect of methanol extract of Annona muricata (MEAM) on mPT pore opening in normal and monosodium glutamate-induced uterine hyperplasia using female Wistar rats. METHODS Mitochondria, isolated from rat liver were exposed to different concentrations (20, 60, 100, 140 and 180 μg/mL) of MEAM. The mPT pore opening, cytochrome c release, mitochondrial ATPase (mATPase) activity and the percentage lipid peroxidation were assessed spectrophotometrically. Histological effects of MEAM on the liver, brain and uterus of normal and MSG-treated rats were investigated. RESULTS The in vitro results showed a significant induction of mPT pore opening by 2.4, 4.2 and 6.4 folds, release of cytochrome c and enhancement of mATPase activity at 100,140 and 180 μg/mL, respectively. However, oral administration of MEAM did not induce mPT pore opening, neither any significant release of cytochrome c nor enhancement of mATPase activity at all the dosages used. However, histological assay revealed the presence of MSG-induced cellular damage and uterine hyperplasia which was ameliorated by MEAM co-administration. CONCLUSIONS These findings suggest that MEAM contains phytochemicals that can ameliorate MSG-induced damage and uterine hyperplasia in rats; however, the mechanism might not be via upregulation of mitochondrial-mediated apoptosis.
Collapse
Affiliation(s)
- Adeola Oluwakemi Olowofolahan
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Funmilayo O Adewoye
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunso Olabode Olorunsogo
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
43
|
Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Therapeutic regulation of the NLRP3 inflammasome in chronic inflammatory diseases. Arch Pharm Res 2021; 44:16-35. [PMID: 33534121 PMCID: PMC7884371 DOI: 10.1007/s12272-021-01307-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
Inflammasomes are cytosolic pattern recognition receptors that recognize pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) derived from invading pathogens and damaged tissues, respectively. Upon activation, the inflammasome forms a complex containing a receptor protein, an adaptor, and an effector to induce the autocleavage and activation of procaspase-1 ultimately culminating in the maturation and secretion of IL-1β and IL-18 and pyroptosis. Inflammasome activation plays an important role in host immune responses to pathogen infections and tissue repair in response to cellular damage. The NLRP3 inflammasome is a well-characterized pattern recognition receptor and is well known for its critical role in the regulation of immunity and the development and progression of various inflammatory diseases. In this review, we summarize recent efforts to develop therapeutic applications targeting the NLRP3 inflammasome to cure and prevent chronic inflammatory diseases. This review extensively discusses NLRP3 inflammasome-related diseases and current development of small molecule inhibitors providing beneficial information on the design of therapeutic strategies for NLRP3 inflammasome-related diseases. Additionally, small molecule inhibitors are classified depending on direct or indirect targeting mechanism to describe the current status of the development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Jin Kyung Seok
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Han Chang Kang
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yong-Yeon Cho
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hye Suk Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| |
Collapse
|
44
|
Lorente L, Martín MM, Ortiz-López R, González-Rivero AF, Pérez-Cejas A, Pastor E, Domínguez-Curell C, Raja L, Lorenzo L, Jiménez A. Association of serum soluble Fas concentrations and mortality of septic patients. Enferm Infecc Microbiol Clin 2020; 39:S0213-005X(20)30268-8. [PMID: 32972791 DOI: 10.1016/j.eimc.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Scarce data on Fas, one of the main receptors that activates the apoptosis extrinsic pathway, in septic patients exists. Higher blood soluble Fas (sFas) concentrations in non-survivor septic patients compared with survivors have been found in small studies; however, the association of blood sFas concentrations with mortality controlling for sepsis severity has not been stablished due to this small sample size in those studies. Thus, our main objective study was to determine whether an association between blood sFas concentrations and sepsis mortality controlling for sepsis severity exists. METHODS We included septic patients in this observational and prospective study carried out in three Spanish Intensive Care Units. We obtained serum samples at sepsis diagnosis sepsis for sFas levels determination. RESULTS Thirty-day non-surviving patients (n=85) compared to surviving patients (n=151) had higher serum sFas levels (p<0.001). We found in multiple logistic regression analysis an association of serum sFas levels with mortality controlling for age and SOFA (OR=1.004; 95% CI=1.002-1.006; p<0.001), and for age and APACHE-II (OR=1.004; 95% CI=1.002-1.006; p<0.001). Serum sFas levels showed and area under the curve for mortality prediction of 71% (95% CI=65-71%; p<0.001). Kaplan-Meier analysis showed higher mortality rate in patients with serum sFas levels>83.5ng/mL (Hazard ratio=3.2; 95% CI=2.1-5.0; p<0.001). CONCLUSIONS That an association between blood sFas concentrations and sepsis mortality controlling for sepsis severity exists was our main new finding study.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n., La Laguna, Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora Candelaria, Crta Rosario s/n., Santa Cruz Tenerife, Spain
| | - Raquel Ortiz-López
- Intensive Care Unit, Hospital General de La Palma, Buenavista de Arriba s/n, Breña Alta, La Palma, Spain
| | - Agustín F González-Rivero
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n., La Laguna, Santa Cruz de Tenerife, Spain
| | - Antonia Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n., La Laguna, Tenerife, Spain
| | - Eduardo Pastor
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n., La Laguna, Santa Cruz de Tenerife, Spain
| | - Claudia Domínguez-Curell
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n., La Laguna, Santa Cruz de Tenerife, Spain
| | - Lorena Raja
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n., La Laguna, Santa Cruz de Tenerife, Spain
| | - Lisset Lorenzo
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n., La Laguna, Santa Cruz de Tenerife, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n., La Laguna, Tenerife, Spain
| |
Collapse
|
45
|
Lorente L, Martín MM, Ortiz-López R, González-Rivero AF, Pérez-Cejas A, Cabrera J, García C, Uribe L, Jiménez A. Association between serum sFasL concentrations and sepsis mortality. Infect Dis (Lond) 2020; 53:38-43. [PMID: 32945711 DOI: 10.1080/23744235.2020.1819560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND There are scarce data on soluble Fas Ligand (sFasL), one of the main ligands that activate the apoptosis extrinsic pathway, in septic patients. In a small study of septic children were found higher plasma sFasL levels in non-survivors compared with survivors; however, an association between blood sFasL levels and mortality controlling for sepsis severity was not stablished due to the small sample size of the study. Therefore, the main objective of this study was to determine whether there is an association between blood sFasL concentrations and mortality in septic patients controlling for sepsis severity. Methods: Septic patients were included in this observational and prospective study conducted in three Spanish Intensive Care Units. Serum samples at diagnosis of sepsis were obtained for serum sFasL levels determination. RESULTS Thirty-day non-surviving patients (n = 85) with respect to surviving patients (n = 151) showed higher serum sFasL levels (p<.001). Multiple logistic regression analysis found an association between serum sFasL levels and mortality (odds ratio [OR] = 1.007; 95% confidence interval [CI] = 1.003-1.010; p<.001) after controlling for age, septic shock, SOFA, INR and aPTT. The area under the curve (AUC) for mortality prediction by serum sFasL levels was of 62% (95% CI = 56-69%; p=.003). In Kaplan-Meier analysis was found that patients with serum sFasL levels >109 pg/mL had a higher mortality rate (hazard ratio = 3.6; 95% CI = 1.93-6.78; p<.001). CONCLUSIONS The main new finding from our study was that serum sFasL concentrations were associated with mortality in septic patients controlling for sepsis severity. Highlights Blood sFasL concentrations were higher in non-survivor than in survivor patients. There is an association between blood sFasL concentrations and mortality in septic patients. Blood sFasL concentrations could predict mortality of septic patients.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora Candelaria, Santa Cruz de Tenerife, Spain
| | | | | | - Antonia Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Judith Cabrera
- Intensive Care Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Carolina García
- Intensive Care Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Luis Uribe
- Intensive Care Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| |
Collapse
|
46
|
Wang X, Xu X, Jiang G, Zhang C, Liu L, Kang J, Wang J, Owusu L, Zhou L, Zhang L, Li W. Dihydrotanshinone I inhibits ovarian cancer cell proliferation and migration by transcriptional repression of PIK3CA gene. J Cell Mol Med 2020; 24:11177-11187. [PMID: 32860347 PMCID: PMC7576223 DOI: 10.1111/jcmm.15660] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Dihydrotanshinone I (DHTS), extracted from Salvia miltiorrhiza, was found to be the most effective compound of tanshen extracts against cancer cells in our previous studies. However, the therapeutic benefits and underlying mechanisms of DHTS on ovarian cancer remain uncertain. In this study, we demonstrated the cytocidal effects of DHTS on chemosensitive ovarian cancer cells with or without platinum-based chemotherapy. DHTS was able to inhibit proliferation and migration of ovarian cancer cells in vitro and in vivo through modulation of the PI3K/AKT signalling pathways. Combinatorial treatment of DHTS and cisplatin exhibited enhanced DNA damage in ovarian cancer cells. Overall, these findings suggest that DHTS induces ovarian cancer cells death via induction of DNA damage and inhibits ovarian cancer cell proliferation and migration.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Biotechnology, Basic Medical School, Dalian Medical University, Dalian, China.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Xiao Xu
- Department of Biotechnology, Basic Medical School, Dalian Medical University, Dalian, China
| | - Guoqiang Jiang
- Department of Biotechnology, Basic Medical School, Dalian Medical University, Dalian, China
| | - Cuili Zhang
- Department of Biotechnology, Basic Medical School, Dalian Medical University, Dalian, China
| | - Likun Liu
- Department of Biotechnology, Basic Medical School, Dalian Medical University, Dalian, China
| | - Jian Kang
- Department of Biotechnology, Basic Medical School, Dalian Medical University, Dalian, China
| | - Jing Wang
- Department of Biotechnology, Basic Medical School, Dalian Medical University, Dalian, China
| | - Lawrence Owusu
- Department of Biotechnology, Basic Medical School, Dalian Medical University, Dalian, China
| | - Liye Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Lin Zhang
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Weiling Li
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
47
|
Zhang J, Zhang W, Zhang Q. Ectopic expression of ROR1 prevents cochlear hair cell loss in guinea pigs with noise-induced hearing loss. J Cell Mol Med 2020; 24:9101-9113. [PMID: 34008309 PMCID: PMC7417695 DOI: 10.1111/jcmm.15545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 11/28/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is one of the most frequent disabilities in industrialized countries. Evidence shows that hair cell loss in the auditory end organ is responsible for the majority of various ear pathological conditions. The functional roles of the receptor tyrosine kinase ROR1 have been underscored in various tumours. In this study, we evaluated the ability of ROR1 to influence cochlear hair cell loss of guinea pigs with NIHL. The NIHL model was developed in guinea pigs, with subsequent measurement of the auditory brainstem response (ABR). Gain-of-function experiments were employed to explore the role of ROR1 in NIHL. The interaction between ROR1 and Wnt5a and their functions in the cochlear hair cell loss were further analysed in response to alteration of ROR1 and Wnt5a. Guinea pigs with NIHL demonstrated elevated ABR threshold and down-regulated ROR1, Wnt5a and NF-κB p65. The up-regulation of ROR1 was shown to decrease the cochlear hair cell loss and the expression of pro-apoptotic gene (Bax, p53) in guinea pig cochlea, but promoted the expression of anti-apoptotic gene (Bcl-2) and the fluorescence intensity of cleaved-caspase-3. ROR1 interacted with Wnt5a to activate the NF-κB signalling pathway through inducing phosphorylation and translocation of p65. Furthermore, Wnt5a overexpression decreased the cochlear hair cell loss. Collectively, this study suggested the protection of overexpression of ROR1 against cochlear hair cell loss in guinea pigs with NIHL via the Wnt5a-dependent NF-κB signalling pathway.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Children’s RehabilitationLinyi People’s HospitalLinyiChina
| | - Wei Zhang
- Electrocardiogram RoomLinyi People’s HospitalLinyiChina
| | - Qinliang Zhang
- Department of Children’s RehabilitationLinyi People’s HospitalLinyiChina
| |
Collapse
|
48
|
Synthesis of (Z)-3-(arylamino)-1-(3-phenylimidazo[1,5-a]pyridin-1-yl)prop-2-en-1-ones as potential cytotoxic agents. Bioorg Med Chem Lett 2020; 30:127432. [PMID: 32717368 DOI: 10.1016/j.bmcl.2020.127432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
The new derivatives based on (Z)-3-(arylamino)-1-(3-phenylimidazo[1,5-a]pyridin-1-yl)prop-2-en-1-one scaffold was synthesized and evaluated for their in vitro cytotoxic potential against a panel of cancer cell lines, viz., A549 (human lung cancer), HCT-116 (human colorectal cancer), B16F10 (murine melanoma cancer), BT-474 (human breast cancer), and MDA-MB-231 (human triple-negative breast cancer). Among them, many of the synthesized compounds exhibited promising cytotoxic potential against the panel of tested cancer cell lines with IC50 <30 µM. Based on the preliminary screening results, the structure-activity relationship (SAR) of the compounds was established. Among the synthesized compounds, 15i displayed a potential anti-proliferative activity against HCT-116 cancer cell line with an IC50 value of 1.21 ± 0.14 µM. Flow cytometric analysis revealed that compound 15i arrested the G0/G1 phase of the cell cycle. Moreover, increased reactive oxygen species (ROS) generation, clonogenic assay, acridine orange staining, DAPI nuclear staining, measurement of mitochondrial membrane potential (ΔΨm), and annexin V-FITC assays revealed that compound 15i promoted cell death through apoptosis.
Collapse
|
49
|
Lorente L, Martín MM, Ortiz-López R, González-Rivero AF, Pérez-Cejas A, Martín M, Gonzalez V, Pérez A, Rodin M, Jiménez A. Circulating Bcl-2 concentrations and septic patient mortality. Enferm Infecc Microbiol Clin 2020. [PMID: 32680796 DOI: 10.1016/j.eimc.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION There are not data on blood B-cell lymphoma 2 (Bcl-2) concentrations (one of the antiapoptotic molecules of the Bcl-2 family in the intrinsic apoptosis pathway) in septic patients. Therefore, this study was carried with the aims to explore whether blood Bcl-2 concentrations at diagnosis of sepsis are different in survivor and non-survivor septic patients, are associated with mortality, and are useful for the mortality prediction. METHODS Intensive Care Units from 3 Spanish hospitals participated in this observational and prospective study with septic patients and serum Bcl-2 concentrations at diagnosis of sepsis were determined. Mortality at 30 days was as outcome variable. RESULTS We found that 30-day non-surviving patients (n=81) showed lower serum Bcl-2 levels (p=0.003) than surviving patients (n=140). We found that serum concentrations of Bcl-2<4.4ng/mL were associated with mortality (OR=3.228; 95% CI=1.406-7.415; p=0.006) in the multiple logistic regression analysis, and that showed an area under the curve for mortality prediction of 62% (95% CI=55-68%; p=0.003). CONCLUSIONS In our study appears novel findings such as higher blood Bcl-2 concentrations in survivor than in non-survivor septic patients, the association between low blood Bcl-2 concentrations and mortality of septic patients, and the ability of blood Bcl-2 concentrations for the prediction of septic patient mortality.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora Candelaria, , Santa Cruz Tenerife, Spain
| | - Raquel Ortiz-López
- Intensive Care Unit, Hospital General de La Palma, Breña Alta, La Palma, Spain
| | | | - Antonia Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - María Martín
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Verónica Gonzalez
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Alejandra Pérez
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Mario Rodin
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| |
Collapse
|
50
|
Eskandari A, Flamme M, Xiao Z, Suntharalingam K. The Bulk Osteosarcoma and Osteosarcoma Stem Cell Activity of a Necroptosis-Inducing Nickel(II)-Phenanthroline Complex. Chembiochem 2020; 21:2854-2860. [PMID: 32415808 DOI: 10.1002/cbic.202000231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Indexed: 12/26/2022]
Abstract
We report the anti-osteosarcoma and anti-osteosarcoma stem cell (OSC) properties of a nickel(II) complex, 1. Complex 1 displays similar potency towards bulk osteosarcoma cells and OSCs, in the micromolar range. Notably, 1 displays similar or better OSC potency than the clinically approved platinum(II) anticancer drugs cisplatin and carboplatin in two- and three-dimensional osteosarcoma cell cultures. Mechanistic studies revealed that 1 induces osteosarcoma cell death by necroptosis, an ordered form of necrosis. The nickel(II) complex, 1 triggers necrosome-dependent mitrochondrial membrane depolarisation and propidium iodide uptake. Interestingly, 1 does not evoke necroptosis by elevating intracellular reactive oxygen species (ROS) or hyperactivation of poly ADP ribose polymerase (PARP-1). ROS elevation and PARP-1 activity are traits that have been observed for established necroptosis inducers such as shikonin, TRAIL and glutamate. Thus the necroptosis pathway evoked by 1 is distinct. To the best of our knowledge, this is the first report into the anti-osteosarcoma and anti-OSC properties of a nickel complex.
Collapse
Affiliation(s)
- Arvin Eskandari
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Marie Flamme
- Department of Structural Biology and Chemistry, Institut Pasteur, Paris, 75015, France
| | - Zhiyin Xiao
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | | |
Collapse
|