1
|
Pettas T, Lachanoudi S, Karageorgos FF, Ziogas IA, Fylaktou A, Papalois V, Katsanos G, Antoniadis N, Tsoulfas G. Immunotherapy and liver transplantation for hepatocellular carcinoma: Current and future challenges. World J Transplant 2025; 15:98509. [DOI: 10.5500/wjt.v15.i2.98509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 11/07/2024] [Indexed: 02/21/2025] Open
Abstract
Despite existing curative options like surgical removal, tissue destruction techniques, and liver transplantation for early-stage hepatocellular carcinoma (HCC), the rising incidence and mortality rates of this global health burden necessitate continuous exploration of novel therapeutic strategies. This review critically assesses the dynamic treatment panorama for HCC, focusing specifically on the burgeoning role of immunotherapy in two key contexts: early-stage HCC and downstaging advanced HCC to facilitate liver transplant candidacy. It delves into the unique immunobiology of the liver and HCC, highlighting tumor-mediated immune evasion mechanisms. Analyzing the diverse immunotherapeutic approaches including checkpoint inhibitors, cytokine modulators, vaccines, oncolytic viruses, antigen-targeting antibodies, and adoptive cell therapy, this review acknowledges the limitations of current diagnostic markers alpha-fetoprotein and glypican-3 and emphasizes the need for novel biomarkers for patient selection and treatment monitoring. Exploring the rationale for neoadjuvant and adjuvant immunotherapy in early-stage HCC, current research is actively exploring the safety and effectiveness of diverse immunotherapeutic approaches through ongoing clinical trials. The review further explores the potential benefits and challenges of combining immunotherapy and liver transplant, highlighting the need for careful patient selection, meticulous monitoring, and novel strategies to mitigate post-transplant complications. Finally, this review delves into the latest findings from the clinical research landscape and future directions in HCC management, paving the way for optimizing treatment strategies and improving long-term survival rates for patients with this challenging malignancy.
Collapse
Affiliation(s)
- Theodoros Pettas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Sofia Lachanoudi
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Filippos F Karageorgos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Ioannis A Ziogas
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Vassilios Papalois
- Department of Transplant Surgery, Imperial College Renal and Transplant Centre, London W12 0HS, United Kingdom
| | - Georgios Katsanos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki 54642, Greece
| | - Nikolaos Antoniadis
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki 54642, Greece
| |
Collapse
|
2
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
3
|
Ton Nu QC, Deka G, Park PH. CD8 + T cell-based immunotherapy: Promising frontier in human diseases. Biochem Pharmacol 2025; 237:116909. [PMID: 40179991 DOI: 10.1016/j.bcp.2025.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
The abundant cell components of the adaptive immune system called T lymphocytes (T cells) play important roles in mediating immune responses to eliminate the invaders and create the memory of the germs to form a new immunity for the next encounter. Among them, cytotoxic T cells expressing cell-surface CD8 are the most critical effector cells that directly eradicate the target infected cells by recognizing antigens presented by major histocompatibility complex class I molecules to protect our body from pathological threats. In the continuous evolution of immunotherapy, various CD8+ T cell-based therapeutic strategies have been developed based on the role and molecular concept of CD8+ T cells. The emergence of such remarkable therapies provides promising hope for multiple human disease treatments such as autoimmunity, infectious disease, cancer, and other non-infectious diseases. In this review, we aim to discuss the current knowledge on the utilization of CD8+ T cell-based immunotherapy for the treatment of various diseases, the molecular basis involved, and its limitations. Additionally, we summarize the recent advances in the use of CD8+ T cell-based immunotherapy and provide a comprehensive overview of CD8+ T cells, including their structure, underlying mechanism of function, and markers associated with CD8+ T cell exhaustion. Building upon these foundations, we delineate the advancement of CD8+ T cell-based immunotherapies with fundamental operating principles followed by research studies, and challenges, as well as illustrate human diseases involved in this development.
Collapse
Affiliation(s)
- Quynh Chau Ton Nu
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Gitima Deka
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea; Research institute of cell culture, Yeungnam University, Gyeongsan, Republic of Korea.
| |
Collapse
|
4
|
Liu J, Wu Y, Gao GF. A Structural Voyage Toward the Landscape of Humoral and Cellular Immune Escapes of SARS-CoV-2. Immunol Rev 2025; 330:e70000. [PMID: 39907512 DOI: 10.1111/imr.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
The genome-based surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the past nearly 5 years since its emergence has refreshed our understanding of virus evolution, especially on convergent co-evolution with the host. SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations that affect the functional properties of the virus by altering its infectivity, virulence, transmissibility, and interactions with host immunity. This poses a huge challenge to global prevention and control measures based on drug treatment and vaccine application. As one of the key evasion strategies in response to the immune profile of the human population, there are overwhelming amounts of evidence for the reduced antibody neutralization of SARS-CoV-2 variants. Additionally, data also suggest that the levels of CD4+ and CD8+ T-cell responses against variants or sub-variants decrease in the populations, although non-negligible cross-T-cell responses are maintained. Herein, from the perspectives of structural immunology, we outline the characteristics and mechanisms of the T cell and antibody responses to SARS-CoV and its variants/sub-variants. The molecular bases for the impact of the immune escaping variants on the interaction of the epitopes with the key receptors in adaptive immunity, that is, major histocompatibility complex (MHC), T-cell receptor (TCR), and antibody are summarized and discussed, the knowledge of which will widen our understanding of this pandemic-threatening virus and assist the preparedness for Pathogen X in the future.
Collapse
Affiliation(s)
- Jun Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- The D. H. Chen School of Universal Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Gao H, Qu L, Li M, Guan X, Zhang S, Deng X, Wang J, Xing F. Unlocking the potential of chimeric antigen receptor T cell engineering immunotherapy: Long road to achieve precise targeted therapy for hepatobiliary pancreatic cancers. Int J Biol Macromol 2025; 297:139829. [PMID: 39814310 DOI: 10.1016/j.ijbiomac.2025.139829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Innovative therapeutic strategies are urgently needed to address the ongoing global health concern of hepatobiliary pancreatic malignancies. This review summarizes the latest and most comprehensive research of chimeric antigen receptor (CAR-T) cell engineering immunotherapy for treating hepatobiliary pancreatic cancers. Commencing with an exploration of the distinct anatomical location and the immunosuppressive, hypoxic tumor microenvironment (TME), this review critically assesses the limitations of current CAR-T therapy in hepatobiliary pancreatic cancers and proposes corresponding solutions. Various studies aim at enhancing CAR-T cell efficacy in these cancers through improving T cell persistence, enhancing antigen specificity and reducing tumor heterogeneity, also modulating the immunosuppressive and hypoxic TME. Additionally, the review examines the application of emerging nanoparticles and biotechnologies utilized in CAR-T therapy for these cancers. The results suggest that constructing optimized CAR-T cells to overcome physical barrier, manipulating the TME to relieve immunosuppression and hypoxia, designing CAR-T combination therapies, and selecting the most suitable delivery strategies, all together could collectively enhance the safety of CAR-T engineering and advance the effectiveness of adaptive cell therapy for hepatobiliary pancreatic cancers.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lianyue Qu
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Mu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Deng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
6
|
Mareboina M, Bakhl K, Agioti S, Yee NS, Georgakopoulos-Soares I, Zaravinos A. Comprehensive Analysis of Granzymes and Perforin Family Genes in Multiple Cancers. Biomedicines 2025; 13:408. [PMID: 40002821 PMCID: PMC11853441 DOI: 10.3390/biomedicines13020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Cancer remains a significant global health concern, with immunotherapies emerging as promising treatments. This study explored the role of perforin-1 (PRF1) and granzymes A, B and K (GZMA, GZMB and GZMK) in cancer biology, focusing on their impact on tumor cell death and immune response modulation. Methods: Through a comprehensive genomic analysis across various cancer types, we explored the differential expression, mutation profiles and methylation patterns of these genes, providing insights into their potential as therapeutic targets. Furthermore, we investigated their association with immune cell infiltration and pathway activation within the tumor microenvironment in each tumor type. Results: Our findings revealed distinct expression patterns and prognostic implications for PRF1, GZMA, GZMB and GZMK across different cancers, highlighting their multifaceted roles in tumor immunity. We found increased immune infiltration across all tumor types and significant correlations between the genes of interest and cytotoxic T cells, as well as the most significant survival outcomes in breast cancer. We also show that granzymes and perforin-1 are significantly associated with indicators of immunosuppression and T cell dysfunction within patient cohorts. In skin melanoma, glioblastoma, kidney and bladder cancers, we found significant correlations between the genes of interest and patient survival after receiving immune-checkpoint inhibition therapy. Additionally, we identified potential associations between the mRNA expression levels of these genes and drug sensitivity. Conclusions: Overall, this study enhances our understanding of the molecular mechanisms underlying tumor immunity and provides valuable insights into the potential therapeutic implications of PRF1, GZMA, GZMB and GZMK in cancer treatment.
Collapse
Affiliation(s)
- Manvita Mareboina
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.M.); (K.B.)
| | - Katrina Bakhl
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.M.); (K.B.)
| | - Stephanie Agioti
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus;
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Nelson S. Yee
- Department of Medicine, Division of Hematology-Oncology, Penn State Health Milton S. Hershey Medical Center, Next-Generation Therapies Program, Penn State Cancer Institute, Hershey, PA 17033, USA;
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.M.); (K.B.)
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus;
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| |
Collapse
|
7
|
Fraser DD, Roy S, Kuruc M, Quintero M, Van Nynatten LR, Cepinskas G, Zheng H, Soherwardy A, Roy D. Functional mass spectrometry indicates anti-protease and complement activity increase with COVID-19 severity. Exp Biol Med (Maywood) 2025; 250:10308. [PMID: 39949890 PMCID: PMC11813650 DOI: 10.3389/ebm.2025.10308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Investigations on some innate immunity proteins can yield misleading information, as investigators often rely on static measurements and assume a direct correlation to function. As protein function is often not directly proportional to protein abundance, and mechanistic pathways are interconnected and under constant feedback regulatory control, functional analysis is required. In this study, we used functional mass spectrometry to measure anti-protease and complement activity in plasma obtained from coronavirus disease 2019 (COVID-19) patients. Our data suggests that within 48 h of hospital admission, COVID-19 patients undergo a protease storm with significantly elevated neutrophil elastase (p < 0.001) and lymphocyte granzyme B (p < 0.01), while, anti-protease activity is significantly increased, including alpha-1 antitrypsin (AAT; p < 0.001) and alpha-1-antichymotrypsin (ACT; p < 0.001). Concurrently, the ratio of C3a to C3beta activity significantly decreased with increasing COVID-19 severity, suggesting more complement activation (Mild COVID-19 p < 0.05; Severe COVID-19 p < 0.001). Activity levels of AAT, ACT and C3a/C3beta remained unchanged over 10 hospital days. Our data suggests that COVID-19 is associated with both a protease storm and complement activation, with the former somewhat balanced with increased anti-protease activity. Evaluation of the AAT/ACT ratio and C3a/C3beta ratio indicated that COVID-19 severity is associated with both neutrophil elastase neutralization and complement activation.
Collapse
Affiliation(s)
- Douglas D. Fraser
- London Health Sciences Centre Research Institute, London, ON, Canada
- Pediatrics, Western University, London, ON, Canada
| | - Swapan Roy
- Biotech Support Group LLC, Monmouth Junction, NJ, United States
| | - Matt Kuruc
- Biotech Support Group LLC, Monmouth Junction, NJ, United States
| | | | | | - Gediminas Cepinskas
- London Health Sciences Centre Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, Canada
| | - Haiyan Zheng
- Rutgers Center for Integrative Proteomics, Rutgers University, Piscataway, NJ, United States
| | - Amenah Soherwardy
- Rutgers Center for Integrative Proteomics, Rutgers University, Piscataway, NJ, United States
| | - Devjit Roy
- Nathan Littauer Hospital, Gloversville, NY, United States
| |
Collapse
|
8
|
Murphy GF. White Depressed Areas and Tumor Infiltrating Lymphocytes: The Cancer Cure That Lies Within? J Cutan Pathol 2025. [PMID: 39777741 DOI: 10.1111/cup.14768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 01/11/2025]
Abstract
This brief overview is inspired by seminal contributions by the late Dr. Martin C. Mihm, Jr. who provided a basis for recognition and better understanding of interactions between lymphocytes (tumor-infiltrating lymphocytes [TILs]) that home to and permeate cancers. In primary melanomas, this phenomenon may produce what Dr. Mihm called white depressed areas, prescient clues to what would fuel future attempts at harnessing anticancer immunity. The critical and sequential TIL attributes of antigenic stimulation, homing, and effector-target cell apoptotic injury herein are briefly reviewed in light of more recent advances in the field of immuno-oncology. The intent is to emphasize how fundamental clinical and histopathological observations, as forged by Dr. Mihm and his associates, have led to critically important prognostic paradigms as well as to translational insights that now have become transformative in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- George F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital/Mass General Brigham, Boston, Massachusetts, USA
| |
Collapse
|
9
|
McKeague ML, Lohmueller J, Dracz MT, Saadallah N, Ricci ED, Beckwith DM, Ayyalasomayajula R, Cudic M, Finn OJ. Preventative Cancer Vaccine-Elicited Human Anti-MUC1 Antibodies Have Multiple Effector Functions. Antibodies (Basel) 2024; 13:85. [PMID: 39449327 PMCID: PMC11503386 DOI: 10.3390/antib13040085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Mucin-1 (MUC1) is a transmembrane glycoprotein that is overexpressed and hypoglycosylated in premalignant and malignant epithelial cells compared to normal cells, creating a target antigen for humoral and cellular immunity. Healthy individuals with a history of advanced colonic adenomas and at high risk for colon cancer were enrolled in a clinical trial to evaluate the feasibility of using a MUC1 peptide vaccine to prevent colon cancer. Anti-MUC1 antibodies elicited by this vaccine were cloned using peripheral blood B cells and sera collected two weeks after a one-year booster. Twelve of these fully human monoclonal antibodies (mAb) were tested for binding to MUC1+ target cells, and three with the highest binding were further evaluated for various effector functions important for tumor rejection. METHODS Immune cells were incubated together with target cells expressing variations in the number, distance, and membrane anchoring properties of the MUC1 epitope in the presence of each mAb. RESULTS All three mAbs mediated antibody-dependent cytokine release (ADCR), antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP). Two also mediated antibody-dependent trogocytosis/trogoptosis (ADCT). None were capable of complement-dependent cytotoxicity (CDC). CONCLUSIONS ADCP and ADCT functions were more efficient when antibodies bound epitopes proximal to and anchored to the membrane, providing insight for future therapeutic antibody validation strategies.
Collapse
Affiliation(s)
- Michelle L. McKeague
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (O.J.F.)
| | - Jason Lohmueller
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (O.J.F.)
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew T. Dracz
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (O.J.F.)
| | - Najla Saadallah
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (O.J.F.)
| | - Eric D. Ricci
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (O.J.F.)
- Department of Psychology, Dietrich College of Humanities and Social Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Donella M. Beckwith
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Ramya Ayyalasomayajula
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Olivera J. Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (O.J.F.)
| |
Collapse
|
10
|
Gao T, Xiang C, Ding X, Xie M. Dual-locked fluorescent probes for precise diagnosis and targeted treatment of tumors. Heliyon 2024; 10:e38174. [PMID: 39381214 PMCID: PMC11458960 DOI: 10.1016/j.heliyon.2024.e38174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Cancer continues to pose a significant threat to global health, with its high mortality rates largely attributable to delayed diagnosis and non-specific treatments. Early and accurate diagnosis is crucial, yet it remains challenging due to the subtle and often undetectable early molecular changes. Traditional single-target fluorescent probes often fail to accurately identify cancer cells, relying solely on single biomarkers and consequently leading to high rates of false positives and inadequate specificity. In contrast, dual-locked fluorescent probes represent a breakthrough, designed to enhance diagnostic precision. By requiring the simultaneous presence of two specific tumor-associated biomarkers or microenvironmental conditions, these probes significantly reduce non-specific activations typical of conventional single-analyte probes. This review discusses the structural designs, response mechanisms, and biological applications of dual-locked probes, highlighting their potential in tumor imaging and treatment. Importantly, the review addresses the challenges, and perspectives in this field, offering a comprehensive look at the current state and future potential of dual-locked fluorescent probes in oncology.
Collapse
Affiliation(s)
- Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Can Xiang
- Department of Scientific Management, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xintao Ding
- Department of Biomedical Informatics, Columbia University Graduate School of Arts and Sciences, New York, NY, United States
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
11
|
Rizvi ZA, Sadhu S, Dandotiya J, Sharma P, Binayke A, Singh V, Das V, Khatri R, Kumar R, Samal S, Kalia M, Awasthi A. SARS-CoV-2 infection induces thymic atrophy mediated by IFN-γ in hACE2 transgenic mice. Eur J Immunol 2024; 54:e2350624. [PMID: 38655818 DOI: 10.1002/eji.202350624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Pathogenic infections cause thymic atrophy, perturb thymic T-cell development, and alter immunological response. Previous studies reported dysregulated T-cell function and lymphopenia in coronavirus disease-19 (COVID-19). However, immunopathological changes in the thymus associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have not been elucidated. Here, we report that SARS-CoV-2 infects thymocytes, and induces CD4+CD8+ (double positive; DP) T-cell apoptosis leading to thymic atrophy and loss of peripheral TCR repertoire in K18-hACE2 transgenic mice. Infected thymus led to increased CD44+CD25- T-cells, indicating an early arrest in the T-cell maturation pathway. Thymic atrophy was notably higher in male hACE2-Tg mice than in females and involved an upregulated de-novo synthesis pathway of thymic glucocorticoid. Further, IFN-γ was crucial for thymic atrophy, as anti-IFN-γ -antibody neutralization blunted thymic involution. Therapeutic use of Remdesivir also rescued thymic atrophy. While the Omicron variant and its sub-lineage BA.5 variant caused marginal thymic atrophy, the delta variant of SARS-CoV-2 exhibited severe thymic atrophy characterized by severely depleted DP T-cells. Recently characterized broadly SARS-CoV-2 neutralizing monoclonal antibody P4A2 was able to rescue thymic atrophy and restore the thymic maturation pathway of T-cells. Together, we report SARS-CoV-2-associated thymic atrophy resulting from impaired T-cell maturation pathway which may contribute to dyregulated T cell response during COVID-19.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Srikanth Sadhu
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Jyotsna Dandotiya
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Puja Sharma
- Regional Centre Biotechnology, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Akshay Binayke
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Virendra Singh
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Vinayaka Das
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Ritika Khatri
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Rajesh Kumar
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Sweety Samal
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre Biotechnology, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Amit Awasthi
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
12
|
Avishek K, Beg MA, Vats K, Singh AK, Dey R, Singh KP, Singh RK, Gannavaram S, Ramesh V, Mulla MSA, Bhatnagar U, Singh S, Nakhasi HL, Salotra P, Selvapandiyan A. Manufacturing and preclinical toxicity of GLP grade gene deleted attenuated Leishmania donovani parasite vaccine. Sci Rep 2024; 14:14636. [PMID: 38918456 PMCID: PMC11199483 DOI: 10.1038/s41598-024-64592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Centrin1 gene deleted Leishmania donovani parasite (LdCen1-/-) was developed and extensively tested experimentally as an intracellular stage-specific attenuated and immunoprotective live parasite vaccine candidate ex vivo using human PBMCs and in vivo in animals. Here we report manufacturing and pre-clinical evaluation of current Good-Laboratory Practice (cGLP) grade LdCen1-/- parasites, as a prerequisite before proceeding with clinical trials. We screened three batches of LdCen1-/- parasites manufactured in bioreactors under cGLP conditions, for their consistency in genetic stability, attenuation, and safety. One such batch was preclinically tested using human PBMCs and animals (hamsters and dogs) for its safety and protective immunogenicity. The immunogenicity of the CGLP grade LdCen1-/- parasites was similar to one grown under laboratory conditions. The cGLP grade LdCen1-/- parasites were found to be safe and non-toxic in hamsters and dogs even at 3 times the anticipated vaccine dose. When PBMCs from healed visceral leishmaniasis (VL) cases were infected with cGLP LdCen1-/-, there was a significant increase in the stimulation of cytokines that contribute to protective responses against VL. This effect, measured by multiplex ELISA, was greater than that observed in PBMCs from healthy individuals. These results suggest that cGLP grade LdCen1-/- manufactured under cGMP complaint conditions can be suitable for future clinical trials.
Collapse
Affiliation(s)
- Kumar Avishek
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Mirza A Beg
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Kavita Vats
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Avinash Kumar Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, CBER, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Kamaleshwar P Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Rajesh Kumar Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - V Ramesh
- Department of Dermatology and STD, ESIC Medical College, Faridabad, Haryana, 121001, India
| | | | - Upendra Bhatnagar
- Vimta Laboratories, Cherlapally, Hyderabad, Telangana, 500051, India
| | - Sanjay Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | | |
Collapse
|
13
|
Joseph A, Cheng X, Harding J, Al-Saleem J, Green P, Veis D, Rauch D, Ratner L. Role of the CTCF Binding Site in Human T-Cell Leukemia Virus-1 Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596170. [PMID: 38853836 PMCID: PMC11160593 DOI: 10.1101/2024.05.28.596170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
During HTLV-1 infection, the virus integrates into the host cell genome as a provirus with a single CCCTC binding protein (CTCF) binding site (vCTCF-BS), which acts as an insulator between transcriptionally active and inactive regions. Previous studies have shown that the vCTCF-BS is important for maintenance of chromatin structure, regulation of viral expression, and DNA and histone methylation. Here, we show that the vCTCF-BS also regulates viral infection and pathogenesis in vivo in a humanized (Hu) mouse model of adult T-cell leukemia/lymphoma. Three cell lines were used to initiate infection of the Hu-mice, i) HTLV-1-WT which carries an intact HTLV-1 provirus genome, ii) HTLV-1-CTCF, which contains a provirus with a mutated vCTCF-BS which abolishes CTCF binding, and a stop codon immediate upstream of the mutated vCTCF-BS which deletes the last 23 amino acids of p12, and iii) HTLV-1-p12stop that contains the intact vCTCF-BS, but retains the same stop codon in p12 as in the HTLV-1-CTCF cell line. Hu-mice were infected with mitomycin treated or irradiated HTLV-1 producing cell lines. There was a delay in pathogenicity when Hu-mice were infected with the CTCF virus compared to mice infected with either p12 stop or WT virus. Proviral load (PVL), spleen weights, and CD4 T cell counts were significantly lower in HTLV-1-CTCF infected mice compared to HTLV-1-p12stop infected mice. Furthermore, we found a direct correlation between the PVL in peripheral blood and death of HTLV-1-CTCF infected mice. In cell lines, we found that the vCTCF-BS regulates Tax expression in a time-dependent manner. The scRNAseq analysis of splenocytes from infected mice suggests that the vCTCF-BS plays an important role in activation and expansion of T lymphocytes in vivo. Overall, these findings indicate that the vCTCF-BS regulates Tax expression, proviral load, and HTLV pathogenicity in vivo.
Collapse
Affiliation(s)
- Ancy Joseph
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Xiaogang Cheng
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - John Harding
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Jacob Al-Saleem
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Patrick Green
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Deborah Veis
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel Rauch
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
14
|
Santos DL, São Marcos BDF, de Sousa GF, Cruz LCDO, Barros BRDS, Nogueira MCDBL, Oliveira THDA, Silva AJD, Santos VEP, de Melo CML, de Freitas AC. Immunological Response against Breast Lineage Cells Transfected with Human Papillomavirus (HPV). Viruses 2024; 16:717. [PMID: 38793599 PMCID: PMC11125976 DOI: 10.3390/v16050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer is the most common neoplasm worldwide. Viral infections are involved with carcinogenesis, especially those caused by oncogenic Human Papillomavirus (HPV) genotypes. Despite the detection of HPV in breast carcinomas, the virus's activity against this type of cancer remains controversial. HPV infection promotes remodeling of the host's immune response, resulting in an immunosuppressive profile. This study assessed the individual role of HPV oncogenes in the cell line MDA-MB-231 transfected with the E5, E6, and E7 oncogenes and co-cultured with peripheral blood mononuclear cells. Immunophenotyping was conducted to evaluate immune system modulation. There was an increase in CD4+ T cell numbers when compared with non-transfected and transfected MDA-MB-231, especially in the Treg profile. Pro-inflammatory intracellular cytokines, such as IFN-γ, TNF-α, and IL-17, were impaired by transfected cells, and a decrease in the cytolytic activity of the CD8+ and CD56+ lymphocytes was observed in the presence of HPV oncogenes, mainly with E6 and E7. The E6 and E7 oncogenes decrease monocyte expression, activating the expected M1 profile. In the monocytes found, a pro-inflammatory role was observed according to the cytokines released in the supernatant. In conclusion, the MDA-MB-231 cell lineage transfected with HPV oncogenes can downregulate the number and function of lymphocytes and monocytes.
Collapse
Affiliation(s)
- Daffany Luana Santos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (D.L.S.); (B.d.F.S.M.); (A.J.D.S.); (V.E.P.S.)
| | - Bianca de França São Marcos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (D.L.S.); (B.d.F.S.M.); (A.J.D.S.); (V.E.P.S.)
| | - Georon Ferreira de Sousa
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.); (M.C.d.B.L.N.); (C.M.L.d.M.)
- Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Leonardo Carvalho de Oliveira Cruz
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.); (M.C.d.B.L.N.); (C.M.L.d.M.)
- Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Bárbara Rafaela da Silva Barros
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.); (M.C.d.B.L.N.); (C.M.L.d.M.)
- Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Mariane Cajuba de Britto Lira Nogueira
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.); (M.C.d.B.L.N.); (C.M.L.d.M.)
- Vitória Academic Center, Federal University of Pernambuco, Rua do Alto do Reservatório s/n, Bela Vista, Vitória de Santo Antão 55608-680, Pernambuco, Brazil
| | | | - Anna Jessica Duarte Silva
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (D.L.S.); (B.d.F.S.M.); (A.J.D.S.); (V.E.P.S.)
| | - Vanessa Emanuelle Pereira Santos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (D.L.S.); (B.d.F.S.M.); (A.J.D.S.); (V.E.P.S.)
| | - Cristiane Moutinho Lagos de Melo
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.); (M.C.d.B.L.N.); (C.M.L.d.M.)
- Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (D.L.S.); (B.d.F.S.M.); (A.J.D.S.); (V.E.P.S.)
| |
Collapse
|
15
|
Zhu M, Lan Z, Park J, Gong S, Wang Y, Guo F. Regulation of CNS pathology by Serpina3n/SERPINA3: The knowns and the puzzles. Neuropathol Appl Neurobiol 2024; 50:e12980. [PMID: 38647003 PMCID: PMC11131959 DOI: 10.1111/nan.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Neuroinflammation, blood-brain barrier (BBB) dysfunction, neuron and glia injury/death and myelin damage are common central nervous system (CNS) pathologies observed in various neurological diseases and injuries. Serine protease inhibitor (Serpin) clade A member 3n (Serpina3n), and its human orthologue SERPINA3, is an acute-phase inflammatory glycoprotein secreted primarily by the liver into the bloodstream in response to systemic inflammation. Clinically, SERPINA3 is dysregulated in brain cells, cerebrospinal fluid and plasma in various neurological conditions. Although it has been widely accepted that Serpina3n/SERPINA3 is a reliable biomarker of reactive astrocytes in diseased CNS, recent data have challenged this well-cited concept, suggesting instead that oligodendrocytes and neurons are the primary sources of Serpina3n/SERPINA3. The debate continues regarding whether Serpina3n/SERPINA3 induction represents a pathogenic or a protective mechanism. Here, we propose possible interpretations for previously controversial data and present perspectives regarding the potential role of Serpina3n/SERPINA3 in CNS pathologies, including demyelinating disorders where oligodendrocytes are the primary targets. We hypothesise that the 'good' or 'bad' aspects of Serpina3n/SERPINA3 depend on its cellular sources, its subcellular distribution (or mis-localisation) and/or disease/injury types. Furthermore, circulating Serpina3n/SERPINA3 may cross the BBB to impact CNS pathologies. Cell-specific genetic tools are critically important to tease out the potential roles of cell type-dependent Serpina3n in CNS diseases/injuries.
Collapse
Affiliation(s)
- Meina Zhu
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Zhaohui Lan
- Center for Brain Health and Brain Technology, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Joohyun Park
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | | | - Yan Wang
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Fuzheng Guo
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| |
Collapse
|
16
|
Agrawal S, Agrawal A, Ghoneum M. Biobran/MGN-3, an Arabinoxylan Rice Bran, Exerts Anti-COVID-19 Effects and Boosts Immunity in Human Subjects. Nutrients 2024; 16:881. [PMID: 38542792 PMCID: PMC10974915 DOI: 10.3390/nu16060881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 11/12/2024] Open
Abstract
Corona Virus Disease 19 (COVID-19) has been a major pandemic impacting a huge population worldwide, and it continues to present serious health threats, necessitating the development of novel protective nutraceuticals. Biobran/MGN-3, an arabinoxylan rice bran, is a potent immunomodulator for both humans and animals that has recently been demonstrated to protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. We here investigate Biobran/MGN-3's potential to enhance an antiviral immune response in humans. Peripheral blood mononuclear cells (PBMCs) derived from eight subjects taking Biobran/MGN-3 (age 55-65 years) and eight age-matched control subjects were stimulated with irradiated SARS-CoV-2 virus and then subjected to immuno-phenotyping and multiplex cytokine/chemokine assays. Results showed that PBMCs from subjects supplemented with Biobran/MGN-3 had significantly increased activation of plasmacytoid dendritic cells (pDCs) coupled with increased IFN-α secretion. We also observed higher baseline expression of HLA-DR (human leukocyte antigen-DR isotype) on dendritic cells (DCs) and increased secretion of chemokines and cytokines, as well as a substantial increase in cytotoxic T cell generation for subjects taking Biobran/MGN-3. Our results suggest that Biobran/MGN-3 primes immunity and therefore may be used for boosting immune responses against SARS-CoV-2 infections and other diseases, particularly in high-risk populations such as the elderly.
Collapse
Affiliation(s)
- Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA 92697, USA; (S.A.); (A.A.)
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA 92697, USA; (S.A.); (A.A.)
| | - Mamdooh Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Zhu C, Wu Q, Sheng T, Shi J, Shen X, Yu J, Du Y, Sun J, Liang T, He K, Ding Y, Li H, Gu Z, Wang W. Rationally designed approaches to augment CAR-T therapy for solid tumor treatment. Bioact Mater 2024; 33:377-395. [PMID: 38059121 PMCID: PMC10696433 DOI: 10.1016/j.bioactmat.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023] Open
Abstract
Chimeric antigen receptor T cell denoted as CAR-T therapy has realized incredible therapeutic advancements for B cell malignancy treatment. However, its therapeutic validity has yet to be successfully achieved in solid tumors. Different from hematological cancers, solid tumors are characterized by dysregulated blood vessels, dense extracellular matrix, and filled with immunosuppressive signals, which together result in CAR-T cells' insufficient infiltration and rapid dysfunction. The insufficient recognition of tumor cells and tumor heterogeneity eventually causes cancer reoccurrences. In addition, CAR-T therapy also raises safety concerns, including potential cytokine release storm, on-target/off-tumor toxicities, and neuro-system side effects. Here we comprehensively review various targeting aspects, including CAR-T cell design, tumor modulation, and delivery strategy. We believe it is essential to rationally design a combinatory CAR-T therapy via constructing optimized CAR-T cells, directly manipulating tumor tissue microenvironments, and selecting the most suitable delivery strategy to achieve the optimal outcome in both safety and efficacy.
Collapse
Affiliation(s)
- Chaojie Zhu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Qing Wu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Tao Sheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Jiaqi Shi
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Xinyuan Shen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Jicheng Yu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yang Du
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jie Sun
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tingxizi Liang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kaixin He
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
18
|
Nicolini A, Rossi G, Ferrari P. Experimental and clinical evidence in favour of an effective immune stimulation in ER-positive, endocrine-dependent metastatic breast cancer. Front Immunol 2024; 14:1225175. [PMID: 38332913 PMCID: PMC10850262 DOI: 10.3389/fimmu.2023.1225175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/04/2023] [Indexed: 02/10/2024] Open
Abstract
In ER+ breast cancer, usually seen as the low immunogenic type, the main mechanisms favouring the immune response or tumour growth and immune evasion in the tumour microenvironment (TME) have been examined. The principal implications of targeting the oestrogen-mediated pathways were also considered. Recent experimental findings point out that anti-oestrogens contribute to the reversion of the immunosuppressive TME. Moreover, some preliminary clinical data with the hormone-immunotherapy association in a metastatic setting support the notion that the reversion of immune suppression in TME is likely favoured by the G0-G1 state induced by anti-oestrogens. Following immune stimulation, the reverted immune suppression allows the boosting of the effector cells of the innate and adaptive immune response. This suggests that ER+ breast cancer is a molecular subtype where a successful active immune manipulation can be attained. If this is confirmed by a prospective multicentre trial, which is expected in light of the provided evidence, the proposed hormone immunotherapy can also be tested in the adjuvant setting. Furthermore, the different rationale suggests a synergistic activity of our proposed immunotherapy with the currently recommended regimen consisting of antioestrogens combined with cyclin kinase inhibitors. Overall, this lays the foundation for a shift in clinical practice within this most prevalent molecular subtype of breast cancer.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Giuseppe Rossi
- Epidemiology and Biostatistics Unit, Institute of Clinical Physiology, National Research Council and Gabriele Monasterio Foundation, Pisa, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
19
|
Guo K, Yombo DJK, Wang Z, Navaeiseddighi Z, Xu J, Schmit T, Ahamad N, Tripathi J, De Kumar B, Mathur R, Hur J, Sun J, Olszewski MA, Khan N. The chemokine receptor CXCR3 promotes CD8 + T cell-dependent lung pathology during influenza pathogenesis. SCIENCE ADVANCES 2024; 10:eadj1120. [PMID: 38170765 PMCID: PMC10776024 DOI: 10.1126/sciadv.adj1120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The dual role of CD8+ T cells in influenza control and lung pathology is increasingly appreciated. To explore whether protective and pathological functions can be linked to specific subsets, we dissected CD8+ T responses in influenza-infected murine lungs. Our single-cell RNA-sequencing (scRNA-seq) analysis revealed notable diversity in CD8+ T subpopulations during peak viral load and infection-resolved state. While enrichment of a Cxcr3hi CD8+ T effector subset was associated with a more robust cytotoxic response, both CD8+ T effector and central memory exhibited equally potent effector potential. The scRNA-seq analysis identified unique regulons regulating the cytotoxic response in CD8+ T cells. The late-stage CD8+ T blockade in influenza-cleared lungs or continuous CXCR3 blockade mitigated lung injury without affecting viral clearance. Furthermore, adoptive transfer of wild-type CD8+ T cells exacerbated influenza lung pathology in Cxcr3-/- mice. Collectively, our data imply that CXCR3 interception could have a therapeutic effect in preventing influenza-linked lung injury.
Collapse
Affiliation(s)
- Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dan J. K. Yombo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | | | - Jintao Xu
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48109, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Taylor Schmit
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Nassem Ahamad
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Jitendra Tripathi
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Bony De Kumar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Ramkumar Mathur
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA
| | - Michal A. Olszewski
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48109, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
20
|
Xu AP, Xu LB, Smith ER, Fleishman JS, Chen ZS, Xu XX. Cell death in cancer chemotherapy using taxanes. Front Pharmacol 2024; 14:1338633. [PMID: 38249350 PMCID: PMC10796453 DOI: 10.3389/fphar.2023.1338633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Cancer cells evolve to be refractory to the intrinsic programmed cell death mechanisms, which ensure cellular tissue homeostasis in physiological conditions. Chemotherapy using cytotoxic drugs seeks to eliminate cancer cells but spare non-cancerous host cells by exploring a likely subtle difference between malignant and benign cells. Presumably, chemotherapy agents achieve efficacy by triggering programmed cell death machineries in cancer cells. Currently, many major solid tumors are treated with chemotherapy composed of a combination of platinum agents and taxanes. Platinum agents, largely cis-platin, carboplatin, and oxaliplatin, are DNA damaging agents that covalently form DNA addicts, triggering DNA repair response pathways. Taxanes, including paclitaxel, docetaxel, and cabazitaxel, are microtubule stabilizing drugs which are often very effective in purging cancer cells in clinical settings. Generally, it is thought that the stabilization of microtubules by taxanes leads to mitotic arrest, mitotic catastrophe, and the triggering of apoptotic programmed cell death. However, the precise mechanism(s) of how mitotic arrest and catastrophe activate the caspase pathway has not been established. Here, we briefly review literature on the involvement of potential cell death mechanisms in cancer therapy. These include the classical caspase-mediated apoptotic programmed cell death, necroptosis mediated by MLKL, and pore forming mechanisms in immune cells, etc. In particular, we discuss a newly recognized mechanism of cell death in taxane-treatment of cancer cells that involves micronucleation and the irreversible rupture of the nuclear membrane. Since cancer cells are commonly retarded in responding to programmed cell death signaling, stabilized microtubule bundle-induced micronucleation and nuclear membrane rupture, rather than triggering apoptosis, may be a key mechanism accounting for the success of taxanes as anti-cancer agents.
Collapse
Affiliation(s)
- Ana P. Xu
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Lucy B. Xu
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Elizabeth R. Smith
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Joshua S. Fleishman
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
21
|
Czaplicka A, Lachota M, Pączek L, Zagożdżon R, Kaleta B. Chimeric Antigen Receptor T Cell Therapy for Pancreatic Cancer: A Review of Current Evidence. Cells 2024; 13:101. [PMID: 38201305 PMCID: PMC10777940 DOI: 10.3390/cells13010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of malignant and non-malignant disorders. CARs are synthetic transmembrane receptors expressed on genetically modified immune effector cells, including T cells, natural killer (NK) cells, or macrophages, which are able to recognize specific surface antigens on target cells and eliminate them. CAR-modified immune cells mediate cytotoxic antitumor effects via numerous mechanisms, including the perforin and granzyme pathway, Fas and Fas Ligand (FasL) pathway, and cytokine secretion. High hopes are associated with the prospective use of the CAR-T strategy against solid cancers, especially the ones resistant to standard oncological therapies, such as pancreatic cancer (PC). Herein, we summarize the current pre-clinical and clinical studies evaluating potential tumor-associated antigens (TAA), CAR-T cell toxicities, and their efficacy in PC.
Collapse
Affiliation(s)
- Agata Czaplicka
- Department of Internal Medicine and Gastroenterology, Mazovian “Bródnowski” Hospital, 03-242 Warsaw, Poland;
| | - Mieszko Lachota
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.L.); (R.Z.)
| | - Leszek Pączek
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland;
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.L.); (R.Z.)
| | - Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland;
| |
Collapse
|
22
|
Sartorius D, Blume ML, Fleischer JR, Ghadimi M, Conradi LC, De Oliveira T. Implications of Rectal Cancer Radiotherapy on the Immune Microenvironment: Allies and Foes to Therapy Resistance and Patients' Outcome. Cancers (Basel) 2023; 15:5124. [PMID: 37958298 PMCID: PMC10650490 DOI: 10.3390/cancers15215124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Aside from surgical resection, locally advanced rectal cancer is regularly treated with neoadjuvant chemoradiotherapy. Since the concept of cancer treatment has shifted from only focusing on tumor cells as drivers of disease progression towards a broader understanding including the dynamic tumor microenvironment (TME), the impact of radiotherapy on the TME and specifically the tumor immune microenvironment (TIME) is increasingly recognized. Both promoting as well as suppressing effects on anti-tumor immunity have been reported in response to rectal cancer (chemo-)radiotherapy and various targets for combination therapies are under investigation. A literature review was conducted searching the PubMed database for evidence regarding the pleiotropic effects of (chemo-)radiotherapy on the rectal cancer TIME, including alterations in cytokine levels, immune cell populations and activity as well as changes in immune checkpoint proteins. Radiotherapy can induce immune-stimulating and -suppressive alterations, potentially mediating radioresistance. The response is influenced by treatment modalities, including the dosage administered and the highly individual intrinsic pre-treatment immune status. Directly addressing the main immune cells of the TME, this review aims to highlight therapeutical implications since efficient rectal cancer treatment relies on personalized strategies combining conventional therapies with immune-modulating approaches, such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| |
Collapse
|
23
|
Alsalloum A, Shevchenko J, Fisher M, Philippova J, Perik-Zavodskii R, Perik-Zavodskaia O, Alrhmoun S, Lopatnikova J, Vasily K, Volynets M, Zavjalov E, Solovjeva O, Akahori Y, Shiku H, Silkov A, Sennikov S. Exploring TCR-like CAR-Engineered Lymphocyte Cytotoxicity against MAGE-A4. Int J Mol Sci 2023; 24:15134. [PMID: 37894816 PMCID: PMC10606439 DOI: 10.3390/ijms242015134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
TCR-like chimeric antigen receptor (CAR-T) cell therapy has emerged as a game-changing strategy in cancer immunotherapy, offering a broad spectrum of potential antigen targets, particularly in solid tumors containing intracellular antigens. In this study, we investigated the cytotoxicity and functional attributes of in vitro-generated T-lymphocytes, engineered with a TCR-like CAR receptor precisely targeting the cancer testis antigen MAGE-A4. Through viral transduction, T-cells were genetically modified to express the TCR-like CAR receptor and co-cultured with MAGE-A4-expressing tumor cells. Flow cytometry analysis revealed a significant surge in cells expressing activation markers CD69, CD107a, and FasL upon encountering tumor cells, indicating robust T-cell activation and cytotoxicity. Moreover, immune transcriptome profiling unveiled heightened expression of pivotal T-effector genes involved in immune response and cell proliferation regulation. Additionally, multiplex assays also revealed increased cytokine production and cytotoxicity driven by granzymes and soluble Fas ligand (sFasL), suggesting enhanced anti-tumor immune responses. Preliminary in vivo investigations revealed a significant deceleration in tumor growth, highlighting the therapeutic potential of these TCR-like CAR-T cells. Further investigations are warranted to validate these revelations fully and harness the complete potential of TCR-like CAR-T cells in overcoming cancer's resilient defenses.
Collapse
Affiliation(s)
- Alaa Alsalloum
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Julia Shevchenko
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Marina Fisher
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Julia Philippova
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Roman Perik-Zavodskii
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Olga Perik-Zavodskaia
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Saleh Alrhmoun
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Julia Lopatnikova
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Kurilin Vasily
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Marina Volynets
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evgenii Zavjalov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Ministry of Science and High Education of Russian Federation, 630090 Novosibirsk, Russia
| | - Olga Solovjeva
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Ministry of Science and High Education of Russian Federation, 630090 Novosibirsk, Russia
| | - Yasushi Akahori
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan;
| | - Hiroshi Shiku
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan;
| | - Alexander Silkov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Department of Immunology, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
24
|
Yun K, Siegler EL, Kenderian SS. Who wins the combat, CAR or TCR? Leukemia 2023; 37:1953-1962. [PMID: 37626090 DOI: 10.1038/s41375-023-01976-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has drawn increasing attention over the last few decades given its remarkable effectiveness and breakthroughs in treating B cell hematological malignancies. Even though CAR-T cell therapy has outstanding clinical successes, most treated patients still relapse after infusion. CARs are derived from the T cell receptor (TCR) complex and co-stimulatory molecules associated with T cell activation; however, the similarities and differences between CARs and endogenous TCRs regarding their sensitivity, signaling pathway, killing mechanisms, and performance are still not fully understood. In this review, we discuss the parallel comparisons between CARs and TCRs from various aspects and how these current findings might provide novel insights and contribute to improvement of CAR-T cell therapy efficacy.
Collapse
Affiliation(s)
- Kun Yun
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
25
|
Diggins NL, Hancock MH. Viral miRNA regulation of host gene expression. Semin Cell Dev Biol 2023; 146:2-19. [PMID: 36463091 PMCID: PMC10101914 DOI: 10.1016/j.semcdb.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Viruses have evolved a multitude of mechanisms to combat barriers to productive infection in the host cell. Virally-encoded miRNAs are one such means to regulate host gene expression in ways that benefit the virus lifecycle. miRNAs are small non-coding RNAs that regulate protein expression but do not trigger the adaptive immune response, making them powerful tools encoded by viruses to regulate cellular processes. Diverse viruses encode for miRNAs but little sequence homology exists between miRNAs of different viral species. Despite this, common cellular pathways are targeted for regulation, including apoptosis, immune evasion, cell growth and differentiation. Herein we will highlight the viruses that encode miRNAs and provide mechanistic insight into how viral miRNAs aid in lytic and latent infection by targeting common cellular processes. We also highlight how viral miRNAs can mimic host cell miRNAs as well as how viral miRNAs have evolved to regulate host miRNA expression. These studies dispel the myth that viral miRNAs are subtle regulators of gene expression, and highlight the critical importance of viral miRNAs to the virus lifecycle.
Collapse
Affiliation(s)
- Nicole L Diggins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA
| | - Meaghan H Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
26
|
Li M, Tang J, Lin C, Shen A, Ma X, Wu J, Gao X, Wang P. A Smart Responsive Fluorescence-MR Nanoprobe for Monitoring Tumor Response to Immunotherapy. Adv Healthc Mater 2023; 12:e2300602. [PMID: 37184883 DOI: 10.1002/adhm.202300602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Indexed: 05/16/2023]
Abstract
Accurately evaluating tumor responses to immunotherapy is clinically relevant. However, non-invasive, real-time visualization techniques to evaluate tumor immunotherapy are still lacking. Herein, a smart responsive fluorescence-MR dual-modal nanoprobe, QM(GP)-MZF(CP), is reported that can be targeted for cleavage by the cytotoxic T cell activation marker granzyme B and the apoptosis-related marker cysteine-aspartic acid-specific protease 3 (Caspase-3). The probe uses quinoline-malononitrile (QM), an aggregation-induced emission luminogen, and Mn-Zn ferrite magnetic nanoparticles (MZF-MNPs), a T2-weighted imaging (T2WI) contrast agent, as imaging molecules that are linked with the substrate peptides specific to granzyme B and Caspase-3. Therefore, both granzyme B and Caspase-3 can target and cleave the substrate peptides in QM(GP)-MZF(CP). Via aggregation-induced fluorescence imaging of QM and the aggregation-induced T2WI-enhanced imaging effect of MZF-MNPs, the status of T cells after tumor immunotherapy and the subsequent triggering of tumor cell apoptosis can be determined to identify tumor responsiveness to immunotherapy and thereby evaluate the effectiveness of this therapy in the early stages of treatment.
Collapse
Affiliation(s)
- Minghua Li
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Junjun Tang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Chao Lin
- Institute for Translational Medicine, Shanghai East Hospital, Institute for biomedical Engineering and Nanoscience, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Aijun Shen
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Xiaolong Ma
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Jiaqi Wu
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Xiaolong Gao
- Department of Radiology, Luodian Hospital, Shanghai University, Shanghai, 201908, P. R. China
- Department of Radiology, Baoshan District, Luodian Hospital, Shanghai, 201908, P. R. China
| | - Peijun Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| |
Collapse
|
27
|
Sugiyarto G, Lau D, Hill SL, Arcia-Anaya D, Boulanger DSM, Parkes EE, James E, Elliott T. Reactivation of low avidity tumor-specific CD8 + T cells associates with immunotherapeutic efficacy of anti-PD-1. J Immunother Cancer 2023; 11:e007114. [PMID: 37586767 PMCID: PMC10432680 DOI: 10.1136/jitc-2023-007114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND CD8+ T cells are a highly diverse population of cells with distinct phenotypic functions that can influence immunotherapy outcomes. Further insights on the roles of CD8+ specificities and TCR avidity of naturally arising tumor-specific T cells, where both high and low avidity T cells recognizing the same peptide-major histocompatibility complex (pMHC) coexist in the same tumor, are crucial for understanding T cell exhaustion and resistance to PD-1 immunotherapy. METHODS CT26 models were treated with anti-PD-1 on days 3, 6 and 9 following subcutaneous tumor implantation generating variable responses during early tumor development. Tetramer staining was performed to determine the frequency and avidity of CD8+ T cells targeting the tumor-specific epitope GSW11 and confirmed with tetramer competition assays. Functional characterization of high and low avidity GSW11-specific CD8+ T cells was conducted using flow cytometry and bulk RNA-seq. In vitro cytotoxicity assays and in vivo adoptive transfer experiments were performed to determine the cytotoxicity of high and low avidity populations. RESULTS Treatment success with anti-PD-1 was associated with the preferential expansion of low avidity (Tetlo) GSW11-specific CD8+ T cells with Vβ TCR expressing clonotypes. High avidity T cells (Tethi), if present, were only found in progressing PD-1 refractory tumors. Tetlo demonstrated precursor exhausted or progenitor T cell phenotypes marked by higher expression of Tcf-1 and T-bet, and lower expression of the exhaustion markers CD39, PD-1 and Eomes compared with Tethi, whereas Tethi cells were terminally exhausted. Transcriptomics analyses showed pathways related to TCR signaling, cytotoxicity and oxidative phosphorylation were significantly enriched in Tetlo found in both regressing and progressing tumors compared with Tethi, whereas genes related to DNA damage, apoptosis and autophagy were downregulated. In vitro studies showed that Tetlo exhibits higher cytotoxicity than Tethi. Adoptive transfer of Tetlo showed more effective tumor control than Tethi, and curative responses were achieved when Tetlo was combined with two doses of anti-PD-1. CONCLUSIONS Targeting subdominant T cell responses with lower avidity against pMHC affinity neoepitopes showed potential for improving PD-1 immunotherapy. Future interventions may consider expanding low avidity populations via vaccination or adoptive transfer.
Collapse
Affiliation(s)
- Gessa Sugiyarto
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Doreen Lau
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Samuel Luke Hill
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David Arcia-Anaya
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Denise S M Boulanger
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Eileen E Parkes
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Edward James
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tim Elliott
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Lim YS, Lee AG, Jiang X, Scott JM, Cofie A, Kumar S, Kennedy D, Granville DJ, Shin H. NK cell-derived extracellular granzyme B drives epithelial ulceration during HSV-2 genital infection. Cell Rep 2023; 42:112410. [PMID: 37071533 DOI: 10.1016/j.celrep.2023.112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/25/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
Genital herpes is characterized by recurrent episodes of epithelial blistering. The mechanisms causing this pathology are ill defined. Using a mouse model of vaginal herpes simplex virus 2 (HSV-2) infection, we show that interleukin-18 (IL-18) acts upon natural killer (NK) cells to promote accumulation of the serine protease granzyme B in the vagina, coinciding with vaginal epithelial ulceration. Genetic loss of granzyme B or therapeutic inhibition by a specific protease inhibitor reduces disease and restores epithelial integrity without altering viral control. Distinct effects of granzyme B and perforin deficiency on pathology indicates that granzyme B acts independent of its classic cytotoxic role. IL-18 and granzyme B are markedly elevated in human herpetic ulcers compared with non-herpetic ulcers, suggesting engagement of these pathways in HSV-infected patients. Our study reveals a role for granzyme B in destructing mucosal epithelium during HSV-2 infection, identifying a therapeutic target to augment treatment of genital herpes.
Collapse
Affiliation(s)
- Ying Shiang Lim
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aisha G Lee
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoping Jiang
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason M Scott
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adjoa Cofie
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sandeep Kumar
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dania Kennedy
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David J Granville
- International Collaboration on Repair Discoveries Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC V5V 3P1, Canada
| | - Haina Shin
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
29
|
Ghazvinian Z, Abdolahi S, Tokhanbigli S, Tarzemani S, Piccin A, Reza Zali M, Verdi J, Baghaei K. Contribution of natural killer cells in innate immunity against colorectal cancer. Front Oncol 2023; 12:1077053. [PMID: 36686835 PMCID: PMC9846259 DOI: 10.3389/fonc.2022.1077053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Natural killer cells are members of the innate immune system and promote cytotoxic activity against tumor or infected cells independently from MHC recognition. NK cells are modulated by the expression of activator/inhibitory receptors. The ratio of this activator/inhibitory receptors is responsible for the cytotoxic activity of NK cells toward the target cells. Owing to the potent anti-tumor properties of NK cells, they are considered as interesting approach in tumor treatment. Colorectal cancer (CRC) is the second most common cause of death in the world and the incidence is about 2 million new cases per year. Metastatic CRC is accompanied by a poor prognosis with less than three years of overall survival. Chemotherapy and surgery are the most adopted treatments. Besides, targeted therapy and immune checkpoint blockade are novel approach to CRC treatment. In these patients, circulating NK cells are a prognostic marker. The main target of CRC immune cell therapy is to improve the tumor cell's recognition and elimination by immune cells. Adaptive NK cell therapy is the milestone to achieve the purpose. Allogeneic NK cell therapy has been widely investigated within clinical trials. In this review, we focus on the NK related approaches including CAR NK cells, cell-based vaccines, monoclonal antibodies and immunomodulatory drugs against CRC tumoral cells.
Collapse
Affiliation(s)
- Zeinab Ghazvinian
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Tarzemani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Piccin
- Northern Ireland Blood Transfusion Service, Belfast, United Kingdom
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Lau LS, Mohammed NBB, Dimitroff CJ. Decoding Strategies to Evade Immunoregulators Galectin-1, -3, and -9 and Their Ligands as Novel Therapeutics in Cancer Immunotherapy. Int J Mol Sci 2022; 23:15554. [PMID: 36555198 PMCID: PMC9778980 DOI: 10.3390/ijms232415554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Galectins are a family of ß-galactoside-binding proteins that play a variety of roles in normal physiology. In cancer, their expression levels are typically elevated and often associated with poor prognosis. They are known to fuel a variety of cancer progression pathways through their glycan-binding interactions with cancer, stromal, and immune cell surfaces. Of the 15 galectins in mammals, galectin (Gal)-1, -3, and -9 are particularly notable for their critical roles in tumor immune escape. While these galectins play integral roles in promoting cancer progression, they are also instrumental in regulating the survival, differentiation, and function of anti-tumor T cells that compromise anti-tumor immunity and weaken novel immunotherapies. To this end, there has been a surge in the development of new strategies to inhibit their pro-malignancy characteristics, particularly in reversing tumor immunosuppression through galectin-glycan ligand-targeting methods. This review examines some new approaches to evading Gal-1, -3, and -9-ligand interactions to interfere with their tumor-promoting and immunoregulating activities. Whether using neutralizing antibodies, synthetic peptides, glyco-metabolic modifiers, competitive inhibitors, vaccines, gene editing, exo-glycan modification, or chimeric antigen receptor (CAR)-T cells, these methods offer new hope of synergizing their inhibitory effects with current immunotherapeutic methods and yielding highly effective, durable responses.
Collapse
Affiliation(s)
- Lee Seng Lau
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Norhan B. B. Mohammed
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena 83523, Egypt
| | - Charles J. Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
31
|
Rahmani S, Yazdanpanah N, Rezaei N. Natural killer cells and acute myeloid leukemia: promises and challenges. Cancer Immunol Immunother 2022; 71:2849-2867. [PMID: 35639116 PMCID: PMC10991240 DOI: 10.1007/s00262-022-03217-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Acute myeloid leukemia (AML) is considered as one of the most malignant conditions of the bone marrow. Over the past few decades, despite substantial progresses in the management of AML, relapse remission remains a major problem. Natural killer cells (NK cells) are known as a unique component of the innate immune system. Due to swift tumor detection, distinct cytotoxic action, and extensive immune interaction, NK cells have been used in various cancer settings for decades. It has been a growing knowledge of therapeutic magnitudes ranging from adoptive NK cell transfer to chimeric antigen receptor NK cells, aiming to achieve better therapeutic responses in patients with AML. In this article, the potentials of NK cells for treatment of AML are highlighted, and challenges for such therapeutic methods are discussed. In addition, the clinical application of NK cells, mainly in patients with AML, is pictured according to the existing evidence.
Collapse
Affiliation(s)
- Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Weigelin B, Friedl P. T cell-mediated additive cytotoxicity - death by multiple bullets. Trends Cancer 2022; 8:980-987. [PMID: 35965200 DOI: 10.1016/j.trecan.2022.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022]
Abstract
Immune effector cells, including cytotoxic T cells (CTLs), induce apoptosis and eliminate target cells by direct cell-cell contacts. In vivo, CTLs fail to efficiently kill solid tumor cells by individual contacts but rely upon multihit interactions by many CTLs (swarming). Recent evidence has indicated that multihit interactions by CTLs induce a series of sublethal damage events in target cells, including perforin-mediated membrane damage, induction of reactive oxygen species (ROS), nuclear envelope rupture, and DNA damage. Individual damage can be repaired, but when induced in rapid sequence, sublethal damage can accumulate and induce target cell death. Here, we summarize the sublethal damage and additive cytotoxicity concepts for CTL-induced and other cell stresses and discuss the implications for improving immunotherapy and multitargeted anticancer therapies.
Collapse
Affiliation(s)
- Bettina Weigelin
- Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| | - Peter Friedl
- Department of Cell Biology, RIMLS, Radboud University Medical Center, Nijmegen, The Netherlands; David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Cancer Genomics Centre Netherlands (CGC.nl), Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
33
|
Asmamaw Dejenie T, Tiruneh G/Medhin M, Dessie Terefe G, Tadele Admasu F, Wale Tesega W, Chekol Abebe E. Current updates on generations, approvals, and clinical trials of CAR T-cell therapy. Hum Vaccin Immunother 2022; 18:2114254. [PMID: 36094837 DOI: 10.1080/21645515.2022.2114254] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a novel, customized immunotherapy that is considered a 'living' and self-replicating drug to treat cancer, sometimes resulting in a complete cure. CAR T-cells are manufactured through genetic engineering of T-cells by equipping them with CARs to detect and target antigen-expressing cancer cells. CAR is designed to have an ectodomain extracellularly, a transmembrane domain spanning the cell membrane, and an endodomain intracellularly. Since its first discovery, the CAR structure has evolved greatly, from the first generation to the fifth generation, to offer new therapeutic alternatives for cancer patients. This treatment has achieved long-term and curative therapeutic efficacy in multiple blood malignancies that nowadays profoundly change the treatment landscape of lymphoma, leukemia, and multiple myeloma. But CART-cell therapy is associated with several hurdles, such as limited therapeutic efficacy, little effect on solid tumors, adverse effects, expensive cost, and feasibility issues, hindering its broader implications.
Collapse
Affiliation(s)
- Tadesse Asmamaw Dejenie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Markeshaw Tiruneh G/Medhin
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Gashaw Dessie Terefe
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Fitalew Tadele Admasu
- Department of Biochemistry, College of Medicine and Health Science Arbaminch University, Arbaminch, Ethiopia
| | - Wondwossen Wale Tesega
- Department of Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Medicine and Health Science Arbaminch University, Arbaminch, Ethiopia
| |
Collapse
|
34
|
Yekehfallah V, Pahlavanneshan S, Sayadmanesh A, Momtahan Z, Ma B, Basiri M. Generation and Functional Characterization of PLAP CAR-T Cells against Cervical Cancer Cells. Biomolecules 2022; 12:biom12091296. [PMID: 36139135 PMCID: PMC9496028 DOI: 10.3390/biom12091296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is one of the cancer treatment modalities that has recently shown promising results in treating hematopoietic malignancies. However, one of the obstacles that need to be addressed in solid tumors is the on-target and off-tumor cytotoxicity due to the lack of specific tumor antigens with low expression in healthy cells. Placental alkaline phosphatase (PLAP) is a shared placenta- and tumor-associated antigen (TAA) that is expressed in ovarian, cervical, colorectal, and prostate cancers and is negligible in normal cells. In this study, we constructed second-generation CAR T cells with a fully human scFv against PLAP antigen andthen evaluated the characteristics of PLAP CAR T cells in terms of tonic signaling and differentiation in comparison with ΔPLAP CAR T cells and CD19 CAR T cells. In addition, by co-culturing PLAP CAR T cells with HeLa and CaSki cells, we analyzed the tumor-killing functions and the secretion of anti-tumor molecules. Results showed that PLAP CAR T cells not only proliferated during co-culture with cancer cells but also eliminated them in vitro. We also observed increased secretion of IL-2, granzyme A, and IFN-γ by PLAP CAR T cells upon exposure to the target cells. In conclusion, PLAP CAR T cells are potential candidates for further investigation in cervical cancer and, potentially, other solid tumors.
Collapse
Affiliation(s)
- Vahid Yekehfallah
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665666311, Iran
| | - Saghar Pahlavanneshan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1968917313, Iran
| | - Ali Sayadmanesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665666311, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
| | - Zahra Momtahan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Bin Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Correspondence: (B.M.); (M.B.); Tel.: +86-21-62933631 (B.M.); +98-21-40223417 (M.B.)
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665666311, Iran
- Correspondence: (B.M.); (M.B.); Tel.: +86-21-62933631 (B.M.); +98-21-40223417 (M.B.)
| |
Collapse
|
35
|
Mukherjee AG, Wanjari UR, Namachivayam A, Murali R, Prabakaran DS, Ganesan R, Renu K, Dey A, Vellingiri B, Ramanathan G, Doss C. GP, Gopalakrishnan AV. Role of Immune Cells and Receptors in Cancer Treatment: An Immunotherapeutic Approach. Vaccines (Basel) 2022; 10:1493. [PMID: 36146572 PMCID: PMC9502517 DOI: 10.3390/vaccines10091493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/07/2022] Open
Abstract
Cancer immunotherapy moderates the immune system's ability to fight cancer. Due to its extreme complexity, scientists are working to put together all the puzzle pieces to get a clearer picture of the immune system. Shreds of available evidence show the connection between cancer and the immune system. Immune responses to tumors and lymphoid malignancies are influenced by B cells, γδT cells, NK cells, and dendritic cells (DCs). Cancer immunotherapy, which encompasses adoptive cancer therapy, monoclonal antibodies (mAbs), immune checkpoint therapy, and CART cells, has revolutionized contemporary cancer treatment. This article reviews recent developments in immune cell regulation and cancer immunotherapy. Various options are available to treat many diseases, particularly cancer, due to the progress in various immunotherapies, such as monoclonal antibodies, recombinant proteins, vaccinations (both preventative and curative), cellular immunotherapies, and cytokines.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - George Priya Doss C.
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
36
|
Kast J, Nozohouri S, Zhou D, Yago MR, Chen PW, Ahamadi M, Dutta S, Upreti VV. Recent advances and clinical pharmacology aspects of Chimeric Antigen Receptor (CAR) T-cellular therapy development. Clin Transl Sci 2022; 15:2057-2074. [PMID: 35677992 PMCID: PMC9468561 DOI: 10.1111/cts.13349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023] Open
Abstract
Advances in immuno-oncology have provided a variety of novel therapeutics that harness the innate immune system to identify and destroy neoplastic cells. It is noteworthy that acceptable safety profiles accompany the development of these targeted therapies, which result in efficacious cancer treatment with higher survival rates and lower toxicities. Adoptive cellular therapy (ACT) has shown promising results in inducing sustainable remissions in patients suffering from refractory diseases. Two main types of ACT include engineered Chimeric Antigen Receptor (CAR) T cells and T cell receptor (TCR) T cells. The application of these immuno-therapies in the last few years has been successful and has demonstrated a safe and rapid treatment regimen for solid and non-solid tumors. The current review presents an insight into the clinical pharmacology aspects of immuno-therapies, especially CAR-T cells. Here, we summarize the current knowledge of TCR and CAR-T cell immunotherapy with particular focus on the structure of CAR-T cells, the effects and toxicities associated with these therapies in clinical trials, risk mitigation strategies, dose selection approaches, and cellular kinetics. Finally, the quantitative approaches and modeling techniques used in the development of CAR-T cell therapies are described.
Collapse
Affiliation(s)
- Johannes Kast
- Clinical Pharmacology, Modeling & Simulation, Amgen Inc., South San Francisco, California, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Di Zhou
- Clinical Pharmacology, Modeling & Simulation, Amgen Inc., South San Francisco, California, USA
| | - Marc R Yago
- Clinical Pharmacology, Modeling & Simulation, Amgen Inc., South San Francisco, California, USA
| | - Po-Wei Chen
- Clinical Pharmacology, Modeling & Simulation, Amgen Inc., Thousand Oaks, California, USA
| | - Malidi Ahamadi
- Clinical Pharmacology, Modeling & Simulation, Amgen Inc., Thousand Oaks, California, USA
| | - Sandeep Dutta
- Clinical Pharmacology, Modeling & Simulation, Amgen Inc., Thousand Oaks, California, USA
| | - Vijay V Upreti
- Clinical Pharmacology, Modeling & Simulation, Amgen Inc., South San Francisco, California, USA
| |
Collapse
|
37
|
Razeghian E, Kameh MC, Shafiee S, Khalafi F, Jafari F, Asghari M, Kazemi K, Ilkhani S, Shariatzadeh S, Haj-Mirzaian A. The role of the natural killer (NK) cell modulation in breast cancer incidence and progress. Mol Biol Rep 2022; 49:10935-10948. [PMID: 36008609 DOI: 10.1007/s11033-022-07865-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/11/2022] [Indexed: 01/11/2023]
Abstract
The importance of the immune system on tumor surveillance has been investigated for many years, and its impact on controlling tumor progression has been verified. An important subgroup of the innate immune system is natural killer (NK) cells, whose essential function in modulating tumor behavior and suppressing metastasis and tumor growth has been demonstrated. The first idea of NK cells' crucial biological processes was demonstrated through their potent ability to conduct direct cellular cytotoxicity, even without former sensitization. These properties of NK cells allow them to recognize transformed cells that have attenuated self-ligand and express stress-induced ligands. Furthermore, secretion of various cytokines and chemokines after their activation leads to tumor elimination via either direct cytotoxic effect on malignant cells or activation of the adaptive immune system. In addition, novel immunotherapeutic approaches tend to take advantage of NK cells' ability, leading to antibody-based approaches, the formation of engineered CAR-NK cells, and adoptive cell transfer. However, the restricted functionality of NK cells and the inability to infiltrate tumors are its blind spots in breast cancer patients. In this review, we gathered newly acquired data on the biology and functions of NK cells in breast cancer and proposed ways to employ this knowledge for novel therapeutic approaches in cancers, particularly breast cancer.
Collapse
Affiliation(s)
- Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahdis Chahar Kameh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farima Khalafi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fehimeh Jafari
- Department of Radiation Oncology, Iran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Asghari
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Kazemi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arvin Haj-Mirzaian
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Understanding CAR T cell-tumor interactions: Paving the way for successful clinical outcomes. MED 2022; 3:538-564. [PMID: 35963235 DOI: 10.1016/j.medj.2022.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/29/2022] [Accepted: 05/02/2022] [Indexed: 12/08/2022]
Abstract
Since their approval 5 years ago, chimeric antigen receptor (CAR) T cells have gained great importance in the daily clinical practice and treatment of hematological malignancies, although many challenges to their use remain, such as limited long-term CAR T cell efficacy due to disease resistance or recurrence. After a brief overview of CAR T cells, their approval, therapeutic successes, and ongoing limitations, this review discusses what is known about CAR T cell activation, their expansion and persistence, their mechanisms of cytotoxicity, and how the CAR design and/or tumor-intrinsic factors influence these functions. This review also examines the role of cytokines in CAR T cell-associated toxicity and their effects on CAR T cell function. Furthermore, we discuss several resistance mechanisms, including obstacles associated with CAR treatment of solid tumors. Finally, we provide a future outlook on next-generation strategies to further optimize CARs and improve clinical outcomes.
Collapse
|
39
|
Wei Y, Bingyu W, Lei Y, Xingxing Y. The antifibrotic role of natural killer cells in liver fibrosis. Exp Biol Med (Maywood) 2022; 247:1235-1243. [PMID: 35475367 PMCID: PMC9379607 DOI: 10.1177/15353702221092672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Liver fibrosis is the common pathological change of chronic liver diseases characterized by increased deposition of extracellular matrix and reduced matrix degradation. In response to liver injury caused by a variety of pathogenic agents, such as virus and alcohol, hepatic stellate cells (HSCs) are differentiated into myofibroblast-like cells and produce excessive collagens, thus resulting in fibrogenesis. Natural killer (NK) cells are the essential innate immune cells in the liver and generally control fibrosis by killing activated HSCs. This review briefly describes the fibrogenesis process and the phenotypic features of hepatic NK cells. Besides, it focuses on the antifibrotic mechanisms of NK cells and explores the potential of activating NK cells as a therapeutic strategy for the disease.
Collapse
Affiliation(s)
- Yuan Wei
- Department of Hepatology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410000, China
| | - Wang Bingyu
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150001, China
| | - Yang Lei
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150001, China
| | - Yuan Xingxing
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150001, China,Yuan Xingxing.
| |
Collapse
|
40
|
Shaghayegh G, Cooksley C, Ramezanpour M, Wormald PJ, Psaltis AJ, Vreugde S. Chronic Rhinosinusitis, S. aureus Biofilm and Secreted Products, Inflammatory Responses, and Disease Severity. Biomedicines 2022; 10:1362. [PMID: 35740385 PMCID: PMC9220248 DOI: 10.3390/biomedicines10061362] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a persistent inflammation of the nasal cavity and paranasal sinuses associated with tissue remodelling, dysfunction of the sinuses' natural defence mechanisms, and induction of different inflammatory clusters. The etiopathogenesis of CRS remains elusive, and both environmental factors, such as bacterial biofilms and the host's general condition, are thought to play a role. Bacterial biofilms have significant clinical relevance due to their potential to cause resistance to antimicrobial therapy and host defenses. Despite substantial medical advances, some CRS patients suffer from recalcitrant disease that is unresponsive to medical and surgical treatments. Those patients often have nasal polyps with tissue eosinophilia, S. aureus-dominant mucosal biofilm, comorbid asthma, and a severely compromised quality of life. This review aims to summarise the contemporary knowledge of inflammatory cells/pathways in CRS, the role of bacterial biofilm, and their impact on the severity of the disease. Here, an emphasis is placed on S. aureus biofilm and its secreted products. A better understanding of these factors might offer important diagnostic and therapeutic perceptions for recalcitrant disease.
Collapse
Affiliation(s)
- Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Clare Cooksley
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Mahnaz Ramezanpour
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| |
Collapse
|
41
|
Ramírez-Labrada A, Pesini C, Santiago L, Hidalgo S, Calvo-Pérez A, Oñate C, Andrés-Tovar A, Garzón-Tituaña M, Uranga-Murillo I, Arias MA, Galvez EM, Pardo J. All About (NK Cell-Mediated) Death in Two Acts and an Unexpected Encore: Initiation, Execution and Activation of Adaptive Immunity. Front Immunol 2022; 13:896228. [PMID: 35651603 PMCID: PMC9149431 DOI: 10.3389/fimmu.2022.896228] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
NK cells are key mediators of immune cell-mediated cytotoxicity toward infected and transformed cells, being one of the main executors of cell death in the immune system. NK cells recognize target cells through an array of inhibitory and activating receptors for endogenous or exogenous pathogen-derived ligands, which together with adhesion molecules form a structure known as immunological synapse that regulates NK cell effector functions. The main and best characterized mechanisms involved in NK cell-mediated cytotoxicity are the granule exocytosis pathway (perforin/granzymes) and the expression of death ligands. These pathways are recognized as activators of different cell death programmes on the target cells leading to their destruction. However, most studies analyzing these pathways have used pure recombinant or native proteins instead of intact NK cells and, thus, extrapolation of the results to NK cell-mediated cell death might be difficult. Specially, since the activation of granule exocytosis and/or death ligands during NK cell-mediated elimination of target cells might be influenced by the stimulus received from target cells and other microenvironment components, which might affect the cell death pathways activated on target cells. Here we will review and discuss the available experimental evidence on how NK cells kill target cells, with a special focus on the different cell death modalities that have been found to be activated during NK cell-mediated cytotoxicity; including apoptosis and more inflammatory pathways like necroptosis and pyroptosis. In light of this new evidence, we will develop the new concept of cell death induced by NK cells as a new regulatory mechanism linking innate immune response with the activation of tumour adaptive T cell responses, which might be the initiating stimulus that trigger the cancer-immunity cycle. The use of the different cell death pathways and the modulation of the tumour cell molecular machinery regulating them might affect not only tumour cell elimination by NK cells but, in addition, the generation of T cell responses against the tumour that would contribute to efficient tumour elimination and generate cancer immune memory preventing potential recurrences.
Collapse
Affiliation(s)
- Ariel Ramírez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Centro de Investigación Biomédica de Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Llipsy Santiago
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Sandra Hidalgo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Adanays Calvo-Pérez
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Carmen Oñate
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Alejandro Andrés-Tovar
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Marcela Garzón-Tituaña
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Maykel A Arias
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Eva M Galvez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Julián Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, Fundación Agencia Aragonesa para la Investigación y el Desarrollo ARAID Foundation, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
42
|
Xie J, El Rami F, Zhou K, Simonetta F, Chen Z, Zheng X, Chen M, Balakrishnan PB, Dai SY, Murty S, Alam IS, Baker J, Negrin RS, Gambhir SS, Rao J. Multiparameter Longitudinal Imaging of Immune Cell Activity in Chimeric Antigen Receptor T Cell and Checkpoint Blockade Therapies. ACS CENTRAL SCIENCE 2022; 8:590-602. [PMID: 35647285 PMCID: PMC9136971 DOI: 10.1021/acscentsci.2c00142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 05/17/2023]
Abstract
Longitudinal multimodal imaging presents unique opportunities for noninvasive surveillance and prediction of treatment response to cancer immunotherapy. In this work we first designed a novel granzyme B activated self-assembly small molecule, G-SNAT, for the assessment of cytotoxic T lymphocyte mediated cancer cell killing. G-SNAT was found to specifically detect the activity of granzyme B within the cytotoxic granules of activated T cells and engaged cancer cells in vitro. In lymphoma tumor-bearing mice, the retention of cyanine 5 labeled G-SNAT-Cy5 correlated to CAR T cell mediated granzyme B exocytosis and tumor eradication. In colorectal tumor-bearing transgenic mice with hematopoietic cells expressing firefly luciferase, longitudinal bioluminescence and fluorescence imaging revealed that after combination treatment of anti-PD-1 and anti-CTLA-4, the dynamics of immune cell trafficking, tumor infiltration, and cytotoxic activity predicted the therapeutic outcome before tumor shrinkage was evident. These results support further development of G-SNAT for imaging early immune response to checkpoint blockade and CAR T-cell therapy in patients and highlight the utility of multimodality imaging for improved mechanistic insights into cancer immunotherapy.
Collapse
Affiliation(s)
- Jinghang Xie
- Department
of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Fadi El Rami
- Department
of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Kaixiang Zhou
- Department
of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Federico Simonetta
- Division
of Blood and Marrow Transplantation, Department of Medicine, Stanford University Medical Center, Stanford, California 94305, United States
| | - Zixin Chen
- Department of Chemistry, Department of Bioengineering, and Department of Materials Science
& Engineering, Stanford University, Stanford, California 94305, United States
| | - Xianchuang Zheng
- Department
of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Min Chen
- Department
of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Preethi B. Balakrishnan
- Department
of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Sheng-Yao Dai
- Department
of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Surya Murty
- Department
of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Chemistry, Department of Bioengineering, and Department of Materials Science
& Engineering, Stanford University, Stanford, California 94305, United States
| | - Israt S. Alam
- Department
of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jeanette Baker
- Division
of Blood and Marrow Transplantation, Department of Medicine, Stanford University Medical Center, Stanford, California 94305, United States
| | - Robert S. Negrin
- Division
of Blood and Marrow Transplantation, Department of Medicine, Stanford University Medical Center, Stanford, California 94305, United States
| | - Sanjiv S. Gambhir
- Department
of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Chemistry, Department of Bioengineering, and Department of Materials Science
& Engineering, Stanford University, Stanford, California 94305, United States
| | - Jianghong Rao
- Department
of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Chemistry, Department of Bioengineering, and Department of Materials Science
& Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
43
|
McKenzie B, Khazen R, Valitutti S. Greek Fire, Poison Arrows, and Scorpion Bombs: How Tumor Cells Defend Against the Siege Weapons of Cytotoxic T Lymphocytes. Front Immunol 2022; 13:894306. [PMID: 35592329 PMCID: PMC9110820 DOI: 10.3389/fimmu.2022.894306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023] Open
Abstract
CD8+ cytotoxic T lymphocytes (CTLs) are the main cellular effectors of the adaptive immune response against cancer cells, which in turn have evolved sophisticated cellular defense mechanisms to withstand CTL attack. Herein we provide a critical review of the pertinent literature on early and late attack/defense events taking place at the CTL/target cell lytic synapse. We examine the earliest steps of CTL-mediated cytotoxicity (“the poison arrows”) elicited within seconds of CTL/target cell encounter, which face commensurately rapid synaptic repair mechanisms on the tumor cell side, providing the first formidable barrier to CTL attack. We examine how breach of this first defensive barrier unleashes the inextinguishable “Greek fire” in the form of granzymes whose broad cytotoxic potential is linked to activation of cell death executioners, injury of vital organelles, and destruction of intracellular homeostasis. Herein tumor cells deploy slower but no less sophisticated defensive mechanisms in the form of enhanced autophagy, increased reparative capacity, and dysregulation of cell death pathways. We discuss how the newly discovered supra-molecular attack particles (SMAPs, the “scorpion bombs”), seek to overcome the robust defensive mechanisms that confer tumor cell resistance. Finally, we discuss the implications of the aforementioned attack/defense mechanisms on the induction of regulated cell death (RCD), and how different contemporary RCD modalities (including apoptosis, pyroptosis, and ferroptosis) may have profound implications for immunotherapy. Thus, we propose that understanding and targeting multiple steps of the attack/defense process will be instrumental to enhance the efficacy of CTL anti-tumor activity and meet the outstanding challenges in clinical immunotherapy.
Collapse
Affiliation(s)
- Brienne McKenzie
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Roxana Khazen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Salvatore Valitutti
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France.,Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| |
Collapse
|
44
|
Hagemann K, Riecken K, Jung J, Hildebrandt H, Menzel S, Bunders M, Fehse B, Koch-Nolte F, Heinrich F, Peine S, Schulze Zur Wiesch J, Brehm TT, Addo MM, Lütgehetmann M, Altfeld M. Natural killer cell-mediated ADCC in SARS-CoV-2-infected individuals and vaccine recipients. Eur J Immunol 2022; 52:1297-1307. [PMID: 35416291 PMCID: PMC9087393 DOI: 10.1002/eji.202149470] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022]
Abstract
COVID‐19, caused by SARS‐CoV‐2, has emerged as a global pandemic. While immune responses of the adaptive immune system have been in the focus of research, the role of NK cells in COVID‐19 remains less well understood. Here, we characterized NK cell‐mediated SARS‐CoV‐2 antibody‐dependent cellular cytotoxicity (ADCC) against SARS‐CoV‐2 spike‐1 (S1) and nucleocapsid (NC) protein. Serum samples from SARS‐CoV‐2 resolvers induced significant CD107a‐expression by NK cells in response to S1 and NC, while serum samples from SARS‐CoV‐2‐negative individuals did not. Furthermore, serum samples from individuals that received the BNT162b2 vaccine induced strong CD107a expression by NK cells that increased with the second vaccination and was significantly higher than observed in infected individuals. As expected, vaccine‐induced responses were only directed against S1 and not against NC protein. S1‐specific CD107a responses by NK cells were significantly correlated to NK cell‐mediated killing of S1‐expressing cells. Interestingly, screening of serum samples collected prior to the COVID‐19 pandemic identified two individuals with cross‐reactive antibodies against SARS‐CoV‐2 S1, which also induced degranulation of NK cells. Taken together, these data demonstrate that antibodies induced by SARS‐CoV‐2 infection and anti‐SARS‐CoV‐2 vaccines can trigger significant NK cell‐mediated ADCC activity, and identify some cross‐reactive ADCC‐activity against SARS‐CoV‐2 by endemic coronavirus‐specific antibodies.
Collapse
Affiliation(s)
- Kerri Hagemann
- Leibniz Institute for Experimental Virology, Department of Virus Immunology, Hamburg, 20251, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Johannes Jung
- Leibniz Institute for Experimental Virology, Department of Virus Immunology, Hamburg, 20251, Germany
| | - Heike Hildebrandt
- Leibniz Institute for Experimental Virology, Department of Virus Immunology, Hamburg, 20251, Germany
| | - Stephan Menzel
- University Medical Center Hamburg-Eppendorf, Institute of Immunology, Hamburg, 20246, Germany
| | - Madeleine Bunders
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.,German Center for Infection Disease (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Friedrich Koch-Nolte
- University Medical Center Hamburg-Eppendorf, Institute of Immunology, Hamburg, 20246, Germany
| | - Fabian Heinrich
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.,Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Sven Peine
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Julian Schulze Zur Wiesch
- German Center for Infection Disease (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Thomas T Brehm
- German Center for Infection Disease (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Marylyn M Addo
- German Center for Infection Disease (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.,Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, 20359, Germany
| | - Marc Lütgehetmann
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Marcus Altfeld
- Leibniz Institute for Experimental Virology, Department of Virus Immunology, Hamburg, 20251, Germany.,German Center for Infection Disease (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
45
|
Ketamine Does Not Change Natural Killer Cell Cytotoxicity in Patients Undergoing Cancer Surgery: Basic Experiment and Clinical Trial. JOURNAL OF ONCOLOGY 2022; 2022:8946269. [PMID: 35432531 PMCID: PMC9012621 DOI: 10.1155/2022/8946269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022]
Abstract
Background. The natural killer cell cytotoxicity (NKCC) suppressed by nociceptive stimuli, systemic inflammation, and drugs used during cancer surgery may be associated with poor outcomes. We investigated the potential modulation of ketamine on NKCC in vitro and in a clinical setting during cancer surgery. Subjects and Methods. The NK cell line KHYG1 was cultured for the in vitro experiments. The NK cells were treated with 3 and 10 μM ketamine (the ketamine groups) or without ketamine (the control) for 4, 24, and 48 h. The posttreatment NKCC was measured with a lactate dehydrogenase assay and compared among the treatment groups. For the clinical study, lung cancer patients (
) and prostate cancer patients (
) who underwent radical cancer surgeries at a teaching hospital were recruited. The patients received propofol and remifentanil superposed with or without ketamine (ketamine group,
; control group,
). The primary outcome was the difference in NKCC between these groups. Results. In the in vitro experiment, the cytotoxicity of NK cells was similar with or without ketamine at all of the incubation periods. The patients’ NKCC was also not significantly different between the patients who received ketamine and those who did not, at the baseline (
% vs.
%,
) and at 24 h (
% vs.
%, respectively,
). Conclusion. Ketamine does not change NKCC in vitro or in the clinical setting of patients who undergo cancer surgery. This trial is registered with UMIN000021231.
Collapse
|
46
|
The tricks for fighting against cancer using CAR NK cells: A review. Mol Cell Probes 2022; 63:101817. [DOI: 10.1016/j.mcp.2022.101817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023]
|
47
|
Zhu M, Zhang H, Pedersen KS, Foster NR, Jaszewski BL, Liu X, Hirdler JB, An Z, Bekaii-Saab TS, Halfdanarson TR, Boland PM, Yan Y, Hubbard JH, Ma WW, Yoon HH, Revzin A, Fernandez-Zapico ME, Overman MJ, McWilliams RR, Dong H. Understanding Suboptimal Response to Immune Checkpoint Inhibitors. Adv Biol (Weinh) 2022; 7:e2101319. [PMID: 35343107 DOI: 10.1002/adbi.202101319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/28/2022] [Indexed: 12/31/2022]
Abstract
Immune checkpoint inhibitors (ICIs), as a novel class of anticancer therapy, can be more efficacious and less toxic than chemotherapy, but their clinical success is confined to certain tumor types. Elucidating their targets, mechanisms and scope of action, and potential synergism with chemotherapy and/or targeted therapies are critical to widen their clinical indications. Treatment response to an ICI targeting programmed death-1 (anti-PD-1) is sought to be understood here by conducting a preplanned correlative analysis of a phase II clinical trial in patients with small bowel adenocarcinoma (SBA). The cytolytic capacity of circulating immune cells in cancer patients using a novel ex vivo cytotoxicity assay is evaluated, and the utility of circulating biomarkers is investigated to predict and monitor the treatment effect of anti-PD-1. Baseline expression of Bim and NKG7 and upregulation of CX3CR1 in circulating T cells are associated with the clinical benefit of anti-PD-1 in patients with SBA. Overall, these findings suggest that the frequency and cytolytic capacity of circulating, effector immune cells may differentiate clinical response to ICIs, providing a strong rationale to support immune monitoring using patient peripheral blood.
Collapse
Affiliation(s)
- Mojun Zhu
- Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Henan Zhang
- Urology and Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Nathan R Foster
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Brandy L Jaszewski
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xin Liu
- Urology and Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jacob B Hirdler
- Urology and Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zesheng An
- Urology and Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | - Patrick M Boland
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Yiyi Yan
- Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Wen Wee Ma
- Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Harry H Yoon
- Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alexander Revzin
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | | | - Haidong Dong
- Urology and Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
48
|
Qian S, Villarejo-Campos P, Guijo I, Hernández-Villafranca S, García-Olmo D, González-Soares S, Guadalajara H, Jiménez-Galanes S, Qian C. Update for Advance CAR-T Therapy in Solid Tumors, Clinical Application in Peritoneal Carcinomatosis From Colorectal Cancer and Future Prospects. Front Immunol 2022; 13:841425. [PMID: 35401510 PMCID: PMC8990899 DOI: 10.3389/fimmu.2022.841425] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
Latest advances in the field of cancer immunotherapy have developed the (Chimeric Antigen Receptor) CAR-T cell therapy. This therapy was first used in hematological malignancies which obtained promising results; therefore, the use of CAR-T cells has become a popular approach for treating non-solid tumors. CAR-T cells consist of T-lymphocytes that are engineered to express an artificial receptor against any surface antigen of our choice giving us the capacity of offering precise and personalized treatment. This leaded to the development of CAR-T cells for treating solid tumors with the hope of obtaining the same result; however, their use in solid tumor and their efficacy have not achieved the expected results. The reason of these results is because solid tumors have some peculiarities that are not present in hematological malignancies. In this review we explain how CAR-T cells are made, their mechanism of action, adverse effect and how solid tumors can evade their action, and also we summarize their use in colorectal cancer and peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Siyuan Qian
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | | | - Ismael Guijo
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | | | - Damián García-Olmo
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
- Department of Surgery, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara González-Soares
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Héctor Guadalajara
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | | | - Cheng Qian
- Chongqing Precision Biotechnology Co. Ltd, Chongqing, China
| |
Collapse
|
49
|
Tibbs E, Cao X. Emerging Canonical and Non-Canonical Roles of Granzyme B in Health and Disease. Cancers (Basel) 2022; 14:1436. [PMID: 35326588 PMCID: PMC8946077 DOI: 10.3390/cancers14061436] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
The Granzyme (Gzm) family has classically been recognized as a cytotoxic tool utilized by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells to illicit cell death to infected and cancerous cells. Their importance is established based on evidence showing that deficiencies in these cell death executors result in defective immune responses. Recent findings have shown the importance of Granzyme B (GzmB) in regulatory immune cells, which may contribute to tumor growth and immune evasion during cancer development. Other studies have shown that members of the Gzm family are important for biological processes such as extracellular matrix remodeling, angiogenesis and organized vascular degradation. With this growing body of evidence, it is becoming more important to understand the broader function of Gzm's rather than a specific executor of cell death, and we should be aware of the many alternative roles that Gzm's play in physiological and pathological conditions. Therefore, we review the classical as well as novel non-canonical functions of GzmB and discuss approaches to utilize these new findings to address current gaps in our understanding of the immune system and tissue development.
Collapse
Affiliation(s)
- Ellis Tibbs
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA;
| | - Xuefang Cao
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA;
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
50
|
Tuomela K, Mukherjee D, Ambrose AR, Harikrishnan A, Mole H, Hurlstone A, Önfelt B, Honeychurch J, Davis DM. Radiotherapy transiently reduces the sensitivity of cancer cells to lymphocyte cytotoxicity. Proc Natl Acad Sci U S A 2022; 119:e2111900119. [PMID: 35042775 PMCID: PMC8785960 DOI: 10.1073/pnas.2111900119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
The impact of radiotherapy on the interaction between immune cells and cancer cells is important not least because radiotherapy can be used alongside immunotherapy as a cancer treatment. Unexpectedly, we found that X-ray irradiation of cancer cells induced significant resistance to natural killer (NK) cell killing. This was true across a wide variety of cancer-cell types as well as for antibody-dependent cellular cytotoxicity. Resistance appeared 72 h postirradiation and persisted for 2 wk. Resistance could also occur independently of radiotherapy through pharmacologically induced cell-cycle arrest. Crucially, multiple steps in NK-cell engagement, synapse assembly, and activation were unaffected by target cell irradiation. Instead, radiotherapy caused profound resistance to perforin-induced calcium flux and lysis. Resistance also occurred to a structurally similar bacterial toxin, streptolysin O. Radiotherapy did not affect the binding of pore-forming proteins at the cell surface or membrane repair. Rather, irradiation instigated a defect in functional pore formation, consistent with phosphatidylserine-mediated perforin inhibition. In vivo, radiotherapy also led to a significant reduction in NK cell-mediated clearance of cancer cells. Radiotherapy-induced resistance to perforin also constrained chimeric antigen receptor T-cell cytotoxicity. Together, these data establish a treatment-induced resistance to lymphocyte cytotoxicity that is important to consider in the design of radiotherapy-immunotherapy protocols.
Collapse
Affiliation(s)
- Karoliina Tuomela
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom
| | - Debayan Mukherjee
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Ashley R Ambrose
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom
| | - Ashish Harikrishnan
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom
| | - Holly Mole
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom
| | - Adam Hurlstone
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom
| | - Björn Önfelt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Applied Physics, Science for Life Laboratory, Kungliga Tekniska Högskolan Royal Institute of Technology, 17165 Stockholm, Sweden
| | - Jamie Honeychurch
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Daniel M Davis
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom;
| |
Collapse
|