1
|
Hu MH, Fan D, Tu HF, Tsai YC, He L, Zhou Z, Cheng M, Xing D, Wang S, Wu A, Wu TC, Hung CF. Electroporation-mediated novel albumin-fused Flt3L DNA delivery promotes cDC1-associated anticancer immunity. Gene Ther 2025; 32:277-286. [PMID: 39472678 DOI: 10.1038/s41434-024-00497-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 05/28/2025]
Abstract
Dendritic cells (DCs) constitute a distinct type of immune cell found within tumors, serving a central role in mediating tumor antigen-specific immunity against cancer cells. Frequently, DC functions are dysregulated by the immunosuppressive signals present within the tumor microenvironment (TME). Consequently, DC manipulation holds great potential to enhance the cytotoxic T cell response against cancer diseases. One strategy involves administering Fms-like tyrosine kinase receptor 3 ligand (Flt3L), a vitally important cytokine for DC development. In this current study, the electroporation-mediated delivery of a novel albumin-fused Flt3L DNA (alb-Flt3L DNA) demonstrated the ability to induce an anti-tumor immune response. This albumin fusion construct possesses more persistent bioactivity in targeted organs. Furthermore, TC-1-bearing-C57BL/6 mice receiving alb-Flt3L DNA treatment presented better tumor control and superior survival. Cellular analysis revealed that alb-Flt3L DNA administration promoted robust DC and cDC1 expansion. In addition, increased levels of IFN-γ-secreting CD8+ lymphocytes were found in correlation to greater cDC1 population. Moreover, the toxicity of alb-Flt3L administration is limited. Collectively, our data showcases a novel DC-based immunotherapy using electroporation to administer alb-Flt3L DNA.
Collapse
Affiliation(s)
- Ming-Hung Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC
| | - Darrell Fan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hsin-Fang Tu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ya-Chea Tsai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liangmei He
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhicheng Zhou
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle Cheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deyin Xing
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Suyang Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexis Wu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T C Wu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Tu HF, Kung YJ, Lim L, Tao J, Hu MH, Cheng M, Xing D, Wu TC, Hung CF. FLT3L-induced virtual memory CD8 T cells engage the immune system against tumors. J Biomed Sci 2024; 31:19. [PMID: 38287325 PMCID: PMC10826030 DOI: 10.1186/s12929-024-01006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Previous research in FMS-like tyrosine kinase 3 ligands (FLT3L) has primarily focused on their potential to generate dendritic cells (DCs) from bone marrow progenitors, with a limited understanding of how these cells affect CD8 T cell function. In this study, we further investigated the in vivo role of FLT3L for the immunomodulatory capabilities of CD8 T cells. METHODS Albumin-conjugated FLT3L (Alb-FLT3L) was generated and applied for translational medicine purposes; here it was used to treat naïve C57BL/6 and OT1 mice for CD8 T cell response analysis. Syngeneic B16ova and E.G7ova mouse models were employed for adoptive cell transfer to evaluate the effects of Alb-FLT3L preconditioning of CD8 T cells on tumor progression. To uncover the underlying mechanisms of Alb-FLT3L modulation, we conducted bulk RNA-seq analysis of the CD44high CD8 T cells. STAT1-deficient mice were used to elucidate the functional roles of Alb-FLT3L in the modulation of T cells. Finally, antibody blockade of type one interferon signaling and in vitro coculture of plasmacytoid DCs (pDCs) with naive CD8 T cells was performed to determine the role of pDCs in mediating regulation of CD44high CD8 T cells. RESULTS CD44high CD8 T cells were enhanced in C57BL/6 mice administrated with Alb-FLT3L. These CD8 T cells exhibited virtual memory features and had greater proliferative and effective functions. Notably, the adoptive transfer of CD44high naïve CD8 T cells into C57BL/6 mice with B16ova tumors led to significant tumor regression. RNA-seq analysis of the CD44high naïve CD8 T cells revealed FLT3L to induce CD44high CD8 T cells in a JAK-STAT1 signaling pathway-dependent manner, as supported by results indicating a decreased ability of FLT3L to enhance CD8 T cell proliferation in STAT1-deficient mice as compared to wild-type control mice. Moreover, antibody blockade of type one interferon signaling restricted the generation of FLT3L-induced CD44high CD8 T cells, while CD44 expression was able to be induced in naïve CD8 T cells cocultured with pDCs derived from FLT3L-treated mice. This suggests the crucial role of pDCs in mediating FLT3L regulation of CD44high CD8 T cells. CONCLUSIONS These findings provide critical insight and support the therapeutic potential of Alb-FLT3L as an immune modulator in preconditioning of naïve CD8 T cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Hsin-Fang Tu
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Yu-Jui Kung
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ling Lim
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Julia Tao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ming-Hung Hu
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Michelle Cheng
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Deyin Xing
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - T C Wu
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Régnier P, Vetillard M, Bansard A, Pierre E, Li X, Cagnard N, Gautier EL, Guermonprez P, Manoury B, Podsypanina K, Darrasse-Jèze G. FLT3L-dependent dendritic cells control tumor immunity by modulating Treg and NK cell homeostasis. Cell Rep Med 2023; 4:101256. [PMID: 38118422 PMCID: PMC10772324 DOI: 10.1016/j.xcrm.2023.101256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/05/2023] [Accepted: 10/02/2023] [Indexed: 12/22/2023]
Abstract
FLT3-L-dependent classical dendritic cells (cDCs) recruit anti-tumor and tumor-protecting lymphocytes. We evaluate cancer growth in mice with low, normal, or high levels of cDCs. Paradoxically, both low or high numbers of cDCs improve survival in mice with melanoma. In low cDC context, tumors are restrained by the adaptive immune system through influx of effector T cells and depletion of Tregs and NK cells. High cDC numbers favor the innate anti-tumor response, with massive recruitment of activated NK cells, despite high Treg infiltration. Anti CTLA-4 but not anti PD-1 therapy synergizes with FLT3-L therapy in the cDCHi but not in the cDCLo context. A combination of cDC boost and Treg depletion dramatically improves survival of tumor-bearing mice. Transcriptomic data confirm the paradoxical effect of cDC levels on survival in several human tumor types. cDCHi-TregLo state in such patients predicts best survival. Modulating cDC numbers via FLT3 signaling may have therapeutic potential in human cancer.
Collapse
Affiliation(s)
- Paul Régnier
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, DMU3ID, Paris, France
| | - Mathias Vetillard
- Université de Paris Cité, Centre for Inflammation Research, INSERM U1149, CNRS ERL8252, Paris, France; Dendritic Cells and Adaptive Immunity Unit, Institut Pasteur, Paris, France
| | - Adèle Bansard
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Université Paris Cité, Faculté de Médecine, Paris, France
| | | | - Xinyue Li
- Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France
| | - Nicolas Cagnard
- Structure Fédérative de Recherche Necker, Université Paris Descartes, Paris, France
| | - Emmanuel L Gautier
- Inserm, UMR_S1166, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Pierre Guermonprez
- Université de Paris Cité, Centre for Inflammation Research, INSERM U1149, CNRS ERL8252, Paris, France; Dendritic Cells and Adaptive Immunity Unit, Institut Pasteur, Paris, France
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France
| | - Katrina Podsypanina
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Institut Curie, PSL Research University, CNRS, Sorbonne Université, UMR3664, Paris, France
| | - Guillaume Darrasse-Jèze
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France; Université Paris Cité, Faculté de Médecine, Paris, France.
| |
Collapse
|
4
|
Clappaert EJ, Kancheva D, Brughmans J, Debraekeleer A, Bardet PMR, Elkrim Y, Lacroix D, Živalj M, Hamouda AE, Van Ginderachter JA, Deschoemaeker S, Laoui D. Flt3L therapy increases the abundance of Treg-promoting CCR7 + cDCs in preclinical cancer models. Front Immunol 2023; 14:1166180. [PMID: 37622122 PMCID: PMC10445485 DOI: 10.3389/fimmu.2023.1166180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Conventional dendritic cells (cDCs) are at the forefront of activating the immune system to mount an anti-tumor immune response. Flt3L is a cytokine required for DC development that can increase DC abundance in the tumor when administered therapeutically. However, the impact of Flt3L on the phenotype of distinct cDC subsets in the tumor microenvironment is still largely undetermined. Here, using multi-omic single-cell analysis, we show that Flt3L therapy increases all cDC subsets in orthotopic E0771 and TS/A breast cancer and LLC lung cancer models, but this did not result in a reduction of tumor growth in any of the models. Interestingly, a CD81+migcDC1 population, likely developing from cDC1, was induced upon Flt3L treatment in E0771 tumors as well as in TS/A breast and LLC lung tumors. This CD81+migcDC1 subset is characterized by the expression of both canonical cDC1 markers as well as migratory cDC activation and regulatory markers and displayed a Treg-inducing potential. To shift the cDC phenotype towards a T-cell stimulatory phenotype, CD40 agonist therapy was administered to E0771 tumor-bearing mice in combination with Flt3L. However, while αCD40 reduced tumor growth, Flt3L failed to improve the therapeutic response to αCD40 therapy. Interestingly, Flt3L+αCD40 combination therapy increased the abundance of Treg-promoting CD81+migcDC1. Nonetheless, while Treg-depletion and αCD40 therapy were synergistic, the addition of Flt3L to this combination did not result in any added benefit. Overall, these results indicate that merely increasing cDCs in the tumor by Flt3L treatment cannot improve anti-tumor responses and therefore might not be beneficial for the treatment of cancer, though could still be of use to increase cDC numbers for autologous DC-therapy.
Collapse
Affiliation(s)
- Emile J. Clappaert
- Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| | - Daliya Kancheva
- Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jan Brughmans
- Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ayla Debraekeleer
- Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pauline M. R. Bardet
- Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yvon Elkrim
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| | - Dagmar Lacroix
- Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maida Živalj
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| | - Ahmed E.I. Hamouda
- Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A. Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| | - Sofie Deschoemaeker
- Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Damya Laoui
- Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
5
|
Wolf G, Gerber AN, Fasana ZG, Rosenberg K, Singh NJ. Acute effects of FLT3L treatment on T cells in intact mice. Sci Rep 2022; 12:19487. [PMID: 36376544 PMCID: PMC9662129 DOI: 10.1038/s41598-022-24126-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral T cells express a diverse repertoire of antigen-specific receptors, which together protect against the full range of pathogens. In this context, the total repertoire of memory T cells which are maintained by trophic signals, long after pathogen clearance, is critical. Since these trophic factors include cytokines and self-peptide-MHC, both of which are available from endogenous antigen-presenting cells (APC), we hypothesized that enhancing APC numbers in vivo can be a viable strategy to amplify the population of memory T cells. We evaluated this by acutely treating intact mice with FMS-like tyrosine kinase 3 ligand (Flt3l), which promotes expansion of APCs. Here we report that this treatment allowed for, an expansion of effector-memory CD4+ and CD8+ T cells as well as an increase in their expression of KLRG1 and CD25. In the lymph nodes and spleen, the expansion was limited to a specific CD8 (CD44-low but CD62L-) subset. Functionally, this subset is distinct from naïve T cells and could produce significant amounts of effector cytokines upon restimulation. Taken together, these data suggest that the administration of Flt3L can impact both APC turnover as well as a corresponding flux of specific subsets of CD8+ T cells in an intact peripheral immune compartment.
Collapse
Affiliation(s)
- Gideon Wolf
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Allison N Gerber
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Zachary G Fasana
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Kenneth Rosenberg
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Hsieh CC, Chang CC, Hsu YC, Lin CL. Immune Modulation by Myeloid-Derived Suppressor Cells in Diabetic Kidney Disease. Int J Mol Sci 2022; 23:13263. [PMID: 36362050 PMCID: PMC9655277 DOI: 10.3390/ijms232113263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 09/22/2023] Open
Abstract
Diabetic kidney disease (DKD) frequently leads to end-stage renal disease and other life-threatening illnesses. The dysregulation of glomerular cell types, including mesangial cells, endothelial cells, and podocytes, appears to play a vital role in the development of DKD. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory and anti-inflammatory properties through the depletion of L-arginine that is required by T cells, through generation of oxidative stress, interference with T-cell recruitment and viability, proliferation of regulatory T cells, and through the promotion of pro-tumorigenic functions. Under hyperglycemic conditions, mouse mesangial cells reportedly produce higher levels of fibronectin and pro-inflammatory cytokines. Moreover, the number of MDSCs is noticeably decreased, weakening inhibitory immune activities, and creating an inflammatory environment. In diabetic mice, immunotherapy with MDSCs that were induced by a combination of granulocyte-macrophage colony-stimulating factor, interleukin (IL)-1β, and IL-6, reduced kidney to body weight ratio, fibronectin expression, and fibronectin accumulation in renal glomeruli, thus ameliorating DKD. In conclusion, MDSCs exhibit anti-inflammatory activities that help improve renal fibrosis in diabetic mice. The therapeutic targeting of the proliferative or immunomodulatory pathways of MDSCs may represent an alternative immunotherapeutic strategy for DKD.
Collapse
Affiliation(s)
- Ching-Chuan Hsieh
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
| | - Cheng-Chih Chang
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
| | - Yung-Chien Hsu
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
- Division of Nephrology, Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
| | - Chun-Liang Lin
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
- Division of Nephrology, Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
| |
Collapse
|
7
|
Cueto FJ, Sancho D. The Flt3L/Flt3 Axis in Dendritic Cell Biology and Cancer Immunotherapy. Cancers (Basel) 2021; 13:1525. [PMID: 33810248 PMCID: PMC8037622 DOI: 10.3390/cancers13071525] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Dendritic cells (DCs) prime anti-tumor T cell responses in tumor-draining lymph nodes and can restimulate T effector responses in the tumor site. Thus, in addition to unleashing T cell effector activity, current immunotherapies should be directed to boost DC function. Herein, we review the potential function of Flt3L as a tool for cancer immunotherapy. Flt3L is a growth factor that acts in Flt3-expressing multipotent progenitors and common lymphoid progenitors. Despite the broad expression of Flt3 in the hematopoietic progenitors, the main effect of the Flt3/Flt3L axis, revealed by the characterization of mice deficient in these genes, is the generation of conventional DCs (cDCs) and plasmacytoid DCs (pDCs). However, Flt3 signaling through PI3K and mTOR may also affect the function of mature DCs. We recapitulate the use of Flt3L in preclinical studies either as a single agent or in combination with other cancer therapies. We also analyze the use of Flt3L in clinical trials. The strong correlation between type 1 cDC (cDC1) infiltration of human cancers with overall survival in many cancer types suggests the potential use of Flt3L to boost expansion of this DC subset. However, this may need the combination of Flt3L with other immunomodulatory agents to boost cancer immunotherapy.
Collapse
Affiliation(s)
- Francisco J. Cueto
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
8
|
Safarzadeh E, Orangi M, Mohammadi H, Babaie F, Baradaran B. Myeloid-derived suppressor cells: Important contributors to tumor progression and metastasis. J Cell Physiol 2017; 233:3024-3036. [DOI: 10.1002/jcp.26075] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Elham Safarzadeh
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mona Orangi
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Hamed Mohammadi
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Farhad Babaie
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Behzad Baradaran
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
9
|
Zhao Y, Wu T, Shao S, Shi B, Zhao Y. Phenotype, development, and biological function of myeloid-derived suppressor cells. Oncoimmunology 2015; 5:e1004983. [PMID: 27057424 DOI: 10.1080/2162402x.2015.1004983] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 12/24/2014] [Accepted: 12/28/2014] [Indexed: 10/22/2022] Open
Abstract
CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) are an important population of innate regulatory cells mainly comprising monocytic MDSCs (M-MDSCs) with a phenotype of CD11b+Ly6G-Ly6Chigh and granulocytic MDSCs (G-MDSCs) with a phenotype of CD11b+Ly6G+Ly6Clow in mice. They play crucial roles in the pathogenesis of cancers, chronic infections, autoimmune diseases, and transplantation. Various extracellular factors such as lipopolysaccharide (LPS), macrophage colony-stimulating factor (M-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), stem cell factor (SCF), interleukin (IL)-6, interferon gamma (IFNγ), IL-1β, vascular endothelial growth factor (VEGF), Hsp72, IL-13, C5a, and prostaglandin E2 (PGE2) can induce MDSC differentiation, whereas IL-4 and all-trans-retinoic acid can inhibit this process. For the intracellular signals, signal transducer and activator of transcription (STAT) family members, C/EBPβ and cyclooxigenase-2 (COX-2) promote MDSC function, whereas interferon regulatory factor-8 (IRF-8) and Smad3 downregulate MDSC activity. The immunosuppressive function of MDSCs is mediated through various effector molecules, primarily cellular metabolism-related molecules such as nitric oxide (NO), arginase, reactive oxygen species (ROS), transforming growth factor β (TGFβ), IL-10, indoleamine 2,3-dioxygenase (IDO), heme oxygenase-1 (HO-1), carbon monoxide (CO), and PGE2. In this article, we will summarize the molecules involved in the induction and function of MDSCs as well as the regulatory pathways of MDSCs.
Collapse
Affiliation(s)
- Yang Zhao
- Transplantation Biology Research Division; State Key Laboratory of Biomembrane and Membrane Biotechnology; Institute of Zoology; Chinese Academy of Sciences ; Beijing, China
| | - Tingting Wu
- Transplantation Biology Research Division; State Key Laboratory of Biomembrane and Membrane Biotechnology; Institute of Zoology; Chinese Academy of Sciences ; Beijing, China
| | - Steven Shao
- Transplantation Biology Research Division; State Key Laboratory of Biomembrane and Membrane Biotechnology; Institute of Zoology; Chinese Academy of Sciences ; Beijing, China
| | - Bingyi Shi
- Organ Transplantation Center of People's Liberation Army; 309 Hospital of Chinese People's Liberation Army ; Beijing, China
| | - Yong Zhao
- Transplantation Biology Research Division; State Key Laboratory of Biomembrane and Membrane Biotechnology; Institute of Zoology; Chinese Academy of Sciences ; Beijing, China
| |
Collapse
|
10
|
Younos IH, Abe F, Talmadge JE. Myeloid-derived suppressor cells: their role in the pathophysiology of hematologic malignancies and potential as therapeutic targets. Leuk Lymphoma 2015; 56:2251-63. [PMID: 25407654 DOI: 10.3109/10428194.2014.987141] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells at various stages of differentiation/maturation that have a role in cancer induction and progression. They function as vasculogenic and immunosuppressive cells, utilizing multiple mechanisms to block both innate and adaptive anti-tumor immunity. Recently, their mechanism of action and clinical importance have been defined, and the cross-talk between myeloid cells and cancer cells has been shown to contribute to tumor induction, progression, metastasis and tolerance. In this review, we focus on the role of MDSCs in hematologic malignancies and the therapeutic approaches targeting MDSCs that are currently in clinical studies.
Collapse
Affiliation(s)
- Ibrahim H Younos
- a Department of Clinical Pharmacology , Menoufia University , Al-Minufya , Egypt.,b Department of Pharmacology and Clinical Pharmacy , College of Medicine and Health Sciences, Sultan Qaboos University , Muscat , Oman
| | - Fuminori Abe
- c SBI Pharmaceuticals Co., Ltd. , Tokyo 106-6020 , Japan
| | - James E Talmadge
- d Department of Pathology and Microbiology , Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
11
|
Hargadon KM. Murine and Human Model Systems for the Study of Dendritic Cell Immunobiology. Int Rev Immunol 2014; 35:85-115. [DOI: 10.3109/08830185.2014.952413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Rosborough BR, Mathews LR, Matta BM, Liu Q, Raïch-Regué D, Thomson AW, Turnquist HR. Cutting edge: Flt3 ligand mediates STAT3-independent expansion but STAT3-dependent activation of myeloid-derived suppressor cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:3470-3. [PMID: 24639346 DOI: 10.4049/jimmunol.1300058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Flt3-Flt3 ligand (Flt3L) pathway is critically involved in the differentiation and homeostasis of myeloid cells, including dendritic cells (DC); however, its role in the expansion and function of myeloid-derived suppressor cells (MDSC) has not been determined. In this article, we describe the ability of Flt3L to expand and activate murine MDSC capable of suppressing allograft rejection upon adoptive transfer. Although Flt3L expands and augments the stimulatory capacity of myeloid DC, MDSC expanded by Flt3L have increased suppressive activity. Although STAT3 is considered the central transcription factor for MDSC expansion, inhibition and genetic ablation of STAT3 did not block, but rather augmented, Flt3L-mediated MDSC expansion. MDSC suppressive function, preserved when STAT3 inhibition was removed, was reduced by genetic STAT3 deletion. Both STAT3 inhibition and deletion reduced Flt3L-mediated DC expansion, signifying that STAT3 had reciprocal effects on suppressive MDSC and immunostimulatory DC expansion. Together, these findings enhance our understanding of the immunomodulatory properties of Flt3L.
Collapse
Affiliation(s)
- Brian R Rosborough
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | | | | | | | | | | | |
Collapse
|
13
|
Zhao W, Zhang L, Xu Y, Zhang Z, Ren G, Tang K, Kuang P, Zhao B, Yin Z, Wang X. Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model. J Transl Med 2014; 94:182-91. [PMID: 24296878 DOI: 10.1038/labinvest.2013.139] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/15/2013] [Accepted: 09/29/2013] [Indexed: 01/22/2023] Open
Abstract
The immunosuppressive properties of hepatic stellate cells (HSCs) contribute to the occurrence and development of hepatocellular carcinoma (HCC). The accumulation of cells with immune suppressive activities, such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) is a key mechanism for tumor immune evasion. However, the impact of HSCs on immune cell populations in tumor-bearing hosts is unclear. In this study, we established an orthotopic liver tumor mouse model for studying the complex tumor-host interactions in HCC. The activated HSCs promoted HCC growth not only induced tumor angiogenesis and lymphangiogenesis, but also significantly increased the suppressive immune cell population of Tregs and MDSCs in the spleen, bone marrow, and tumor tissues of the tumor-bearing mice. Murine HCC cell line H22-activated HSCs also expanded the expression of Tregs and MDSCs in vitro. In conclusion, our study suggests a novel role for HSCs in the HCC microenvironment. HSCs can promote HCC progression by enhancement of the immunosuppressive cell population. Targeting HSCs, which is a new concept in adjuvant immunotherapy, may be introduced in the near future to improve the outcome of patients with HCC.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of chronic liver disease and hepatocellular carcinoma (Xiamen University Affiliated Zhongshan Hospital), Xiamen, China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of chronic liver disease and hepatocellular carcinoma (Xiamen University Affiliated Zhongshan Hospital), Xiamen, China
| | - Yaping Xu
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of chronic liver disease and hepatocellular carcinoma (Xiamen University Affiliated Zhongshan Hospital), Xiamen, China
| | - Zhengqi Zhang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of chronic liver disease and hepatocellular carcinoma (Xiamen University Affiliated Zhongshan Hospital), Xiamen, China
| | - Guangli Ren
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of chronic liver disease and hepatocellular carcinoma (Xiamen University Affiliated Zhongshan Hospital), Xiamen, China
| | - Kai Tang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of chronic liver disease and hepatocellular carcinoma (Xiamen University Affiliated Zhongshan Hospital), Xiamen, China
| | - Penghao Kuang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of chronic liver disease and hepatocellular carcinoma (Xiamen University Affiliated Zhongshan Hospital), Xiamen, China
| | - Bixing Zhao
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of chronic liver disease and hepatocellular carcinoma (Xiamen University Affiliated Zhongshan Hospital), Xiamen, China
| | - Zhenyu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of chronic liver disease and hepatocellular carcinoma (Xiamen University Affiliated Zhongshan Hospital), Xiamen, China
| | - Xiaomin Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of chronic liver disease and hepatocellular carcinoma (Xiamen University Affiliated Zhongshan Hospital), Xiamen, China
| |
Collapse
|
14
|
Abstract
Tumour-induced granulocytic hyperplasia is associated with tumour vasculogenesis and escape from immunity via T cell suppression. Initially, these myeloid cells were identified as granulocytes or monocytes; however, recent studies have revealed that this hyperplasia is associated with populations of multipotent progenitor cells that have been identified as myeloid-derived suppressor cells (MDSCs). The study of MDSCs has provided a wealth of information regarding tumour pathobiology, has extended our understanding of neoplastic progression and has modified our approaches to immune adjuvant therapy. In this Timeline article, we discuss the history of MDSCs, their influence on tumour progression and metastasis, and the crosstalk between tumour cells, MDSCs and the host macroenvironment.
Collapse
Affiliation(s)
- James E Talmadge
- University of Nebraska Medical Center, Department of Pathology and Microbiology, 986495 Nebraska Medical Center, Omaha NE 68198-6495, USA
| | | |
Collapse
|
15
|
Qu P, Boelte KC, Lin PC. Negative regulation of myeloid-derived suppressor cells in cancer. Immunol Invest 2013; 41:562-80. [PMID: 23017135 DOI: 10.3109/08820139.2012.685538] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells with suppressive function on immune response. In this review, we discuss recent studies about mechanisms of expansion and suppressive function of MDSCs during inflammation, infection and autoimmune diseases, as well as pro-angiogenic and pro-metastatic functions of these cells in tumor development. Further, we focus on novel studies of MDSCs and therapeutic approaches to eliminate these cells in cancer.
Collapse
Affiliation(s)
- Peng Qu
- National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
16
|
Raber P, Ochoa AC, Rodríguez PC. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunol Invest 2013; 41:614-34. [PMID: 23017138 DOI: 10.3109/08820139.2012.680634] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Patients with cancer have an impaired T cell response that can decrease the potential therapeutic benefit of cancer vaccines and other forms of immunotherapy. The establishment of a chronic inflammatory environment in patients with cancer plays a critical role in the induction of T cell dysfunction. The accumulation of myeloid-derived suppressor cells (MDSC) in tumor bearing hosts is a hallmark of malignancy-associated inflammation and a major mediator of the induction of T cell suppression in cancer. Recent findings in tumor bearing mice and cancer patients indicate that the increased metabolism of L-Arginine (L-Arg) by MDSC producing Arginase I inhibits T cell lymphocyte responses. Here, we discuss some of the most recent concepts of how MDSC expressing Arginase I may regulate T cell function in cancer and suggest possible therapeutic interventions to overcome this inhibitory effect.
Collapse
Affiliation(s)
- Patrick Raber
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, NewOrleans, Louisiana, USA.
| | | | | |
Collapse
|
17
|
Hong EH, Chang SY, Lee BR, Kim YS, Lee JM, Kang CY, Kweon MN, Ko HJ. Blockade of Myd88 signaling induces antitumor effects by skewing the immunosuppressive function of myeloid-derived suppressor cells. Int J Cancer 2012. [PMID: 23184679 DOI: 10.1002/ijc.27974] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myd88 is an important adaptor molecule for the activation of NADPH oxidase and arginase-1, which are responsible for the suppressive function of myeloid-derived suppressor cells (MDSCs). When wild-type and Myd88(-/-) mice were subcutaneously injected with CT26 colon cancer cells expressing human Her-2/neu, tumor growth was retarded in Myd88(-/-) mice than in wild-type mice. Although the generation of CD11b(+) Gr-1(+) MDSCs was less in Myd88(-/-) mice than in wild-type mice, Myd88(-/-) mice having tumor masses still had significant quantities of MDSCs, suggesting that MDSC generation might be independent of Myd88 signaling. However, MDSCs obtained from tumor-bearing Myd88(-/-) mice failed to suppress antigen-specific proliferation of CD8(+) T cells and CD4(+) T cells, whereas MDSCs from wild-type mice significantly suppressed both types of T cells. Consistent with this, we found that the levels of costimulatory molecules and MHC class II were significantly increased in MDSCs obtained from Myd88(-/-) mice compared with wild-type mice after tumor challenge. Furthermore, CD4(+) T cells residing in tumor-draining lymph nodes of Myd88(-/-) mice secreted more TNF-α than those of wild-type mice. Finally, the blockade of Myd88 signaling by treatment with Myd88 inhibitory peptide, during later tumor stages, significantly inhibited the growth of immunogenic tumors. Overall, these data suggest that signaling through the Myd88 adaptor molecule is critical for the direct suppressive function of MDSCs and approaches to block Myd88-mediated signaling in MDSCs might be effective to inhibit the immunosuppressive function of MDSCs.
Collapse
Affiliation(s)
- Eun-Hye Hong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dilek N, Vuillefroy de Silly R, Blancho G, Vanhove B. Myeloid-derived suppressor cells: mechanisms of action and recent advances in their role in transplant tolerance. Front Immunol 2012; 3:208. [PMID: 22822406 PMCID: PMC3398399 DOI: 10.3389/fimmu.2012.00208] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/30/2012] [Indexed: 12/11/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature hematopoietic precursors known to suppress immune responses in infection, chronic inflammation, cancer, and autoimmunity. In this paper, we review recent findings detailing their mode of action and discuss recent reports that suggest that MDSC are also expanded during transplantation and that modulation of MDSC can participate in preventing graft rejection as well as graft-versus-host disease.
Collapse
|
19
|
Turnquist HR, Zhao Z, Rosborough BR, Liu Q, Castellaneta A, Isse K, Wang Z, Lang M, Stolz DB, Zheng XX, Demetris AJ, Liew FY, Wood KJ, Thomson AW. IL-33 expands suppressive CD11b+ Gr-1(int) and regulatory T cells, including ST2L+ Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival. THE JOURNAL OF IMMUNOLOGY 2011; 187:4598-610. [PMID: 21949025 DOI: 10.4049/jimmunol.1100519] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IL-33 administration is associated with facilitation of Th2 responses and cardioprotective properties in rodent models. However, in heart transplantation, the mechanism by which IL-33, signaling through ST2L (the membrane-bound form of ST2), promotes transplant survival is unclear. We report that IL-33 administration, while facilitating Th2 responses, also increases immunoregulatory myeloid cells and CD4(+) Foxp3(+) regulatory T cells (Tregs) in mice. IL-33 expands functional myeloid-derived suppressor cells, CD11b(+) cells that exhibit intermediate (int) levels of Gr-1 and potent T cell suppressive function. Furthermore, IL-33 administration causes an St2-dependent expansion of suppressive CD4(+) Foxp3(+) Tregs, including an ST2L(+) population. IL-33 monotherapy after fully allogeneic mouse heart transplantation resulted in significant graft prolongation associated with increased Th2-type responses and decreased systemic CD8(+) IFN-γ(+) cells. Also, despite reducing overall CD3(+) cell infiltration of the graft, IL-33 administration markedly increased intragraft Foxp3(+) cells. Whereas control graft recipients displayed increases in systemic CD11b(+) Gr-1(hi) cells, IL-33-treated recipients exhibited increased CD11b(+) Gr-1(int) cells. Enhanced ST2 expression was observed in the myocardium and endothelium of rejecting allografts, however the therapeutic effect of IL-33 required recipient St2 expression and was dependent on Tregs. These findings reveal a new immunoregulatory property of IL-33. Specifically, in addition to supporting Th2 responses, IL-33 facilitates regulatory cells, particularly functional CD4(+) Foxp3(+) Tregs that underlie IL-33-mediated cardiac allograft survival.
Collapse
Affiliation(s)
- Heth R Turnquist
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tumor- and organ-dependent infiltration by myeloid-derived suppressor cells. Int Immunopharmacol 2011; 11:816-26. [PMID: 21376153 DOI: 10.1016/j.intimp.2011.02.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 01/05/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) increase during tumor growth and following cytoreductive therapy resulting in immune dysfunction and tumor escape from host control. We report organ- and tumor-specific expansion of MDSCs, differences in their molecular and membrane phenotypes and T-cell suppressive activity. A significant increase in MDSCs was observed within the spleen, peripheral blood (PB), bone marrow (BM), lungs, and livers of mice bearing orthotopic 4T1, but not CI66 mammary tumors. The PB of 4T1 TB mice had the highest frequency of MDSCs (78.6±2.1%). Similarly, the non-parenchymal cells (NPCs) in the tumor tissue, livers and lungs of 4T1 tumor-bearing (TB) mice had an increased MDSCs frequency. Studies into Gr-1 and Ly-6C staining of MDSCs revealed significant increases in CD11b+Gr-1(dull)Ly-6C(high) and CD11b+Gr-1(bright)Ly-6C(low) subsets. The frequency of MDSCs inversely correlated with the CD3+ T-cell frequency in the spleen, and blood of 4T1 TB mice and was associated with a significant decrease in splenic and NPCs IFN-γ and IL-12 transcript levels, as well as significantly increased levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), stem cell factor (SCF), granulocyte colony-stimulating factor (G-CSF), interleukin-10 (IL-10), interleukin-13 (IL-13), arginase-1 (ARG-1), nitric oxide synthase (NOS-2), vascular endothelial growth factor-A (VEGF-A) transcripts. In summary, MDSCs are significantly increased not only in lymphoid organs, but also in parenchymal organs including lungs and livers of TB mice, where they may facilitate metastasis to these organ sites.
Collapse
|
21
|
Attenuation of vaccinia virus by the expression of human Flt3 ligand. Virol J 2010; 7:109. [PMID: 20504356 PMCID: PMC2883979 DOI: 10.1186/1743-422x-7-109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 05/26/2010] [Indexed: 11/10/2022] Open
Abstract
Background Vaccinia virus, one of the best known members of poxvirus family, has a wide host range both in vivo and in vitro. The expression of Flt3 ligand (FL) by recombinant vaccinia virus (rVACV) highly influenced properties of the virus in dependence on the level of expression. Results High production of FL driven by the strong synthetic promoter decreased the growth of rVACV in macrophage cell line J774.G8 in vitro as well as its multiplication in vivo when inoculated in mice. The inhibition of replication in vivo was mirrored in low levels of antibodies against vaccinia virus (anti-VACV) which nearly approached to the negative serum level in non-infected mice. Strong FL expression changed not only the host range of the recombinant but also the basic protein contents of virions. The major proteins - H3L and D8L - which are responsible for the virus binding to the cells, and 28 K protein that serves as a virulence factor, were changed in the membrane portion of P13-E/L-FL viral particles. The core virion fraction contained multiple larger, uncleaved proteins and a higher amount of cellular proteins compared to the control virus. The overexpression of FL also resulted in its incorporation into the viral core of P13-E/L-FL IMV particles. In contrary to the equimolar ratio of glycosylated and nonglycosylated FL forms found in cells transfected with the expression plasmid, the recombinant virus incorporated mainly the smaller, nonglycosylated FL. Conclusions It has been shown that the overexpression of the Flt3L gene in VACV results in the attenuation of the virus in vivo.
Collapse
|
22
|
Abe F, Dafferner AJ, Donkor M, Westphal SN, Scholar EM, Solheim JC, Singh RK, Hoke TA, Talmadge JE. Myeloid-derived suppressor cells in mammary tumor progression in FVB Neu transgenic mice. Cancer Immunol Immunother 2010; 59:47-62. [PMID: 19449184 PMCID: PMC11030983 DOI: 10.1007/s00262-009-0719-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 04/22/2009] [Indexed: 01/13/2023]
Abstract
Female mice transgenic for the rat proto-oncogene c-erb-B2, under control of the mouse mammary tumor virus (MMTV) promoter (neuN), spontaneously develop metastatic mammary carcinomas. The development of these mammary tumors is associated with increased number of GR-1(+)CD11b(+) myeloid derived suppressor cells (MDSCs) in the peripheral blood (PB), spleen and tumor. We report a complex relationship between tumor growth, MDSCs and immune regulatory molecules in non-mutated neu transgenic mice on a FVB background (FVB-neuN). The first and second tumors in FVB-neuN mice develop at a median of 265 (147-579) and 329 (161-523) days, respectively, resulting in a median survival time (MST) of 432 (201 to >500) days. During tumor growth, significantly increased number of MDSCs is observed in the PB and spleen, as well as, in infiltrating the mammary tumors. Our results demonstrate a direct correlation between tumor size and the number of MDSCs infiltrating the tumor and an inverse relationship between the frequency of CD4(+) T-cells and MDSCs in the spleen. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assessment of enzyme and cytokine transcript levels in the spleen, tumor, tumor-infiltrating non-parenchymal cells (NPCs) and mammary glands revealed a significant increase in transcript levels from grossly normal mammary glands and tumor-infiltrating NPCs during tumor progression. Tumor NPCs, as compared to spleen cells from wild-type (w/t) mice, expressed significantly higher levels of arginase-1 (ARG-1), nitric oxide synthase (NOS-2), vascular endothelial growth factor (VEGF-A) and significantly lower levels of interferon (IFN)-gamma, interleukin (IL)-2 and fms-like tyrosine kinase-3 ligand (Flt3L) transcript levels. Transcript levels in the spleens of tumor-bearing (TB) mice also differed from normal mice, although to a lesser extent than transcript levels from tumor-infiltrating NPCs. Furthermore, both spleen cells and NPCs from TB mice, but not control mice, suppressed alloantigen responses by syngeneic control spleen cells. Correlative studies revealed that the number of MDSCs in the spleen was directly associated with granulocyte colony stimulating factor (G-CSF) transcript levels in the spleen; while the number of MDSCs in the tumors was directly correlated with splenic granulocyte macrophage stimulating factor (GM-CSF) transcript levels, tumor volume and tumor cell number. Together our results support a role for MDSCs in tumor initiation and progressive, T-cell depression and loss of function provide evidence which support multiple mechanisms of MDSC expansion in a site-dependent manner.
Collapse
Affiliation(s)
- Fuminori Abe
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| | - Alicia J. Dafferner
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| | - Moses Donkor
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| | - Sherry N. Westphal
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| | - Eric M. Scholar
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| | - Joyce C. Solheim
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| | - Rakesh K. Singh
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| | - Traci A. Hoke
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| | - James E. Talmadge
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| |
Collapse
|
23
|
Rodríguez PC, Ochoa AC, Rodríguez PC. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 2009; 222:180-91. [PMID: 18364002 DOI: 10.1111/j.1600-065x.2008.00608.x] [Citation(s) in RCA: 543] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Patients with cancer have an impaired T-cell response that can decrease the potential therapeutic benefit of cancer vaccines and other forms of immunotherapy. L-arginine (L-Arg) is a conditionally essential amino acid that is fundamental for the function of T lymphocytes. Recent findings in tumor-bearing mice and cancer patients indicate that increased metabolism of L-Arg by myeloid derived suppressor cells (MDSCs) producing arginase I inhibits T-lymphocyte responses. Here we discuss some of the most recent concepts how MDSC expressing arginase I may regulate T-cell function in cancer and other chronic inflammatory diseases and suggest possible therapeutic interventions to overcome this inhibitory effect.
Collapse
Affiliation(s)
- Paulo C Rodríguez
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | |
Collapse
|
24
|
Talmadge JE, Cowan KH, Reed EC. Tumor and iatrogenic regulation of myeloid precursors and their potential to limit immune therapy. Immunotherapy 2009; 1:5-9. [PMID: 20635966 DOI: 10.2217/1750743x.1.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- James E Talmadge
- Department of Pathology & Microbiology, Nebraska Medical Center, Omaha, NE, USA.
| | | | | |
Collapse
|
25
|
Sekine S, Kataoka K, Fukuyama Y, Adachi Y, Davydova J, Yamamoto M, Kobayashi R, Fujihashi K, Suzuki H, Curiel DT, Shizukuishi S, McGhee JR, Fujihashi K. A novel adenovirus expressing Flt3 ligand enhances mucosal immunity by inducing mature nasopharyngeal-associated lymphoreticular tissue dendritic cell migration. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:8126-34. [PMID: 18523277 PMCID: PMC2587249 DOI: 10.4049/jimmunol.180.12.8126] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previously, we showed that nasal administration of a naked cDNA plasmid expressing Flt3 ligand (FL) cDNA (pFL) enhanced CD4(+) Th2-type, cytokine-mediated mucosal immunity and increased lymphoid-type dendritic cell (DC) numbers. In this study, we investigated whether targeting nasopharyngeal-associated lymphoreticular tissue (NALT) DCs by a different delivery mode of FL, i.e., an adenovirus (Ad) serotype 5 vector expressing FL (Ad-FL), would provide Ag-specific humoral and cell-mediated mucosal immunity. Nasal immunization of mice with OVA plus Ad-FL as mucosal adjuvant elicited high levels of OVA-specific Ab responses in external secretions and plasma as well as significant levels of OVA-specific CD4(+) T cell proliferative responses and OVA-induced IFN-gamma and IL-4 production in NALT, cervical lymph nodes, and spleen. We also observed higher levels of OVA-specific CTL responses in the spleen and cervical lymph nodes of mice given nasal OVA plus Ad-FL than in mice receiving OVA plus control Ad. Notably, the number of CD11b(+)CD11c(+) DCs expressing high levels of costimulatory molecules was preferentially increased. These DCs migrated from the NALT to mucosal effector lymphoid tissues. Taken together, these results suggest that the use of Ad-FL as a nasal adjuvant preferentially induces mature-type NALT CD11b(+)CD11c(+) DCs that migrate to effector sites for subsequent CD4(+) Th1- and Th2-type cytokine-mediated, Ag-specific Ab and CTL responses.
Collapse
Affiliation(s)
- Shinichi Sekine
- Departments of Pediatric Dentistry and Microbiology, Immunobiology Vaccine Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Kosuke Kataoka
- Departments of Pediatric Dentistry and Microbiology, Immunobiology Vaccine Center, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Yoshiko Fukuyama
- Departments of Pediatric Dentistry and Microbiology, Immunobiology Vaccine Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Yasuo Adachi
- Division of Human Gene Therapy, Department of Surgery, Medicine and Pathology, Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Julia Davydova
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Ryoki Kobayashi
- Departments of Pediatric Dentistry and Microbiology, Immunobiology Vaccine Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Keiko Fujihashi
- Departments of Pediatric Dentistry and Microbiology, Immunobiology Vaccine Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hideaki Suzuki
- Departments of Pediatric Dentistry and Microbiology, Immunobiology Vaccine Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David T. Curiel
- Division of Human Gene Therapy, Department of Surgery, Medicine and Pathology, Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Satoshi Shizukuishi
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Jerry R. McGhee
- Departments of Pediatric Dentistry and Microbiology, Immunobiology Vaccine Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Kohtaro Fujihashi
- Departments of Pediatric Dentistry and Microbiology, Immunobiology Vaccine Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
26
|
Abstract
Inflammatory cell infiltration of tumors contributes either positively or negatively to tumor invasion, growth, metastasis, and patient outcomes, creating a Dr. Jekyll or Mr. Hyde conundrum when examining mechanisms of action. This is due to tumor heterogeneity and the diversity of the inflammatory cell phenotypes that infiltrate primary and metastatic lesions. Tumor infiltration by macrophages is generally associated with neoangiogenesis and negative outcomes, whereas dendritic cell (DC) infiltration is typically associated with a positive clinical outcome in association with their ability to present tumor antigens (Ags) and induce Ag-specific T cell responses. Myeloid-derived suppressor cells (MDSCs) also infiltrate tumors, inhibiting immune responses and facilitating tumor growth and metastasis. In contrast, T cell infiltration of tumors provides a positive prognostic surrogate, although subset analyses suggest that not all infiltrating T cells predict a positive outcome. In general, infiltration by CD8(+) T cells predicts a positive outcome, while CD4(+) cells predict a negative outcome. Therefore, the analysis of cellular phenotypes and potentially spatial distribution of infiltrating cells are critical for an accurate assessment of outcome. Similarly, cellular infiltration of metastatic foci is also a critical parameter for inducing therapeutic responses, as well as establishing tumor dormancy. Current strategies for cellular, gene, and molecular therapies are focused on the manipulation of infiltrating cellular populations. Within this review, we discuss the role of tumor infiltrating, myeloid-monocytic cells, and T lymphocytes, as well as their potential for tumor control, immunosuppression, and facilitation of metastasis.
Collapse
Affiliation(s)
- James E Talmadge
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, 987660 Nebraska Medical Center, Omaha, NE 68198-7660, USA.
| | | | | |
Collapse
|
27
|
Talmadge JE. Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin Cancer Res 2007; 13:5243-8. [PMID: 17875751 DOI: 10.1158/1078-0432.ccr-07-0182] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer immunotherapy has focused on inducing and expanding CTLs and improving the immune recognition of weak antigenic determinants expressed by tumors. However, few positive clinical outcomes have been reported due, in part, to tumor-associated immunologic tolerance, supporting the need for an emphasis on overcoming immunosuppression. Systemic immunosuppression is associated with abnormal myelopoiesis secondary to tumor growth, myelosuppressive therapy, and growth factor administration and subsequent expansion/mobilization of bone marrow-derived immunosuppressive cells. These myeloid-derived suppressor cells (MDSC) reduce activated T-cell number and inhibit their function by multiple mechanisms, including depletion of l-arginine by arginase-1 (ARG1) production of nitric oxide, reactive oxygen species, and reactive nitrogen oxide species by inducible nitric oxide synthase. Increased numbers of MDSCs are associated with neoplastic, inflammatory, infectious, and graft-versus-host diseases where they restrain exuberant or novel T-cell responses. In this review, we discuss critical components of MDSC-mediated suppression of T-cell function, including cellular expansion and activation-induced secretion of immunosuppressive mediators. Both components of MDSC bioactivity are amenable to pharmacologic intervention as discussed herein. We also focus on the relationship between MDSCs, tumor growth, therapeutic responses, and the mechanisms of cellular expansion, activation, and immunosuppression.
Collapse
Affiliation(s)
- James E Talmadge
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-7660, USA.
| |
Collapse
|