1
|
Kublanovsky M, Ulu GT, Weirich S, Levy N, Feldman M, Jeltsch A, Levy D. Methylation of the transcription factor E2F1 by SETD6 regulates SETD6 expression via a positive feedback mechanism. J Biol Chem 2023; 299:105236. [PMID: 37690684 PMCID: PMC10551896 DOI: 10.1016/j.jbc.2023.105236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
The protein lysine methyltransferase SET domain-containing protein 6 (SETD6) has been shown to influence different cellular activities and to be critically involved in the regulation of diverse developmental and pathological processes. However, the upstream signals that regulate the mRNA expression of SETD6 are not known. Bioinformatic analysis revealed that the SETD6 promoter has a binding site for the transcription factor E2F1. Using various experimental approaches, we show that E2F1 binds to the SETD6 promoter and regulates SETD6 mRNA expression. Our further observation that this phenomenon is SETD6 dependent suggested that SETD6 and E2F1 are linked. We next demonstrate that SETD6 monomethylates E2F1 specifically at K117 in vitro and in cells. Finally, we show that E2F1 methylation at K117 positively regulates the expression level of SETD6 mRNA. Depletion of SETD6 or overexpression of E2F1 K117R mutant, which cannot be methylated by SETD6, reverses the effect. Taken together, our data provide evidence for a positive feedback mechanism, which regulates the expression of SETD6 by E2F1 in a SETD6 methylation-dependent manner, and highlight the importance of protein lysine methyltransferases and lysine methylation signaling in the regulation of gene transcription.
Collapse
Affiliation(s)
- Margarita Kublanovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Gizem T Ulu
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Nurit Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Michal Feldman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| | - Dan Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
2
|
Dong X, Chen Y, Pan J, Ma W, Zhou P, Chen M, Guo H, Gan W. Clinicopathological features and prognosis of TFE3-positive renal cell carcinoma. Front Oncol 2022; 12:1017425. [PMID: 36276115 PMCID: PMC9582134 DOI: 10.3389/fonc.2022.1017425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background This study aimed to investigate the expression profile of TFE3 in renal cell carcinoma (RCC) and the clinicopathological features as well as prognosis of TFE3-positive RCC. Methods Tissue sections from 796 patients with RCC were collected for immunohistochemical staining of TFE3. Molecular TFE3 rearrangement tests were also carried out on the TFE3-positive RCCs using fluorescence in situ hybridization and RNA-sequencing assays. Both clinicopathological features and follow-up information were collected for further analysis. Results The present study showed that 91 patients with RCC (91/796, 11.4%) were TFE3 positive expression but only 31 (31/91, 34.1%) of the patients were diagnosed with Xp11.2 translocation RCC. Further, it was found that the patients with TFE3-positive RCCs were more likely to develop lymph node and distant metastasis at diagnosis as well as presented a significantly higher WHO/ISUP nuclear grade and AJCC stage as compared with patients with TFE3-negative RCCs (p<0.01). Results of univariate and multivariate analyses showed that TFE3 positive expression was an independent prognostic factor associated with poor progression-free survival. Further, the findings of survival analysis showed that patients with positive TFE3 expression showed a shorter progression-free survival as compared with the patients with negative expression of TFE3 (p<0.001). In addition, results of the survival analysis found that there was no significant difference in progression-free survival between the Xp11.2 translocation RCC and TFE3-positive non-Xp11.2 translocation RCC groups (p=0.9607). Conclusion This study found that nuclear TFE3 expression is not specific to the Xp11.2 translocation RCC. Moreover, the positive TFE3 expression is associated with tumor progression and poor prognosis in patients with RCC irrespective of the presence of TFE3 translocation.
Collapse
Affiliation(s)
- Xiang Dong
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxin Chen
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun Pan
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peng Zhou
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ming Chen
- Department of Pathology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Weidong Gan,
| |
Collapse
|
3
|
Ju X, Sun Y, Zhang F, Wei X, Wang Z, He X. Long Non-Coding RNA LINC02747 Promotes the Proliferation of Clear Cell Renal Cell Carcinoma by Inhibiting miR-608 and Activating TFE3. Front Oncol 2020; 10:573789. [PMID: 33425728 PMCID: PMC7786277 DOI: 10.3389/fonc.2020.573789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022] Open
Abstract
With the rapid development of biotechnology, long noncoding RNAs (lncRNAs) have exhibited good application prospects in the treatment of cancer, and they may become new treatment targets for cancer. This study aimed to explore lncRNAs in clear cell renal cell carcinoma (ccRCC). Differentially expressed lncRNAs in 54 pairs of ccRCC tissues and para-carcinoma tissues were analyzed in The Cancer Genome Atlas (TCGA), and the most significant lncRNAs were selected and verified in ccRCC tissues. We found that lncRNA LINC02747 was highly expressed in ccRCC (P < 0.001) and was closely related to high TNM stage (P = 0.006) and histological grade (P = 0.004) and poor prognosis of patients (P < 0.001). In vivo and in vitro experiments confirmed that LINC02747 could promote the proliferation of ccRCC cells. We also found that LINC02747 regulated the proliferation of RCC cells by adsorbing miR-608. Subsequent mechanistic research showed that miR-608 is downregulated in ccRCC (P < 0.001), and overexpression of miR-608 inbibited the proliferation of RCC cells. Moreover, we found that TFE3 is a direct target gene of miR-608. MiR-608 regulated the proliferation of RCC cells by inhibiting TFE3. In conclusion, LINC02747 upregulates the expression of TFE3 by adsorbing miR-608, ultimately promoting the proliferation of ccRCC cells. The above findings indicate that LINC02747 acts as an oncogene in ccRCC and may be developed as a molecular marker for the diagnosis and prognosis of ccRCC. The LINC02747/miR-608/TFE3 pathway may become a new therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Xiang Ju
- Department of Urinary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yangyang Sun
- Department of Urinary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Feng Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaohui Wei
- Department of Urinary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhenguo Wang
- Department of Urinary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urinary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
4
|
McCartney A, Malorni L. Thymidine kinase-1 as a biomarker in breast cancer: estimating prognosis and early recognition of treatment resistance. Biomark Med 2020; 14:495-498. [PMID: 32378432 DOI: 10.2217/bmm-2020-0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Amelia McCartney
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Luca Malorni
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato, Prato, Italy.,"Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Prato, Italy
| |
Collapse
|
5
|
Getaneh Z, Asrie F, Melku M. MicroRNA profiles in B-cell non-Hodgkin lymphoma. EJIFCC 2019; 30:195-214. [PMID: 31263393 PMCID: PMC6599190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
B-cell non-Hodgkin's lymphomas are tumors of B-cells that arise following clonal expansion and consequent invasion of immune organs by B-cells blocked at a certain step of the differentiation process. Genetic abnormalities with altered gene expression are common in the transformed state of B-cells at any stage of B-cell development. These stages are regulated by a combination of transcription factors, epigenetic modifications, microRNAs, and extrinsic signals. MicroRNAs are a class of short non-coding single-stranded RNAs implicated in the regulation of mRNA function and translation. Each microRNA can regulate multiple transcripts; and a transcript is under potential control by multiple microRNAs. Their dysregulation can contribute to the pathogenesis of B-cell non-Hodgkin lymphomas, and they could be used as a potential target for diagnosis, evaluation of prognosis and therapy monitoring. The mechanisms of microRNA dysregulation range from dysregulation of the DNA sequences encoding the microRNAs to transcriptional regulation of microRNA loci. In this review, we summarized the microRNA profiles of the most common B-cell Non-Hodgkin Lymphomas for the pathogenesis, diagnosis and their potential therapeutic implications.
Collapse
Affiliation(s)
- Zegeye Getaneh
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar, Ethiopia
| | | | | |
Collapse
|
6
|
Liban TJ, Medina EM, Tripathi S, Sengupta S, Henry RW, Buchler NE, Rubin SM. Conservation and divergence of C-terminal domain structure in the retinoblastoma protein family. Proc Natl Acad Sci U S A 2017; 114:4942-4947. [PMID: 28439018 PMCID: PMC5441720 DOI: 10.1073/pnas.1619170114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The retinoblastoma protein (Rb) and the homologous pocket proteins p107 and p130 negatively regulate cell proliferation by binding and inhibiting members of the E2F transcription factor family. The structural features that distinguish Rb from other pocket proteins have been unclear but are critical for understanding their functional diversity and determining why Rb has unique tumor suppressor activities. We describe here important differences in how the Rb and p107 C-terminal domains (CTDs) associate with the coiled-coil and marked-box domains (CMs) of E2Fs. We find that although CTD-CM binding is conserved across protein families, Rb and p107 CTDs show clear preferences for different E2Fs. A crystal structure of the p107 CTD bound to E2F5 and its dimer partner DP1 reveals the molecular basis for pocket protein-E2F binding specificity and how cyclin-dependent kinases differentially regulate pocket proteins through CTD phosphorylation. Our structural and biochemical data together with phylogenetic analyses of Rb and E2F proteins support the conclusion that Rb evolved specific structural motifs that confer its unique capacity to bind with high affinity those E2Fs that are the most potent activators of the cell cycle.
Collapse
Affiliation(s)
- Tyler J Liban
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Edgar M Medina
- Department of Biology, Duke University, Durham, NC 27708
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Satyaki Sengupta
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - R William Henry
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Nicolas E Buchler
- Department of Biology, Duke University, Durham, NC 27708
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064;
| |
Collapse
|
7
|
Ishiguro N, Yoshida H. ASPL-TFE3 Oncoprotein Regulates Cell Cycle Progression and Induces Cellular Senescence by Up-Regulating p21. Neoplasia 2016; 18:626-635. [PMID: 27673450 PMCID: PMC5037204 DOI: 10.1016/j.neo.2016.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 01/30/2023] Open
Abstract
Alveolar soft part sarcoma is an extremely rare soft tissue sarcoma with poor prognosis. It is characterized by the unbalanced recurrent chromosomal translocation der(17)t(X;17)(p11;q25), resulting in the generation of an ASPL-TFE3 fusion gene. ASPL-TFE3 oncoprotein functions as an aberrant transcriptional factor and is considered to play a crucial role in the tumorigenesis of alveolar soft part sarcoma. However, the underlying molecular mechanisms are poorly understood. In this study, we identified p21 (p21WAF1/CIP1) as a direct transcriptional target of ASPL-TFE3. Ectopic ASPL-TFE3 expression in 293 cells resulted in cell cycle arrest and significant increases in protein and mRNA levels of p21. ASPL-TFE3 activated p21 expression in a p53-independent manner through direct transcriptional interactions with the p21 promoter region. When ASPL-TFE3 was expressed in human bone marrow–derived mesenchymal stem cells in a tetracycline-inducible manner, we observed the up-regulation of p21 expression and the induction of senescence-associated β-galactosidase activity. Suppression of p21 significantly decreased the induction of ASPL-TFE3-mediated cellular senescence. Furthermore, ASPL-TFE3 expression in mesenchymal stem cells resulted in a significant up-regulation of proinflammatory cytokines associated with senescence-associated secretory phenotype (SASP). These results show that ASPL-TFE3 regulates cell cycle progression and induces cellular senescence by up-regulating p21 expression. In addition, our data suggest a potential mechanism by which ASPL-TFE3-induced senescence may play a role in tumorigenesis by inducing SASP, which could promote the protumorigenic microenvironment.
Collapse
Affiliation(s)
- Naoko Ishiguro
- Department of Pathobiological Science and Technology, Faculty of Medicine, Tottori University, 86 Nishimachi, Yonago, Tottori 683-8503, Japan.
| | - Haruhiko Yoshida
- Department of Pathology, Yonago Medical Center, 4-17-1 Kuzumo, Yonago, Tottori 683-0006, Japan
| |
Collapse
|
8
|
Sidler C, Woycicki R, Li D, Wang B, Kovalchuk I, Kovalchuk O. A role for SUV39H1-mediated H3K9 trimethylation in the control of genome stability and senescence in WI38 human diploid lung fibroblasts. Aging (Albany NY) 2015; 6:545-63. [PMID: 25063769 PMCID: PMC4153622 DOI: 10.18632/aging.100678] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular senescence has been associated with the age-dependent decline in tissue repair and regeneration, the increasing deterioration of the immune system, and the age-dependent increase in the incidence of cancer. Here, we show that senescence of human lung fibroblast WI-38 cells is associated with extensive changes to the gene expression profile, including the differential expression of transcriptional and epigenetic regulators. Among those, SUV39H1 was downregulated in senescent cells, correlated with a decrease in global H3K9 trimethylation, reduced H3K9me3 levels in repetitive DNA sequence regions such as satellites and transposable elements, and increased transcription of these repetitive DNA sequences. This indicates that SUV39H1 plays a role in limiting genomic instability in dividing cells and suggests that SUV39H1 downregulation may contribute to the establishment of senescence by increasing genomic instability. Additionally, the manipulation of SUV39H1 expression levels resulted in altered cell cycle distribution, suggesting a causal role of SUV39H1 in the establishment of cellular senescence. Thus, based on our findings and the results from previous reports, we propose a model in which SUV39H1 downregulation promotes the establishment of cellular senescence.
Collapse
Affiliation(s)
- Corinne Sidler
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Rafal Woycicki
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
9
|
Abstract
UNLABELLED Cyprinid herpesvirus 3 (CyHV-3), commonly known as koi herpesvirus (KHV), is a member of the Alloherpesviridae, and is a recently discovered emerging herpesvirus that is highly pathogenic for koi and common carp. Our previous study demonstrated that CyHV-3 becomes latent in peripheral white blood cells (WBC). In this study, CyHV-3 latency was further investigated in IgM(+) WBC. The presence of the CyHV-3 genome in IgM(+) WBC was about 20-fold greater than in IgM(-) WBC. To determine whether CyHV-3 expressed genes during latency, transcription from all eight open reading frames (ORFs) in the terminal repeat was investigated in IgM(+) WBC from koi with latent CyHV-3 infection. Only a spliced ORF6 transcript was found to be abundantly expressed in IgM(+) WBC from CyHV-3 latently infected koi. The spliced ORF6 transcript was also detected in vitro during productive infection as early as 1 day postinfection. The ORF6 transcript from in vitro infection begins at -127 bp upstream of the ATG codon and ends +188 bp downstream of the stop codon, +20 bp downstream of the polyadenylation signal. The hypothetical protein of ORF6 contains a consensus sequence with homology to a conserved domain of EBNA-3B and ICP4 from Epstein-Barr virus and herpes simplex virus 1, respectively, both members of the Herpesviridae. This is the first report of latent CyHV-3 in B cells and identification of gene transcription during latency for a member of the Alloherpesviridae. IMPORTANCE This is the first demonstration that a member of the Alloherpesviridae, cyprinid herpesvirus 3 (CyHV-3), establishes a latent infection in the B cells of its host, Cyprinus carpio. In addition, this is the first report of identification of gene transcription during latency for a member of Herpesvirales outside Herpesviridae. This is also the first report that the hypothetical protein of latent transcript of CyHV-3 contains a consensus sequence with homology to a conserved domain of EBNA-3B from Epstein-Barr virus and ICP4 from herpes simplex virus 1, which are genes important for latency. These strongly suggest that latency is evolutionally conserved across vertebrates.
Collapse
|
10
|
Genetic Susceptibility to Head and Neck Squamous Cell Carcinoma. Int J Radiat Oncol Biol Phys 2014; 89:38-48. [DOI: 10.1016/j.ijrobp.2013.09.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 01/28/2023]
|
11
|
Rebolledo-Jaramillo B, Alarcon RA, Fernandez VI, Gutierrez SE. Cis-regulatory elements are harbored in Intron5 of the RUNX1 gene. BMC Genomics 2014; 15:225. [PMID: 24655352 PMCID: PMC3984029 DOI: 10.1186/1471-2164-15-225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human RUNX1 gene is one of the most frequent target for chromosomal translocations associated with acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). The highest prevalence in AML is noted with (8; 21) translocation; which represents 12 to 15% of all AML cases. Interestingly, all the breakpoints mapped to date in t(8;21) are clustered in intron 5 of the RUNX1 gene and intron 1 of the ETO gene. No homologous sequences have been found at the recombination regions; but DNase I hypersensitive sites (DHS) have been mapped to the areas of the genes involved in t(8;21). Presence of DHS sites is commonly associated with regulatory elements such as promoters, enhancers and silencers, among others. RESULTS In this study we used a combination of comparative genomics, cloning and transfection assays to evaluate potential regulatory elements located in intron 5 of the RUNX1 gene. Our genomic analysis identified nine conserved non-coding sequences that are evolutionarily conserved among rat, mouse and human. We cloned two of these regions in pGL-3 Promoter plasmid in order to analyze their transcriptional regulatory activity. Our results demonstrate that the identified regions can indeed regulate transcription of a reporter gene in a distance and position independent manner; moreover, their transcriptional effect is cell type specific. CONCLUSIONS We have identified nine conserved non coding sequence that are harbored in intron 5 of the RUNX1 gene. We have also demonstrated that two of these regions can regulate transcriptional activity in vitro. Taken together our results suggest that intron 5 of the RUNX1 gene contains multiple potential cis-regulatory elements.
Collapse
Affiliation(s)
| | | | | | - Soraya E Gutierrez
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Biologicas, Universidad de Concepcion, Concepcion, Chile.
| |
Collapse
|
12
|
Garcia-Jove Navarro M, Basset C, Arcondéguy T, Touriol C, Perez G, Prats H, Lacazette E. Api5 contributes to E2F1 control of the G1/S cell cycle phase transition. PLoS One 2013; 8:e71443. [PMID: 23940755 PMCID: PMC3737092 DOI: 10.1371/journal.pone.0071443] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 07/05/2013] [Indexed: 02/02/2023] Open
Abstract
Background The E2f transcription factor family has a pivotal role in controlling the cell fate in general, and in particular cancer development, by regulating the expression of several genes required for S phase entry and progression through the cell cycle. It has become clear that the transcriptional activation of at least one member of the family, E2F1, can also induce apoptosis. An appropriate balance of positive and negative regulators appears to be necessary to modulate E2F1 transcriptional activity, and thus cell fate. Methodology/Principal Findings In this report, we show that Api5, already known as a regulator of E2F1 induced-apoptosis, is required for the E2F1 transcriptional activation of G1/S transition genes, and consequently, for cell cycle progression and cell proliferation. Api5 appears to be a cell cycle regulated protein. Removal of Api5 reduces cyclin E, cyclin A, cyclin D1 and Cdk2 levels, causing G1 cell cycle arrest and cell cycle delay. Luciferase assays established that Api5 directly regulates the expression of several G1/S genes under E2F1 control. Using protein/protein and protein/DNA immunoprecipitation studies, we demonstrate that Api5, even if not physically interacting with E2F1, contributes positively to E2F1 transcriptional activity by increasing E2F1 binding to its target promoters, through an indirect mechanism. Conclusion/Significance The results described here support the pivotal role of cell cycle related proteins, that like E2F1, may act as tumor suppressors or as proto-oncogenes during cancer development, depending on the behavior of their positive and negative regulators. According to our findings, Api5 contributes to E2F1 transcriptional activation of cell cycle-associated genes by facilitating E2F1 recruitment onto its target promoters and thus E2F1 target gene transcription.
Collapse
Affiliation(s)
| | - Céline Basset
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Tania Arcondéguy
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Christian Touriol
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Guillaume Perez
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Hervé Prats
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Eric Lacazette
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
- * E-mail:
| |
Collapse
|
13
|
Parveen N, Masood A, Iftikhar N, Minhas BF, Minhas R, Nawaz U, Abbasi AA. Comparative genomics using teleost fish helps to systematically identify target gene bodies of functionally defined human enhancers. BMC Genomics 2013; 14:122. [PMID: 23432897 PMCID: PMC3599049 DOI: 10.1186/1471-2164-14-122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/19/2013] [Indexed: 12/03/2022] Open
Abstract
Background Human genome is enriched with thousands of conserved non-coding elements (CNEs). Recently, a medium throughput strategy was employed to analyze the ability of human CNEs to drive tissue specific expression during mouse embryogenesis. These data led to the establishment of publicly available genome wide catalog of functionally defined human enhancers. Scattering of enhancers over larger regions in vertebrate genomes seriously impede attempts to pinpoint their precise target genes. Such associations are prerequisite to explore the significance of this in vivo characterized catalog of human enhancers in development, disease and evolution. Results This study is an attempt to systematically identify the target gene-bodies for functionally defined human CNE-enhancers. For the purpose we adopted the orthology/paralogy mapping approach and compared the CNE induced reporter expression with reported endogenous expression pattern of neighboring genes. This procedure pinpointed specific target gene-bodies for the total of 192 human CNE-enhancers. This enables us to gauge the maximum genomic search space for enhancer hunting: 4 Mb of genomic sequence around the gene of interest (2 Mb on either side). Furthermore, we used human-rodent comparison for a set of 159 orthologous enhancer pairs to infer that the central nervous system (CNS) specific gene expression is closely associated with the cooperative interaction among at least eight distinct transcription factors: SOX5, HFH, SOX17, HNF3β, c-FOS, Tal1beta-E47S, MEF and FREAC. Conclusions In conclusion, the systematic wiring of cis-acting sites and their target gene bodies is an important step to unravel the role of in vivo characterized catalog of human enhancers in development, physiology and medicine.
Collapse
Affiliation(s)
- Nazia Parveen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | | | | | | | | | | |
Collapse
|
14
|
Suzuki K, Matsui Y, Higashimoto M, Kawaguchi Y, Seki S, Motomura H, Hori T, Yahara Y, Kanamori M, Kimura T. Myxoid liposarcoma-associated EWSR1-DDIT3 selectively represses osteoblastic and chondrocytic transcription in multipotent mesenchymal cells. PLoS One 2012; 7:e36682. [PMID: 22570737 PMCID: PMC3343026 DOI: 10.1371/journal.pone.0036682] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/11/2012] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Liposarcomas are the most common class of soft tissue sarcomas, and myxoid liposarcoma is the second most common liposarcoma. EWSR1-DDIT3 is a chimeric fusion protein generated by the myxoid liposarcoma-specific chromosomal translocation t(12;22)(q13;q12). Current studies indicate that multipotent mesenchymal cells are the origin of sarcomas. The mechanism whereby EWSR1-DDIT3 contributes to the phenotypic selection of target cells during oncogenic transformation remains to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS Reporter assays showed that the EWSR1-DDIT3 myxoid liposarcoma fusion protein, but not its wild-type counterparts EWSR1 and DDIT3, selectively repressed the transcriptional activity of cell lineage-specific marker genes in multipotent mesenchymal C3H10T1/2 cells. Specifically, the osteoblastic marker Opn promoter and chondrocytic marker Col11a2 promoter were repressed, while the adipocytic marker Ppar-γ2 promoter was not affected. Mutation analyses, transient ChIP assays, and treatment of cells with trichostatin A (a potent inhibitor of histone deacetylases) or 5-Aza-2'-deoxycytidine (a methylation-resistant cytosine homolog) revealed the possible molecular mechanisms underlying the above-mentioned selective transcriptional repression. The first is a genetic action of the EWSR1-DDIT3 fusion protein, which results in binding to the functional C/EBP site within Opn and Col11a2 promoters through interaction of its DNA-binding domain and subsequent interference with endogenous C/EBPβ function. Another possible mechanism is an epigenetic action of EWSR1-DDIT3, which enhances histone deacetylation, DNA methylation, and histone H3K9 trimethylation at the transcriptional repression site. We hypothesize that EWSR1-DDIT3-mediated transcriptional regulation may modulate the target cell lineage through target gene-specific genetic and epigenetic conversions. CONCLUSIONS/SIGNIFICANCE This study elucidates the molecular mechanisms underlying EWSR1-DDIT3 fusion protein-mediated phenotypic selection of putative target multipotent mesenchymal cells during myxoid liposarcoma development. A better understanding of this process is fundamental to the elucidation of possible direct lineage reprogramming in oncogenic sarcoma transformation mediated by fusion proteins.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- CCAAT-Enhancer-Binding Proteins/chemistry
- CCAAT-Enhancer-Binding Proteins/metabolism
- Calmodulin-Binding Proteins/metabolism
- Cell Line
- Chondrocytes/metabolism
- Collagen Type XI/genetics
- DNA Methylation
- Histone Deacetylases/metabolism
- Humans
- Leucine Zippers
- Liposarcoma, Myxoid/genetics
- Liposarcoma, Myxoid/metabolism
- Mesenchymal Stem Cells/metabolism
- Mice
- Models, Biological
- Molecular Sequence Data
- Multipotent Stem Cells/metabolism
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Osteoblasts/metabolism
- Osteopontin/genetics
- PPAR gamma/genetics
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/metabolism
- RNA-Binding Protein EWS
- RNA-Binding Proteins/metabolism
- Repressor Proteins/metabolism
- Transcription Factor CHOP/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Translocation, Genetic
Collapse
Affiliation(s)
- Kayo Suzuki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yoshito Matsui
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Mami Higashimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yoshiharu Kawaguchi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shoji Seki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hiraku Motomura
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takeshi Hori
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yasuhito Yahara
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Masahiko Kanamori
- Department of Human Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomoatsu Kimura
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
15
|
Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics 2011; 11:537-61. [PMID: 21532838 PMCID: PMC3048316 DOI: 10.2174/138920210793175895] [Citation(s) in RCA: 1319] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/23/2010] [Accepted: 09/06/2010] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are small, highly conserved non-coding RNA molecules involved in the regulation of gene expression. MicroRNAs are transcribed by RNA polymerases II and III, generating precursors that undergo a series of cleavage events to form mature microRNA. The conventional biogenesis pathway consists of two cleavage events, one nuclear and one cytoplasmic. However, alternative biogenesis pathways exist that differ in the number of cleavage events and enzymes responsible. How microRNA precursors are sorted to the different pathways is unclear but appears to be determined by the site of origin of the microRNA, its sequence and thermodynamic stability. The regulatory functions of microRNAs are accomplished through the RNA-induced silencing complex (RISC). MicroRNA assembles into RISC, activating the complex to target messenger RNA (mRNA) specified by the microRNA. Various RISC assembly models have been proposed and research continues to explore the mechanism(s) of RISC loading and activation. The degree and nature of the complementarity between the microRNA and target determine the gene silencing mechanism, slicer-dependent mRNA degradation or slicer-independent translation inhibition. Recent evidence indicates that P-bodies are essential for microRNA-mediated gene silencing and that RISC assembly and silencing occurs primarily within P-bodies. The P-body model outlines microRNA sorting and shuttling between specialized P-body compartments that house enzymes required for slicer –dependent and –independent silencing, addressing the reversibility of these silencing mechanisms. Detailed knowledge of the microRNA pathways is essential for understanding their physiological role and the implications associated with dysfunction and dysregulation.
Collapse
Affiliation(s)
- Leigh-Ann Macfarlane
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, Sir Charles Tupper Medical Building, Halifax, Nova Scotia, B3H 1X5, Canada
| | | |
Collapse
|
16
|
Cao AR, Rabinovich R, Xu M, Xu X, Jin VX, Farnham PJ. Genome-wide analysis of transcription factor E2F1 mutant proteins reveals that N- and C-terminal protein interaction domains do not participate in targeting E2F1 to the human genome. J Biol Chem 2011; 286:11985-96. [PMID: 21310950 PMCID: PMC3069401 DOI: 10.1074/jbc.m110.217158] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previous studies of E2F family members have suggested that protein-protein interactions may be the mechanism by which E2F proteins are recruited to specific genomic regions. We have addressed this hypothesis on a genome-wide scale using ChIP-seq analysis of MCF7 cell lines that express tagged wild type and mutant E2F1 proteins. First, we performed ChIP-seq for tagged WT E2F1. Then, we analyzed E2F1 proteins that lacked the N-terminal SP1 and cyclin A binding domains, the C-terminal transactivation and pocket protein binding domains, and the internal marked box domain. Surprisingly, we found that the ChIP-seq patterns of the mutant proteins were identical to that of WT E2F1. However, mutation of the DNA binding domain abrogated all E2F1 binding to the genome. These results suggested that the interaction between the E2F1 DNA binding domain and a consensus motif may be the primary determinant of E2F1 recruitment. To address this possibility, we analyzed the in vivo binding sites for the in vitro-derived consensus E2F1 motif (TTTSSCGC) and also performed de novo motif analysis. We found that only 12% of the ChIP-seq peaks contained the TTTSSCGC motif. De novo motif analysis indicated that most of the in vivo sites lacked the 5′ half of the in vitro-derived consensus, having instead the in vivo consensus of CGCGC. In summary, our findings do not provide support for the model that protein-protein interactions are involved in recruiting E2F1 to the genome, but rather suggest that recognition of a motif found at most human promoters is the critical determinant.
Collapse
Affiliation(s)
- Alina R Cao
- Genome Center, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
17
|
Lee BK, Bhinge AA, Iyer VR. Wide-ranging functions of E2F4 in transcriptional activation and repression revealed by genome-wide analysis. Nucleic Acids Res 2011; 39:3558-73. [PMID: 21247883 PMCID: PMC3089461 DOI: 10.1093/nar/gkq1313] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The E2F family of transcription factors has important roles in cell cycle progression. E2F4 is an E2F family member that has been proposed to be primarily a repressor of transcription, but the scope of its binding activity and functions in transcriptional regulation is not fully known. We used ChIP sequencing (ChIP-seq) to identify around 16 000 E2F4 binding sites which potentially regulate 7346 downstream target genes with wide-ranging functions in DNA repair, cell cycle regulation, apoptosis, and other processes. While half of all E2F4 binding sites (56%) occurred near transcription start sites (TSSs), ∼20% of sites occurred more than 20 kb away from any annotated TSS. These distal sites showed histone modifications suggesting that E2F4 may function as a long-range regulator, which we confirmed by functional experimental assays on a subset. Overexpression of E2F4 and its transcriptional cofactors of the retinoblastoma (Rb) family and its binding partner DP-1 revealed that E2F4 acts as an activator as well as a repressor. E2F4 binding sites also occurred near regulatory elements for miRNAs such as let-7a and mir-17, suggestive of regulation of miRNAs by E2F4. Taken together, our genome-wide analysis provided evidence of versatile roles of E2F4 and insights into its functions.
Collapse
Affiliation(s)
- Bum-Kyu Lee
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
18
|
Wirt SE, Adler AS, Gebala V, Weimann JM, Schaffer BE, Saddic LA, Viatour P, Vogel H, Chang HY, Meissner A, Sage J. G1 arrest and differentiation can occur independently of Rb family function. ACTA ACUST UNITED AC 2010; 191:809-25. [PMID: 21059851 PMCID: PMC2983066 DOI: 10.1083/jcb.201003048] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repression of E2F target genes is required for cell cycle arrest in Rb family (Rb, p107, and p130)-deficient cells. The ability of progenitor cells to exit the cell cycle is essential for proper embryonic development and homeostasis, but the mechanisms governing cell cycle exit are still not fully understood. Here, we tested the requirement for the retinoblastoma (Rb) protein and its family members p107 and p130 in G0/G1 arrest and differentiation in mammalian cells. We found that Rb family triple knockout (TKO) mouse embryos survive until days 9–11 of gestation. Strikingly, some TKO cells, including in epithelial and neural lineages, are able to exit the cell cycle in G0/G1 and differentiate in teratomas and in culture. This ability of TKO cells to arrest in G0/G1 is associated with the repression of key E2F target genes. Thus, G1 arrest is not always dependent on Rb family members, which illustrates the robustness of cell cycle regulatory networks during differentiation and allows for the identification of candidate pathways to inhibit the expansion of cancer cells with mutations in the Rb pathway.
Collapse
Affiliation(s)
- Stacey E Wirt
- Department of Pediatrics, Stanford Medical School, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Beck K, Wu BJ, Ni J, Santiago FS, Malabanan KP, Li C, Wang Y, Khachigian LM, Stocker R. Interplay between heme oxygenase-1 and the multifunctional transcription factor yin yang 1 in the inhibition of intimal hyperplasia. Circ Res 2010; 107:1490-7. [PMID: 21030713 DOI: 10.1161/circresaha.110.231985] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE induction of heme oxygenase (HO)-1 protects against experimental atherosclerotic diseases, and certain pharmacological HO-1 inducers, like probucol, inhibit the proliferation of vascular smooth muscle cells and, at the same time, promote the growth of endothelial cells in vivo and in vitro. OBJECTIVE because such cell-specific effects are reminiscent of the action of the transcription factor Yin Yang (YY)1, we tested the hypothesis that there is a functional relationship between HO-1 and YY1. METHODS AND RESULTS we report that probucol increases the number of YY1(+) cells in rat carotid artery following balloon injury at a time coinciding with increased HO-1 expression. The drug also induces the expression of YY1 mRNA and protein in rat aortic smooth muscle cells (RASMCs) in vitro, as do other known HO-1 inducers (tert-butylhydroquinone and hemin) and overexpression of HO-1 using a human HMOX1 cDNA plasmid. Conversely, overexpression of YY1 induces expression of HO-1 in RASMCs. Induction of YY1 expression is dependent on HO-1 enzyme activity and its reaction product CO, because pharmacological inhibition of heme oxygenase activity or CO scavenging block, whereas exposure of RASMCs to a CO-releasing molecule increases, YY1 expression. Furthermore, RNA interference knockdown of YY1 prevents probucol or adeno-HO-1 from inhibiting RASMC proliferation in vitro and neointimal formation in vivo. CONCLUSIONS our findings show, for the first time, that HO-1 functionally interplays with the multifunctional transcription factor YY1 and that this interplay explains some of the protective activities of HO-1.
Collapse
Affiliation(s)
- Konstanze Beck
- Centre for Vascular Research, School of Medical Sciences and Bosch Institute, Medical Foundation Building (K25), University of Sydney, 92-94 Parramatta Rd, Camperdown, NSW 2006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen L, Shioda T, Coser KR, Lynch MC, Yang C, Schmidt EV. Genome-wide analysis of YY2 versus YY1 target genes. Nucleic Acids Res 2010; 38:4011-26. [PMID: 20215434 PMCID: PMC2896514 DOI: 10.1093/nar/gkq112] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Yin Yang 1 (YY1) is a critical transcription factor controlling cell proliferation, development and DNA damage responses. Retrotranspositions have independently generated additional YY family members in multiple species. Although Drosophila YY1 [pleiohomeotic (Pho)] and its homolog [pleiohomeotic-like (Phol)] redundantly control homeotic gene expression, the regulatory contributions of YY1-homologs have not yet been examined in other species. Indeed, targets for the mammalian YY1 homolog YY2 are completely unknown. Using gene set enrichment analysis, we found that lentiviral constructs containing short hairpin loop inhibitory RNAs for human YY1 (shYY1) and its homolog YY2 (shYY2) caused significant changes in both shared and distinguishable gene sets in human cells. Ribosomal protein genes were the most significant gene set upregulated by both shYY1 and shYY2, although combined shYY1/2 knock downs were not additive. In contrast, shYY2 reversed the anti-proliferative effects of shYY1, and shYY2 particularly altered UV damage response, platelet-specific and mitochondrial function genes. We found that decreases in YY1 or YY2 caused inverse changes in UV sensitivity, and that their combined loss reversed their respective individual effects. Our studies show that human YY2 is not redundant to YY1, and YY2 is a significant regulator of genes previously identified as uniquely responding to YY1.
Collapse
Affiliation(s)
- Li Chen
- Cancer Research Center at Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
21
|
Hsia EYC, Kalashnikova EV, Revenko AS, Zou JX, Borowsky AD, Chen HW. Deregulated E2F and the AAA+ coregulator ANCCA drive proto-oncogene ACTR/AIB1 overexpression in breast cancer. Mol Cancer Res 2010; 8:183-93. [PMID: 20124470 DOI: 10.1158/1541-7786.mcr-09-0095] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The proto-oncogene ACTR/AIB1, a coactivator for transcription factors such as the nuclear receptors and E2Fs, is frequently overexpressed in various cancers including breast cancers. However, the underlying mechanism is poorly understood. Here, we identified several functional, noncanonical E2F binding sites in the ACTR first exon and intron that are critical for ACTR gene activation. We also found that the newly identified AAA+ coregulator AAA+ nuclear coregulator cancer associated (ANCCA) is recruited to the ACTR promoter and directly controls ACTR expression in breast cancer cells. Importantly, immunohistochemistry analysis indicated that ACTR overexpression is highly correlated with the expression of E2F1 and ANCCA in a cohort of human primary and lymph node-metastasized breast cancer specimens. Along with previous findings from us and others that ACTR is involved in its own gene regulation, these results suggest that one major mechanism of ACTR overexpression in cancer is the concerted, aberrant function of the nuclear coregulators such as ANCCA and ACTR, and they point to therapeutic strategies that target the Rb-E2F axis and/or the coregulator ANCCA for ACTR-overexpressing cancers.
Collapse
Affiliation(s)
- Elaine Y C Hsia
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
22
|
Berckmans B, De Veylder L. Transcriptional control of the cell cycle. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:599-605. [PMID: 19700366 DOI: 10.1016/j.pbi.2009.07.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/02/2009] [Accepted: 07/20/2009] [Indexed: 05/17/2023]
Abstract
Cell division is a highly coordinated process. In the last decades, many plant cell cycle regulators have been identified. Strikingly, only a few transcriptional regulators are known, although a significant amount of the genome is transcribed in a cell cycle phase-dependent manner. E2F-DP transcription factors and three repeat MYB proteins are responsible for the expression of genes at the G1-to-S and G2-to-M transition, respectively. However, these two mechanisms cannot explain completely the transcriptional regulation seen during the cell cycle. Correspondingly, several new transcriptional regulators have been characterized, stressing the importance of transcriptional control during the cell cycle.
Collapse
Affiliation(s)
- Barbara Berckmans
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052 Gent, Belgium
| | | |
Collapse
|
23
|
Macleod KF. The role of the RB tumour suppressor pathway in oxidative stress responses in the haematopoietic system. Nat Rev Cancer 2008; 8:769-81. [PMID: 18800074 PMCID: PMC2989879 DOI: 10.1038/nrc2504] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exposure to pro-oxidants and defects in the repair of oxidative base damage are associated with disease and ageing and also contribute to the development of anaemia, bone marrow failure and haematopoietic malignancies. This Review assesses emerging data indicative of a specific role for the RB tumour suppressor pathway in the response of the haematopoietic system to oxidative stress. This is mediated through signalling pathways that involve DNA damage sensors, forkhead box O (Foxo) transcription factors and p38 mitogen-activated protein kinases and has downstream consequences for cell cycle progression, antioxidant capacity, mitochondrial mass and cellular metabolism.
Collapse
Affiliation(s)
- Kay F Macleod
- Ben May Department for Cancer Research, Committee on Cancer Biology, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.
| |
Collapse
|
24
|
Retinoblastoma protein and the leukemia-associated PLZF transcription factor interact to repress target gene promoters. Oncogene 2008; 27:5260-6. [PMID: 18504436 DOI: 10.1038/onc.2008.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Translocations of the retinoic acid receptor-alpha (RARalpha) locus with the promyelocytic leukemia zinc-finger (PLZF) or PML genes lead to expression of oncogenic PLZF-RARalpha or PML-RARalpha fusion proteins, respectively. These fusion oncoproteins constitutively repress RARalpha target genes, in large part through aberrant recruitment of multiprotein co-repressor complexes. PML and PML-RARalpha have previously been shown to associate with the retinoblastoma (Rb) tumour suppressor protein in its hypophosphorylated state. Here, we demonstrate that PLZF also interacts with Rb in vitro and in vivo. The interaction between PLZF and Rb is mediated through the Rb pocket and the region of PLZF that lies between its transcriptional repression (poxvirus and zinc-finger, POZ) and DNA-binding (zinc-finger) domains. In addition, Rb can simultaneously interact with PLZF and the E2F1 S phase-inducing transcription factor, suggesting that these proteins can exist in the same multiprotein complex. In contrast to the interaction of Rb with PML or E2F1, the PLZF-Rb interaction is not dependent on hypophosphorylation of Rb. These data are supported by chromatin immunoprecipitation analysis, which indicates that PLZF associates with the promoter region of CDC6, a known E2F/Rb target gene. Co-expression of PLZF and Rb results in enhancement of transcriptional repression of PLZF and E2F/Rb target genes, indicating functional co-operation between the two proteins. Both PLZF and Rb have been shown to function in stem cells and taken together these data suggest that interactions between PLZF and Rb could be important in stem cell biology.
Collapse
|
25
|
Leung JY, Ehmann GL, Giangrande PH, Nevins JR. A role for Myc in facilitating transcription activation by E2F1. Oncogene 2008; 27:4172-9. [PMID: 18345030 DOI: 10.1038/onc.2008.55] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous work has demonstrated that E2F proteins regulate the expression of various genes encoding proteins essential for DNA replication and cell-cycle progression. E2F1 in particular is required for the initial entry to the cell cycle from a quiescent state and is required for the activation of other E2F genes. Other work has demonstrated a role for the Myc transcription factor in the activation of a large number of genes associated with cell growth, including E2F genes. We now show that Myc is required to allow the interaction of the E2F1 protein with the E2F gene promoters. As such, Myc thus provides a link between the development of a growth-competent state during the initial stage of G(1) and the activation of genes essential for DNA replication at G(1)/S.
Collapse
Affiliation(s)
- J Y Leung
- Department of Molecular Genetics and Microbiology, Duke Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
26
|
p110 CUX1 cooperates with E2F transcription factors in the transcriptional activation of cell cycle-regulated genes. Mol Cell Biol 2008; 28:3127-38. [PMID: 18347061 DOI: 10.1128/mcb.02089-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The transcription factor p110 CUX1 was shown to stimulate cell proliferation by accelerating entry into S phase. As p110 CUX1 can function as a transcriptional repressor or activator depending on promoter context, we investigated its mechanism of transcriptional activation using the DNA polymerase alpha gene promoter as a model system. Linker-scanning analysis revealed that a low-affinity E2F binding site is required for transcriptional activation. Moreover, coexpression with a dominant-negative mutant of DP-1 suggested that endogenous E2F factors are indeed needed for p110-mediated activation. Tandem affinity purification, coimmunoprecipitation, chromatin immunoprecipitation, and reporter assays indicated that p110 CUX1 can engage in weak protein-protein interactions with E2F1 and E2F2, stimulate their recruitment to the DNA polymerase alpha gene promoter, and cooperate with these factors in transcriptional activation. On the other hand, in vitro assays suggested that the interaction between CUX1 and E2F1 either is not direct or is regulated by posttranslational modifications. Genome-wide location analysis revealed that targets common to p110 CUX1 and E2F1 included many genes involved in cell cycle, DNA replication, and DNA repair. Comparison of the degree of enrichment for various E2F factors suggested that binding of p110 CUX1 to a promoter will favor the specific recruitment of E2F1, and to a lesser extent E2F2, over E2F3 and E2F4. Reporter assays on a subset of common targets confirmed that p110 CUX1 and E2F1 cooperate in their transcriptional activation. Overall, our results show that p110 CUX1 and E2F1 cooperate in the regulation of many cell cycle genes.
Collapse
|
27
|
Andronis C, Barak S, Knowles SM, Sugano S, Tobin EM. The clock protein CCA1 and the bZIP transcription factor HY5 physically interact to regulate gene expression in Arabidopsis. MOLECULAR PLANT 2008; 1:58-67. [PMID: 20031914 DOI: 10.1093/mp/ssm005] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The circadian clock regulates the expression of an array of Arabidopsis genes such as those encoding the LIGHT-HARVESTING CHLOROPHYLL A/B (Lhcb) proteins. We have previously studied the promoters of two of these Arabidopsis genes--Lhcb1*1 and Lhcb1*3--and identified a sequence that binds the clock protein CIRCADIAN CLOCK ASSOCIATED 1 (CCA1). This sequence, designated CCA1-binding site (CBS), is necessary for phytochrome and circadian responsiveness of these genes. In close proximity to this sequence, there exists a G-box core element that has been shown to bind the bZIP transcription factor HY5 in other light-regulated plant promoters. In the present study, we examined the importance of the interaction of transcription factors binding the CBS and the G-box core element in the control of normal circadian rhythmic expression of Lhcb genes. Our results show that HY5 is able to specifically bind the G-box element in the Lhcb promoters and that CCA1 can alter the binding activity of HY5. We further show that CCA1 and HY5 can physically interact and that they can act synergistically on transcription in a yeast reporter gene assay. An absence of HY5 leads to a shorter period of Lhcb1*1 circadian expression but does not affect the circadian expression of CATALASE3 (CAT3), whose promoter lacks a G-box element. Our results suggest that interaction of the HY5 and CCA1 proteins on Lhcb promoters is necessary for normal circadian expression of the Lhcb genes.
Collapse
Affiliation(s)
- Christos Andronis
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095-1606, USA
| | | | | | | | | |
Collapse
|
28
|
Conboy CM, Spyrou C, Thorne NP, Wade EJ, Barbosa-Morais NL, Wilson MD, Bhattacharjee A, Young RA, Tavaré S, Lees JA, Odom DT. Cell cycle genes are the evolutionarily conserved targets of the E2F4 transcription factor. PLoS One 2007; 2:e1061. [PMID: 17957245 PMCID: PMC2020443 DOI: 10.1371/journal.pone.0001061] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 09/27/2007] [Indexed: 12/21/2022] Open
Abstract
Maintaining quiescent cells in G0 phase is achieved in part through the multiprotein subunit complex known as DREAM, and in human cell lines the transcription factor E2F4 directs this complex to its cell cycle targets. We found that E2F4 binds a highly overlapping set of human genes among three diverse primary tissues and an asynchronous cell line, which suggests that tissue-specific binding partners and chromatin structure have minimal influence on E2F4 targeting. To investigate the conservation of these transcription factor binding events, we identified the mouse genes bound by E2f4 in seven primary mouse tissues and a cell line. E2f4 bound a set of mouse genes that was common among mouse tissues, but largely distinct from the genes bound in human. The evolutionarily conserved set of E2F4 bound genes is highly enriched for functionally relevant regulatory interactions important for maintaining cellular quiescence. In contrast, we found minimal mRNA expression perturbations in this core set of E2f4 bound genes in the liver, kidney, and testes of E2f4 null mice. Thus, the regulatory mechanisms maintaining quiescence are robust even to complete loss of conserved transcription factor binding events.
Collapse
Affiliation(s)
- Caitlin M. Conboy
- Cancer Research UK-Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Christiana Spyrou
- Cancer Research UK-Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
- Statistical Laboratory, Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, United Kingdom
| | - Natalie P. Thorne
- Cancer Research UK-Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth J. Wade
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Nuno L. Barbosa-Morais
- Cancer Research UK-Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Michael D. Wilson
- Cancer Research UK-Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | | | - Richard A. Young
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Simon Tavaré
- Cancer Research UK-Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Jacqueline A. Lees
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Duncan T. Odom
- Cancer Research UK-Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| |
Collapse
|
29
|
Xu X, Bieda M, Jin VX, Rabinovich A, Oberley MJ, Green R, Farnham PJ. A comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Res 2007; 17:1550-61. [PMID: 17908821 PMCID: PMC2045138 DOI: 10.1101/gr.6783507] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using ChIP-chip assays (employing ENCODE arrays and core promoter arrays), we examined the binding patterns of three members of the E2F family in five cell types. We determined that most E2F1, E2F4, and E2F6 binding sites are located within 2 kb of a transcription start site, in both normal and tumor cells. In fact, the majority of promoters that are active (as defined by TAF1 or POLR2A binding) in GM06990 B lymphocytes and Ntera2 carcinoma cells were also bound by an E2F. This very close relationship between E2F binding sites and binding sites for general transcription factors in both normal and tumor cells suggests that a chromatin-bound E2F may be a signpost for active transcription initiation complexes. In general, we found that several E2Fs bind to a given promoter and that there is only modest cell type specificity of the E2F family. Thus, it is difficult to assess the role of any particular E2F in transcriptional regulation, due to extreme redundancy of target promoters. However, Ntera2 carcinoma cells were exceptional in that a large set of promoters were bound by E2F6, but not by E2F1 or E2F4. It has been proposed that E2F6 contributes to gene silencing by recruiting enzymes involved in methylating histone H3. To test this hypothesis, we created Ntera2 cell lines harboring shRNAs to E2F6. We found that reduction of E2F6 only induced minimal alteration of the transcriptome of Ntera2 transcriptome. Our results support the concept of functional redundancy in the E2F family and suggest that E2F6 is not critical for histone methylation.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Department of Pharmacology and the Genome Center, University of California-Davis, Davis, California 95616, USA
| | - Mark Bieda
- Department of Pharmacology and the Genome Center, University of California-Davis, Davis, California 95616, USA
| | - Victor X. Jin
- Department of Pharmacology and the Genome Center, University of California-Davis, Davis, California 95616, USA
| | - Alina Rabinovich
- Department of Pharmacology and the Genome Center, University of California-Davis, Davis, California 95616, USA
| | - Mathew J. Oberley
- University of Wisconsin Medical School, Madison, Wisconsin, 53705 USA
| | - Roland Green
- NimbleGen Systems Inc., Madison, Wisconsin, 53711 USA
| | - Peggy J. Farnham
- Department of Pharmacology and the Genome Center, University of California-Davis, Davis, California 95616, USA
- Corresponding author.E-mail ; fax (530) 754-9658
| |
Collapse
|
30
|
Opavsky R, Tsai SY, Guimond M, Arora A, Opavska J, Becknell B, Kaufmann M, Walton NA, Stephens JA, Fernandez SA, Muthusamy N, Felsher DW, Porcu P, Caligiuri MA, Leone G. Specific tumor suppressor function for E2F2 in Myc-induced T cell lymphomagenesis. Proc Natl Acad Sci U S A 2007; 104:15400-5. [PMID: 17881568 PMCID: PMC2000495 DOI: 10.1073/pnas.0706307104] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Deregulation of the Myc pathway and deregulation of the Rb pathway are two of the most common abnormalities in human malignancies. Recent in vitro experiments suggest a complex cross-regulatory relationship between Myc and Rb that is mediated through the control of E2F. To evaluate the functional connection between Myc and E2Fs in vivo, we used a bitransgenic mouse model of Myc-induced T cell lymphomagenesis and analyzed tumor progression in mice deficient for E2f1, E2f2, or E2f3. Whereas the targeted inactivation of E2f1 or E2f3 had no significant effect on tumor progression, loss of E2f2 accelerated lymphomagenesis. Interestingly, loss of a single copy of E2f2 also accelerated tumorigenesis, albeit to a lesser extent, suggesting a haploinsufficient function for this locus. The combined ablation of E2f1 or E2f3, along with E2f2, did not further accelerate tumorigenesis. Myc-overexpressing T cells were more resistant to apoptosis in the absence of E2f2, and the reintroduction of E2F2 into these tumor cells resulted in an increase of apoptosis and inhibition of tumorigenesis. These results identify the E2f2 locus as a tumor suppressor through its ability to modulate apoptosis.
Collapse
Affiliation(s)
- Rene Opavsky
- *Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine and Public Health and
- Department of Molecular Genetics, College of Biological Sciences
| | - Shih-Yin Tsai
- *Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine and Public Health and
- Department of Molecular Genetics, College of Biological Sciences
| | - Martin Guimond
- *Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine and Public Health and
- Division of Hematology and Oncology, Department of Internal Medicine, and
| | - Anjulie Arora
- *Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine and Public Health and
- Department of Molecular Genetics, College of Biological Sciences
| | - Jana Opavska
- *Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine and Public Health and
- Department of Molecular Genetics, College of Biological Sciences
| | - Brian Becknell
- *Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine and Public Health and
- Division of Hematology and Oncology, Department of Internal Medicine, and
| | - Michael Kaufmann
- *Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine and Public Health and
- Department of Molecular Genetics, College of Biological Sciences
| | - Nathaniel A. Walton
- *Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine and Public Health and
- Department of Molecular Genetics, College of Biological Sciences
| | | | | | | | - Dean W. Felsher
- Division of Oncology, Department of Medicine, Stanford University, CCSR 1105B, 269 Campus Drive, Stanford, CA 94305-5151
| | - Pierluigi Porcu
- Division of Hematology and Oncology, Department of Internal Medicine, and
| | - Michael A. Caligiuri
- *Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine and Public Health and
- Division of Hematology and Oncology, Department of Internal Medicine, and
- The Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210; and
| | - Gustavo Leone
- *Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine and Public Health and
- Department of Molecular Genetics, College of Biological Sciences
- The Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210; and
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Wang H, Larris B, Peiris TH, Zhang L, Le Lay J, Gao Y, Greenbaum LE. C/EBPbeta activates E2F-regulated genes in vivo via recruitment of the coactivator CREB-binding protein/P300. J Biol Chem 2007; 282:24679-88. [PMID: 17599912 DOI: 10.1074/jbc.m705066200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The E2F transcription factors play an essential role in regulating the G(1)- to S-phase transition of the cell cycle. Previous studies have identified the importance of interactions between E2Fs and other transcription factors as a mechanism for transcriptional control of a subset of E2F regulated target genes. However, the mechanisms responsible for E2F target gene specificity remain incompletely understood. Here we report that in a mammalian in vivo model of synchronized proliferation, C/EBPbeta occupancy on the promoters of E2F-regulated growth-related genes increases as a function of cell cycle progression. C/EPBbeta binding to these promoters is associated with recruitment of the coactivator CBP/p300, histone H4 acetylation, and maximal activation of E2F target genes. Moreover, binding of CBP/p300 to E2F targets is markedly reduced in C/EBPbeta null mice, resulting in reduced expression of E2F regulated genes. These findings identify C/EBPbeta as a direct activator of E2F target genes in mammalian cell cycle progression through a mechanism that involves recruitment of CBP/p300. The demonstration of a functional link between C/EBPbeta and CBP/p300 for E2F target gene activation provides a potential mechanism for how coactivators such as CBP/p300 can be selectively recruited to E2F target genes in response to tissue-specific growth stimuli.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
El-Darwish KS, Parvinen M, Toppari J. Differential expression of members of the E2F family of transcription factors in rodent testes. Reprod Biol Endocrinol 2006; 4:63. [PMID: 17147820 PMCID: PMC1698920 DOI: 10.1186/1477-7827-4-63] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 12/05/2006] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The E2F family of transcription factors is required for the activation or repression of differentially expressed gene programs during the cell cycle in normal and abnormal development of tissues. We previously determined that members of the retinoblastoma protein family that interacts with the E2F family are differentially expressed and localized in almost all the different cell types and tissues of the testis and in response to known endocrine disruptors. In this study, the cell-specific and stage-specific expression of members of the E2F proteins has been elucidated. METHODS We used immunohistochemical (IHC) analysis of tissue sections and Western blot analysis of proteins, from whole testis and microdissected stages of seminiferous tubules to study the differential expression of the E2F proteins. RESULTS For most of the five E2F family members studied, the localizations appear conserved in the two most commonly studied rodent models, mice and rats, with some notable differences. Comparisons between wild type and E2F-1 knockout mice revealed that the level of E2F-1 protein is stage-specific and most abundant in leptotene to early pachytene spermatocytes of stages IX to XI of mouse while strong staining of E2F-1 in some cells close to the basal lamina of rat tubules suggest that it may also be expressed in undifferentiated spermatogonia. The age-dependent development of a Sertoli-cell-only phenotype in seminiferous tubules of E2F-1 knockout males corroborates this, and indicates that E2F-1 is required for spermatogonial stem cell renewal. Interestingly, E2F-3 appears in both terminally differentiated Sertoli cells, as well as spermatogonial cells in the differentiative pathway, while the remaining member of the activating E2Fs, E2F-2 is most concentrated in spermatocytes of mid to late prophase of meiosis. Comparisons between wildtype and E2F-4 knockout mice demonstrated that the level of E2F-4 protein displays a distinct profile of stage-specificity compared to E2F-1, which is probably related to its prevalence and role in Sertoli cells. IHC of rat testis indicates that localization of E2F-5 is distinct from that of E2F-4 and overlaps those of E2F-1 and E2F-2. CONCLUSION The E2F-1 represents the subfamily of transcription factors required during stages of DNA replication and gene expression for development of germ cells and the E2F-4 represents the subfamily of transcription factors that help maintain gene expression for a terminally differentiated state within the testis.
Collapse
Affiliation(s)
- Kame S El-Darwish
- Departments of Physiology and Pediatrics, University of Turku, Kiinamyllynkatu 10, FIN- 20520, Turku, Finland
| | - Martti Parvinen
- Department of Anatomy, University of Turku, Kiinamyllynkatu 10, FIN- 20520, Turku, Finland
| | - Jorma Toppari
- Departments of Physiology and Pediatrics, University of Turku, Kiinamyllynkatu 10, FIN- 20520, Turku, Finland
| |
Collapse
|
33
|
Mussi P, Yu C, O'Malley BW, Xu J. Stimulation of Steroid Receptor Coactivator-3 (SRC-3) Gene Overexpression by a Positive Regulatory Loop of E2F1 and SRC-3. Mol Endocrinol 2006; 20:3105-19. [PMID: 16916939 DOI: 10.1210/me.2005-0522] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Steroid receptor coactivator 3 (SRC-3, amplified in breast cancer 1, or ACTR) is a transcriptional coactivator for nuclear receptors and certain other transcription factors such as E2F1. SRC-3 is overexpressed in breast cancers, and its overexpression is sufficient to cause mammary carcinomas in vivo. However, the mechanisms controlling endogenous SRC-3 overexpression are unknown. In this study, we identified the first exon and analyzed the 5′ regulatory sequence of the SRC-3 gene. We found three evolutionarily conserved regions (ECRs) in the 5′ SRC-3 regulatory sequence, and ECR2 makes a major contribution to the SRC-3 promoter activity. The ECR2 region (bp −250/+350) contains several specificity protein 1 (Sp1) binding sites and two E2F1 binding sites. We show that E2F1 can significantly activate the ECR2 promoter activity in a dose-dependent manner. Furthermore, overexpression of E2F1 significantly increases the promoter activity of the endogenous SRC-3 gene and boosts SRC-3 expression in vivo. Conversely, knockdown of E2F1 reduces SRC-3 expression. We demonstrate that the mechanism of E2F1 activity on SRC-3 promoter is independent of the E2F binding sites but relies on the Sp1 element located at bp +150/+160. Sp1, E2F1, and SRC-3 are specifically recruited to this Sp1 site and the interaction between E2F1 and Sp1 is essential to modulate SRC-3 expression. Moreover, SRC-3 coactivates E2F1 activity and thereby additively stimulates a further increase in SRC-3 expression in vivo. These results suggest that in cells with hyperactive E2F1, such as the case encountered in breast cancer cells, there is a positive feedback regulatory loop consisting of E2F1 and SRC-3 to maintain high levels of SRC-3 and E2F1 activity, which may partially interpret the oncogenic role of SRC-3 overexpression.
Collapse
Affiliation(s)
- Paola Mussi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
34
|
Woods K, Thomson JM, Hammond SM. Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem 2006; 282:2130-4. [PMID: 17135268 DOI: 10.1074/jbc.c600252200] [Citation(s) in RCA: 358] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Micro-RNAs (miRNAs) are a class of non-coding RNAs that post-transcriptionally regulate gene expression via the RNA interference pathway. In addition to roles in normal development, miRNAs have recently been implicated in a range of human diseases, including cancer. We recently demonstrated that a polycistronic cluster of miRNAs, miR-17-92, is oncogenic in a mouse model for Burkitt's lymphoma. This is due, in part, to a reduced apoptotic program. In an effort to understand the regulation of miR-17-92, we have studied the promoter structure of this miRNA cluster. The primary transcript initiates from a consensus initiator sequence downstream of a nonconsensus TATA box. The core promoter region contains two functional E2F transcription factor binding sites. Chromatin immunoprecipitation demonstrates that E2F3 is the primary E2F family member that occupies the promoter. These data place miR-17-92 in a regulatory loop between E2F3 and the miR-17 target E2F1. We propose a model whereby miR-17-92 promotes cell proliferation by shifting the E2F transcriptional balance away from the pro-apoptotic E2F1 and toward the proliferative E2F3 transcriptional network.
Collapse
Affiliation(s)
- Keith Woods
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
35
|
Jin VX, Rabinovich A, Squazzo SL, Green R, Farnham PJ. A computational genomics approach to identify cis-regulatory modules from chromatin immunoprecipitation microarray data--a case study using E2F1. Genome Res 2006; 16:1585-95. [PMID: 17053090 PMCID: PMC1665642 DOI: 10.1101/gr.5520206] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advances in high-throughput technologies, such as ChIP-chip, and the completion of human and mouse genomic sequences now allow analysis of the mechanisms of gene regulation on a systems level. In this study, we have developed a computational genomics approach (termed ChIPModules), which begins with experimentally determined binding sites and integrates positional weight matrices constructed from transcription factor binding sites, a comparative genomics approach, and statistical learning methods to identify transcriptional regulatory modules. We began with E2F1 binding site information obtained from ChIP-chip analyses of ENCODE regions, from both HeLa and MCF7 cells. Our approach not only distinguished targets from nontargets with a high specificity, but it also identified five regulatory modules for E2F1. One of the identified modules predicted a colocalization of E2F1 and AP-2alpha on a set of target promoters with an intersite distance of <270 bp. We tested this prediction using ChIP-chip assays with arrays containing approximately 14,000 human promoters. We found that both E2F1 and AP-2alpha bind within the predicted distance to a large number of human promoters, demonstrating the strength of our sequence-based, unbiased, and universal protocol. Finally, we have used our ChIPModules approach to develop a database that includes thousands of computationally identified and/or experimentally verified E2F1 target promoters.
Collapse
Affiliation(s)
- Victor X. Jin
- Department of Pharmacology and the Genome Center, University of California–Davis, Davis, California 95616, USA
| | - Alina Rabinovich
- Department of Pharmacology and the Genome Center, University of California–Davis, Davis, California 95616, USA
| | - Sharon L. Squazzo
- Department of Pharmacology and the Genome Center, University of California–Davis, Davis, California 95616, USA
| | - Roland Green
- NimbleGen Systems Inc., Madison, Wisconsin 53711, USA
| | - Peggy J. Farnham
- Department of Pharmacology and the Genome Center, University of California–Davis, Davis, California 95616, USA
- Corresponding author.E-mail ; fax (530) 754-9658
| |
Collapse
|
36
|
Abstract
The retinoblastoma gene Rb was the first tumor suppressor gene cloned, and it is well known as a negative regulator of the cell cycle through its ability to bind the transcription factor E2F and repress transcription of genes required for S phase. Although over 100 other proteins have been reported to interact with Rb, in most cases these interactions are much less well characterized. Therefore, this review will primarily focus on Rb and E2F interactions. In addition to cell cycle regulation, studies of Rb and E2F proteins in animal models have revealed important roles for these proteins in apoptosis and differentiation. Recent screens of Rb/E2F target genes have identified new targets in all these areas. In addition, the mechanisms determining how different subsets of target genes are regulated under different conditions have only begun to be addressed and offer exciting possibilities for future research.
Collapse
Affiliation(s)
- W Du
- Ben May Institute for Cancer Research and Center for Molecular Oncology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
37
|
Zanocco-Marani T, Vignudelli T, Gemelli C, Pirondi S, Testa A, Montanari M, Parenti S, Tenedini E, Grande A, Ferrari S. Tfe3 expression is closely associated to macrophage terminal differentiation of human hematopoietic myeloid precursors. Exp Cell Res 2006; 312:4079-89. [PMID: 17046750 DOI: 10.1016/j.yexcr.2006.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 08/03/2006] [Accepted: 09/12/2006] [Indexed: 01/26/2023]
Abstract
The MItf-Tfe family of basic helix-loop-helix leucine zipper (bHLH-Zip) transcription factors encodes four family members: MItf, Tfe3, TfeB and TfeC. In vitro, each protein of the family binds DNA in a homo- or heterodimeric form with other family members. Tfe3 is involved in chromosomal translocations recurrent in different tumors and it has been demonstrated, by in vivo studies, that it plays, redundantly with MItf, an important role in the process of osteoclast formation, in particular during the transition from mono-nucleated to multi-nucleated osteoclasts. Since mono-nucleated osteoclasts derive from macrophages we investigated whether Tfe3 might play a role upstream during hematopoietic differentiation. Here we show that Tfe3 is able to induce mono-macrophagic differentiation of U937 cells, in association with a decrease of cell proliferation and an increase of apoptosis. We also show that Tfe3 does not act physiologically during commitment of CD34+ hematopoietic stem cells (HSCs), since it is not able to direct HSCs toward a specific lineage as observed by clonogenic assay, but is a strong actor of terminal differentiation since it allows human primary myeloblasts' maturation toward the macrophage lineage.
Collapse
Affiliation(s)
- Tommaso Zanocco-Marani
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, Università di Modena e Reggio Emilia, Via Campi 287, 41100, Modena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Huan C, Kelly ML, Steele R, Shapira I, Gottesman SRS, Roman CAJ. Transcription factors TFE3 and TFEB are critical for CD40 ligand expression and thymus-dependent humoral immunity. Nat Immunol 2006; 7:1082-91. [PMID: 16936731 PMCID: PMC2386253 DOI: 10.1038/ni1378] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 07/18/2006] [Indexed: 01/27/2023]
Abstract
TFE3 and TFEB are broadly expressed transcription factors related to the transcription factor Mitf. Although they have been linked to cytokine signaling pathways in nonlymphoid cells, their function in T cells is unknown. TFE3-deficient mice are phenotypically normal, whereas TFEB deficiency causes early embryonic death. We now show that combined inactivation of TFE3 and TFEB in T cells resulted in a hyper-immunoglobulin M syndrome due to impaired expression of CD40 ligand by CD4(+) T cells. Native TFE3 and TFEB bound to multiple cognate sites in the promoter of the gene encoding CD40 ligand (Cd40lg), and maximum Cd40lg promoter activity and gene expression required TFE3 or TFEB. Thus, TFE3 and TFEB are direct, physiological and mutually redundant activators of Cd40lg expression in activated CD4(+) T cells critical for T cell-dependent antibody responses.
Collapse
Affiliation(s)
- Chongmin Huan
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York, Downstate Medical Center at Brooklyn, New York, New York 11203, USA
| | | | | | | | | | | |
Collapse
|
39
|
Louie MC, Revenko AS, Zou JX, Yao J, Chen HW. Direct control of cell cycle gene expression by proto-oncogene product ACTR, and its autoregulation underlies its transforming activity. Mol Cell Biol 2006; 26:3810-23. [PMID: 16648476 PMCID: PMC1489001 DOI: 10.1128/mcb.26.10.3810-3823.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ACTR (also called AIB1 and SRC-3) was identified as a coactivator for nuclear receptors and is linked to multiple types of human cancer due to its frequent overexpression. However, the molecular mechanism of ACTR oncogenicity and its function independent of nuclear receptors remain to be defined. We demonstrate here that ACTR is required for both normal and malignant human cells to effectively enter S phase. RNA interference-mediated depletion and chromatin immunoprecipitation assays show that endogenous ACTR directly controls the expression of genes important for initiation of DNA replication, which include cdc6, cdc25A, MCM7, cyclin E, and Cdk2. Moreover, consistent with its critical role in cell cycle control, ACTR expression appears to be cell cycle regulated, which involves E2F. Interestingly, ACTR is recruited to its own promoter at the G1/S transition and activates its own expression, suggesting a positive feedback mechanism for ACTR action in the control of cell cycle progression and for its aberrant expression in cancers. Importantly, overexpression of ACTR alone transforms human mammary epithelial cells, which requires its association with E2F. These findings reveal a novel role for ACTR in cell cycle control and support the notion that the ability of aberrant ACTR to deregulate the cell cycle through E2F underlies its oncogenicity in human cancers.
Collapse
Affiliation(s)
- Maggie C Louie
- Department of Biochemistry and Molecular Medicine, UCD Cancer Center/Basic Science, University of California at Davis, Sacramento, California 95817, USA
| | | | | | | | | |
Collapse
|
40
|
Son HJ, Lee SH, Choi SY. Human lactoferrin controls the level of retinoblastoma protein and its activityThis paper is one of a selection of papers published in this Special Issue, entitled 7th International Conference on Lactoferrin: Structure, Function, and Applications, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2006; 84:345-50. [PMID: 16936805 DOI: 10.1139/o06-048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lactoferrin (Lf) has been implicated in the regulation of cell growth. However, the molecular mechanism underlying this effect remains to be elucidated. In this study, we show that Lf is involved in the cell cycle control system in a variety of cell lines, through retinoblastoma protein (Rb) - mediated growth arrest. We observed that Lf induces the expression of Rb, a signal mediator of cell cycle control, and that a majority of this Lf-induced Rb persists in a hypophosphorylated form. In addition, we determined that Lf specifically augments the level of a cyclin-dependent kinase inhibitor, p21, but not p27. Upon treatment with Lf, H1299 cells expressing defective p53 effected an augmentation of endogenous p21 levels, which may contribute to the accumulation of hypophosphorylated Rb. A substantial quantity of active Rb binds more efficiently to E2F1 in cells that express Lf and consequently blocks the expression of an E2F1-responsive gene, thereby suggesting that Lf plays a crucial role in the inhibition of tumor cell growth. Therefore, we conclude that the antiproliferative effects of Lf can likely be attributed to the elevated levels of hypophosphorylated Rb.
Collapse
Affiliation(s)
- Hee-Joung Son
- School of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul 136-701, Korea
| | | | | |
Collapse
|
41
|
Nijman SMB, Hijmans EM, Messaoudi SE, van Dongen MMW, Sardet C, Bernards R. A functional genetic screen identifies TFE3 as a gene that confers resistance to the anti-proliferative effects of the retinoblastoma protein and transforming growth factor-beta. J Biol Chem 2006; 281:21582-21587. [PMID: 16737956 DOI: 10.1074/jbc.m602312200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The helix-loop-helix transcription factor TFE3 has been suggested to play a role in the control of cell growth by acting as a binding partner of transcriptional regulators such as E2F3, SMAD3, and LEF-1. Furthermore, translocations/TFE3 fusions have been directly implicated in tumorigenesis. Surprisingly, however, a direct functional role for TFE3 in the regulation of proliferation has not been reported. By screening retroviral cDNA expression libraries to identify cDNAs that confer resistance to a pRB-induced proliferation arrest, we have found that TFE3 overrides a growth arrest in Rat1 cells induced by pRB and its upstream regulator p16(INK4A). In addition, TFE3 expression blocks the anti-mitogenic effects of TGF-beta in rodent and human cells. We provide data supporting a role for endogenous TFE3 in the direct regulation of CYCLIN E expression in an E2F3-dependent manner. These observations establish TFE3 as a functional regulator of proliferation and offer a potential mechanism for its involvement in cancer.
Collapse
Affiliation(s)
- Sebastian M B Nijman
- Division of Molecular Carcinogenesis and Centre for Biomedical Genetics, The Netherlands Cancer Institute, 121 Plesmanlaan, 1066 CX Amsterdam, The Netherlands
| | - E Marielle Hijmans
- Division of Molecular Carcinogenesis and Centre for Biomedical Genetics, The Netherlands Cancer Institute, 121 Plesmanlaan, 1066 CX Amsterdam, The Netherlands
| | - Selma El Messaoudi
- Institut de Genetique Moleculaire, Unité Mixte de Recherche 5535/IFR24 CNRS, 1919 Route de Mende 34293, Montpellier Cedex 5, France
| | - Miranda M W van Dongen
- Division of Molecular Carcinogenesis and Centre for Biomedical Genetics, The Netherlands Cancer Institute, 121 Plesmanlaan, 1066 CX Amsterdam, The Netherlands
| | - Claude Sardet
- Institut de Genetique Moleculaire, Unité Mixte de Recherche 5535/IFR24 CNRS, 1919 Route de Mende 34293, Montpellier Cedex 5, France
| | - René Bernards
- Division of Molecular Carcinogenesis and Centre for Biomedical Genetics, The Netherlands Cancer Institute, 121 Plesmanlaan, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Hanada N, Lo HW, Day CP, Pan Y, Nakajima Y, Hung MC. Co-regulation of B-Myb expression by E2F1 and EGF receptor. Mol Carcinog 2006; 45:10-7. [PMID: 16299810 DOI: 10.1002/mc.20147] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is frequently over-expressed in human cancers and is associated with tumorigenesis, and increased tumor proliferation and progression. Also found in breast tumors with high levels is B-Myb, a transcription factor whose expression is activated by E2F1/3 at the late G1 phase and the level is sustained through the S phase. Recent reports suggest a casual correlation between EGFR and B-Myb expression in primary breast carcinomas. However, the mechanism for such co-expression remains un-investigated. Here, we report that EGFR is important for B-Myb expression and the underlying mechanism involves cooperated effects from EGFR and E2F1. EGF stimulation and forced expression of EGFR significantly increase B-Myb gene activity and such increase occurs in the G1 phase. EGF-induced B-Myb expression was not significantly suppressed following inhibition of PI-3K and ERK, two major EGFR downstream pathways. In contrast, we observed EGF-induced in vivo association of nuclear EGFR to the B-Myb promoter and the association is only detected at the G1/S phase and is abolished by EGFR kinase inhibitor. As EGFR lacks DNA-binding domain but contains transactivational activity and E2F1 activates B-Myb expression in the G1/S phase, we further reasoned that nuclear EGFR might cooperate with E2F1 leading to activation of B-Myb. Indeed, we found that EGFR co-immunoprecipitated with E2F1 in an EGF-dependent manner and that EGF activated in vivo binding of E2F1 to the B-Myb promoter. Consistently, forced expression of both EGFR and E2F1 in EGFR-null CHO cells greatly enhanced B-Myb promoter activity, compared to the vector control and expression of EGFR or E2F1 alone. Promoter mutagenesis studies showed that EGF-induced activation of B-Myb promoter required both E2F and EGFR target sites. In summary, our data suggest that deregulated EGFR signaling pathway facilitate tumor cell proliferation partly via EGFR interaction with E2F1 and subsequent activation of B-Myb gene expression.
Collapse
Affiliation(s)
- Norihisa Hanada
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
43
|
Rubin SM, Gall AL, Zheng N, Pavletich NP. Structure of the Rb C-terminal domain bound to E2F1-DP1: a mechanism for phosphorylation-induced E2F release. Cell 2006; 123:1093-106. [PMID: 16360038 DOI: 10.1016/j.cell.2005.09.044] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 09/14/2005] [Accepted: 09/21/2005] [Indexed: 01/06/2023]
Abstract
The retinoblastoma (Rb) protein negatively regulates the G1-S transition by binding to the E2F transcription factors, until cyclin-dependent kinases phosphorylate Rb, causing E2F release. The Rb pocket domain is necessary for E2F binding, but the Rb C-terminal domain (RbC) is also required for growth suppression. Here we demonstrate a high-affinity interaction between RbC and E2F-DP heterodimers shared by all Rb and E2F family members. The crystal structure of an RbC-E2F1-DP1 complex reveals an intertwined heterodimer in which the marked box domains of both E2F1 and DP1 contact RbC. We also demonstrate that phosphorylation of RbC at serines 788 and 795 destabilizes one set of RbC-E2F-DP interactions directly, while phosphorylation at threonines 821 and 826 induces an intramolecular interaction between RbC and the Rb pocket that destabilizes the remaining interactions indirectly. Our findings explain the requirement of RbC for high-affinity E2F binding and growth suppression and establish a mechanism for the regulation of Rb-E2F association by phosphorylation.
Collapse
Affiliation(s)
- Seth M Rubin
- Structural Biology Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | | | | | | |
Collapse
|
44
|
Tu Z, Prajapati S, Park KJ, Kelly NJ, Yamamoto Y, Gaynor RB. IKK alpha regulates estrogen-induced cell cycle progression by modulating E2F1 expression. J Biol Chem 2006; 281:6699-706. [PMID: 16407216 DOI: 10.1074/jbc.m512439200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The IkappaB kinase (IKK) complex consists of the catalytic subunits IKKalpha and IKKbeta and a regulatory subunit, IKKgamma/NEMO. Even though IKKalpha and IKKbeta share significant sequence similarity, they have distinct biological roles. It has been demonstrated that IKKs are involved in regulating the proliferation of both normal and tumor cells, although the mechanisms by which they function in this process remain to be better defined. In this study, we demonstrate that IKKalpha, but not IKKbeta, is important for estrogen-induced cell cycle progression by regulating the transcription of the E2F1 gene as well as other E2F1-responsive genes, including thymidine kinase 1, proliferating cell nuclear antigen, cyclin E, and cdc25A. The role of IKKalpha in regulating E2F1 was not the result of reduced levels of cyclin D1, as overexpression of this gene could not overcome the effects of IKKalpha knock-down. Furthermore, estrogen treatment increased the association of endogenous IKKalpha and E2F1, and this interaction occurred on promoters bound by E2F1. IKKalpha also potentiated the ability of p300/CBP-associated factor to acetylate E2F1. Taken together, these data suggest a novel mechanism by which IKKalpha can influence estrogen-mediated cell cycle progression through its regulation of E2F1.
Collapse
Affiliation(s)
- Zheng Tu
- Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | |
Collapse
|
45
|
Black EP, Hallstrom T, Dressman HK, West M, Nevins JR. Distinctions in the specificity of E2F function revealed by gene expression signatures. Proc Natl Acad Sci U S A 2005; 102:15948-53. [PMID: 16249342 PMCID: PMC1276052 DOI: 10.1073/pnas.0504300102] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The E2F family of transcription factors provides essential activities for coordinating the control of cellular proliferation and cell fate. Both E2F1 and E2F3 proteins have been shown to be particularly important for cell proliferation, whereas the E2F1 protein has the capacity to promote apoptosis. To explore the basis for this specificity of function, we used DNA microarray analysis to probe for the distinctions in the two E2F activities. Gene expression profiles that distinguish either E2F1- or E2F3-expressing cells from quiescent cells are enriched in genes encoding cell cycle and DNA replication activities, consistent with many past studies. E2F1 profile is also enriched in genes known to function in apoptosis. We also identified patterns of gene expression that specifically differentiate the activity of E2F1 and E2F3; this profile is enriched in genes known to function in mitosis. The specificity of E2F function has been attributed to protein interactions mediated by the marked box domain, and we now show that chimeric E2F proteins generate expression signatures that reflect the origin of the marked box, thus linking the biochemical mechanism for specificity of function with specificity of gene activation.
Collapse
Affiliation(s)
- Esther P Black
- Duke Institute for Genome Sciences and Policy, Department of Molecular Genetics and Microbiology, Medical Center, Duke University, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
Rb was the first tumour suppressor identified through human genetic studies. The most significant achievement after almost twenty years since its cloning is the revelation that Rb possesses functions of a transcription regulator. Rb serves as a transducer between the cell cycle machinery and promoter-specific transcription factors. In this capacity, Rb is best known as a repressor of the E2F/DP family of transcription factors, which regulate expression of genes involved in cell proliferation and survival. An equally important aspect of Rb as a transcription regulator is that Rb also activates certain differentiation transcription factors to promote cellular differentiation. The molecular mechanisms behind the repressive effects of Rb on E2Fs have come to light in significant details, while those relating to Rb activation of differentiation transcription factors are much less understood. Finally, it has become clear that there are other aspects to Rb function that are not immediately related to transcription regulation.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Developmental and Molecular Biology, and Medicine, The Albert Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
47
|
Vandepoele K, Vlieghe K, Florquin K, Hennig L, Beemster GTS, Gruissem W, Van de Peer Y, Inzé D, De Veylder L. Genome-wide identification of potential plant E2F target genes. PLANT PHYSIOLOGY 2005; 139:316-328. [PMID: 16126853 DOI: 10.1104/pp.105.066290.316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Entry into the S phase of the cell cycle is controlled by E2F transcription factors that induce the transcription of genes required for cell cycle progression and DNA replication. Although the E2F pathway is highly conserved in higher eukaryotes, only a few E2F target genes have been experimentally validated in plants. We have combined microarray analysis and bioinformatics tools to identify plant E2F-responsive genes. Promoter regions of genes that were induced at the transcriptional level in Arabidopsis (Arabidopsis thaliana) seedlings ectopically expressing genes for the E2Fa and DPa transcription factors were searched for the presence of E2F-binding sites, resulting in the identification of 181 putative E2F target genes. In most cases, the E2F-binding element was located close to the transcription start site, but occasionally could also be localized in the 5' untranslated region. Comparison of our results with available microarray data sets from synchronized cell suspensions revealed that the E2F target genes were expressed almost exclusively during G1 and S phases and activated upon reentry of quiescent cells into the cell cycle. To test the robustness of the data for the Arabidopsis E2F target genes, we also searched for the presence of E2F-cis-acting elements in the promoters of the putative orthologous rice (Oryza sativa) genes. Using this approach, we identified 70 potential conserved plant E2F target genes. These genes encode proteins involved in cell cycle regulation, DNA replication, and chromatin dynamics. In addition, we identified several genes for potentially novel S phase regulatory proteins.
Collapse
Affiliation(s)
- Klaas Vandepoele
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vandepoele K, Vlieghe K, Florquin K, Hennig L, Beemster GTS, Gruissem W, Van de Peer Y, Inzé D, De Veylder L. Genome-wide identification of potential plant E2F target genes. PLANT PHYSIOLOGY 2005; 139:316-28. [PMID: 16126853 PMCID: PMC1203381 DOI: 10.1104/pp.105.066290] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Entry into the S phase of the cell cycle is controlled by E2F transcription factors that induce the transcription of genes required for cell cycle progression and DNA replication. Although the E2F pathway is highly conserved in higher eukaryotes, only a few E2F target genes have been experimentally validated in plants. We have combined microarray analysis and bioinformatics tools to identify plant E2F-responsive genes. Promoter regions of genes that were induced at the transcriptional level in Arabidopsis (Arabidopsis thaliana) seedlings ectopically expressing genes for the E2Fa and DPa transcription factors were searched for the presence of E2F-binding sites, resulting in the identification of 181 putative E2F target genes. In most cases, the E2F-binding element was located close to the transcription start site, but occasionally could also be localized in the 5' untranslated region. Comparison of our results with available microarray data sets from synchronized cell suspensions revealed that the E2F target genes were expressed almost exclusively during G1 and S phases and activated upon reentry of quiescent cells into the cell cycle. To test the robustness of the data for the Arabidopsis E2F target genes, we also searched for the presence of E2F-cis-acting elements in the promoters of the putative orthologous rice (Oryza sativa) genes. Using this approach, we identified 70 potential conserved plant E2F target genes. These genes encode proteins involved in cell cycle regulation, DNA replication, and chromatin dynamics. In addition, we identified several genes for potentially novel S phase regulatory proteins.
Collapse
Affiliation(s)
- Klaas Vandepoele
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The retinoblastoma tumour suppressor protein (Rb) has come a long way since its initial discovery in 1986. Encoded by the first candidate tumour suppressor gene it has emerged a versatile and context-dependent modulator of cell behaviour. Its activity is managed by signalling networks sensing intra- and extracellular cues. These cues are relayed to hold or permit inactivation of Rb by phosphorylation. Loss or mutation of the retinoblastoma gene is rare in sporadic cancers but defects in the pathways that license inactivation of Rb are found in the majority of them, suggesting that loss of Rb control is central to tumour development and arguing that its reinstatement might reverse tumour formation. Furthermore, mouse models with engineered defects in the Rb-phosphorylating kinases provide evidence that moderation of Rb inactivation may be a strategy for the prevention of tumour formation. The rationale behind these arguments, their underlying molecular concepts and strategies towards therapeutic application will be discussed.
Collapse
Affiliation(s)
- Sibylle Mittnacht
- Cancer Research UK Centre for Cell and Molecular Biology, ICR, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
50
|
Huan C, Sashital D, Hailemariam T, Kelly ML, Roman CAJ. Renal Carcinoma-associated Transcription Factors TFE3 and TFEB Are Leukemia Inhibitory Factor-responsive Transcription Activators of E-cadherin. J Biol Chem 2005; 280:30225-35. [PMID: 15994295 DOI: 10.1074/jbc.m502380200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Translocations of the genes encoding the related transcription factors TFE3 and TFEB are almost exclusively associated with a rare juvenile subset of renal cell carcinoma and lead to overexpression of TFE3 or TFEB protein sequences. A better understanding of how deregulated TFE3 and TFEB contribute to the transformation process requires elucidating more of the normal cellular processes in which they participate. Here we identify TFE3 and TFEB as cell type-specific leukemia inhibitory factor-responsive activators of E-cadherin. Overexpression of TFE3 or TFEB in 3T3 cells activated endogenous and reporter E-cadherin expression. Conversely, endogenous TFE3 and/or TFEB was required for endogenous E-cadherin expression in primary mouse embryonic fibroblasts and human embryonic kidney cells. Chromatin precipitation analyses and E-cadherin promoter reporter gene assays revealed that E-cadherin induction by TFE3 or TFEB was primarily or exclusively direct and mitogen-activated protein kinase-dependent in those cell types. In mouse embryonic fibroblasts, TFE3 and TFEB activation of E-cadherin was responsive to leukemia inhibitory factor. In 3T3 cells, TFE3 and TFEB expression also induced expression of Wilms' tumor-1, another E-cadherin activator. In contrast, E-cadherin expression in model mouse and canine renal epithelial cell lines was indifferent to inhibition of endogenous TFE3 and/or TFEB and was reduced by TFE3 or TFEB overexpression. These results reveal new cell type-specific activities of TFE3 and TFEB which may be affected by their mutation.
Collapse
Affiliation(s)
- Chongmin Huan
- Department of Microbiology and Immunology and the Morse Institute for Molecular Genetics, State University of New York Downstate Medical Center, Brooklyn 11203, USA
| | | | | | | | | |
Collapse
|