1
|
Chauhan M, Martinak PE, Hollenberg BM, Goodman AG. Drosophila melanogaster Toll-9 elicits antiviral immunity against Drosophila C virus. J Virol 2025:e0221424. [PMID: 40366172 DOI: 10.1128/jvi.02214-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
The Toll pathway plays a pivotal role in innate immune responses against pathogens. The evolutionarily conserved pattern recognition receptors (PRRs), including Toll-like receptors (TLRs), play a crucial role in recognition of pathogen-associated molecular patterns (PAMPs). The Drosophila genome encodes nine Toll receptors that are orthologous to mammalian TLRs. While mammalian TLRs directly recognize PAMPs, most Drosophila Tolls recognize the proteolytically cleaved ligand Spätzle to activate downstream signaling cascades. In this study, we demonstrated that Toll-9 is crucial for antiviral immunity against Drosophila C virus (DCV), a natural pathogen of Drosophila. A transposable element insertion in the Toll-9 gene renders the flies more susceptible to DCV. The stable expression of Toll-9 in Drosophila S2 cells results in increased Dicer2 induction and reduced AKT phosphorylation, collectively establishing an antiviral state that inhibits DCV replication. Toll-9 localizes to endosomes, where it binds viral double-stranded RNA (dsRNA), highlighting its role in detecting viral replication intermediates. Together, these findings identify Toll-9 as a key player in antiviral immunity against DCV infection, acting through its ability to recognize dsRNA and drive Dicer2 expression, along with other AKT-mediated antiviral responses. IMPORTANCE Insects rely on innate immunity and RNA interference (RNAi) to combat viral infections. Our study underscores the pivotal role of Drosophila Toll-9 in antiviral immunity, aligning with findings in Bombyx mori, where Toll-9 activation upregulates the RNAi component Dicer2. We demonstrate that Drosophila Toll-9 functions as a pattern recognition receptor (PRR) for double-stranded RNA (dsRNA) during Drosophila C virus (DCV) infection, akin to mammalian Toll-like receptors (TLRs). Toll-9 activation during DCV infection leads to the upregulation of Dicer2 and Argonaute2 and dephosphorylation of AKT. This study also reveals that Toll-9 localizes in endosomal compartments where it interacts with dsRNA. These insights enhance our understanding of Drosophila innate immune mechanisms, reflecting the evolutionary conservation of immune responses across diverse species and providing impetus for further research into the conserved roles of TLRs across the animal kingdom.
Collapse
Affiliation(s)
- Manish Chauhan
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Peter E Martinak
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Benjamin M Hollenberg
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Schultz TE, Mathmann CD, Domínguez Cadena LC, Muusse TW, Kim H, Wells JW, Ulett GC, Hamerman JA, Brooks AJ, Kobe B, Sweet MJ, Stacey KJ, Blumenthal A. TLR4 endocytosis and endosomal TLR4 signaling are distinct and independent outcomes of TLR4 activation. EMBO Rep 2025; 26:2740-2766. [PMID: 40204912 PMCID: PMC12116916 DOI: 10.1038/s44319-025-00444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Toll-like receptor 4 (TLR4) signaling at the plasma membrane and in endosomes results in distinct contributions to inflammation and host defence. Current understanding indicates that endocytosis of cell surface-activated TLR4 is required to enable subsequent signaling from endosomes. Contrary to this prevailing model, our data show that endosomal TLR4 signaling is not reliant on cell surface-expressed TLR4 or ligand-induced TLR4 endocytosis. Moreover, previously recognized requirements for the accessory molecule CD14 in TLR4 endocytosis and endosomal signaling are likely attributable to CD14 binding as well as trafficking and transferring lipopolysaccharide (LPS) to TLR4 at different subcellular localizations. TLR4 endocytosis requires the TLR4 intracellular signaling domain, contributions by phospholipase C gamma 2, spleen tyrosine kinase, E1/E2 ubiquitination enzymes, but not canonical TLR signaling adaptors and cascades. Thus, our study identifies independently operating TLR4 signaling modes that control TLR4 endocytosis, pro-inflammatory cell surface-derived, as well as endosomal TLR4 signaling. This revised understanding of how TLR4 functions within cells might be harnessed to selectively amplify or restrict TLR4 activation for the development of adjuvants, vaccines and therapeutics.
Collapse
Affiliation(s)
- Thomas E Schultz
- Frazer Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Carmen D Mathmann
- Frazer Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | | | - Timothy W Muusse
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hyoyoung Kim
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - James W Wells
- Frazer Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4215, Australia
| | - Jessica A Hamerman
- Immunology Program, Benaroya Research Institute, Seattle, WA, 98101, USA
| | - Andrew J Brooks
- Frazer Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Antje Blumenthal
- Frazer Institute, The University of Queensland, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
3
|
Zapico D, Espinosa J, Criado M, Gutiérrez D, Ferreras MDC, Benavides J, Pérez V, Fernández M. Immunohistochemical expression of TLR1, TLR2, TLR4, and TLR9 in the different types of lesions associated with bovine paratuberculosis. Vet Pathol 2025; 62:305-318. [PMID: 39720873 DOI: 10.1177/03009858241302850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
The factors that determine the appearance of the different pathologic forms associated with bovine paratuberculosis are not fully understood, but new research suggests a critical role of innate immunity. Toll-like receptors (TLRs) trigger the recognition of invading pathogens by innate immune cells and the onset of specific immune responses. The aim of this work was to assess, immunohistochemically, the expression of TLR1, TLR2, TLR4, and TLR9 in intestinal samples of 20 cows showing different types of paratuberculous lesions: uninfected controls, focal lesions, paucibacillary, and multibacillary diffuse forms. The majority of labeled cells were morphologically consistent with macrophages. A differential cell count was performed in the intestinal lamina propria, gut-associated lymphoid tissue, and mesenteric lymph node. TLR9 immunolabeling between the different types of lesions was compared using a complete H-score. Focal and diffuse paucibacillary forms contained significantly increased TLR2-expressing macrophages outside of the lesions compared with the controls and diffuse multibacillary forms, and moderate TLR9 immunolabeling within granulomas. In the multibacillary granulomatous lesions, the expression of TLR1 and TLR4 was observed as well as increased TLR9 expression compared with the rest of the groups. Differences in the predominance of one type or another of TLR allows us to elucidate the importance of the innate immune response and its possible role in the development of the different types of paratuberculosis lesions.
Collapse
Affiliation(s)
- David Zapico
- Universidad de León, León, Spain
- Instituto de Ganadería de Montaña, León, Spain
| | - José Espinosa
- Universidad de León, León, Spain
- Instituto de Ganadería de Montaña, León, Spain
| | - Miguel Criado
- Universidad de León, León, Spain
- Instituto de Ganadería de Montaña, León, Spain
| | - Daniel Gutiérrez
- Universidad de León, León, Spain
- Instituto de Ganadería de Montaña, León, Spain
| | | | | | - Valentín Pérez
- Universidad de León, León, Spain
- Instituto de Ganadería de Montaña, León, Spain
| | | |
Collapse
|
4
|
Zhang W, Mittal S, Thomas R, Foroughishafiei A, Nunes Bastos R, Chung WK, Skourti-Stathaki K, Crooke ST. A toxic gain-of-function variant in MAPK8IP3 provides insights into JIP3 cellular roles. JCI Insight 2025; 10:e187199. [PMID: 40111412 PMCID: PMC12016931 DOI: 10.1172/jci.insight.187199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Mitogen-activated protein kinase 8 interacting protein 3 (MAPK8IP3) gene encoding a protein called JIP3 is an adaption protein of the kinesin-1 complex known to play a role in axonal transport of cargo. Mutations in the gene have been linked to severe neurodevelopmental disorders, resulting in developmental delay, intellectual disability, ataxia, tremor, autism, seizures, and visual impairment. A patient who has a missense mutation in the MAPK8IP3 gene (c. 1714 C>T, Arg578Cys) (R578C) manifests dystonia, gross motor delay, and developmental delay. Here, we showed that the mutation was a toxic gain-of-function mutation that altered the interactome of JIP3; disrupted axonal transport of late endosomes; increased signaling via c-Jun N-terminal kinase, resulting in apoptosis; and disrupted dopamine receptor 1 signaling while not affecting dopamine receptor 2 signaling. Furthermore, in the presence of the mutant protein, we showed that an 80% reduction of mutant JIP3 and a 60% reduction of WT JIP3 by non-allele-selective phosphorothioate-modified antisense oligonucleotides was well tolerated by several types of cells in vitro. Our study identifies what we believe to be several important new roles for JIP3 and provides important insights for therapeutic approaches, including antisense oligonucleotide reduction of JIP3.
Collapse
Affiliation(s)
- Wei Zhang
- n-Lorem Foundation, Carlsbad, California, USA
| | | | - Ria Thomas
- n-Lorem Foundation, Carlsbad, California, USA
| | | | | | - Wendy K. Chung
- Boston Children’s Hospital, Harvard Medical School, Brookline, Massachusetts, USA
| | | | | |
Collapse
|
5
|
De Chiara S, De Simone Carone L, Cirella R, Andretta E, Silipo A, Molinaro A, Mercogliano M, Di Lorenzo F. Beyond the Toll-Like Receptor 4. Structure-Dependent Lipopolysaccharide Recognition Systems: How far are we? ChemMedChem 2025; 20:e202400780. [PMID: 39752323 PMCID: PMC11911305 DOI: 10.1002/cmdc.202400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
With an enormous potential in immunology and vaccinology, lipopolysaccharides (LPSs) are among the most extensively studied bacteria-derived molecules. LPS centered studies are countless, and their results reverberate in all areas of the life sciences, including chemistry, biology, genetics, biophysics, and medicine. Most of these research activities are focused on the LPS-induced immune response activation by means of Myeloid Differentiation protein-2/Toll Like Receptor 4 (MD-2/TLR4) complex, which currently is the most largely explored LPS sensing pathway. However, the enormous structural variability of LPS allows interactions with numerous other receptors involved in a wide range of equally important immunological scenarios. In this review, we explore these additional LPS recognition systems, which operate within interconnected signaling cascades, highlighting their role in maintaining physiological homeostasis and their involvement in the development of severe human diseases. Understanding these pathways, their interconnections, and the crosstalk between them and TLR4/MD-2 is essential for guiding the development of pharmacologically active molecules that could specifically modulate the inflammatory response, paving the way to new strategies for combating immune-mediated diseases and resistant infections.
Collapse
Affiliation(s)
- Stefania De Chiara
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
| | - Luca De Simone Carone
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
| | - Roberta Cirella
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
| | - Emanuela Andretta
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
| | - Alba Silipo
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
- CEINGE, Istituto di Biotecnologie avanzateVia Gaetano Salvatore, 48680131NaplesItaly
| | - Antonio Molinaro
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
- CEINGE, Istituto di Biotecnologie avanzateVia Gaetano Salvatore, 48680131NaplesItaly
- Department of ChemistrySchool of ScienceOsaka University1-1 Osaka University MachikaneyamaToyonakaOsaka560-0043Japan
| | - Marcello Mercogliano
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
| | - Flaviana Di Lorenzo
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
- CEINGE, Istituto di Biotecnologie avanzateVia Gaetano Salvatore, 48680131NaplesItaly
| |
Collapse
|
6
|
Suprewicz Ł, Fiedoruk K, Skłodowski K, Hutt E, Zakrzewska M, Walewska A, Deptuła P, Lesiak A, Okła S, Galie PA, Patteson AE, Janmey PA, Bucki R. Extracellular vimentin is a damage-associated molecular pattern protein serving as an agonist of TLR4 in human neutrophils. Cell Commun Signal 2025; 23:64. [PMID: 39910535 PMCID: PMC11800445 DOI: 10.1186/s12964-025-02062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Vimentin is a type III intermediate filament protein that plays an important role in cytoskeletal mechanics. It is now known that vimentin also has distinct functions outside the cell. Recent studies show the controlled release of vimentin into the extracellular environment, where it functions as a signaling molecule. Such observations are expanding our current knowledge of vimentin as a structural cellular component towards additional roles as an active participant in cell signaling. METHODS Our study investigates the immunological roles of extracellular vimentin (eVim) and its citrullinated form (CitVim) as a damage-associated molecular pattern (DAMP) engaging the Toll-like receptor 4 (TLR4) of human neutrophils. We used in vitro assays to study neutrophil migration through endothelial cell monolayers and activation markers such as NADPH oxidase subunit 2 (NOX2/gp91phox). The comparison of eVim with CitVim and its effect on human neutrophils was extended to the induction of extracellular traps (NETs) and phagocytosis of pathogens. RESULTS Both eVim and CitVim interact with and trigger TLR4, leading to increased neutrophil migration and adhesion. CitVim stimulated the enhanced migratory ability of neutrophils, activation of NF-κB, and induction of NET formation mainly mediated through reactive oxygen species (ROS)-dependent and TLR4-dependent pathways. In contrast, neutrophils exposed to non-citrullinated vimentin exhibited higher efficiency in favoring pathogen phagocytosis, such as Escherichia coli and Candida albicans, compared to CitVim. CONCLUSIONS Our study identifies new functions of eVim in its native and modified forms as an extracellular matrix DAMP and highlights its importance in the modulation of immune system functions. The differential effects of eVim and CitVim on neutrophil functions highlight their potential as new molecular targets for therapeutic strategies aimed at regulation of neutrophil activity in different pathological conditions. This, in turn, opens new windows of therapeutic intervention in inflammatory and immunological diseases characterized by immune system dysfunction, in which eVim and CitVim play a key role.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-089, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-089, Poland
| | - Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-089, Poland
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-089, Poland
| | - Alicja Walewska
- Centre of Regenerative Medicine, Medical University of Bialystok, Bialystok, 15-269, Poland
| | - Piotr Deptuła
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, Bialystok, 15-089, Poland
| | - Agata Lesiak
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-369, Poland
| | - Sławomir Okła
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-369, Poland
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Paul A Janmey
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-089, Poland.
| |
Collapse
|
7
|
Li L, An G, Li F, Zhang D, Zhu X, Liang C, Zhao Y, Xie K, Zhou P, Zhu H, Jin X, Du L. Shared Genes and Pathways in Ulcerative Colitis and Ankylosing Spondylitis: Functional Validation and Implications for Diagnosis. J Inflamm Res 2025; 18:1657-1678. [PMID: 39925932 PMCID: PMC11806757 DOI: 10.2147/jir.s497201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025] Open
Abstract
Background Associations between ulcerative colitis (UC) and ankylosing spondylitis (AS) have been reported in multiple studies, but the common etiologies of UC and AS remain unknown. Thus, in the current study, we aimed to investigate the shared genes and relevant mechanisms in UC and AS. Methods Using datasets for UC (GSE113079) and AS (GSE1797879), we initially identified differentially expressed genes (DEGs) through differential expression analysis. The DEGs from both datasets were intersected to identify common DEGs, relevant to both UC and AS, which were used in receiver operating characteristic (ROC) curve analysis to confirm key genes in the shared pathway. Gene set enrichment analysis (GSEA) was used to obtain information on key gene pathways and interactions with UC or AS-related diseases, followed by immune infiltration analysis. Finally, peripheral blood samples of AS and UC were used to verify the mRNA expression of the eight key genes using reverse transcription-polymerase chain reaction (RT-PCR). Results Our results revealed that GMFG, GNG11, CLEC4D, CMTM2, VAMP5, S100A8, S100A12 and DGKQ are potential diagnostic biomarkers of AS and UC. Rimegepant, eptinezumab, methotrexate, atogepant, and ubrogepant were identified as potential drugs for S100A12 and S100A8 in patients with UC and AS. GSEA showed that these key genes were associated with antigen processing and presentation, natural killer cell mediated cytotoxicity and the T cell receptor signaling pathway in AS and UC, and were significantly associated with immune cells in various immune-related pathways. Subsequent functional experiments revealed significant increases in the mRNA expressions of S100A12 and VAMP5 in patients with AS and UC. Additionally, CLEC4D mRNA expression was notably higher in patients with UC than in healthy controls. Conclusion Key genes and shared pathways were identified in UC and AS, which may improve understanding of their relationship and guide diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Lin Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Guangqi An
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Fuzhen Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Donghui Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Xinyue Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Chunyu Liang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Yu Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Kunpeng Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Pengyi Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Haiyan Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Xuemin Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Liping Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
8
|
Valiukas Z, Tangalakis K, Apostolopoulos V, Feehan J. Microglial activation states and their implications for Alzheimer's Disease. J Prev Alzheimers Dis 2025; 12:100013. [PMID: 39800461 DOI: 10.1016/j.tjpad.2024.100013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder characterized by the accumulation of toxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein in the brain. Microglia, key immune cells of the central nervous system, play an important role in AD development and progression, primarily through their responses to Aβ and NFTs. Initially, microglia can clear Aβ, but in AD, chronic activation overwhelms protective mechanisms, leading to sustained neuroinflammation that enhances plaque toxicity, setting off a damaging cycle that affects neurons, astrocytes, cerebral vasculature, and other microglia. Current AD treatments have been largely ineffective, though emerging immunotherapies focusing on plaque removal show promise, but often overlook the role of neuroinflammation. Activated microglia display a complex range of phenotypes that can be broadly broken into pro- or anti-inflammatory states, although this dichotomy does not describe the significant overlap between states. Aβ can strongly induce inflammatory activity, triggering the production of reactive oxygen species, inflammatory cytokines (e.g., TNF-α, IL-1β, IL-6), synapse engulfment, blood-brain barrier compromise, and impaired Aβ clearance. These processes contribute to neural tissue loss, manifesting as cognitive decline such as impaired executive function and memory. Conversely, anti-inflammatory activation exerts neuroprotective effects by suppressing inflammatory pathways and releasing neurotrophic factors that aid neuron repair and protection. Induction of anti-inflammatory states may offer a dual therapeutic approach to address both neuroinflammation and plaque accumulation in AD. This approach suggests potential strategies to modulate microglial phenotypes, aiming to restore neuroprotective functions and mitigate disease progression by simultaneously targeting inflammation and plaque pathology.
Collapse
Affiliation(s)
- Zachary Valiukas
- Institute for Health and Sport, Victoria University, 70/104 Ballarat Road, Footscray VIC 3011, Australia
| | - Kathy Tangalakis
- First Year College, Victoria University, 70/104 Ballarat Road, Footscray VIC 3011, Australia
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia.
| | - Jack Feehan
- School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia.
| |
Collapse
|
9
|
Zeng C, Zhu Q, Peng W, Huang C, Chen H, Huang H, Zhou Y, Zhao C. The protective effect of amitriptyline on experimental colitis through inhibiting TLR-4/MD-2 signaling pathway. J Pharmacol Exp Ther 2025; 392:100024. [PMID: 39892990 DOI: 10.1124/jpet.124.002207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024] Open
Abstract
Amitriptyline, a pleiotropic tricyclic antidepressant, possesses antioxidant and anti-inflammatory properties. Despite its diverse benefits, the specific effects of amitriptyline on inflammatory bowel disease (IBD) are not yet well defined. To explore this, we used a dextran sulfate sodium (DSS)-induced colitis model to examine the anti-inflammatory effects of amitriptyline and the underlying mechanisms by which it operates. Our research revealed that amitriptyline is effective in alleviating several pathological manifestations associated with colitis. This includes improving body weight retention, reducing disease activity index, lessening of colon length shortening, and repairing of colonic mucosal damage. Treatment with amitriptyline significantly protected mucosal injury by preserving the population of goblet cells and increasing the expression of tight junction proteins. Furthermore, we observed that amitriptyline effectively countered immune cell infiltration, specifically neutrophils and macrophages, while simultaneously lowering the levels of inflammatory cytokines such as tumor necrosis factor α, interleukin (IL)-1β, and IL-6. Additionally, RNA sequencing analysis pointed to the potential involvement of the Toll-like receptor (TLR) pathway in the anticolitic effects induced by amitriptyline. Subsequent Western blot analysis indicated that amitriptyline significantly inhibited the TLR-4-mediated nuclear factor (NF)-κB signaling pathway. To bolster our findings, in vitro studies demonstrated that amitriptyline downregulated the TLR-4/NF-κB/mitogen-activated protein kinase signaling cascades in mouse macrophages stimulated with lipopolysaccharide. Further molecular investigations revealed that amitriptyline was able to suppress the elevated expression of myeloid differentiation factor 2 that lipopolysaccharide stimulation typically induces. In summary, our findings suggest that amitriptyline effectively mitigates DSS-induced colitis in mice through the inhibition of TLR-4/myeloid differentiation 2 pathway signaling, indicating its potential repurposing for IBD treatment. SIGNIFICANCE STATEMENT: The potential of using amitriptyline in treating inflammatory bowel disease appears promising, leveraging its established safety and dosing profile as an antidepressant. The study results show that amitriptyline can alleviate pathological symptoms, inflammation, and intestinal mucosal damage in mice with colitis induced by DSS. The protective effect observed appears to be linked to the inhibition of TLR-4/myeloid differentiation 2 signaling pathway. By exploring novel applications for existing medications, we can optimize amitriptyline's efficacy and broaden its impact in both medical and commercial contexts.
Collapse
Affiliation(s)
- Chengcheng Zeng
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, Guangdong, China; Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Qingqing Zhu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, Guangdong, China; Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Wu Peng
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, Guangdong, China; Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Chen Huang
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, Guangdong, China; Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, Guangdong, China; Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Hongli Huang
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, Guangdong, China; Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Yongjian Zhou
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, Guangdong, China; Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Chong Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, Guangdong, China; Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China.
| |
Collapse
|
10
|
Cervantes-Torres J, Hernández-Aceves JA, Gajón Martínez JA, Moctezuma-Rocha D, Vázquez Ramírez R, Sifontes-Rodríguez S, Ramírez-Salinas GL, Mendoza Sierra L, Alfonzo LB, Sciutto E, Fragoso G. Exploring the Mechanisms Underlying Cellular Uptake and Activation of Dendritic Cells by the GK-1 Peptide. ACS OMEGA 2024; 9:49625-49638. [PMID: 39713707 PMCID: PMC11656211 DOI: 10.1021/acsomega.4c07736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/03/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024]
Abstract
The use of peptides for cancer immunotherapy is a promising and emerging approach that is being intensively explored worldwide. One such peptide, GK-1, has been shown to delay the growth of triple-negative breast tumors in mice, reduce their metastatic capacity, and reverse the intratumor immunosuppression that characterizes this model. Herein, it is demonstrated that GK-1 is taken up by bone marrow dendritic cells in a dose-dependent manner 15 min after exposure, more efficiently at 37 °C than at 4 °C, implying an entrance into the cells by energy-independent and -dependent processes through clathrin-mediated endocytosis. Theoretical predictions support the binding of GK-1 to the hydrophobic pocket of MD2, preventing it from bridging TLR4, thereby promoting receptor dimerization and cell activation. GK-1 can effectively activate cells via a TLR4-dependent pathway based on in vitro studies using HEK293 and HEK293-TLR4-MD2 cells and in vivo using C3H/HeJ mice (hyporesponsive to LPS). In conclusion, GK-1 enters the cells by passive diffusion and by activation of the transmembrane Toll-like receptor 4 triggering cell activation, which could be involved in the GK-1 antitumor properties.
Collapse
Affiliation(s)
- Jacquelynne Cervantes-Torres
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
- Departamento
de Microbiología e Inmunología, Facultad de Medicina
Veterinaria y Zootecnia, Universidad Nacional
Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Juan A. Hernández-Aceves
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Julián A. Gajón Martínez
- Unidad de
Investigación Médica en Inmunoquímica, Hospital
de Especialidades, CMN Siglo XXI, Instituto
Mexicano del Seguro Social, Ciudad de México MX 06600, Mexico
| | - Diego Moctezuma-Rocha
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Ricardo Vázquez Ramírez
- Departamento
de Biología Molecular y Biotecnología, Instituto de
Investigaciones Biomédicas, Universidad Nacional Autónoma
de México, Sede Tercer Circuito Exterior
Edificio C 1er Piso, C-146, Ciudad
de México MX 04510, Mexico
| | - Sergio Sifontes-Rodríguez
- Investigador
por México del CONAHCyT adscrito al Departamento de Inmunología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Sede Circuito
Escolar Edificio A 1er Piso, Ciudad
de México MX 04510, Mexico
| | - Gemma L. Ramírez-Salinas
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Luis Mendoza Sierra
- Departamento
de Biología Molecular y Biotecnología, Instituto de
Investigaciones Biomédicas, Universidad Nacional Autónoma
de México, Sede Tercer Circuito Exterior
Edificio C 1er Piso, C-146, Ciudad
de México MX 04510, Mexico
| | - Laura Bonifaz Alfonzo
- Unidad de
Investigación Médica en Inmunoquímica, Hospital
de Especialidades, CMN Siglo XXI, Instituto
Mexicano del Seguro Social, Ciudad de México MX 06600, Mexico
| | - Edda Sciutto
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Gladis Fragoso
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| |
Collapse
|
11
|
Gong T, Wang QD, Loughran PA, Li YH, Scott MJ, Billiar TR, Liu YT, Fan J. Mechanism of lactic acidemia-promoted pulmonary endothelial cells death in sepsis: role for CIRP-ZBP1-PANoptosis pathway. Mil Med Res 2024; 11:71. [PMID: 39465383 PMCID: PMC11514876 DOI: 10.1186/s40779-024-00574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Sepsis is often accompanied by lactic acidemia and acute lung injury (ALI). Clinical studies have established that high serum lactate levels are associated with increased mortality rates in septic patients. We further observed a significant correlation between the levels of cold-inducible RNA-binding protein (CIRP) in plasma and bronchoalveolar lavage fluid (BALF), as well as lactate levels, and the severity of post-sepsis ALI. The underlying mechanism, however, remains elusive. METHODS C57BL/6 wild type (WT), Casp8-/-, Ripk3-/-, and Zbp1-/- mice were subjected to the cecal ligation and puncture (CLP) sepsis model. In this model, we measured intra-macrophage CIRP lactylation and the subsequent release of CIRP. We also tracked the internalization of extracellular CIRP (eCIRP) in pulmonary vascular endothelial cells (PVECs) and its interaction with Z-DNA binding protein 1 (ZBP1). Furthermore, we monitored changes in ZBP1 levels in PVECs and the consequent activation of cell death pathways. RESULTS In the current study, we demonstrate that lactate, accumulating during sepsis, promotes the lactylation of CIRP in macrophages, leading to the release of CIRP. Once eCIRP is internalized by PVEC through a Toll-like receptor 4 (TLR4)-mediated endocytosis pathway, it competitively binds to ZBP1 and effectively blocks the interaction between ZBP1 and tripartite motif containing 32 (TRIM32), an E3 ubiquitin ligase targeting ZBP1 for proteasomal degradation. This interference mechanism stabilizes ZBP1, thereby enhancing ZBP1-receptor-interacting protein kinase 3 (RIPK3)-dependent PVEC PANoptosis, a form of cell death involving the simultaneous activation of multiple cell death pathways, thereby exacerbating ALI. CONCLUSIONS These findings unveil a novel pathway by which lactic acidemia promotes macrophage-derived eCIRP release, which, in turn, mediates ZBP1-dependent PVEC PANoptosis in sepsis-induced ALI. This finding offers new insights into the molecular mechanisms driving sepsis-related pulmonary complications and provides potential new therapeutic strategies.
Collapse
Affiliation(s)
- Ting Gong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518110, Guangdong, China.
| | - Qing-De Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Patricia A Loughran
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Yue-Hua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - You-Tan Liu
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518110, Guangdong, China.
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
12
|
Kumari M, Bisht KS, Ahuja K, Motiani RK, Maiti TK. Glycation Produces Topologically Different α-Synuclein Oligomeric Strains and Modulates Microglia Response via the NLRP3-Inflammasome Pathway. ACS Chem Neurosci 2024. [PMID: 39320935 DOI: 10.1021/acschemneuro.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
α-Synuclein, a key player in Parkinson's disease and other synucleinopathies, possesses an inherently disordered structure that allows for versatile structural changes during aggregation. Microglia, the brain immune cells, respond differently to various α-synuclein strains, influencing their activation and release of harmful molecules, leading to neuronal death. Post-translational modifications, such as glycation in α-synuclein, add a layer of complexity to microglial activation. This study aimed to explore the impact of glycation on α-synuclein aggregation and microglial responses, which have not been studied before. Biophysical analyses revealed that glycated α-synuclein oligomers had distinct morphologies with a more negative and hydrophobic surface, preventing fibril formation and interfering with membrane interactions. Notably, there was increased cytosolic Ca2+ dysregulation, redox stress, and mitochondrial instability compared to cells exposed to unmodified α-synuclein oligomers. Additionally, glycated α-synuclein oligomers exhibited impaired binding to Toll-like receptor 2, compromising downstream signaling. Surprisingly, these oligomers promoted TLR4 endocytosis and degradation. In our experiments with oligomers, glycated α-synuclein oligomers preferred NLRP3 inflammasome-mediated neuroinflammation, contributing differently from unmodified α-synuclein oligomers. In summary, this study unveils the mechanism underlying the effect of glycation on α-synuclein oligomers and highlights the conformation-specific microglial responses toward extracellular α-synuclein.
Collapse
Affiliation(s)
- Manisha Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Krishna Singh Bisht
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| |
Collapse
|
13
|
Kumar P, Schroder EA, Rajaram MVS, Harris EN, Ganesan LP. The Battle of LPS Clearance in Host Defense vs. Inflammatory Signaling. Cells 2024; 13:1590. [PMID: 39329771 PMCID: PMC11430141 DOI: 10.3390/cells13181590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Lipopolysaccharide (LPS) in blood circulation causes endotoxemia and is linked to various disease conditions. Current treatments focus on preventing LPS from interacting with its receptor Toll-like receptor 4 (TLR4) and reducing inflammation. However, our body has a natural defense mechanism: reticuloendothelial cells in the liver rapidly degrade and inactivate much of the circulating LPS within minutes. But this LPS clearance mechanism is not perfect. Excessive LPS that escape this clearance mechanism cause systemic inflammatory damage through TLR4. Despite its importance, the role of reticuloendothelial cells in LPS elimination is not well-studied, especially regarding the specific cells, receptors, and mechanisms involved. This gap hampers the development of effective therapies for endotoxemia and related diseases. This review consolidates the current understanding of LPS clearance, narrates known and explores potential mechanisms, and discusses the relationship between LPS clearance and LPS signaling. It also aims to highlight key insights that can guide the development of strategies to reduce circulating LPS by way of bolstering host defense mechanisms. Ultimately, we seek to provide a foundation for future research that could lead to innovative approaches for enhancing the body's natural ability to clear LPS and thereby lower the risk of endotoxin-related inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Evan A. Schroder
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA; (E.A.S.); (E.N.H.)
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA; (E.A.S.); (E.N.H.)
| | - Latha P. Ganesan
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
14
|
Geng X, Xia X, Liang Z, Li S, Yue Z, Zhang H, Guo L, Ma S, Jiang S, Lian X, Zhou J, Sung LA, Wang X, Yao W. Tropomodulin1 exacerbates inflammatory response in macrophages by negatively regulating LPS-induced TLR4 endocytosis. Cell Mol Life Sci 2024; 81:402. [PMID: 39276234 PMCID: PMC11401823 DOI: 10.1007/s00018-024-05424-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/24/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024]
Abstract
The excessive inflammation caused by the prolonged activation of Toll-like receptor 4 (TLR4) and its downstream signaling pathways leads to sepsis. CD14-mediated endocytosis of TLR4 is the key step to control the amount of TLR4 on cell membrane and the activity of downstream pathways. The actin cytoskeleton is necessary for receptor-mediated endocytosis, but its role in TLR4 endocytosis remains elusive. Here we show that Tropomodulin 1 (Tmod1), an actin capping protein, inhibited lipopolysaccharide (LPS)-induced TLR4 endocytosis and intracellular trafficking in macrophages. Thus it resulted in increased surface TLR4 and the upregulation of myeloid differentiation factor 88 (MyD88)-dependent pathway and the downregulation of TIR domain-containing adaptor-inducing interferon-β (TRIF)-dependent pathway, leading to the enhanced secretion of inflammatory cytokines, such as TNF-α and IL-6, and the reduced secretion of cytokines, such as IFN-β. Macrophages deficient with Tmod1 relieved the inflammatory response in LPS-induced acute lung injury mouse model. Mechanistically, Tmod1 negatively regulated LPS-induced TLR4 endocytosis and inflammatory response through modulating the activity of CD14/Syk/PLCγ2/IP3/Ca2+ signaling pathway, the reorganization of actin cytoskeleton, and the membrane tension. Therefore, Tmod1 is a key regulator of inflammatory response and immune functions in macrophages and may be a potential target for the treatment of excessive inflammation and sepsis.
Collapse
Affiliation(s)
- Xueyu Geng
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, 100191, China
| | - Xue Xia
- Nanjing Institute of Measurement and Testing Technology, Nanjing, 210049, Jiangsu Province, China
| | - Zhenhui Liang
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, 100191, China
| | - Shuo Li
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zejun Yue
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, 100191, China
| | - Huan Zhang
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lina Guo
- Department of Rehabilitation Medicine, Caoxian People's Hospital, Heze, 274400, Shandong Province, China
| | - Shan Ma
- Chengde Medical College, Chengde, 067000, Hebei Province, China
| | - Siyu Jiang
- Chengde Medical College, Chengde, 067000, Hebei Province, China
| | - Xiang Lian
- Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jing Zhou
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lanping Amy Sung
- Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Xifu Wang
- Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Weijuan Yao
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, 100191, China.
| |
Collapse
|
15
|
Bartone RD, Tisch LJ, Dominguez J, Payne CK, Bonner JC. House Dust Mite Proteins Adsorb on Multiwalled Carbon Nanotubes Forming an Allergen Corona That Intensifies Allergic Lung Disease in Mice. ACS NANO 2024. [PMID: 39259863 PMCID: PMC11440643 DOI: 10.1021/acsnano.4c07893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The increasing use of multiwalled carbon nanotubes (MWCNTs) could increase the risk of allergic lung disease in occupational or consumer settings. We previously reported that MWCNTs exacerbated allergic lung disease in mice induced by extract from house dust mites (HDM), a common cause of asthma in humans. Because MWCNTs avidly bind biomolecules to form protein coronas that can modify immunotoxicity, we hypothesized that exacerbation of allergic lung disease in mice caused by coexposure to MWCNTs and HDM extract was due to the formation of an allergen corona. In a first set of experiments, male and female C57BL/6J mice were coexposed to MWCNTs and HDM extract over 3 weeks compared to MWCNTs or HDM extract alone. In a second set of experiments, mice were exposed to pristine MWCNTs or MWCNTs with an HDM allergen corona (HDM-MWCNTs). HDM-MWCNTs were formed by incubating MWCNTs with HDM extract, where ∼7% of proteins adsorbed to MWCNTs, including Der p 1 and Der p 2. At necropsy, bronchoalveolar lavage fluid was collected from lungs to assess lactate dehydrogenase, total protein and inflammatory cells, while lung tissue was used for histopathology, qPCR, and Western blotting. Compared to MWCNTs or HDM extract alone, coexposure to MWCNTs and HDM extract or exposure to HDM-MWCNTs increased pathological outcomes associated with allergic lung disease (eosinophilia, fibrosis, mucous cell metaplasia), increased mRNAs associated with fibrosis (Col1A1, Arg1) and enhanced STAT6 phosphorylation in lung tissue. These findings indicated that exacerbation of HDM-induced allergic lung disease by MWCNTs is due to an allergen corona.
Collapse
Affiliation(s)
- Ryan D Bartone
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Logan J Tisch
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Judith Dominguez
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Christine K Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - James C Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
16
|
Yang D, Tian T, Li X, Zhang B, Qi L, Zhang F, Han M, Wang S, Xiao J, Gou Y, Zhang R, Liu Q, Su S, Liu J, Huang X, Gao Q, Hui L, Tang H, Chen Y, Wang H, Wei B. ZNT1 and Zn 2+ control TLR4 and PD-L1 endocytosis in macrophages to improve chemotherapy efficacy against liver tumor. Hepatology 2024; 80:312-329. [PMID: 37816045 DOI: 10.1097/hep.0000000000000629] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/02/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND AND AIMS HCC is closely associated with inflammation and immune modulation, and combined chemotherapy with other strategies is under extensive investigation to achieve better efficacy. HCC is accompanied by zinc (Zn) deficiency. This study aims to understand how Zn could affect macrophage function and its application for HCC therapy. APPROACH AND RESULTS Zn 2+ and the Zn transporter 1 (ZNT1, solute carrier family 30 member 1) were markedly reduced in intrahepatic macrophages from patients with HCC and from mouse liver tumors. Lower ZNT1 expression was associated with higher IL-6 production and shorter survival time in patients with HCC. Critically, ZNT1 regulated endosomal Zn 2+ levels for endocytosis of toll-like receptor 4 and programmed cell death ligand 1, thereby decreasing macrophage-induced inflammation and immunosuppression to protect from liver tumors. Myeloid-specific deletion of ZNT1 in mice increased chronic inflammation, liver fibrosis, tumor numbers, and size. Notably, Zn supplementation could reduce inflammation and surface programmed cell death ligand 1 expression in macrophages with the increased CD8 + T cell cytotoxicity, which synergized the antitumor efficacy of Sorafenib/Lenvatinib. CONCLUSIONS Our study proposes a new concept that ZNT1 and Zn regulate endosome endocytosis to maintain surface receptors, and Zn supplements might be synergized with chemotherapy to treat inflammation-associated tumors, especially those containing programmed cell death ligand 1 + myeloid cells.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- School of Life Sciences, Shanghai University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Taikun Tian
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaojing Li
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Baokai Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Linlin Qi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- School of Life Sciences, Shanghai University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mingshun Han
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shuang Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jun Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yingying Gou
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Raorao Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaojie Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Su
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiahui Liu
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Metabolomics and Systems Biology Laboratory, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaowu Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijian Hui
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Metabolomics and Systems Biology Laboratory, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC ), School of Chemistry and Chemical Engineering, Nanjing University
| | - Hongyan Wang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Bin Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- School of Life Sciences, Shanghai University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
17
|
Guizar P, Abdalla AL, Monette A, Davis K, Caballero RE, Niu M, Liu X, Ajibola O, Murooka TT, Liang C, Mouland AJ. An HIV-1 CRISPR-Cas9 membrane trafficking screen reveals a role for PICALM intersecting endolysosomes and immunity. iScience 2024; 27:110131. [PMID: 38957789 PMCID: PMC11217618 DOI: 10.1016/j.isci.2024.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/12/2023] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
HIV-1 hijacks host proteins involved in membrane trafficking, endocytosis, and autophagy that are critical for virus replication. Molecular details are lacking but are essential to inform on the development of alternative antiviral strategies. Despite their potential as clinical targets, only a few membrane trafficking proteins have been functionally characterized in HIV-1 replication. To further elucidate roles in HIV-1 replication, we performed a CRISPR-Cas9 screen on 140 membrane trafficking proteins. We identified phosphatidylinositol-binding clathrin assembly protein (PICALM) that influences not only infection dynamics but also CD4+ SupT1 biology. The knockout (KO) of PICALM inhibited viral entry. In CD4+ SupT1 T cells, KO cells exhibited defects in intracellular trafficking and increased abundance of intracellular Gag and significant alterations in autophagy, immune checkpoint PD-1 levels, and differentiation markers. Thus, PICALM modulates a variety of pathways that ultimately affect HIV-1 replication, underscoring the potential of PICALM as a future target to control HIV-1.
Collapse
Affiliation(s)
- Paola Guizar
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Ana Luiza Abdalla
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Anne Monette
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Kristin Davis
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Ramon Edwin Caballero
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Meijuan Niu
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Xinyun Liu
- Rady Faculty of Health Science, Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Oluwaseun Ajibola
- Rady Faculty of Health Science, Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Thomas T. Murooka
- Rady Faculty of Health Science, Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Rady Faculty of Health Science, Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Chen Liang
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Andrew J. Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
18
|
Izumi Y, O’Dell KA, Cashikar AG, Paul SM, Covey DF, Mennerick SJ, Zorumski CF. Neurosteroids mediate and modulate the effects of pro-inflammatory stimulation and toll-like receptors on hippocampal plasticity and learning. PLoS One 2024; 19:e0304481. [PMID: 38875235 PMCID: PMC11178232 DOI: 10.1371/journal.pone.0304481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/13/2024] [Indexed: 06/16/2024] Open
Abstract
Pro-inflammatory changes contribute to multiple neuropsychiatric illnesses. Understanding how these changes are involved in illnesses and identifying strategies to alter inflammatory responses offer paths to potentially novel treatments. We previously found that acute pro-inflammatory stimulation with high (μg/ml) lipopolysaccharide (LPS) for 10-15 min dampens long-term potentiation (LTP) in the hippocampus and impairs learning. Effects of LPS involved non-canonical inflammasome signaling but were independent of toll-like receptor 4 (TLR4), a known LPS receptor. Low (ng/ml) LPS also inhibits LTP when administered for 2-4 h, and here we report that this LPS exposure requires TLR4. We also found that effects of low LPS on LTP involve the oxysterol, 25-hydroxycholesterol, akin to high LPS. Effects of high LPS on LTP are blocked by inhibiting synthesis of 5α-reduced neurosteroids, indicating that neurosteroids mediate LTP inhibition. 5α-Neurosteroids also have anti-inflammatory effects, and we found that exogenous allopregnanolone (AlloP), a key 5α-reduced steroid, prevented effects of low but not high LPS on LTP. We also found that activation of TLR2, TLR3 and TLR7 inhibited LTP and that AlloP prevented the effects of TLR2 and TLR7, but not TLR3. The enantiomer of AlloP, a steroid that has anti-inflammatory actions but low activity at GABAA receptors, prevented LTP inhibition by TLR2, TLR3 and TLR7. In vivo, both AlloP enantiomers prevented LPS-induced learning defects. These studies indicate that neurosteroids play complex roles in network effects of acute neuroinflammation and have potential importance for development of AlloP analogues as therapeutic agents.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Kazuko A. O’Dell
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Anil G. Cashikar
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Steven M. Paul
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Douglas F. Covey
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
- Developmental Biology and Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States of America
- Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Steven J. Mennerick
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Charles F. Zorumski
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
19
|
Matveichuk OV, Ciesielska A, Hromada-Judycka A, Nowak N, Ben Amor I, Traczyk G, Kwiatkowska K. Flotillins affect LPS-induced TLR4 signaling by modulating the trafficking and abundance of CD14. Cell Mol Life Sci 2024; 81:191. [PMID: 38652315 PMCID: PMC11039508 DOI: 10.1007/s00018-024-05221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/01/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Lipopolysaccharide (LPS) induces a strong pro-inflammatory reaction of macrophages upon activation of Toll-like receptor 4 (TLR4) with the assistance of CD14 protein. Considering a key role of plasma membrane rafts in CD14 and TLR4 activity and the significant impact exerted on that activity by endocytosis and intracellular trafficking of the both LPS acceptors, it seemed likely that the pro-inflammatory reaction could be modulated by flotillins. Flotillin-1 and -2 are scaffolding proteins associated with the plasma membrane and also with endo-membranes, affecting both the plasma membrane dynamics and intracellular protein trafficking. To verify the above hypothesis, a set of shRNA was used to down-regulate flotillin-2 in Raw264 cells, which were found to also become deficient in flotillin-1. The flotillin deficiency inhibited strongly the TRIF-dependent endosomal signaling of LPS-activated TLR4, and to a lower extent also the MyD88-dependent one, without affecting the cellular level of TLR4. The flotillin depletion also inhibited the pro-inflammatory activity of TLR2/TLR1 and TLR2/TLR6 but not TLR3. In agreement with those effects, the depletion of flotillins down-regulated the CD14 mRNA level and the cellular content of CD14 protein, and also inhibited constitutive CD14 endocytosis thereby facilitating its shedding. Ultimately, the cell-surface level of CD14 was markedly diminished. Concomitantly, CD14 recycling was enhanced via EEA1-positive early endosomes and golgin-97-positive trans-Golgi network, likely to compensate for the depletion of the cell-surface CD14. We propose that the paucity of surface CD14 is the reason for the down-regulated signaling of TLR4 and the other TLRs depending on CD14 for ligand binding.
Collapse
Affiliation(s)
- Orest V Matveichuk
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Aneta Hromada-Judycka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Ichrak Ben Amor
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Gabriela Traczyk
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland.
| |
Collapse
|
20
|
Hu L, Cheng Z, Chu H, Wang W, Jin Y, Yang L. TRIF-dependent signaling and its role in liver diseases. Front Cell Dev Biol 2024; 12:1370042. [PMID: 38694821 PMCID: PMC11061444 DOI: 10.3389/fcell.2024.1370042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
TIR domain-containing adaptor inducing IFN-β (TRIF) is a crucial adaptor molecule downstream of toll-like receptors 3 (TLR3) and 4 (TLR4). TRIF directly binds to TLR3 through its TIR domain, while it associates with TLR4 indirectly through the bridge adaptor molecule TRIF-related adaptor molecule (TRAM). TRIF plays a pivotal role in regulating interferon beta 1 (IFN-β) response, nuclear factor kappa B (NF-κB) signaling, apoptosis, and necroptosis signaling mediated by TLR3 and TLR4. It accomplishes these by recruiting and activating various kinases or transcription factors via its distinct domains. In this review, we comprehensively summarize the TRIF-dependent signaling pathways mediated by TLR3 and TLR4, elucidating key target molecules and downstream pathways. Furthermore, we provide an overview of TRIF's impact on several liver disorders, including drug-induced liver injury, ischemia-reperfusion liver injury, autoimmune hepatitis, viral hepatitis, alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). We also explore its effects on liver steatosis, inflammation, fibrosis, and carcinogenesis. A comprehensive understanding of the TRIF-dependent signaling pathways, as well as the intricate relationship between TRIF and liver diseases, can facilitate the identification of potential drug targets and the development of novel and effective therapeutics against hepatic disorders.
Collapse
Affiliation(s)
| | | | | | | | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Tamene W, Wassie L, Marconi VC, Abebe M, Kebede A, Sack U, Howe R. Protein Expression of TLR2, TLR4, and TLR9 on Monocytes in TB, HIV, and TB/HIV. J Immunol Res 2024; 2024:9399524. [PMID: 38660059 PMCID: PMC11042910 DOI: 10.1155/2024/9399524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/08/2024] [Accepted: 04/06/2024] [Indexed: 04/26/2024] Open
Abstract
Toll-like receptors (TLRs) have a critical role in recognizing pathogenic patterns and initiating immune responses against TB and HIV. Previously, studies described the gene expression of TLRs in patients with TB and HIV. Here, we demonstrated TLRs protein expressions and their association with clinical status and plasma markers in TB, HIV, and TB/HIV coinfection. The phenotyping of TLR2, TLR4, and TLR9 on CD14+ monocytes and their subsets were determined by multicolor flow cytometry. Host plasma biomarkers and microbial indices were measured using Luminex Multiplex assay and standard of care tools, respectively. TLR2 expression significantly enhanced in TB, slightly increased in HIV but slightly reduced in TB/HIV coinfection compared to apparently health controls (HC). On the other hand, TLR4 expression was significantly increased in TB, HIV, and TB/HIV compared to HC. Expression of TLR4 was equally enhanced on classical and intermediate monocytes while higher TLR2 expression on intermediate than classical monocytes. TLR4 had a positive correlation pattern with plasma biomarkers while TLR2 had an inverse correlation pattern. TLR4 is associated with disease severity while TLR2 is with the immune-competent status of patients. Our findings demonstrated that the pattern of TLR expression is disease as well as monocyte subset specific and distinct factors drive these differences.
Collapse
Affiliation(s)
- Wegene Tamene
- HIV and TB Research Directorate, Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia
- Mycobacterial Disease Research Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Liya Wassie
- Mycobacterial Disease Research Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Vincent C. Marconi
- School of Medicine, Rollins School of Public Health and the Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Meseret Abebe
- Mycobacterial Disease Research Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Amha Kebede
- HIV and TB Research Directorate, Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Rawleigh Howe
- Mycobacterial Disease Research Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| |
Collapse
|
22
|
Chomel L, Vogt M, Demiselle J, Le Borgne P, Tschirhart M, Morandeau V, Merdji H, Miguet L, Helms J, Meziani F, Mauvieux L. TLRs1-10 Protein Expression in Circulating Human White Blood Cells during Bacterial and COVID-19 Infections. J Innate Immun 2024; 16:216-225. [PMID: 38461810 PMCID: PMC11001289 DOI: 10.1159/000536593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024] Open
Abstract
INTRODUCTION Toll-like receptors play crucial roles in the sepsis-induced systemic inflammatory response. Septic shock mortality correlates with overexpression of neutrophilic TLR2 and TLR9, while the role of TLR4 overexpression remains a debate. In addition, TLRs are involved in the pathogenesis of viral infections such as COVID-19, where the single-stranded RNA of SARS-CoV-2 is recognized by TLR7 and TLR8, and the spike protein activates TLR4. METHODS In this study, we conducted a comprehensive analysis of TLRs 1-10 expressions in white blood cells from 71 patients with bacterial and viral infections. Patients were divided into 4 groups based on disease type and severity (sepsis, septic shock, moderate, and severe COVID-19) and compared to 7 healthy volunteers. RESULTS We observed a significant reduction in the expression of TLR4 and its co-receptor CD14 in septic shock neutrophils compared to the control group (p < 0.001). Severe COVID-19 patients exhibited a significant increase in TLR3 and TLR7 levels in neutrophils compared to controls (p < 0.05). Septic shock patients also showed a similar increase in TLR7 in neutrophils along with elevated intermediate monocytes (CD14+CD16+) compared to the control group (p < 0.005 and p < 0.001, respectively). However, TLR expression remained unchanged in lymphocytes. CONCLUSION This study provides further insights into the mechanisms of TLR activation in various infectious conditions. Additional analysis is needed to assess their correlation with patient outcome and to evaluate the impact of TLR-pathway modulation during septic shock and severe COVID-19.
Collapse
Affiliation(s)
- Louise Chomel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France,
| | - Mathieu Vogt
- CNRS UPR3572, IBMC, University of Strasbourg, Strasbourg, France
| | - Julien Demiselle
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
- Departement of Intensive Care (Service de Médecine Intensive - Réanimation), Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Pierrick Le Borgne
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
- Service de Réanimation Médicale, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Marine Tschirhart
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Valentin Morandeau
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Hamid Merdji
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
- Departement of Intensive Care (Service de Médecine Intensive - Réanimation), Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Laurent Miguet
- CNRS UPR3572, IBMC, University of Strasbourg, Strasbourg, France
- Laboratoire d'Hématologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Julie Helms
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
- Departement of Intensive Care (Service de Médecine Intensive - Réanimation), Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Ferhat Meziani
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
- Departement of Intensive Care (Service de Médecine Intensive - Réanimation), Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Laurent Mauvieux
- CNRS UPR3572, IBMC, University of Strasbourg, Strasbourg, France
- Laboratoire d'Hématologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
23
|
Budzyń M, Gryszczyńska B, Begier-Krasińska B, Kaja E, Mikołajczak P, Kujawski R, Grupińska J, Iskra M, Tykarski A, Kaczmarek M. Decreased toll-like receptor 4 and CD11b/CD18 expression on peripheral monocytes of hypertensive patients correlates with a lesser extent of endothelial damage: a preliminary study. J Hypertens 2024; 42:471-483. [PMID: 37937521 DOI: 10.1097/hjh.0000000000003617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
BACKGROUND Low-grade chronic inflammation is recognized to contribute to the physiopathology of arterial hypertension. Therefore, this study aimed to assess the pro-inflammatory phenotype of peripheral monocytes of hypertensive patients by analyzing Toll-like receptor 4 (TLR4) and CD11b/CD18 surface expression. In the second part, the influence of phenotypic alterations of monocytes on the endothelial status reflected by circulating endothelial cells (CECs) was evaluated. PATIENTS The study included 60 patients with arterial hypertension, who were divided into two subgroups based on the disease severity according to the applicable criteria. The mild hypertension and resistant hypertension groups included 30 patients each. The control group consisted of 33 normotensive volunteers matched for age and sex. RESULTS Both in the entire group of patients and individual subgroups, reduced surface expression of TLR4 and CD11b/CD18 was found compared to normotensive volunteers. A reduced percentage of monocytes with the CD14 + TLR4 + immunophenotype was correlated with a lower MFI level of CD18 and CD11b in the entire group of patients and after division only in the mild hypertension group. Reduced surface expression of TLR4 in hypertensive patients correlated with a lower number of CECs. This relationship was not observed in the resistant hypertension group; instead, an independent effect of reduced CD11b/CD18 expression on the reduction of CEC number was demonstrated. CONCLUSION Our preliminary study showed for the first time that hypertension of varying severity is accompanied by phenotypic changes in monocytes, manifested by reduced surface expression of both TLR4 and CD11b/CD18. These phenotypic changes were associated with a reduced degree of endothelial injury. Our study opens a new, unexplored area of research on the protective features of peripheral monocytes in hypertension.
Collapse
Affiliation(s)
- Magdalena Budzyń
- Chair and Department of Medical Chemistry and Laboratory Medicine
| | | | | | - Elżbieta Kaja
- Chair and Department of Medical Chemistry and Laboratory Medicine
| | | | | | - Joanna Grupińska
- Chair and Department of Medical Chemistry and Laboratory Medicine
| | - Maria Iskra
- Chair and Department of Medical Chemistry and Laboratory Medicine
| | | | - Mariusz Kaczmarek
- Department of Cancer Immunology, Poznan University of Medical Sciences
- Gene Therapy Unit, Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, Poznan, Poland
| |
Collapse
|
24
|
Li S, Wu Y, Peng X, Chen H, Zhang T, Chen H, Yang J, Xie Y, Qi H, Xiang W, Huang B, Zhou S, Hu Y, Tan Q, Du X, Huang J, Zhang R, Li X, Luo F, Jin M, Su N, Luo X, Huang S, Yang P, Yan X, Lian J, Zhu Y, Xiong Y, Xiao G, Liu Y, Shen C, Kuang L, Ni Z, Chen L. A Novel Cargo Delivery System-AnCar-Exo LaIMTS Ameliorates Arthritis via Specifically Targeting Pro-Inflammatory Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306143. [PMID: 38083984 PMCID: PMC10870055 DOI: 10.1002/advs.202306143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Indexed: 02/17/2024]
Abstract
Macrophages are heterogenic phagocytic cells that play distinct roles in physiological and pathological processes. Targeting different types of macrophages has shown potent therapeutic effects in many diseases. Although many approaches are developed to target anti-inflammatory macrophages, there are few researches on targeting pro-inflammatory macrophages, which is partially attributed to their non-s pecificity phagocytosis of extracellular substances. In this study, a novel recombinant protein is constructed that can be anchored on an exosome membrane with the purpose of targeting pro-inflammatory macrophages via antigen recognition, which is named AnCar-ExoLaIMTS . The data indicate that the phagocytosis efficiencies of pro-inflammatory macrophages for different AnCar-ExoLaIMTS show obvious differences. The AnCar-ExoLaIMTS3 has the best targeting ability for pro-inflammatory macrophages in vitro and in vivo. Mechanically, AnCar-ExoLaIMTS3 can specifically recognize the leucine-rich repeat domain of the TLR4 receptor, and then enter into pro-inflammatory macrophages via the TLR4-mediated receptor endocytosis pathway. Moreover, AnCar-ExoLaIMTS3 can efficiently deliver therapeutic cargo to pro-inflammatory macrophages and inhibit the synovial inflammatory response via downregulation of HIF-1α level, thus ameliorating the severity of arthritis in vivo. Collectively, the work established a novel gene/drug delivery system that can specifically target pro-inflammatory macrophages, which may be beneficial for the treatments of arthritis and other inflammatory diseases.
Collapse
|
25
|
Habeichi NJ, Amin G, Lakkis B, Kataya R, Mericskay M, Booz GW, Zouein FA. Potential Alternative Receptors for SARS-CoV-2-Induced Kidney Damage: TLR-4, KIM-1/TIM-1, and CD147. FRONT BIOSCI-LANDMRK 2024; 29:8. [PMID: 38287815 PMCID: PMC10924798 DOI: 10.31083/j.fbl2901008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 01/31/2024]
Abstract
Kidney damage in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur even in patients with no underlying kidney disease. Signs of kidney problems can progress to a state that demands dialysis and hampering recovery. Although not without controversy, emerging evidence implicates direct infectivity of SARS-CoV-2 in the kidney. At the early stage of the pandemic, consideration was mainly on the well-recognized angiotensin-converting enzyme 2 (ACE2) receptor as being the site for viral interaction and subsequent cellular internalization. Despite the abundance of ACE2 receptors in the kidneys, researchers have expanded beyond ACE2 and identified novel viral entry pathways that could be advantageously explored as therapeutic targets. This review presents the potential involvement of toll-like receptor 4 (TLR-4), kidney injury molecule-1/T cell immunoglobulin mucin domain 1 (KIM-1/TIM-1), and cluster of differentiation 147 (CD147) in SARS-CoV-2-associated renal damage. In this context, we address the unresolved issues surrounding SARS-CoV-2 renal infectivity.
Collapse
Affiliation(s)
- Nada J. Habeichi
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 94000 Creteil, France
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bachir Lakkis
- Division of Cardiology, Department of Internal Medicine, American University of Beirut Medical Center, 1107-2020 Beirut, Lebanon
| | - Rayane Kataya
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
| | - Mathias Mericskay
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
26
|
Seliga AK, Zabłocki K, Bandorowicz-Pikuła J. Palmitate Stimulates Expression of the von Willebrand Factor and Modulates Toll-like Receptors Level and Activity in Human Umbilical Vein Endothelial Cells (HUVECs). Int J Mol Sci 2023; 25:254. [PMID: 38203423 PMCID: PMC10779284 DOI: 10.3390/ijms25010254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
An increased concentration of palmitate in circulation is one of the most harmful factors in obesity. The von Willebrand factor (vWF), a protein involved in haemostasis, is produced and secreted by the vascular endothelium. An increased level of vWF in obese patients is associated with thrombosis and cardiovascular disease. The aim of this study was to investigate a palmitate effect on vWF in endothelial cells and understand the mechanisms of palmitate-activated signalling. Human umbilical vein endothelial cells (HUVECs) incubated in the presence of palmitate, exhibited an increased VWF gene expression, vWF protein maturation, and stimulated vWF secretion. Cardamonin, a Nuclear Factor kappa B (NF-κB) inhibitor, abolished the palmitate effect on VWF expression. The inhibition of Toll-like receptor (TLR) 2 with C29 resulted in the TLR4 overactivation in palmitate-treated cells. Palmitate, in the presence of TLR4 inhibitor TAK-242, leads to a higher expression of TLR6, CD36, and TIRAP. The silencing of TLR4 resulted in an increase in TLR2 level and vice versa. The obtained results indicate a potential mechanism of obesity-induced thrombotic complication caused by fatty acid activation of NF-κB signalling and vWF upregulation and help to identify various compensatory mechanisms related to TLR4 signal transduction.
Collapse
Affiliation(s)
| | | | - Joanna Bandorowicz-Pikuła
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland; (A.K.S.); (K.Z.)
| |
Collapse
|
27
|
Issara-Amphorn J, Sjoelund VH, Smelkinson M, Montalvo S, Yoon SH, Manes NP, Nita-Lazar A. Myristoylated, alanine-rich C-kinase substrate (MARCKS) regulates toll-like receptor 4 signaling in macrophages. Sci Rep 2023; 13:19562. [PMID: 37949888 PMCID: PMC10638260 DOI: 10.1038/s41598-023-46266-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
MARCKS (myristoylated alanine-rich C-kinase substrate) is a membrane-associated protein expressed in many cell types, including macrophages. MARCKS is functionally implicated in cell adhesion, phagocytosis, and inflammation. LPS (lipopolysaccharide) triggers inflammation via TLR4 (toll-like receptor 4).The presence of MARCKS and the formation of phospho-MARCKS in various cell types have been described, but the role(s) of MARCKS in regulating macrophage functions remain unclear. We investigated the role of MARCKS in inflammation. Confocal microscopy revealed that MARCKS and phospho-MARCKS increased localization to endosomes and the Golgi apparatus upon LPS stimulation.CRISPR-CAS9 mediated knockout of MARCKS in macrophages downregulated the production of TNF and IL6, suggesting a role for MARCKS in inflammatory responses. Our comprehensive proteomics analysis together with real-time metabolic assays comparing LPS-stimulation of WT and MARCKS knock-out macrophages provided insights into the involvement of MARCKS in specific biological processes including innate immune response, inflammatory response, cytokine production, and molecular functions such as extracellularly ATP-gated cation channel activity, electron transfer activity and oxidoreductase activity, uncovering specific proteins involved in regulating MARCKS activity upon LPS stimulation. MARCKS appears to be a key regulator of inflammation whose inhibition might be beneficial for therapeutic intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Jiraphorn Issara-Amphorn
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA
| | - Virginie H Sjoelund
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA
- Barnett Institute, Northeastern University, Boston, MA, 02115, USA
| | - Margery Smelkinson
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sebastian Montalvo
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA
| | - Sung Hwan Yoon
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA
| | - Nathan P Manes
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA.
| |
Collapse
|
28
|
Gojani EG, Wang B, Li DP, Kovalchuk O, Kovalchuk I. Anti-Inflammatory Effects of Minor Cannabinoids CBC, THCV, and CBN in Human Macrophages. Molecules 2023; 28:6487. [PMID: 37764262 PMCID: PMC10534668 DOI: 10.3390/molecules28186487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammation is a natural response of the body to signals of tissue damage or infection caused by pathogens. However, when it becomes imbalanced, it can lead to various disorders such as cancer, obesity, cardiovascular problems, neurological conditions, and diabetes. The endocannabinoid system, which is present throughout the body, plays a regulatory role in different organs and influences functions such as food intake, pain perception, stress response, glucose tolerance, inflammation, cell growth and specialization, and metabolism. Phytocannabinoids derived from Cannabis sativa can interact with this system and affect its functioning. In this study, we investigate the mechanisms underlying the anti-inflammatory effects of three minor phytocannabinoids including tetrahydrocannabivarin (THCV), cannabichromene (CBC), and cannabinol (CBN) using an in vitro system. We pre-treated THP-1 macrophages with different doses of phytocannabinoids or vehicle for one hour, followed by treating the cells with 500 ng/mL of LPS or leaving them untreated for three hours. To induce the second phase of NLRP3 inflammasome activation, LPS-treated cells were further treated with 5 mM ATP for 30 min. Our findings suggest that the mitigation of the PANX1/P2X7 axis plays a significant role in the anti-inflammatory effects of THCV and CBC on NLRP3 inflammasome activation. Additionally, we observed that CBC and THCV could also downregulate the IL-6/TYK-2/STAT-3 pathway. Furthermore, we discovered that CBN may exert its inhibitory impact on the assembly of the NLRP3 inflammasome by reducing PANX1 cleavage. Interestingly, we also found that the elevated ADAR1 transcript responded negatively to THCV and CBC in LPS-macrophages, indicating a potential involvement of ADAR1 in the anti-inflammatory effects of these two phytocannabinoids. THCV and CBN inhibit P-NF-κB, downregulating proinflammatory gene transcription. In summary, THCV, CBC, and CBN exert anti-inflammatory effects by influencing different stages of gene expression: transcription, post-transcriptional regulation, translation, and post-translational regulation.
Collapse
Affiliation(s)
| | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.); (B.W.); (D.-P.L.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.); (B.W.); (D.-P.L.)
| |
Collapse
|
29
|
Issara-Amphorn J, Sjoelund V, Smelkinson M, Yoon SH, Manes NP, Nita-Lazar A. Myristoylated, Alanine-rich C-kinase Substrate (MARCKS) regulates Toll-like receptor 4 signaling in macrophages. RESEARCH SQUARE 2023:rs.3.rs-3094036. [PMID: 37790394 PMCID: PMC10543024 DOI: 10.21203/rs.3.rs-3094036/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
MARCKS (Myristoylated Alanine-rich C-kinase Substrate) is a membrane protein expressed in many cell types, including macrophages. MARCKS is functionally implicated in cell adhesion, phagocytosis, and inflammation. LPS (lipopolysaccharide) triggers inflammation via TLR4 (Toll-like receptor 4). The presence of MARCKS and the formation of phospho-MARCKS in macrophages have been described, but the role(s) of MARCKS in regulating macrophage functions remain unclear. To investigate the role of MARCKS during inflammation, we activated macrophages using LPS with or without the addition of a PKC inhibitor. We found that PKC inhibition substantially decreased macrophage IL6 and TNF cytokine production. In addition, confocal microscopy revealed that MARCKS and phospho-MARCKS increased localization to endosomes and the Golgi apparatus upon LPS stimulation. CRISPR-CAS9 mediated knockout of MARCKS in macrophages downregulated TNF and IL6 production, suggesting a role for MARCKS in inflammatory responses. Our comprehensive proteomics analysis together with real-time metabolic assays comparing LPS-stimulation of WT and MARCKS knock-out macrophages provided insights into the involvement of MARCKS in specific biological processes and signaling pathways, uncovering specific proteins involved in regulating MARCKS activity upon LPS stimulation. MARCKS appears to be a key regulator of inflammation whose inhibition might be beneficial for therapeutic intervention in inflammatory related diseases.
Collapse
|
30
|
Li H, Huynh TN, Duong MT, Gow JG, Chang CCY, Chang TY. ACAT1/SOAT1 Blockade Suppresses LPS-Mediated Neuroinflammation by Modulating the Fate of Toll-like Receptor 4 in Microglia. Int J Mol Sci 2023; 24:5616. [PMID: 36982689 PMCID: PMC10053317 DOI: 10.3390/ijms24065616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Cholesterol is stored as cholesteryl esters by the enzymes acyl-CoA:cholesterol acyltransferases/sterol O:acyltransferases (ACATs/SOATs). ACAT1 blockade (A1B) ameliorates the pro-inflammatory responses of macrophages to lipopolysaccharides (LPS) and cholesterol loading. However, the mediators involved in transmitting the effects of A1B in immune cells is unknown. Microglial Acat1/Soat1 expression is elevated in many neurodegenerative diseases and in acute neuroinflammation. We evaluated LPS-induced neuroinflammation experiments in control vs. myeloid-specific Acat1/Soat1 knockout mice. We also evaluated LPS-induced neuroinflammation in microglial N9 cells with and without pre-treatment with K-604, a selective ACAT1 inhibitor. Biochemical and microscopy assays were used to monitor the fate of Toll-Like Receptor 4 (TLR4), the receptor at the plasma membrane and the endosomal membrane that mediates pro-inflammatory signaling cascades. In the hippocampus and cortex, results revealed that Acat1/Soat1 inactivation in myeloid cell lineage markedly attenuated LPS-induced activation of pro-inflammatory response genes. Studies in microglial N9 cells showed that pre-incubation with K-604 significantly reduced the LPS-induced pro-inflammatory responses. Further studies showed that K-604 decreased the total TLR4 protein content by increasing TLR4 endocytosis, thus enhancing the trafficking of TLR4 to the lysosomes for degradation. We concluded that A1B alters the intracellular fate of TLR4 and suppresses its pro-inflammatory signaling cascade in response to LPS.
Collapse
Affiliation(s)
- Haibo Li
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Thao N. Huynh
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Michael Tran Duong
- Department of Bioengineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James G. Gow
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Catherine C. Y. Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Ta Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
31
|
Sun Y, Chan J, Bose K, Tam C. Simultaneous control of infection and inflammation with keratin-derived antibacterial peptides targeting TLRs and co-receptors. Sci Transl Med 2023; 15:eade2909. [PMID: 36888696 PMCID: PMC10173409 DOI: 10.1126/scitranslmed.ade2909] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/10/2023] [Indexed: 03/10/2023]
Abstract
Controlling infection-driven inflammation is a major clinical dilemma because of limited therapeutic options and possible adverse effects on microbial clearance. Compounding this difficulty is the continued emergence of drug-resistant bacteria, where experimental strategies aiming to augment inflammatory responses for enhanced microbial killing are not applicable treatment options for infections of vulnerable organs. As with corneal infections, severe or prolonged inflammation jeopardizes corneal transparency, leading to devastating vision loss. We hypothesized that keratin 6a-derived antimicrobial peptides (KAMPs) may be a two-pronged remedy capable of tackling bacterial infection and inflammation at once. We used murine peritoneal neutrophils and macrophages, together with an in vivo model of sterile corneal inflammation, to find that nontoxic and prohealing KAMPs with natural 10- and 18-amino acid sequences suppressed lipoteichoic acid (LTA)- and lipopolysaccharide (LPS)-induced NFκB and IRF3 activation, proinflammatory cytokine production, and phagocyte recruitment independently of their bactericidal function. Mechanistically, KAMPs not only competed with bacterial ligands for cell surface Toll-like receptor (TLR) and co-receptors (MD2, CD14, and TLR2) but also reduced cell surface availability of TLR2 and TLR4 through promotion of receptor endocytosis. Topical KAMP treatment effectively alleviated experimental bacterial keratitis, as evidenced by substantial reductions of corneal opacification, inflammatory cell infiltration, and bacterial burden. These findings reveal the TLR-targeting activities of KAMPs and demonstrate their therapeutic potential as a multifunctional drug for managing infectious inflammatory disease.
Collapse
Affiliation(s)
- Yan Sun
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jonathan Chan
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Karthikeyan Bose
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Connie Tam
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
32
|
Gaghan C, Browning M, Cortes AL, Gimeno IM, Kulkarni RR. Effect of CpG-Oligonucleotide in Enhancing Recombinant Herpes Virus of Turkey-Laryngotracheitis Vaccine-Induced Immune Responses in One-Day-Old Broiler Chickens. Vaccines (Basel) 2023; 11:vaccines11020294. [PMID: 36851171 PMCID: PMC9965839 DOI: 10.3390/vaccines11020294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Infectious laryngotracheitis (ILT) is an economically important disease of chickens. While the recombinant vaccines can reduce clinical disease severity, the associated drawbacks are poor immunogenicity and delayed onset of immunity. Here, we used CpG-oligonucleotides (ODN) as an in ovo adjuvant in boosting recombinant herpesvirus of turkey-laryngotracheitis (rHVT-LT) vaccine-induced responses in one-day-old broiler chickens. Two CpG-ODN doses (5 and 10 μg/egg) with no adverse effect on the vaccine-virus replication or chick hatchability were selected for immune-response evaluation. Results showed that while CpG-ODN adjuvantation induced an increased transcription of splenic IFNγ and IL-1β, and lung IFNγ genes, the IL-1β gene expression in the lung was significantly downregulated compared to the control. Additionally, the transcription of toll-like receptor (TLR)21 in the spleen and lung and inducible nitric oxide synthase (iNOS) in the spleen of all vaccinated groups was significantly reduced. Furthermore, splenic cellular immunophenotyping showed that the CpG-ODN-10μg adjuvanted vaccination induced a significantly higher number of macrophages, TCRγδ+, and CD4+ T cells as well as a higher frequency of activated T cells (CD4+CD44+) when compared to the control. Collectively, the findings suggested that CpG-ODN can boost rHVT-LT-induced immune responses in day-old chicks, which may help in anti-ILT defense during their later stages of life.
Collapse
Affiliation(s)
| | | | | | - Isabel M. Gimeno
- Correspondence: (I.M.G.); (R.R.K.); Tel.: +1-919-513-6852 (I.M.G.); +1-919-513-6277 (R.R.K.)
| | - Raveendra R. Kulkarni
- Correspondence: (I.M.G.); (R.R.K.); Tel.: +1-919-513-6852 (I.M.G.); +1-919-513-6277 (R.R.K.)
| |
Collapse
|
33
|
Yu H, Wu H, Xie Q, Liu Z, Chen Z, Tu Q, Chen J, Fang F, Qiu W. Construction of ceRNA and m6A-related lncRNA networks associated with anti-inflammation of AdipoAI. Front Immunol 2023; 13:1051654. [PMID: 36703959 PMCID: PMC9871488 DOI: 10.3389/fimmu.2022.1051654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Background Adiponectin (APN) is an endogenous adipokine secreted from adipocytes that exerts anti-inflammatory properties. AdipoAI is an orally active adiponectin receptor agonist identified by our group that can emulate APN's anti-inflammatory properties through mechanisms that are not fully understood. LncRNAs, a type of noncoding RNA more than 200 bp in length, have been demonstrated to have abundant biological functions, including in anti-inflammatory responses. Materials and Result In the current study, we performed a lncRNA microarray in LPS-induced Raw264.7 cells that were prestimulated with AdipoAI and screened 110 DElncRNAs and 190 DEmRNAs. Enrichment analyses were conducted on total mRNAs and DEmRNAs, including GSVA, ssGSEA, GO/KEGG, GSEA, and PPI analysis. Among all these processes, endocytosis was significantly enriched. A coexpression analysis was built based on DElncRNAs and DEmRNAs. Then, using TargetScan and miRwalk to predict related microRNAs of DElncRNAs and DEmRNAs, respectively, we established competing endogenous RNA (ceRNA) networks including 54 mRNAs from 8 GO items. Furthermore, 33 m6A methylation-related marker genes were obtained from a previous study and used for the construction of an m6A-related lncRNA network by coexpression analysis. We identified FTO as the hub gene of the network and 14 lncRNAs that interacted with it. The expression levels of 10 lncRNAs selected from ceRNA and FTO-related lncRNA networks were validated with qRT‒PCR. Finally, macrophage phenotype scores showed that AdipoAI could attenuate the M2b and M2c polarization of macrophages and correlate with the above lncRNAs. Conclusion Our work reveals that lncRNAs might be involved in the anti-inflammation process of AdipoAI in LPS-induced macrophages through the ceRNA network and the epigenetic regulation of m6A. Mechanistically, these lncRNAs associated with AdipoAI might be related to endocytosis and polarization in macrophages and provide new candidates for the anti-inflammatory application of APN and its receptor agonist.
Collapse
Affiliation(s)
- Hongwen Yu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongle Wu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Qiuyan Xie
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zining Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Wei Qiu, ; Fuchun Fang,
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Wei Qiu, ; Fuchun Fang,
| |
Collapse
|
34
|
Taban Q, Ahmad SM, Mumtaz PT, Bhat B, Haq E, Magray S, Saleem S, Shabir N, Muhee A, Kashoo ZA, Zargar MH, Malik AA, Ganai NA, Shah RA. Scavenger receptor B1 facilitates the endocytosis of Escherichia coli via TLR4 signaling in mammary gland infection. Cell Commun Signal 2023; 21:3. [PMID: 36604713 PMCID: PMC9813905 DOI: 10.1186/s12964-022-01014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/11/2022] [Indexed: 01/06/2023] Open
Abstract
SCARB1 belongs to class B of Scavenger receptors (SRs) that are known to be involved in binding and endocytosis of various pathogens. SRs have emerging role in regulating innate immunity and host-pathogen interactions by acting in co-ordination with Toll-like receptors.Query Little is known about the function of SCARB1 in milk-derived mammary epithelial cells (MECs). This study reports the role of SCARB1 in infection and its potential association in TLR4 signaling on bacterial challenge in Goat mammary epithelial cells (GMECs). The novelty in the establishment of MEC culture lies in the method that aims to enhance the viability of the cells with intact characteristics upto a higher passage number. We represent MEC culture to be used as a potential infection model for deeper understanding of animal physiology especially around the mammary gland. On E.coli challenge the expression of SCARB1 was significant in induced GMECs at 6 h. Endoribonuclease-esiRNA based silencing of SCARB1 affects the expression of TLR4 and its pathways i.e. MyD88 and TRIF pathways on infection. Knockdown also affected the endocytosis of E.coli in GMECs demonstrating that E.coli uses SCARB1 function to gain entry in cells. Furthermore, we predict 3 unique protein structures of uncharacterized SCARB1 (Capra hircus) protein. Overall, we highlight SCARB1 as a main participant in host defence and its function in antibacterial advances to check mammary gland infections. Video Abstract.
Collapse
Affiliation(s)
- Qamar Taban
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India.
| | | | - Basharat Bhat
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Ehtishamul Haq
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir, India
| | - Suhail Magray
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Sahar Saleem
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Amatul Muhee
- Department of Clinical Veterinary Medicine, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Zahid Amin Kashoo
- Department of Veterinary Microbiology & Immunology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Mahrukh Hameed Zargar
- Department of Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Abrar A Malik
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Nazir A Ganai
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Riaz A Shah
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| |
Collapse
|
35
|
Franco AR, Artusa V, Peri F. Use of Fluorescent Chemical Probes in the Study of Toll-like Receptors (TLRs) Trafficking. Methods Mol Biol 2023; 2700:57-74. [PMID: 37603174 DOI: 10.1007/978-1-0716-3366-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Fluorescent chemical probes are used nowadays as a chemical resource to study the physiology and pharmacology of several important endogenous receptors. Different fluorescent groups have been coupled with known ligands of these receptors, allowing the visualization of their localization and trafficking. One of the most important molecular players of innate immunity and inflammation are the Toll-Like Receptors (TLRs). These Pattern-Recognition Receptors (PRR) have as natural ligands microbial-derived pathogen-associated molecular patterns (PAMPs) and also endogenous molecules called danger-associated molecular patterns (DAMPs). These ligands activate TLRs to start a response that will determine the host's protection and overall cell survival but can also lead to chronic inflammation and autoimmune syndromes. TLRs action is tightly related to their subcellular localization and trafficking. Understanding this trafficking phenomenon can enlighten critical molecular pathways that might allow to decipher the causes of different diseases. In this chapter, the study of function, localization and trafficking of TLRs through the use of chemical probes will be discussed. Furthermore, an example protocol of the use of fluorescent chemical probes to study TLR4 trafficking using high-content analysis will be described.
Collapse
Affiliation(s)
- Ana Rita Franco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Valentina Artusa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
36
|
Mayer E, Horn J, Mayer E, Chen S. Role of the gut microbiome in the pathophysiology of brain disorders. NEUROBIOLOGY OF BRAIN DISORDERS 2023:913-928. [DOI: 10.1016/b978-0-323-85654-6.00058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
37
|
Shi J, Wu J, Chen Q, Shen Y, Mi K, Yang H, Mu L. A Frog-Derived Cathelicidin Peptide with Dual Antimicrobial and Immunomodulatory Activities Effectively Ameliorates Staphylococcus aureus-Induced Peritonitis in Mice. ACS Infect Dis 2022; 8:2464-2479. [PMID: 36378028 DOI: 10.1021/acsinfecdis.2c00260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As antimicrobial resistance poses an increasing threat to public health, it is urgent to develop new antimicrobial agents. In this paper, we identify a novel 30-residue peptide (Nv-CATH, NCNFLCKVKQRLRSVSSTSHIGMAIPRPRG) from the skin of the frog Nanorana ventripunctata, which belongs to the cathelicidin family. Nv-CATH exhibited broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria. Nv-CATH significantly protected mice from lethal infections caused by Staphylococcus aureus. Furthermore, the peptide suppressed excessive and harmful inflammatory responses by repressing the production of NO, IL-6, TNF-α, and IL-1β. The NF-κB-NLRP3 and MAPK inflammatory signaling pathways were involved in the protection in vitro and in vivo. Nv-CATH also modulated macrophage/monocyte and neutrophil trafficking to the infection site by stimulating CXCL1, CXCL2, and CCL2 production in macrophages. Nv-CATH augmented immunocyte-mediated bacterial killing by modestly promoting neutrophils' phagocytosis and PMA-induced NET formation. Thus, Nv-CATH protects mice against bacterial infection by antimicrobial-immunomodulatory duality. The combination of these two characteristics makes Nv-CATH a promising molecule template for the development of novel antimicrobial and antibiotic-resistant agents.
Collapse
Affiliation(s)
- Jie Shi
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jing Wu
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qian Chen
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yan Shen
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Kai Mi
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Hailong Yang
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Lixian Mu
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
38
|
Boukeileh S, Darawshi O, Shmuel M, Mahameed M, Wilhelm T, Dipta P, Forno F, Praveen B, Huber M, Levi-Schaffer F, Tirosh B. Endoplasmic Reticulum Homeostasis Regulates TLR4 Expression and Signaling in Mast Cells. Int J Mol Sci 2022; 23:ijms231911826. [PMID: 36233127 PMCID: PMC9569687 DOI: 10.3390/ijms231911826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that responds to demand in secretory proteins by undergoing expansion. The mechanisms that control the homeostasis of ER size and function involve the activation of the unfolded protein response (UPR). The UPR plays a role in various effector functions of immune cells. Mast cells (MCs) are highly granular tissue-resident cells and key drivers of allergic inflammation. Their diverse secretory functions in response to activation through the high-affinity receptor for IgE (FcεRI) suggest a role for the UPR in their function. Using human cord blood-derived MCs, we found that FcεRI triggering elevated the expression level and induced activation of the UPR transducers IRE1α and PERK, accompanied by expansion of the ER. In mouse bone marrow-derived MCs and peritoneal MCs, the ER underwent a more moderate expansion, and the UPR was not induced following MC activation. The deletion of IRE1α in mouse MCs did not affect proliferation, survival, degranulation, or cytokine stimulation following FcεRI triggering, but it did diminish the surface expression of TLR4 and the consequent response to LPS. A similar phenotype was observed in human MCs using an IRE1α inhibitor. Our data indicate that the ER of MCs, primarily of humans, undergoes a rapid remodeling in response to activation that promotes responses to TLR4. We suggest that IRE1α inhibition can be a strategy for inhibiting the hyperactivation of MCs by LPS over the course of allergic responses.
Collapse
Affiliation(s)
- Shatha Boukeileh
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
| | - Odai Darawshi
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
| | - Miriam Shmuel
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
| | - Mohamed Mahameed
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical School, RWTH Aachen University, D-52074 Aachen, Germany
| | - Priya Dipta
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
| | - Francesca Forno
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
| | - Bellam Praveen
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical School, RWTH Aachen University, D-52074 Aachen, Germany
| | - Francesca Levi-Schaffer
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
| | - Boaz Tirosh
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: or ; Tel.: +972-2-6758730; Fax: +972-2-6758741
| |
Collapse
|
39
|
Bhuyan S, Pal B, Pathak L, Saikia PJ, Mitra S, Gayan S, Mokhtari RB, Li H, Ramana CV, Baishya D, Das B. Targeting hypoxia-induced tumor stemness by activating pathogen-induced stem cell niche defense. Front Immunol 2022; 13:933329. [PMID: 36248858 PMCID: PMC9559576 DOI: 10.3389/fimmu.2022.933329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor hypoxia and oxidative stress reprograms cancer stem cells (CSCs) to a highly aggressive and inflammatory phenotypic state of tumor stemness. Previously, we characterized tumor stemness phenotype in the ATP Binding Cassette Subfamily G Member 2 (ABCG2)–positive migratory side population (SPm) fraction of CSCs exposed to extreme hypoxia followed by reoxygenation. Here, we report that post-hypoxia/reoxygenation SPm+/ABCG2+ CSCs exerts defense against pathogen invasion that involves bystander apoptosis of non-infected CSCs. In an in vitro assay of cancer cell infection by Bacillus Calmette Guerin (BCG) or mutant Mycobacterium tuberculosis (Mtb) strain 18b (Mtb-m18b), the pathogens preferentially replicated intracellular to SPm+/ABCG2+ CSCs of seven cell lines of diverse cancer types including SCC-25 oral squamous cancer cell line. The conditioned media (CM) of infected CSCs exhibited direct anti-microbial activity against Mtb and BCG, suggesting niche defense against pathogen. Importantly, the CM of infected CSCs exhibited marked in vitro bystander apoptosis toward non-infected CSCs. Moreover, the CM-treated xenograft bearing mice showed 10- to 15-fold reduction (p < 0.001; n = 7) in the number of CSCs residing in the hypoxic niches. Our in vitro studies indicated that BCG-infected SPm+/ABCG2+ equivalent EPCAM+/ABCG2+ CSCs of SCC-25 cells underwent pyroptosis and released a high mobility group box protein 1 (HMGB1)/p53 death signal into the tumor microenvironment (TME). The death signal can induce a Toll-like receptor 2/4–mediated bystander apoptosis in non-infected CSCs by activating p53/MDM2 oscillation and subsequent activation of capase-3–dependent intrinsic apoptosis. Notably, SPm+/ABCG2+ but not SP cells undergoing bystander apoptosis amplified the death signal by further release of HMGB1/p53 complex into the TME. These results suggest that post-hypoxia SPm+/ABCG2+ CSCs serve a functional role as a tumor stemness defense (TSD) phenotype to protect TME against bacterial invasion. Importantly, the CM of TSD phenotype undergoing bystander apoptosis may have therapeutic uses against CSCs residing in the hypoxic niche.
Collapse
Affiliation(s)
- Seema Bhuyan
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Bioengineering and Technology, Gauhati University, Guwahati, India
| | - Bidisha Pal
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, United States
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| | - Lekhika Pathak
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Partha Jyoti Saikia
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Shirsajit Mitra
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Sukanya Gayan
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Reza Bayat Mokhtari
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, United States
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| | - Hong Li
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, United States
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| | - Chilakamarti V. Ramana
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, India
| | - Bikul Das
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, United States
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
- *Correspondence: Bikul Das,
| |
Collapse
|
40
|
The Distinctive Activation of Toll-Like Receptor 4 in Human Samples with Sepsis. Cells 2022; 11:cells11193020. [PMID: 36230982 PMCID: PMC9563554 DOI: 10.3390/cells11193020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Clinical success of Toll-Like receptor-4 (TLR-4) antagonists in sepsis therapy has thus far been lacking. As inhibition of a receptor can only be useful if the receptor is active, stratification of patients with active TLR-4 would be desirable. Our aim was to establish an assay to quantify phosphorylated TLR-4 using the proximity ligation assay (PLA). HEK293 TLR4/MD2/CD14 as well as THP-1 cells were stimulated with LPS and the activation of TLR-4 was measured using the PLA. Furthermore, peripheral blood mononuclear cells (PBMCs) from 25 sepsis patients were used to show the feasibility of this assay in clinical material. Activation of TLR-4 in these samples was compared to the PBMCs of 11 healthy individuals. We could show a transient activation of TLR-4 in both cell lines. Five min after the LPS stimulation, the signal increased 6.7-fold in the HEK293 cells and 4.3-fold in the THP-1 cells. The assay also worked well in the PBMCs of septic patients. Phosphorylation of TLR-4 at study inclusion was 2.9 times higher in septic patients compared to healthy volunteers. To conclude, we established a diagnostic assay that is able to quantify the phosphorylation of TLR-4 in cell culture and in clinical samples of sepsis patients. This makes large-scale stratification of sepsis patients for their TLR-4 activation status possible.
Collapse
|
41
|
TLR4 Agonist and Hypoxia Synergistically Promote the Formation of TLR4/NF-κB/HIF-1α Loop in Human Epithelial Ovarian Cancer. Anal Cell Pathol (Amst) 2022; 2022:4201262. [PMID: 35464826 PMCID: PMC9023210 DOI: 10.1155/2022/4201262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Inflammation and hypoxia are involved in numerous cancer progressions. Reportedly, the toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) pathway and hypoxia-inducible factor-1α (HIF-1α) are activated and closely related to the chemoresistance and poor prognosis of epithelial ovarian cancer (EOC). However, the potential correlation between TLR4/NF-κB and HIF-1α remains largely unknown in EOC. In our study, the possible positive correlation among TLR4, NF-κB, and HIF-1α proteins was investigated in the EOC tissues. Our in vitro results demonstrated that LPS can induce and activate HIF-1α through the TLR4/NF-κB signaling in A2780 and SKOV3 cells. Moreover, hypoxia-induced TLR4 expression and the downstream transcriptional activity of NF-κB were HIF-1α-dependent. The cross talk between the TLR4/NF-κB signaling pathway and HIF-1α was also confirmed in the nude mice xenograft model. Therefore, we first proposed the formation of a TLR4/NF-κB/HIF-1α loop in EOC. The positive feedback loop enhanced the susceptibility and responsiveness to inflammation and hypoxia, which synergistically promote the initiation and progression of EOC. The novel mechanism may act as a future therapeutic candidate for the treatment of EOC.
Collapse
|
42
|
Ciesielska A, Krawczy M, Sas-Nowosielska H, Hromada-Judycka A, Kwiatkowska K. CD14 recycling modulates LPS-induced inflammatory responses of murine macrophages. Traffic 2022; 23:310-330. [PMID: 35411668 DOI: 10.1111/tra.12842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/07/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
TLR4 is activated by the bacterial endotoxin lipopolysaccharide (LPS) and triggers two pro-inflammatory signaling cascades: a MyD88-dependent one in the plasma membrane, and the following TRIF-dependent one in endosomes. An inadequate inflammatory reaction can be detrimental for the organism by leading to sepsis. Therefore, novel approaches to therapeutic modulation of TLR4 signaling are being sought after. The TLR4 activity is tightly connected with the presence of CD14, a GPI-anchored protein that transfers LPS monomers to the receptor and controls its endocytosis. In this study we focused on CD14 trafficking as a still poorly understood factor affecting TLR4 activity. Two independent assays were used to show that after endocytosis CD14 can recycle back to the plasma membrane in both unstimulated and stimulated cells. This route of CD14 trafficking can be controlled by sorting nexins (SNX) 1, 2, and 6, and is important for maintaining the surface level and the total level of CD14, but can also affect the amount of TLR4. Silencing of these SNXs attenuated especially the CD14-dependent endosomal signaling of TLR4, making them a new target for therapeutic regulation of the inflammatory response of macrophages to LPS.
Collapse
Affiliation(s)
- Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Marta Krawczy
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Hanna Sas-Nowosielska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Aneta Hromada-Judycka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
43
|
Murray TE, Wenzel TJ, Simtchouk S, Greuel BK, Gibon J, Klegeris A. Extracellular Cardiolipin Modulates Select Immune Functions of Astrocytes in Toll-Like Receptor (TLR) 4-Dependent Manner. Mediators Inflamm 2022; 2022:9946439. [PMID: 35369030 PMCID: PMC8975658 DOI: 10.1155/2022/9946439] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/11/2022] [Accepted: 02/16/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by chronic neuroinflammation, which is partially mediated by dysregulated functions of glial cells. Cardiolipin (CL) is a phospholipid normally confined to the inner mitochondrial membrane; however, it has been detected in human sera, indicating that it can exist in the extracellular space where it may interact with nearby cells. Although CL has been shown to modulate several functions of microglia in a toll-like receptor (TLR) 4-dependent manner, the effects of extracellular CL on astrocytes are unknown. In addition to their homeostatic functions, astrocytes participate in neuroimmune responses of the brain and express TLR 4. Therefore, we hypothesized that extracellular CL (1) modulates the secretion of cytokines and cytotoxins by astrocytes, as well as their phagocytic activity, and (2) acts by interacting with astrocyte TLR 4. We demonstrate that CL inhibits the lipopolysaccharide- (LPS-) induced secretion of cytotoxins and expression of glial fibrillary acidic protein (GFAP) by human U118 MG astrocytic cells. CL alone upregulates the phagocytic activity of human astrocytic cells and primary murine astrocytes. CL in combination with LPS upregulates secretion of interleukin (IL)-1β by astrocytic cells. Furthermore, CL alone increases the secretion of monocyte chemoattractant protein (MCP)-1 by astrocytic cells, which is blocked by the TLR 4-specific antagonist TAK-242. We demonstrate that CL upregulates MCP-1 secretion in the absence of its natural carrier protein, β2-glycoprotein 1, indicating that CL may be bioactive in the brain where this protein is not present. Lastly, we show that CL downregulates the expression of astrocytic TLR 4, implying that CL engages this receptor, as its activation has been shown to lead to its degradation. Overall, our study extends the list of cell type functions of which CL modulates and provides evidence that CL, or liposomes containing this phospholipid can be used to modulate specific neuroimmune functions of astrocytes.
Collapse
Affiliation(s)
- Taryn E. Murray
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada V1V 1V7
| | - Tyler J. Wenzel
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada V1V 1V7
| | - Svetlana Simtchouk
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada V1V 1V7
| | - Bridget K. Greuel
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada V1V 1V7
| | - Julien Gibon
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada V1V 1V7
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada V1V 1V7
| |
Collapse
|
44
|
Sánchez G, Salazar-Alcalá E, Hernández F, Deglesne PA, Bello ZD, de Noya BA, Noya O, Fernández-Mestre M. Polymorphisms of the TLR4 gene: Risk factor for chronicity and severity in oral vectorial Chagas disease. Exp Parasitol 2022; 238:108243. [DOI: 10.1016/j.exppara.2022.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/22/2021] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
|
45
|
Wang YT, Liu TY, Shen CH, Lin SY, Hung CC, Hsu LC, Chen GC. K48/K63-linked polyubiquitination of ATG9A by TRAF6 E3 ligase regulates oxidative stress-induced autophagy. Cell Rep 2022; 38:110354. [PMID: 35196483 DOI: 10.1016/j.celrep.2022.110354] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/23/2021] [Accepted: 01/19/2022] [Indexed: 12/31/2022] Open
Abstract
Excessive generation and accumulation of highly reactive oxidizing molecules causes oxidative stress and oxidative damage to cellular components. Accumulating evidence indicates that autophagy diminishes oxidative damage in cells and maintains redox homeostasis by degrading and recycling intracellular damaged components. Here, we show that TRAF6 E3 ubiquitin ligase and A20 deubiquitinase coordinate to regulate ATG9A ubiquitination and autophagy activation in cells responding to oxidative stress. The ROS-dependent TRAF6-mediated non-proteolytic, K48/63-linked ubiquitination of ATG9A enhances its association with Beclin 1 and the assembly of VPS34-UVRAG complex, thereby stimulating autophagy. Notably, expression of the ATG9A ubiquitination mutants impairs ROS-induced VPS34 activation and autophagy. We further find that lipopolysaccharide (LPS)-induced ROS production also stimulates TRAF6-mediated ATG9A ubiquitination. Ablation of ATG9A causes aberrant TLR4 endosomal trafficking and decreases IRF-3 phosphorylation in LPS-stimulated macrophages. Our findings provide important insights into how K48/K63-linked ubiquitination of ATG9A contributes to the regulation of oxidative stress-induced autophagy.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Ting-Yu Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Hsing Shen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Chin-Chun Hung
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
46
|
Peruń A, Gębicka M, Biedroń R, Skalska P, Józefowski S. The CD36 and SR-A/CD204 scavenger receptors fine-tune Staphylococcus aureus-stimulated cytokine production in mouse macrophages. Cell Immunol 2022; 372:104483. [DOI: 10.1016/j.cellimm.2022.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
|
47
|
Guryanova SV, Gigani OB, Gudima GO, Kataeva AM, Kolesnikova NV. Dual Effect of Low-Molecular-Weight Bioregulators of Bacterial Origin in Experimental Model of Asthma. Life (Basel) 2022; 12:192. [PMID: 35207480 PMCID: PMC8879587 DOI: 10.3390/life12020192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Asthma is one of the most common noncommunicable diseases, affecting over 200 million people. A large number of drugs control asthma attacks, but there is no effective therapy. Identification of reasons for asthma and preventing this disease is a relevant task. The influence of bacterial components is necessary for the normal development of the immune system and the formation of an adequate immune response to antigens. In the absence of microorganisms or their insufficient exposure, the prerequisites are formed for excessive reactivity to harmless antigens. In the present study, we analyzed cellular and humoral factors in a standard mouse model of OVA-induced asthma modified by 5-fold intraperitoneal injection of bacterial cell wall fragments of glucosaminylmuramyl dipeptide (GMDP) 5 μg/animal or 1 μg lipopolysaccharide (LPS) per animal for 5 days before sensitization by ovalbumin (OVA). Preliminary administration of LPS or GMDP to animals significantly reduced goblet cells as well as the number of neutrophils, lymphocytes, and eosinophils in bronchoalveolar lavage, wherein GMDP corrected neutrophilia to a 2-fold degree, and LPS reduced the severity of eosinophilia by 1.9 times. With OVA administration of GMDP or LPS at the sensitization stage, an increase in the total number of bronchoalveolar lavage cells due to neutrophils, macrophages, lymphocytes, and eosinophils in relation to the group with asthma without GMDP or LPS was observed. The administration of GMDP or LPS to normal mice without asthma for 5 days had no statistically significant effect on the change in the number and population composition of cells in bronchoalveolar lavage in comparison with the control group receiving PBS. As a result of a study in a mouse model of asthma, a dual effect of LPS and GMDP was established: the introduction of LPS or GMDP before sensitization reduces neutrophilia and eosinophilia, while the introduction of LPS or GMDP together with an allergen significantly increases neutrophilia and eosinophilia. The study of the immunoglobulin status shows that in normal-asthma mice, GMDP and LPS slightly increase IgA in bronchoalveolar lavage; at the same time, in the asthma model, injections of GMDP or LPS before sensitization contribute to a significant decrease in IgA (2.6 times and 2.1 times, respectively) in BALF and IgE (2.2 times and 2.0 times, respectively) in blood serum. In an experimental model of asthma, the effect of GMDP and LPS was multidirectional: when they are repeatedly administered before sensitization, the bacterial components significantly reduce the severity of the allergic process, while in the case of a joint injection with an allergen, they increase the influx of macrophages, lymphocytes, and neutrophils into the lungs, which can aggravate the course of pathological process. Thus, the insufficient effect of antigens of a bacterial nature, in particular, with prolonged use of antibiotics can be compensated for by substances based on low-molecular-weight bioregulators of bacterial origin to establish the missing signals for innate immunity receptors, whose constant activation at a certain level is necessary to maintain homeostasis.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Ministry of Science and Higher Education of the Russian Federation, 117997 Moscow, Russia
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia; (O.B.G.); (A.M.K.)
| | - Olga B. Gigani
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia; (O.B.G.); (A.M.K.)
| | - Georgii O. Gudima
- National Research Center-Institute of Immunology of the Federal Medico-Biological Agency, 115522 Moscow, Russia;
| | - Anastasiya M. Kataeva
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia; (O.B.G.); (A.M.K.)
| | - Natalya V. Kolesnikova
- Department of Clinical Immunology, Kuban State Medical University, Ministry of Health of the Russian Federation, 350063 Krasnodar, Russia;
| |
Collapse
|
48
|
Acharya M, Jackson SW. Regulatory strategies limiting endosomal Toll-like receptor activation in B cells. Immunol Rev 2022; 307:66-78. [PMID: 35040152 PMCID: PMC8986562 DOI: 10.1111/imr.13065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/26/2022]
Abstract
The recognition of pathogen-associated nucleic acid (NA) promotes effective immunity against invading pathogens. However, endosomal Toll-like receptor (TLR) activation by self-NA also underlies the pathogenesis of systemic autoimmune diseases, such as systemic lupus erythematosus (SLE). For this reason, the activation thresholds of NA-sensing TLRs must be tightly regulated to balance protective and pathogenic immune responses. In this study, we will provide an overview of the evolutionary mechanisms designed to limit the aberrant activation of endosomal TLRs by self-ligands, focusing on four broad strategies. These include the following: 1) the production of nucleases able to degrade self-DNA and RNA; 2) the cell-specific regulation of endosomal TLR expression; 3) the spatial and temporal control of TLR positioning at a sub-cellular level; and 4) the modulation of downstream TLR signaling cascades. Given the critical role of B cells in lupus pathogenesis, where possible, we will describe evidence for B cell-specific induction of these regulatory mechanisms. We will also highlight our own work showing how modulation of B cell endolysosomal flux tunes NA-sensing TLR activation signals. In the face of inevitable generation of self-NA during normal cellular turnover, these parallel mechanisms are vital to protect against pathogenic inflammation.
Collapse
Affiliation(s)
- Mridu Acharya
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Seattle Children's Research Institute, Seattle, Washington, USA
| | - Shaun W Jackson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
49
|
Ai L, Ren Y, Zhu M, Lu S, Qian Y, Chen Z, Xu A. Synbindin restrains proinflammatory macrophage activation against microbiota and mucosal inflammation during colitis. Gut 2021; 70:2261-2272. [PMID: 33441378 DOI: 10.1136/gutjnl-2020-321094] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE As a canonical membrane tethering factor, the function of synbindin has been expanding and indicated in immune response. Here, we investigated the role of synbindin in the regulation of toll-like receptor 4 (TLR4) signalling and macrophage response to microbiota during colitis. DESIGN Three distinct mouse models allowing global, myeloid-specific or intestinal epithelial cell-specific synbindin heterozygous deletion were constructed and applied to reveal the function of synbindin during dextran sodium sulfate (DSS) colitis. Effects of synbindin on TLR4 signalling and macrophage activation in response to bacterial lipopolysaccharide (LPS) or Fusobacterium nucleatum were evaluated. The colocalisation and interaction between synbindin and Rab7b were determined by immunofluorescence and coimmunoprecipitation. Synbindin expression in circulating monocytes and intestinal mucosal macrophages of patients with active IBD was detected. RESULTS Global synbindin haploinsufficiency greatly exacerbated DSS-induced intestinal inflammation. The increased susceptibility to DSS was abolished by gut microbiota depletion, while phenocopied by specific synbindin heterozygous deletion in myeloid cells rather than intestinal epithelial cells. Profoundly aberrant proinflammatory gene signatures and excessive TLR4 signalling were observed in macrophages with synbindin interference in response to bacterial LPS or Fusobacterium nucleatum. Synbindin was significantly increased in intestinal mucosal macrophages and circulating monocytes from both mice with DSS colitis and patients with active IBD. Interleukin 23 and granulocyte-macrophage colony-stimulating factor were identified to induce synbindin expression. Mechanistic characterisation indicated that synbindin colocalised and directly interacted with Rab7b, which coordinated the endosomal degradation pathway of TLR4 for signalling termination. CONCLUSION Synbindin was a key regulator of TLR4 signalling and restrained the proinflammatory macrophage activation against microbiota during colitis.
Collapse
Affiliation(s)
- Luoyan Ai
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimeng Ren
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingming Zhu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyuan Lu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Qian
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaofei Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Antao Xu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
50
|
Surfactant protein A enhances the degradation of LPS-induced TLR4 in primary alveolar macrophages involving Rab7, β-arrestin2, and mTORC1. Infect Immun 2021; 90:e0025021. [PMID: 34780278 DOI: 10.1128/iai.00250-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory infections by Gram-negative bacteria are a major cause of global morbidity and mortality. Alveolar macrophages (AMs) play a central role in maintaining lung immune homeostasis and host defense by sensing pathogens via pattern recognition receptors (PRR). The PRR Toll-like receptor (TLR) 4 is a key sensor of lipopolysaccharide (LPS) from Gram-negative bacteria. Pulmonary surfactant is the natural microenvironment of AMs. Surfactant protein A (SP-A), a multifunctional host defense collectin, controls LPS-induced pro-inflammatory immune responses at the organismal and cellular level via distinct mechanisms. We found that SP-A post-transcriptionally restricts LPS-induced TLR4 protein expression in primary AMs from healthy humans, rats, wild-type and SP-A-/- mice by further decreasing cycloheximide-reduced TLR4 protein translation and enhances the co-localization of TLR4 with the late endosome/lysosome. Both effects as well as the SP-A-mediated inhibition of LPS-induced TNFα release are counteracted by pharmacological inhibition of the small GTPase Rab7. SP-A-enhanced Rab7 expression requires β-arrestin2 and, in β-arrestin2-/- AMs and after intratracheal LPS challenge of β-arrestin2-/- mice, SP-A fails to enhance TLR4/lysosome co-localization and degradation of LPS-induced TLR4. In SP-A-/- mice, TLR4 levels are increased after pulmonary LPS challenge. SP-A-induced activation of mechanistic target of rapamycin complex 1 (mTORC1) kinase requires β-arrestin2 and is critically involved in degradation of LPS-induced TLR4. The data suggest that SP-A post-translationally limits LPS-induced TLR4 expression in primary AMs by lysosomal degradation comprising Rab7, β-arrestin2, and mTORC1. This study may indicate a potential role of SP-A-based therapeutic interventions in unrestricted TLR4-driven immune responses to lower respiratory tract infections caused by Gram-negative bacteria.
Collapse
|