1
|
Szlachcic E, Dańko MJ, Czarnoleski M. Rapamycin supplementation of Drosophila melanogaster larvae results in less viable adults with smaller cells. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230080. [PMID: 37351490 PMCID: PMC10282583 DOI: 10.1098/rsos.230080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
The intrinsic sources of mortality relate to the ability to meet the metabolic demands of tissue maintenance and repair, ultimately shaping ageing patterns. Anti-ageing mechanisms compete for resources with other functions, including those involved in maintaining functional plasma membranes. Consequently, organisms with smaller cells and more plasma membranes should devote more resources to membrane maintenance, leading to accelerated intrinsic mortality and ageing. To investigate this unexplored trade-off, we reared Drosophila melanogaster larvae on food with or without rapamycin (a TOR pathway inhibitor) to produce small- and large-celled adult flies, respectively, and measured their mortality rates. Males showed higher mortality than females. As expected, small-celled flies (rapamycin) showed higher mortality than their large-celled counterparts (control), but only in early adulthood. Contrary to predictions, the median lifespan was similar between the groups. Rapamycin administered to adults prolongs life; thus, the known direct physiological effects of rapamycin cannot explain our results. Instead, we invoke indirect effects of rapamycin, manifested as reduced cell size, as a driver of increased early mortality. We conclude that cell size differences between organisms and the associated burdens of plasma membrane maintenance costs may be important but overlooked factors influencing mortality patterns in nature.
Collapse
Affiliation(s)
- Ewa Szlachcic
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Maciej J. Dańko
- Max Planck Institute for Demographic Research, Rostock, Germany
| | - Marcin Czarnoleski
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
2
|
Szlachcic E, Labecka AM, Privalova V, Sikorska A, Czarnoleski M. Systemic orchestration of cell size throughout the body: influence of sex and rapamycin exposure in Drosophila melanogaster. Biol Lett 2023; 19:20220611. [PMID: 36946132 PMCID: PMC10031402 DOI: 10.1098/rsbl.2022.0611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Along with differences in life histories, metazoans have also evolved vast differences in cellularity, involving changes in the molecular pathways controlling the cell cycle. The extent to which the signalling network systemically determines cellular composition throughout the body and whether tissue cellularity is organized locally to match tissue-specific functions are unclear. We cultured genetic lines of Drosophila melanogaster on food with and without rapamycin to manipulate the activity of target of rapamycin (TOR)/insulin pathways and evaluate cell-size changes in five types of adult cells: wing and leg epidermal cells, ommatidial cells, indirect flight muscle cells and Malpighian tubule epithelial cells. Rapamycin blocks TOR multiprotein complex 1, reducing cell growth, but this effect has been studied in single cell types. As adults, rapamycin-treated flies had smaller bodies and consistently smaller cells in all tissues. Regardless, females eclosed with larger bodies and larger cells in all tissues than males. Thus, differences in TOR activity and sex were associated with the orchestration of cell size throughout the body, leading to differences in body size. We postulate that the activity of TOR/insulin pathways and their effects on cellularity should be considered when investigating the origin of ecological and evolutionary patterns in life histories.
Collapse
Affiliation(s)
- Ewa Szlachcic
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Maria Labecka
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Valeriya Privalova
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Sikorska
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marcin Czarnoleski
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
3
|
Kim YJ. Activity-induced synaptic structural modifications by Akt. Biochem Biophys Res Commun 2022; 621:94-100. [PMID: 35820284 DOI: 10.1016/j.bbrc.2022.06.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
The activity-dependent regulation of synaptic structures plays a key role in synaptic development and plasticity; however, the signaling mechanisms involved remain largely unknown. The serine/threonine protein kinase Akt, a downstream effector of phosphoinositide 3-kinase (PI3K), plays a pivotal role in a wide range of physiological functions. We focused on the importance of Akt in rapid synaptic structural changes after stimulation at the Drosophila neuromuscular junction, a well-studied model synapse. Compared with wild-type larvae, akt mutants showed significantly reduced muscle size and an increased number of boutons per area, suggesting that Akt is required for proper pre- and postsynaptic growth. In addition, the level of cysteine string protein (CSP) was significantly increased, and its distribution was different in akt mutants. After high K+ single stimulation, the CSP level of akt mutant NMJs increased dramatically compared with that of wild-type NMJs. Interestingly, ghost boutons without postsynaptic specialization were found in akt mutant NMJs, and the number of these boutons was significantly increased by patterned stimulation. In contrast, the postsynaptic change in the subsynaptic reticulum (SSR) in the akt mutant occurred independent of stimulation. These results suggest that Akt functions in both pre- and postsynaptic growth and differentiation, and in particular, presynaptic action occurs in an activity-dependent manner.
Collapse
Affiliation(s)
- Yoon-Jung Kim
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, South Korea.
| |
Collapse
|
4
|
Terakawa A, Hu Y, Kokaji T, Yugi K, Morita K, Ohno S, Pan Y, Bai Y, Parkhitko AA, Ni X, Asara JM, Bulyk ML, Perrimon N, Kuroda S. Trans-omics analysis of insulin action reveals a cell growth subnetwork which co-regulates anabolic processes. iScience 2022; 25:104231. [PMID: 35494245 PMCID: PMC9044165 DOI: 10.1016/j.isci.2022.104231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Insulin signaling promotes anabolic metabolism to regulate cell growth through multi-omic interactions. To obtain a comprehensive view of the cellular responses to insulin, we constructed a trans-omic network of insulin action in Drosophila cells that involves the integration of multi-omic data sets. In this network, 14 transcription factors, including Myc, coordinately upregulate the gene expression of anabolic processes such as nucleotide synthesis, transcription, and translation, consistent with decreases in metabolites such as nucleotide triphosphates and proteinogenic amino acids required for transcription and translation. Next, as cell growth is required for cell proliferation and insulin can stimulate proliferation in a context-dependent manner, we integrated the trans-omic network with results from a CRISPR functional screen for cell proliferation. This analysis validates the role of a Myc-mediated subnetwork that coordinates the activation of genes involved in anabolic processes required for cell growth. A trans-omic network of insulin action in Drosophila cells was constructed Insulin co-regulates various anabolic processes in a time-dependent manner The trans-omic network and a CRISPR screen for cell proliferation were integrated A Myc-mediated subnetwork promoting anabolic processes is required for cell growth
Collapse
Affiliation(s)
- Akira Terakawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Toshiya Kokaji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Katsuyuki Yugi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Institute for Advanced Biosciences, Keio University, Fujisawa, 252-8520, Japan
| | - Keigo Morita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Ohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yifei Pan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yunfan Bai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Andrey A. Parkhitko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaochun Ni
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02175, USA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Corresponding author
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Corresponding author
| |
Collapse
|
5
|
Thermal and Oxygen Flight Sensitivity in Ageing Drosophila melanogaster Flies: Links to Rapamycin-Induced Cell Size Changes. BIOLOGY 2021; 10:biology10090861. [PMID: 34571738 PMCID: PMC8464818 DOI: 10.3390/biology10090861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary Cold-blooded organisms can become physiologically challenged when performing highly oxygen-demanding activities (e.g., flight) across different thermal and oxygen environmental conditions. We explored whether this challenge decreases if an organism is built of smaller cells. This is because small cells create a large cell surface, which is costly, but can ease the delivery of oxygen to cells’ power plants, called mitochondria. We developed fruit flies in either standard food or food with rapamycin (a human drug altering the cell cycle and ageing), which produced flies with either large cells (no supplementation) or small cells (rapamycin supplementation). We measured the maximum speed at which flies were flapping their wings in warm and hot conditions, combined with either normal or reduced air oxygen concentrations. Flight intensity increased with temperature, and it was reduced by poor oxygen conditions, indicating limitations of flying insects by oxygen supply. Nevertheless, flies with small cells showed lower limitations, only slowing down their wing flapping in low oxygen in the hot environment. Our study suggests that small cells in a body can help cold-blooded organisms maintain demanding activities (e.g., flight), even in poor oxygen conditions, but this advantage can depend on body temperature. Abstract Ectotherms can become physiologically challenged when performing oxygen-demanding activities (e.g., flight) across differing environmental conditions, specifically temperature and oxygen levels. Achieving a balance between oxygen supply and demand can also depend on the cellular composition of organs, which either evolves or changes plastically in nature; however, this hypothesis has rarely been examined, especially in tracheated flying insects. The relatively large cell membrane area of small cells should increase the rates of oxygen and nutrient fluxes in cells; however, it does also increase the costs of cell membrane maintenance. To address the effects of cell size on flying insects, we measured the wing-beat frequency in two cell-size phenotypes of Drosophila melanogaster when flies were exposed to two temperatures (warm/hot) combined with two oxygen conditions (normoxia/hypoxia). The cell-size phenotypes were induced by rearing 15 isolines on either standard food (large cells) or rapamycin-enriched food (small cells). Rapamycin supplementation (downregulation of TOR activity) produced smaller flies with smaller wing epidermal cells. Flies generally flapped their wings at a slower rate in cooler (warm treatment) and less-oxygenated (hypoxia) conditions, but the small-cell-phenotype flies were less prone to oxygen limitation than the large-cell-phenotype flies and did not respond to the different oxygen conditions under the warm treatment. We suggest that ectotherms with small-cell life strategies can maintain physiologically demanding activities (e.g., flight) when challenged by oxygen-poor conditions, but this advantage may depend on the correspondence among body temperatures, acclimation temperatures and physiological thermal limits.
Collapse
|
6
|
Lund-Ricard Y, Cormier P, Morales J, Boutet A. mTOR Signaling at the Crossroad between Metazoan Regeneration and Human Diseases. Int J Mol Sci 2020; 21:E2718. [PMID: 32295297 PMCID: PMC7216262 DOI: 10.3390/ijms21082718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
A major challenge in medical research resides in controlling the molecular processes of tissue regeneration, as organ and structure damage are central to several human diseases. A survey of the literature reveals that mTOR (mechanistic/mammalian target of rapamycin) is involved in a wide range of regeneration mechanisms in the animal kingdom. More particularly, cellular processes such as growth, proliferation, and differentiation are controlled by mTOR. In addition, autophagy, stem cell maintenance or the newly described intermediate quiescence state, Galert, imply upstream monitoring by the mTOR pathway. In this review, we report the role of mTOR signaling in reparative regenerations in different tissues and body parts (e.g., axon, skeletal muscle, liver, epithelia, appendages, kidney, and whole-body), and highlight how the mTOR kinase can be viewed as a therapeutic target to boost organ repair. Studies in this area have focused on modulating the mTOR pathway in various animal models to elucidate its contribution to regeneration. The diversity of metazoan species used to identify the implication of this pathway might then serve applied medicine (in better understanding what is required for efficient treatments in human diseases) but also evolutionary biology. Indeed, species-specific differences in mTOR modulation can contain the keys to appreciate why certain regeneration processes have been lost or conserved in the animal kingdom.
Collapse
Affiliation(s)
| | | | | | - Agnès Boutet
- Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Integrative Biology of Marine Models (LBI2M), UMR 8227, Station Biologique de Roscoff (SBR), 29680 Roscoff, France; (Y.L.-R.); (P.C.); (J.M.)
| |
Collapse
|
7
|
McKeown CR, Cline HT. Nutrient restriction causes reversible G2 arrest in Xenopus neural progenitors. Development 2019; 146:146/20/dev178871. [PMID: 31649012 DOI: 10.1242/dev.178871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/05/2019] [Indexed: 01/23/2023]
Abstract
Nutrient status affects brain development; however, the effects of nutrient availability on neural progenitor cell proliferation in vivo are poorly understood. Without food, Xenopus laevis tadpoles enter a period of stasis during which neural progenitor proliferation is drastically reduced, but resumes when food becomes available. Here, we investigate how neural progenitors halt cell division in response to nutrient restriction and subsequently re-enter the cell cycle upon feeding. We demonstrate that nutrient restriction causes neural progenitors to arrest in G2 of the cell cycle with increased DNA content, and that nutrient availability triggers progenitors to re-enter the cell cycle at M phase. Initiation of the nutrient restriction-induced G2 arrest is rapamycin insensitive, but cell cycle re-entry requires mTOR. Finally, we show that activation of insulin receptor signaling is sufficient to increase neural progenitor cell proliferation in the absence of food. A G2 arrest mechanism provides an adaptive strategy to control brain development in response to nutrient availability by triggering a synchronous burst of cell proliferation when nutrients become available. This may be a general cellular mechanism that allows developmental flexibility during times of limited resources.
Collapse
Affiliation(s)
| | - Hollis T Cline
- Department of Neuroscience, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Morzyglod L, Caüzac M, Popineau L, Denechaud PD, Fajas L, Ragazzon B, Fauveau V, Planchais J, Vasseur-Cognet M, Fartoux L, Scatton O, Rosmorduc O, Guilmeau S, Postic C, Desdouets C, Desbois-Mouthon C, Burnol AF. Growth factor receptor binding protein 14 inhibition triggers insulin-induced mouse hepatocyte proliferation and is associated with hepatocellular carcinoma. Hepatology 2017; 65:1352-1368. [PMID: 27981611 DOI: 10.1002/hep.28972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/16/2016] [Accepted: 12/06/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Metabolic diseases such as obesity and type 2 diabetes are recognized as independent risk factors for hepatocellular carcinoma (HCC). Hyperinsulinemia, a hallmark of these pathologies, is suspected to be involved in HCC development. The molecular adapter growth factor receptor binding protein 14 (Grb14) is an inhibitor of insulin receptor catalytic activity, highly expressed in the liver. To study its involvement in hepatocyte proliferation, we specifically inhibited its liver expression using a short hairpin RNA strategy in mice. Enhanced insulin signaling upon Grb14 inhibition was accompanied by a transient induction of S-phase entrance by quiescent hepatocytes, indicating that Grb14 is a potent repressor of cell division. The proliferation of Grb14-deficient hepatocytes was cell-autonomous as it was also observed in primary cell cultures. Combined Grb14 down-regulation and insulin signaling blockade using pharmacological approaches as well as genetic mouse models demonstrated that Grb14 inhibition-mediated hepatocyte division involved insulin receptor activation and was mediated by the mechanistic target of rapamycin complex 1-S6K pathway and the transcription factor E2F1. In order to determine a potential dysregulation in GRB14 gene expression in human pathophysiology, a collection of 85 human HCCs was investigated. This revealed a highly significant and frequent decrease in GRB14 expression in hepatic tumors when compared to adjacent nontumoral parenchyma, with 60% of the tumors exhibiting a reduced Grb14 mRNA level. CONCLUSION Our study establishes Grb14 as a physiological repressor of insulin mitogenic action in the liver and further supports that dysregulation of insulin signaling is associated with HCC. (Hepatology 2017;65:1352-1368).
Collapse
Affiliation(s)
- Lucille Morzyglod
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Michèle Caüzac
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Lucie Popineau
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Pierre-Damien Denechaud
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Lluis Fajas
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Bruno Ragazzon
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Véronique Fauveau
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Julien Planchais
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Mireille Vasseur-Cognet
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRA 1392, Paris, and Institut d'Ecologie et des Sciences de l'Environnement de Paris, Bondy, France.,Sorbonne Universités, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Laetitia Fartoux
- APHP, Hôpital La Pitié Salpêtrière, Service d'Hépato-Gastroentérologie, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine, Paris, France
| | - Olivier Scatton
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine, Paris, France.,APHP, Hôpital La Pitié-Salpêtrière, Service de Chirurgie Hépatobiliaire et Transplantation, Paris, France
| | - Olivier Rosmorduc
- APHP, Hôpital La Pitié Salpêtrière, Service d'Hépato-Gastroentérologie, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine, Paris, France
| | - Sandra Guilmeau
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Catherine Postic
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Chantal Desdouets
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Christèle Desbois-Mouthon
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine, Paris, France
| | - Anne-Françoise Burnol
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| |
Collapse
|
9
|
Rojas-Benítez D, Eggers C, Glavic A. Modulation of the Proteostasis Machinery to Overcome Stress Caused by Diminished Levels of t6A-Modified tRNAs in Drosophila. Biomolecules 2017; 7:biom7010025. [PMID: 28272317 PMCID: PMC5372737 DOI: 10.3390/biom7010025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/28/2017] [Indexed: 12/17/2022] Open
Abstract
Transfer RNAs (tRNAs) harbor a subset of post-transcriptional modifications required for structural stability or decoding function. N6-threonylcarbamoyladenosine (t6A) is a universally conserved modification found at position 37 in tRNA that pair A-starting codons (ANN) and is required for proper translation initiation and to prevent frame shift during elongation. In its absence, the synthesis of aberrant proteins is likely, evidenced by the formation of protein aggregates. In this work, our aim was to study the relationship between t6A-modified tRNAs and protein synthesis homeostasis machinery using Drosophila melanogaster. We used the Gal4/UAS system to knockdown genes required for t6A synthesis in a tissue and time specific manner and in vivo reporters of unfolded protein response (UPR) activation. Our results suggest that t6A-modified tRNAs, synthetized by the threonyl-carbamoyl transferase complex (TCTC), are required for organismal growth and imaginal cell survival, and is most likely to support proper protein synthesis.
Collapse
Affiliation(s)
- Diego Rojas-Benítez
- Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800024, Chile..
| | - Cristián Eggers
- Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800024, Chile..
| | - Alvaro Glavic
- Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800024, Chile..
| |
Collapse
|
10
|
Guo Y, Flegel K, Kumar J, McKay DJ, Buttitta LA. Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells. Biol Open 2016; 5:1648-1661. [PMID: 27737823 PMCID: PMC5155522 DOI: 10.1242/bio.017525] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During development, cell proliferation and differentiation must be tightly coordinated to ensure proper tissue morphogenesis. Because steroid hormones are central regulators of developmental timing, understanding the links between steroid hormone signaling and cell proliferation is crucial to understanding the molecular basis of morphogenesis. Here we examined the mechanism by which the steroid hormone ecdysone regulates the cell cycle in Drosophila. We find that a cell cycle arrest induced by ecdysone in Drosophila cell culture is analogous to a G2 cell cycle arrest observed in the early pupa wing. We show that in the wing, ecdysone signaling at the larva-to-puparium transition induces Broad which in turn represses the cdc25c phosphatase String. The repression of String generates a temporary G2 arrest that synchronizes the cell cycle in the wing epithelium during early pupa wing elongation and flattening. As ecdysone levels decline after the larva-to-puparium pulse during early metamorphosis, Broad expression plummets, allowing String to become re-activated, which promotes rapid G2/M progression and a subsequent synchronized final cell cycle in the wing. In this manner, pulses of ecdysone can both synchronize the final cell cycle and promote the coordinated acquisition of terminal differentiation characteristics in the wing. Summary: Pulsed ecdysone signaling remodels cell cycle dynamics, causing distinct primary and secondary cell cycle arrests in Drosophila cells, analogous to those observed in the wing during metamorphosis.
Collapse
Affiliation(s)
- Yongfeng Guo
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kerry Flegel
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jayashree Kumar
- Biology Department and Genetics Department, Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel J McKay
- Biology Department and Genetics Department, Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura A Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Sanchez-Alvarez M, Zhang Q, Finger F, Wakelam MJO, Bakal C. Cell cycle progression is an essential regulatory component of phospholipid metabolism and membrane homeostasis. Open Biol 2016; 5:150093. [PMID: 26333836 PMCID: PMC4593667 DOI: 10.1098/rsob.150093] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We show that phospholipid anabolism does not occur uniformly during the metazoan cell cycle. Transition to S-phase is required for optimal mobilization of lipid precursors, synthesis of specific phospholipid species and endoplasmic reticulum (ER) homeostasis. Average changes observed in whole-cell phospholipid composition, and total ER lipid content, upon stimulation of cell growth can be explained by the cell cycle distribution of the population. TORC1 promotes phospholipid anabolism by slowing S/G2 progression. The cell cycle stage-specific nature of lipid biogenesis is dependent on p53. We propose that coupling lipid metabolism to cell cycle progression is a means by which cells have evolved to coordinate proliferation with cell and organelle growth.
Collapse
Affiliation(s)
- Miguel Sanchez-Alvarez
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Qifeng Zhang
- Lipidomics Facility, Babraham Institute, Cambridge CB22 3AT, UK
| | - Fabian Finger
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | - Chris Bakal
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
12
|
Gupte TM. Mitochondrial Fragmentation Due to Inhibition of Fusion Increases Cyclin B through Mitochondrial Superoxide Radicals. PLoS One 2015; 10:e0126829. [PMID: 26000631 PMCID: PMC4441460 DOI: 10.1371/journal.pone.0126829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 04/08/2015] [Indexed: 11/25/2022] Open
Abstract
During the cell cycle, mitochondria undergo regulated changes in morphology. Two particularly interesting events are first, mitochondrial hyperfusion during the G1-S transition and second, fragmentation during entry into mitosis. The mitochondria remain fragmented between late G2- and mitotic exit. This mitotic mitochondrial fragmentation constitutes a checkpoint in some cell types, of which little is known. We bypass the ‘mitotic mitochondrial fragmentation’ checkpoint by inducing fragmented mitochondrial morphology and then measure the effect on cell cycle progression. Using Drosophila larval hemocytes, Drosophila S2R+ cell and cells in the pouch region of wing imaginal disc of Drosophila larvae we show that inhibiting mitochondrial fusion, thereby increasing fragmentation, causes cellular hyperproliferation and an increase in mitotic index. However, mitochondrial fragmentation due to over-expression of the mitochondrial fission machinery does not cause these changes. Our experiments suggest that the inhibition of mitochondrial fusion increases superoxide radical content and leads to the upregulation of cyclin B that culminates in the observed changes in the cell cycle. We provide evidence for the importance of mitochondrial superoxide in this process. Our results provide an insight into the need for mitofusin-degradation during mitosis and also help in understanding the mechanism by which mitofusins may function as tumor suppressors.
Collapse
Affiliation(s)
- Tejas M. Gupte
- National Centre for Biological Sciences (NCBS-TIFR), UAS-GKVK campus, Bellary road, Bangalore, 560 065, Karnataka, India
- inStem, Institute for Stem Cell Biology and Regenerative Medicine, GKVK post, Bellary road, Bangalore, 560 065, Karnataka, India
- * E-mail:
| |
Collapse
|
13
|
Perdereau D, Cailliau K, Browaeys-Poly E, Lescuyer A, Carré N, Benhamed F, Goenaga D, Burnol AF. Insulin-induced cell division is controlled by the adaptor Grb14 in a Chfr-dependent manner. Cell Signal 2015; 27:798-806. [PMID: 25578860 DOI: 10.1016/j.cellsig.2015.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/03/2015] [Indexed: 01/02/2023]
Abstract
Beyond its key role in the control of energy metabolism, insulin is also an important regulator of cell division and neoplasia. However, the molecular events involved in insulin-driven cell proliferation are not fully elucidated. Here, we show that the ubiquitin ligase Chfr, a checkpoint protein involved in G2/M transition, is a new effector involved in the control of insulin-induced cell proliferation. Chfr is identified as a partner of the molecular adapter Grb14, an inhibitor of insulin signalling. Using mammalian cell lines and the Xenopus oocyte as a model of G2/M transition, we demonstrate that Chfr potentiates the inhibitory effect of Grb14 on insulin-induced cell division. Insulin stimulates Chfr binding to the T220 residue of Grb14. Both Chfr binding site and Grb14 C-ter BPS-SH2 domain, mediating IR binding and inhibition, are required to prevent insulin-induced cell division. Targeted mutagenesis revealed that Chfr ligase activity and phosphorylation of its T39 residue, a target of Akt, are required to potentiate Grb14 inhibitory activity. In the presence of insulin, the binding of Chfr to Grb14 activates its ligase activity, leading to Aurora A and Polo-like kinase degradation and blocking cell division. Collectively, our results show that Chfr and Grb14 collaborate in a negative feedback loop controlling insulin-stimulated cell division.
Collapse
Affiliation(s)
- Dominique Perdereau
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité; 24, Rue du Faubourg Saint Jacques, Paris 75014, France
| | - Katia Cailliau
- Laboratoire de Régulation des Signaux de Division, Université de Lille 1, UE 4479, IFR 147, Villeneuve d'Ascq 59655, France
| | - Edith Browaeys-Poly
- Laboratoire de Régulation des Signaux de Division, Université de Lille 1, UE 4479, IFR 147, Villeneuve d'Ascq 59655, France
| | - Arlette Lescuyer
- Laboratoire de Régulation des Signaux de Division, Université de Lille 1, UE 4479, IFR 147, Villeneuve d'Ascq 59655, France
| | - Nadège Carré
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité; 24, Rue du Faubourg Saint Jacques, Paris 75014, France
| | - Fadila Benhamed
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité; 24, Rue du Faubourg Saint Jacques, Paris 75014, France
| | - Diana Goenaga
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité; 24, Rue du Faubourg Saint Jacques, Paris 75014, France
| | - Anne-Françoise Burnol
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité; 24, Rue du Faubourg Saint Jacques, Paris 75014, France.
| |
Collapse
|
14
|
Burnol AF, Morzyglod L, Popineau L. [Cross-talk between insulin signaling and cell proliferation pathways]. ANNALES D'ENDOCRINOLOGIE 2013; 74:74-8. [PMID: 23582850 DOI: 10.1016/j.ando.2013.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epidemiological studies provide evidence for a close relationship between diabetes and cancer. Insulin is in fact a growth factor, and its binding to its membrane receptor activates intracellular signaling pathways involved in the regulation of both metabolism and cell proliferation. The balance between mitogenic and metabolic actions of insulin can be modulated by various mechanisms, including the way the ligand binds to its receptor or to the closely related insulin-like growth factor-1 (IGF-1) receptor. Cross-talks with other signaling pathways implicated in cell proliferation have also been described, like the Wnt/β catenin pathway, and involve the activation of common downstream effectors such as insulin receptor substrate-1 (IRS-1). Finally, the identification of new proteins activated by insulin and involved in intracellular signaling would allow a better understanding of the complex connections linking metabolic and proliferative regulatory pathways. As an example, the molecular adaptor Grb14, which is a specific inhibitor of insulin receptor catalytic activity, also controls insulin-induced metabolic and mitogenic signaling pathways through post-receptor mechanisms that remain to be fully elucidated.
Collapse
|
15
|
RAD001 (everolimus) induces dose-dependent changes to cell cycle regulation and modifies the cell cycle response to vincristine. Oncogene 2012; 32:4789-97. [PMID: 23128395 DOI: 10.1038/onc.2012.498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 09/14/2012] [Accepted: 09/18/2012] [Indexed: 11/08/2022]
Abstract
More than 50% of adults and ~20% of children with pre-B acute lymphoblastic leukemia (ALL) relapse following treatment. Dismal outcomes for patients with relapsed or refractory disease mandate novel approaches to therapy. We have previously shown that the combination of the mTOR inhibitor RAD001 (everolimus) and the chemotherapeutic agent vincristine increases the survival of non-obese diabetic/severe combined immuno-deficient (NOD/SCID) mice bearing human ALL xenografts. We have also shown that 16 μM RAD001 synergized with agents that cause DNA damage or microtubule disruption in pre-B ALL cells in vitro. Here, we demonstrate that RAD001 has dose-dependent effects on the cell cycle in ALL cells, with 1.5 μM RAD001 inhibiting pRb, Ki67 and PCNA expression and increasing G0/1 cell cycle arrest, whereas 16 μM RAD001 increases pRb, cyclin D1, Ki67 and PCNA, with no evidence of an accumulation of cells in G0/1. Transition from G2 into mitosis was promoted by 16 μM RAD001 with reduced phosphorylation of cdc2 in cells with 4 N DNA content. However, 16 μM RAD001 preferentially induced cell death in cells undergoing mitosis. When combined with vincristine, 16 μM RAD001 reduced the vincristine-induced accumulation of cells in mitosis, probably as a result of increased death in this population. Although 16 μM RAD001 weakly activated Chk1 and Chk2, it suppressed strong vincristine-induced activation of these cell cycle checkpoint regulators. We conclude that RAD001 enhances chemosensitivity at least in part through suppression of cell cycle checkpoint regulation in response to vincristine and increased progression from G2 into mitosis.
Collapse
|
16
|
Hepatocytes polyploidization and cell cycle control in liver physiopathology. Int J Hepatol 2012; 2012:282430. [PMID: 23150829 PMCID: PMC3485502 DOI: 10.1155/2012/282430] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/10/2012] [Indexed: 01/06/2023] Open
Abstract
Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of "diploid-polyploid conversion" during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels), oxidative stress, toxic insult, and chronic hepatitis etc.). Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth.
Collapse
|
17
|
Lacroix B, Maddox AS. Cytokinesis, ploidy and aneuploidy. J Pathol 2011; 226:338-51. [DOI: 10.1002/path.3013] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/22/2011] [Accepted: 09/24/2011] [Indexed: 12/21/2022]
|
18
|
Anaplastic lymphoma kinase spares organ growth during nutrient restriction in Drosophila. Cell 2011; 146:435-47. [PMID: 21816278 DOI: 10.1016/j.cell.2011.06.040] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 12/24/2010] [Accepted: 06/16/2011] [Indexed: 11/24/2022]
Abstract
Developing animals survive periods of starvation by protecting the growth of critical organs at the expense of other tissues. Here, we use Drosophila to explore the as yet unknown mechanisms regulating this privileged tissue growth. As in mammals, we observe in Drosophila that the CNS is more highly spared than other tissues during nutrient restriction (NR). We demonstrate that anaplastic lymphoma kinase (Alk) efficiently protects neural progenitor (neuroblast) growth against reductions in amino acids and insulin-like peptides during NR via two mechanisms. First, Alk suppresses the growth requirement for amino acid sensing via Slimfast/Rheb/TOR complex 1. And second, Alk, rather than insulin-like receptor, primarily activates PI3-kinase. Alk maintains PI3-kinase signaling during NR as its ligand, Jelly belly (Jeb), is constitutively expressed from a glial cell niche surrounding neuroblasts. Together, these findings identify a brain-sparing mechanism that shares some regulatory features with the starvation-resistant growth programs of mammalian tumors.
Collapse
|
19
|
Hálová L, Petersen J. Aurora promotes cell division during recovery from TOR-mediated cell cycle arrest by driving spindle pole body recruitment of Polo. J Cell Sci 2011; 124:3441-9. [PMID: 21965528 DOI: 10.1242/jcs.083683] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coordination of cell division and growth in response to changes in nutrient supply is mediated by TOR signalling. In fission yeast, increased nutrient provision transiently delays mitotic onset without affecting growth. The result is an increase in cell size at division. We find that this block to cell division relies upon TOR and MAPK signalling and that mitotic entry during recovery from this block is regulated by the Aurora kinase Ark1. We show that Ark1 phosphorylation of polo kinase Plo1 within the linker region between the kinase domain and polo boxes drives Plo1 onto the spindle poles where it promotes mitosis. Interestingly, the use of Ark1 to phosphorylate Plo1 and promote mitotic entry is dependent on the environment.
Collapse
Affiliation(s)
- Lenka Hálová
- University of Manchester, C.4255 Michael Smith Building, Faculty of Life Sciences, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
20
|
Katewa SD, Kapahi P. Role of TOR signaling in aging and related biological processes in Drosophila melanogaster. Exp Gerontol 2011; 46:382-90. [PMID: 21130151 PMCID: PMC3058120 DOI: 10.1016/j.exger.2010.11.036] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 01/22/2023]
Abstract
Extensive studies in model organisms in the last few decades have revealed that aging is subject to profound genetic influence. The conserved nutrient sensing TOR (Target of Rapamycin) pathway is emerging as a key regulator of lifespan and healthspan in various species from yeast to mammals. The TOR signaling pathway plays a critical role in determining how a eukaryotic cell or a cellular system co-ordinates its growth, development and aging in response to constant changes in its surrounding environment? TOR integrates signals originating from changes in growth factors, nutrient availability, energy status and various physiological stresses. Each of these inputs is specialized to sense particular signal(s), and conveys it to the TOR complex which in turn relays the signal to downstream outputs to appropriately respond to the environmental changes. These outputs include mRNA translation, autophagy, transcription, metabolism, cell survival, proliferation and growth amongst a number of other cellular processes, some of which influence organismal lifespan. Here we review the contribution of the model organism Drosophila in the understanding of TOR signaling and the various biological processes it modulates that may impact on aging. Drosophila was the first organism where the nutrient dependent effects of the TOR pathway on lifespan were first uncovered. We also discuss how the nutrient-sensing TOR pathway appears to be critically important for mediating the longevity effects of dietary restriction (DR), a potent environmental method of lifespan extension by nutrient limitation. Identifying the molecular mechanisms that modulate lifespan downstream of TOR is being intensely investigated and there is hope that these are likely to serve as potential targets for amelioration of age-related diseases and enhance healthful lifespan extension in humans.
Collapse
|
21
|
Henriques R, Magyar Z, Monardes A, Khan S, Zalejski C, Orellana J, Szabados L, de la Torre C, Koncz C, Bögre L. Arabidopsis S6 kinase mutants display chromosome instability and altered RBR1-E2F pathway activity. EMBO J 2010; 29:2979-93. [PMID: 20683442 DOI: 10.1038/emboj.2010.164] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 06/29/2010] [Indexed: 12/27/2022] Open
Abstract
The 40S ribosomal protein S6 kinase (S6K) is a conserved component of signalling pathways controlling growth in eukaryotes. To study S6K function in plants, we isolated single- and double-knockout mutations and RNA-interference (RNAi)-silencing lines in the linked Arabidopsis S6K1 and S6K2 genes. Hemizygous s6k1s6k2/++ mutant and S6K1 RNAi lines show high phenotypic instability with variation in size, increased trichome branching, produce non-viable pollen and high levels of aborted seeds. Analysis of their DNA content by flow cytometry, as well as chromosome counting using DAPI staining and fluorescence in situ hybridization, revealed an increase in ploidy and aneuploidy. In agreement with this data, we found that S6K1 associates with the Retinoblastoma-related 1 (RBR1)-E2FB complex and this is partly mediated by its N-terminal LVxCxE motif. Moreover, the S6K1-RBR1 association regulates RBR1 nuclear localization, as well as E2F-dependent expression of cell cycle genes. Arabidopsis cells grown under nutrient-limiting conditions require S6K for repression of cell proliferation. The data suggest a new function for plant S6K as a repressor of cell proliferation and required for maintenance of chromosome stability and ploidy levels.
Collapse
Affiliation(s)
- Rossana Henriques
- Royal Holloway, University of London, School of Biological Sciences, Egham Hill, Egham, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ramírez-Valle F, Badura ML, Braunstein S, Narasimhan M, Schneider RJ. Mitotic raptor promotes mTORC1 activity, G(2)/M cell cycle progression, and internal ribosome entry site-mediated mRNA translation. Mol Cell Biol 2010; 30:3151-64. [PMID: 20439490 PMCID: PMC2897579 DOI: 10.1128/mcb.00322-09] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/21/2009] [Accepted: 04/26/2010] [Indexed: 01/17/2023] Open
Abstract
The mTOR signaling complex integrates signals from growth factors and nutrient availability to control cell growth and proliferation, in part through effects on the protein-synthetic machinery. Protein synthesis rates fluctuate throughout the cell cycle but diminish significantly during the G(2)/M transition. The fate of the mTOR complex and its role in coordinating cell growth and proliferation signals with protein synthesis during mitosis remain unknown. Here we demonstrate that the mTOR complex 1 (mTORC1) pathway, which stimulates protein synthesis, is actually hyperactive during mitosis despite decreased protein synthesis and reduced activity of mTORC1 upstream activators. We describe previously unknown G(2)/M-specific phosphorylation of a component of mTORC1, the protein raptor, and demonstrate that mitotic raptor phosphorylation alters mTORC1 function during mitosis. Phosphopeptide mapping and mutational analysis demonstrate that mitotic phosphorylation of raptor facilitates cell cycle transit through G(2)/M. Phosphorylation-deficient mutants of raptor cause cells to delay in G(2)/M, whereas depletion of raptor causes cells to accumulate in G(1). We identify cyclin-dependent kinase 1 (cdk1 [cdc2]) and glycogen synthase kinase 3 (GSK3) pathways as two probable mitosis-regulated protein kinase pathways involved in mitosis-specific raptor phosphorylation and altered mTORC1 activity. In addition, mitotic raptor promotes translation by internal ribosome entry sites (IRES) on mRNA during mitosis and is demonstrated to be associated with rapamycin resistance. These data suggest that this pathway may play a role in increased IRES-dependent mRNA translation during mitosis and in rapamycin insensitivity.
Collapse
Affiliation(s)
- Francisco Ramírez-Valle
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York 10016
| | - Michelle L. Badura
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York 10016
| | - Steve Braunstein
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York 10016
| | - Manisha Narasimhan
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York 10016
| | - Robert J. Schneider
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
23
|
Fishwick KJ, Li RA, Halley P, Deng P, Storey KG. Initiation of neuronal differentiation requires PI3-kinase/TOR signalling in the vertebrate neural tube. Dev Biol 2010; 338:215-25. [DOI: 10.1016/j.ydbio.2009.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/11/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
|
24
|
A role for p38 stress-activated protein kinase in regulation of cell growth via TORC1. Mol Cell Biol 2009; 30:481-95. [PMID: 19917724 DOI: 10.1128/mcb.00688-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The target of rapamycin (TOR) complex 1 (TORC1) signaling pathway is a critical regulator of translation and cell growth. To identify novel components of this pathway, we performed a kinome-wide RNA interference (RNAi) screen in Drosophila melanogaster S2 cells. RNAi targeting components of the p38 stress-activated kinase cascade prevented the cell size increase elicited by depletion of the TOR negative regulator TSC2. In mammalian and Drosophila tissue culture, as well as in Drosophila ovaries ex vivo, p38-activating stresses, such as H(2)O(2) and anisomycin, were able to activate TORC1. This stress-induced TORC1 activation could be blocked by RNAi against mitogen-activated protein kinase kinase 3 and 6 (MKK3/6) or by the overexpression of dominant negative Rags. Interestingly, p38 was also required for the activation of TORC1 in response to amino acids and growth factors. Genetic ablation either of p38b or licorne, its upstream kinase, resulted in small flies consisting of small cells. Mutants with mutations in licorne or p38b are nutrition sensitive; low-nutrient food accentuates the small-organism phenotypes, as well as the partial lethality of the p38b null allele. These data suggest that p38 is an important positive regulator of TORC1 in both mammalian and Drosophila systems in response to certain stresses and growth factors.
Collapse
|
25
|
Chera S, Buzgariu W, Ghila L, Galliot B. Autophagy in Hydra: A response to starvation and stress in early animal evolution. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1432-43. [DOI: 10.1016/j.bbamcr.2009.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 03/12/2009] [Accepted: 03/22/2009] [Indexed: 12/25/2022]
|
26
|
Celton-Morizur S, Merlen G, Couton D, Margall-Ducos G, Desdouets C. The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J Clin Invest 2009; 119:1880-7. [PMID: 19603546 PMCID: PMC2701880 DOI: 10.1172/jci38677] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 05/06/2009] [Indexed: 01/10/2023] Open
Abstract
The formation of polyploid cells is part of the developmental program of several tissues. During postnatal development, binucleated tetraploid cells arise in the liver, caused by failure in cytokinesis. In this report, we have shown that the initiation of cytokinesis failure events and the subsequent appearance of binucleated tetraploid cells are strictly controlled by the suckling-to-weaning transition in rodents. We found that daily light/dark rhythms and carbohydrate intake did not affect liver tetraploidy. In contrast, impairment of insulin signaling drastically reduced the formation of binucleated tetraploid cells, whereas repeated insulin injections promoted the generation of these liver cells. Furthermore, inhibition of Akt activity decreased the number of cytokinesis failure events, possibly through the mammalian target of rapamycin signaling complex 2 (mTORC2), which indicates that the PI3K/Akt pathway lies downstream of the insulin signal to regulate the tetraploidization process. To our knowledge, these results are the first demonstration in a physiological context that insulin signaling through Akt controls a specific cell division program and leads to the physiologic generation of binucleated tetraploid liver cells.
Collapse
Affiliation(s)
- Séverine Celton-Morizur
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Grégory Merlen
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Dominique Couton
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Germain Margall-Ducos
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Chantal Desdouets
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| |
Collapse
|
27
|
Hartmuth S, Petersen J. Fission yeast Tor1 functions as part of TORC1 to control mitotic entry through the stress MAPK pathway following nutrient stress. J Cell Sci 2009; 122:1737-46. [PMID: 19417002 DOI: 10.1242/jcs.049387] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TOR signalling coordinates growth and division to control cell size. Inhibition of Schizosaccharomyces pombe Tor1, in response to a reduction in the quality of the nitrogen source (nutrient stress), promotes mitotic onset through activation of the mitogen-activated protein kinase (MAPK) Sty1 (also known as Spc1). Here we show that ;nutrient starvation' (complete withdrawal of nitrogen or leucine) blocks mitotic commitment by altering Sty1 signalling and that different degrees of Sty1 activation determine these differences in mitotic commitment decisions. Mammals contain one TOR kinase, whereas yeasts contain two. In each case, they comprise two distinct complexes: TORC1 and TORC2. We find that nutrient-stress-induced control of mitotic onset, through Tor1, is regulated through changes in TORC1 signalling. In minimal medium, Tor1 interacts with the TORC1 component Mip1 (raptor), and overexpression of tor1+ generates growth defects reminiscent of TORC1 mutants. Strains lacking the TORC2-specific components Sin1 and Ste20 (rictor) still advance mitotic onset in response to nutrient stress. By contrast, Mip1 and the downstream effector Gad8 (a S6K kinase homologue), like Tor1, are essential for nutrient stress to advance mitotic onset. We conclude that S. pombe Tor1 and Tor2 can both act in TORC1. However, it is the inhibition of Tor1 as part of TORC1 that promotes mitosis following nutrient stress.
Collapse
Affiliation(s)
- Sonya Hartmuth
- University of Manchester, Faculty of Life Sciences, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
28
|
Wang X, Proud CG. Nutrient control of TORC1, a cell-cycle regulator. Trends Cell Biol 2009; 19:260-7. [PMID: 19419870 DOI: 10.1016/j.tcb.2009.03.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 03/02/2009] [Accepted: 03/03/2009] [Indexed: 12/13/2022]
Abstract
It is well established that the target of rapamycin (TOR) protein kinase has pivotal roles in controlling cell functions (including protein synthesis, cell growth and cell proliferation) and is implicated in numerous human diseases. Mammalian TOR complex 1 (mTORC1) signalling is activated by hormones and growth factors, and is also stimulated by intracellular amino acids. Recent research has provided important new insight into the poorly understood mechanism by which amino acids activate mTORC1 signalling, showing that the protein kinase MAP4K3 and Rag GTPases have important roles in this. mTORC1 is known to control the G1/S transition of the cell cycle: new data show that (m)TORC1 also controls G2/M progression in yeast and mammals, albeit in contrasting ways.
Collapse
Affiliation(s)
- Xuemin Wang
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | |
Collapse
|
29
|
Fuhler GM, Tyl MR, Olthof SGM, Lyndsay Drayer A, Blom N, Vellenga E. Distinct roles of the mTOR components Rictor and Raptor in MO7e megakaryocytic cells. Eur J Haematol 2009; 83:235-45. [PMID: 19341427 DOI: 10.1111/j.1600-0609.2009.01263.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE During megakaryopoiesis, hematopoietic progenitor cells in the bone marrow proliferate and ultimately differentiate in mature megakaryocytes (MK). We and others have recently described a role for the mammalian target of Rapamycin (mTOR) in proliferation and differentiation of MK cells. Two non-redundant complexes of mTOR have been described; mTORC1 containing rapamycin-associated TOR protein (Raptor) and mTORC2 containing Rapamycin-insensitive companion of mTOR (Rictor). The individual roles of these complexes in MK development have so far not been elucidated, and were investigated in this study. METHODS We have used an siRNA approach to selectively knock down either Rictor or Raptor expression in MO7e megakaryoblastic cells. Using flow cytometry, nuclear ploidity, and cell cycling as assessed by BrdU incorporation were investigated. Electron microscopy and cotransductions with GFP-LC3 were used to quantify autophagy. Activation of intracellular signal transduction pathways was studied by Western blot analysis. RESULTS We observed a reduced cell cycling upon Rictor siRNA transduction, resulting in decreased numbers of polypoid cells. Knocking down Raptor expression resulted in a reduced expansion and a reduced cell size. In addition, increased autophagy was observed in Raptor siRNA-transduced cells, in correspondence with an attenuation of activation of the p70S6K/S6, and 4E-BP pathways. CONCLUSIONS The current study shows that the mTORC1 and mTORC2 complexes have distinct, non-redundant functions in MO7e MK cell proliferation, and development. The mTOR/Rictor complex affects megakaryopoiesis by regulating nuclear division and subsequent cell cycle progression, whereas Raptor signaling protects MK cells from autophagic cell death, enabling normal megakaryopoiesis to take place.
Collapse
Affiliation(s)
- Gwenny M Fuhler
- Division of Hematology, Department of Medicine, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
BACKGROUND In multicellular animals, cell size is controlled by a limited set of conserved intracellular signaling pathways, which when deregulated contribute to tumorigenesis by enabling cells to grow outside their usual niche. To delineate the pathways controlling this process, we screened a genome-scale, image-based Drosophila RNA interference dataset for double-stranded RNAs that reduce the average size of adherent S2R+ cells. RESULTS Automated analysis of images from this RNA interference screen identified the receptor tyrosine kinase Pvr, Ras pathway components and several novel genes as regulators of cell size. Significantly, Pvr/Ras signaling also affected the size of other Drosophila cell lines and of larval hemocytes. A detailed genetic analysis of this growth signaling pathway revealed a role for redundant secreted ligands, Pvf2 and Pvf3, in the establishment of an autocrine growth signaling loop. Downstream of Ras1, growth signaling was found to depend on parallel mitogen-activated protein kinase (MAPK) and phospho-inositide-3-kinase (PI3K) signaling modules, as well as the Tor pathway. CONCLUSIONS This automated genome-wide screen identifies autocrine Pvf/Pvr signaling, upstream of Ras, MAPK and PI3K, as rate-limiting for the growth of immortalized fly cells in culture. Since, Pvf2/3 and Pvr show mutually exclusive in vivo patterns of gene expression, these data suggest that co-expression of this receptor-ligand pair plays a key role in driving cell autonomous growth during the establishment of Drosophila cell lines, as has been suggested to occur during tumor development.
Collapse
Affiliation(s)
- David Sims
- Morphogenesis Group, Ludwig Institute for Cancer Research (UCL Branch), Riding House Street, London, W1W 7BS, UK
| | | | | |
Collapse
|
31
|
Sims D, Duchek P, Baum B. PDGF/VEGF signaling controls cell size in Drosophila. Genome Biol 2009; 10:R20. [PMID: 19216764 PMCID: PMC2688285 DOI: 10.1186/gb-2009-10-2-r20] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/12/2009] [Indexed: 01/22/2023] Open
Abstract
Pvr and its ligands, Pvf 2 and 3, which are upstream of Ras and PI3kinase, are identified from a genome-wide screen in Drosophila cells, as regulators of cell growth. Background In multicellular animals, cell size is controlled by a limited set of conserved intracellular signaling pathways, which when deregulated contribute to tumorigenesis by enabling cells to grow outside their usual niche. To delineate the pathways controlling this process, we screened a genome-scale, image-based Drosophila RNA interference dataset for double-stranded RNAs that reduce the average size of adherent S2R+ cells. Results Automated analysis of images from this RNA interference screen identified the receptor tyrosine kinase Pvr, Ras pathway components and several novel genes as regulators of cell size. Significantly, Pvr/Ras signaling also affected the size of other Drosophila cell lines and of larval hemocytes. A detailed genetic analysis of this growth signaling pathway revealed a role for redundant secreted ligands, Pvf2 and Pvf3, in the establishment of an autocrine growth signaling loop. Downstream of Ras1, growth signaling was found to depend on parallel mitogen-activated protein kinase (MAPK) and phospho-inositide-3-kinase (PI3K) signaling modules, as well as the Tor pathway. Conclusions This automated genome-wide screen identifies autocrine Pvf/Pvr signaling, upstream of Ras, MAPK and PI3K, as rate-limiting for the growth of immortalized fly cells in culture. Since, Pvf2/3 and Pvr show mutually exclusive in vivo patterns of gene expression, these data suggest that co-expression of this receptor-ligand pair plays a key role in driving cell autonomous growth during the establishment of Drosophila cell lines, as has been suggested to occur during tumor development.
Collapse
Affiliation(s)
- David Sims
- Morphogenesis Group, Ludwig Institute for Cancer Research (UCL Branch), Riding House Street, London, W1W 7BS, UK
| | | | | |
Collapse
|
32
|
TOR signalling regulates mitotic commitment through stress-activated MAPK and Polo kinase in response to nutrient stress. Biochem Soc Trans 2009; 37:273-7. [PMID: 19143645 DOI: 10.1042/bst0370273] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell growth and cell division are coupled to control cell size and this co-ordination is often modulated by the availability of nutrients. In many eukaryotes, TOR (target of rapamycin) signalling is involved in coupling nutrient sensing to cell growth and division controls. Nutrient stress inhibits TOR signalling to advance the timing of cell division and thus leads to continued cell division at reduced cell size. Most changes in the environment stimulate stress-activated MAPK (mitogen-activated protein kinase) signalling pathways. Several MAPKs also have a general role in the control of mitotic onset and cell division. In the present paper, I discuss the interplay between two major signalling pathways, the TOR and the stress MAPK signalling pathways, in controlling mitotic commitment, with the main focus being on fission yeast (Schizosaccharomyces pombe).
Collapse
|
33
|
Ueishi S, Shimizu H, H. Inoue Y. Male Germline Stem Cell Division and Spermatocyte Growth Require Insulin Signaling in Drosophila. Cell Struct Funct 2009; 34:61-9. [DOI: 10.1247/csf.08042] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Satoru Ueishi
- Drosophila Genetic Resource Center, Kyoto Institute of Technology
- Insect Biomedical Research Center, Kyoto Institute of Technology
- Graduate School of Science and Technology, Kyoto Institute of Technology
| | - Hanako Shimizu
- Drosophila Genetic Resource Center, Kyoto Institute of Technology
- Insect Biomedical Research Center, Kyoto Institute of Technology
| | - Yoshihiro H. Inoue
- Drosophila Genetic Resource Center, Kyoto Institute of Technology
- Insect Biomedical Research Center, Kyoto Institute of Technology
| |
Collapse
|
34
|
Hsu HJ, LaFever L, Drummond-Barbosa D. Diet controls normal and tumorous germline stem cells via insulin-dependent and -independent mechanisms in Drosophila. Dev Biol 2007; 313:700-12. [PMID: 18068153 DOI: 10.1016/j.ydbio.2007.11.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 10/31/2007] [Accepted: 11/02/2007] [Indexed: 01/08/2023]
Abstract
The external environment influences stem cells, but this process is poorly understood. Our previous work showed that germline stem cells (GSCs) respond to diet via neural insulin-like peptides (DILPs) that act directly on the germ line to upregulate stem cell division and cyst growth under a protein-rich diet in Drosophila. Here, we report that DILPs specifically control the G2 phase of the GSC cell cycle via phosphoinositide-3 kinase (PI3K) and dFOXO, and that a separate diet mediator regulates the G1 phase. Furthermore, GSC tumors, which escape the normal stem cell regulatory microenvironment, or niche, still respond to diet via both mechanisms, indicating that niche signals are not required for GSCs to sense or respond to diet. Our results document the effects of diet and insulin-like signals on the cell cycle of stem cells within an intact organism and demonstrate that the response to diet requires multiple signals. Moreover, the retained ability of GSC tumors to respond to diet parallels the long known connections between diet, insulin signaling, and cancer risk in humans.
Collapse
Affiliation(s)
- Hwei-Jan Hsu
- Department of Cell and Developmental Biology, 4120B Medical Research Building III, Vanderbilt University Medical Center, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | | | | |
Collapse
|