1
|
Shen H, Nie J, Li G, Tian H, Zhang J, Luo X, Xu D, Sun J, Zhang D, Zhang H, Zhao G, Wang W, Zheng Z, Yang S, Jin Y. Stem cell factor restrains endoplasmic reticulum stress-associated apoptosis through c-Kit receptor activation of JAK2/STAT3 axis in hippocampal neuronal cells. PLoS One 2024; 19:e0310872. [PMID: 39546459 PMCID: PMC11567559 DOI: 10.1371/journal.pone.0310872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/07/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a common elderly disorder characterized by cognitive decline. Endoplasmic reticulum (ER) stress has been implicated in various neurodegenerative diseases, including AD. Stem cell factor (SCF) performs its biological functions by binding to and activating receptor tyrosine kinase c-Kit. We aimed to investigate the effects of SCF/c-Kit and JAK2/STAT3 on ER stress and apoptosis in AD. METHODS The study employed L-glutamic acid (L-Glu)-treated HT22 cells as sporadic AD cell model and APP/PS1 mice as an animal model of familiar AD. SCF, c-Kit inhibitor ISCK03 or JAK2/STAT3 inhibitor WP1066 was treated to verify the effects of SCF/c-Kit and JAK2/STAT3 on ER stress and apoptosis of L-Glu-exposed HT22 cells. Cell viability was assessed by MTT. BrdU detected cell proliferation. Flow cytometry measured cell apoptosis. The expression levels of ER stress markers GRP78, PERK, CHOP, and apoptosis protein caspase3 were determined by western blot. The effect on the mRNA of ER stress markers GRP78, PERK, CHOP and apoptotic caspase3 were quantified by RT-qPCR in primary cultured hippocampal neurons from APP/PS1 transgenic mice. RESULTS Administration of SCF significantly augmented the activity and proliferation of hippocampal neuronal cells, protecting cells against L-Glu induced ER stress-associated apoptosis. Moreover, the addition of ISCK03 (c-Kit inhibitor) or WP1066 (JAK2/STAT3 inhibitor) reversed SCF effects on ER stress and apoptosis in vitro. CONCLUSION We found that SCF inhibits L-Glu-induced ER stress-associated apoptosis via JAK2/STAT3 axis in HT22 hippocampal neuronal cells, as well as in primary hippocampal neurons from APP/PS1 mice, which provides valuable insights into the molecular mechanisms underlying the pathogenesis of AD and explores novel therapeutic targets for both sporadic and familial AD.
Collapse
Affiliation(s)
- Haiying Shen
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Junjie Nie
- Department of Nuclear Medicine, Jilin People’s Hospital, Jilin, Jilin Province, P.R. China
| | - Guangqing Li
- Department of Computer Application, School of Biomedical Engineering, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Hongyan Tian
- Department of Histoembryology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Jun Zhang
- Department of Histoembryology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Xiaofeng Luo
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Da Xu
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Jie Sun
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Dongfang Zhang
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Hong Zhang
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Guifang Zhao
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Weiyao Wang
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Zhonghua Zheng
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Shuyan Yang
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| | - Yuji Jin
- Department of Medical Genetics, School of Basic Medicine, Jilin Medical University, Jilin, Jilin Province, P.R. China
| |
Collapse
|
2
|
Shankar SS, Banarjee R, Jathar SM, Rajesh S, Ramasamy S, Kulkarni MJ. De novo structure prediction of meteorin and meteorin-like protein for identification of domains, functional receptor binding regions, and their high-risk missense variants. J Biomol Struct Dyn 2024; 42:4522-4536. [PMID: 37288801 DOI: 10.1080/07391102.2023.2220804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Meteorin (Metrn) and Meteorin-like (Metrnl) are homologous secreted proteins involved in neural development and metabolic regulation. In this study, we have performed de novo structure prediction and analysis of both Metrn and Metrnl using Alphafold2 (AF2) and RoseTTAfold (RF). Based on the domain and structural homology analysis of the predicted structures, we have identified that these proteins are composed of two functional domains, a CUB domain and an NTR domain, connected by a hinge/loop region. We have identified the receptor binding regions of Metrn and Metrnl using the machine-learning tools ScanNet and Masif. These were further validated by docking Metrnl with its reported KIT receptor, thus establishing the role of each domain in the receptor interaction. Also, we have studied the effect of non-synonymous SNPs on the structure and function of these proteins using an array of bioinformatics tools and selected 16 missense variants in Metrn and 10 in Metrnl that can affect the protein stability. This is the first study to comprehensively characterize the functional domains of Metrn and Metrnl at their structural level and identify the functional domains, and protein binding regions. This study also highlights the interaction mechanism of the KIT receptor and Metrnl. The predicted deleterious SNPs will allow further understanding of the role of these variants in modulating the plasma levels of these proteins in disease conditions such as diabetes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Shiva Shankar
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reema Banarjee
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Swaraj M Jathar
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - S Rajesh
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Sureshkumar Ramasamy
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Mahesh J Kulkarni
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Mirovic M, Stojanovic MD, Jovanovic M, Stankovic V, Milosev D, Zdravkovic N, Milosevic B, Cvetkovic A, Spasic M, Vekic B, Jovanovic I, Stojanovic BS, Petrovic M, Bogut A, Peulic M, Stojanovic B. Exploring Perforated Jejunal GIST: A Rare Case Report and Review of Molecular and Clinical Literature. Curr Issues Mol Biol 2024; 46:1192-1207. [PMID: 38392194 PMCID: PMC10887764 DOI: 10.3390/cimb46020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
This case report details a rare instance of a perforated jejunal gastrointestinal stromal tumor (GIST) in a 76-year-old female patient. The patient presented with acute abdominal pain and distension without any changes in bowel habits or episodes of nausea and vomiting. Initial diagnostics, including abdominal plain radiography and ultrasonography, were inconclusive; however, a computed tomography (CT) scan revealed pneumoperitoneum and an irregular fluid collection suggestive of small intestine perforations. Surgical intervention uncovered a 35 mm jejunal GIST with a 10 mm perforation. Histopathological examination confirmed a mixed cell type GIST with high malignancy potential, further substantiated by immunohistochemistry markers CD117, DOG1, and vimentin. Molecular analysis illuminated the role of key oncogenes, primarily KIT and PDGFRA mutations, emphasizing the importance of molecular diagnostics in GIST management. Despite the severity of the presentation, the patient's postoperative recovery was favorable, highlighting the effectiveness of prompt surgical and multidisciplinary approaches in managing complex GIST cases.
Collapse
Affiliation(s)
- Milos Mirovic
- Department of General Surgery, Clinical Hospital Center Kotor, 85330 Kotor, Montenegro
| | - Milica Dimitrijevic Stojanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Marina Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Vesna Stankovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Danijela Milosev
- Department of Pathology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Natasa Zdravkovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Milosevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Cvetkovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marko Spasic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Berislav Vekic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojana S Stojanovic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marko Petrovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ana Bogut
- City Medical Emergency Department, 11000 Belgrade, Serbia
| | - Miodrag Peulic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
4
|
Tieniber AD, Rossi F, Hanna AN, Liu M, Etherington MS, Loo JK, Param N, Zeng S, Do K, Wang L, DeMatteo RP. Multiple intratumoral sources of kit ligand promote gastrointestinal stromal tumor. Oncogene 2023; 42:2578-2588. [PMID: 37468679 DOI: 10.1038/s41388-023-02777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is the most common human sarcoma and is typically driven by a single mutation in the Kit or PDGFRA receptor. While highly effective, tyrosine kinase inhibitors (TKIs) are not curative. The natural ligand for the Kit receptor is Kit ligand (KitL), which exists in both soluble and membrane-bound forms. While KitL is known to stimulate human GIST cell lines in vitro, we used a genetically engineered mouse model of GIST containing a common human KIT mutation to investigate the intratumoral sources of KitL, importance of KitL during GIST oncogenesis, and contribution of soluble KitL to tumor growth in vivo. We discovered that in addition to tumor cells, endothelia and smooth muscle cells produced KitL in KitV558Δ/+ tumors, even after imatinib therapy. Genetic reduction of total KitL in tumor cells of KitV558Δ/+ mice impaired tumor growth in vivo. Similarly, genetic reduction of tumor cell soluble KitL in KitV558Δ/+ mice decreased tumor size. By RNA sequencing, quantitative PCR, and immunohistochemistry, KitL expression was heterogeneous in human GIST specimens. In particular, PDGFRA-mutant tumors had much higher KitL expression than Kit-mutant tumors, suggesting the benefit of Kit activation in the absence of mutant KIT. Serum KitL was higher in GIST patients with tumors resistant to imatinib and in those with tumors expressing more KitL RNA. Overall, KitL supports the growth of GIST at baseline and after imatinib therapy and remains a potential biomarker and therapeutic target.
Collapse
Affiliation(s)
- Andrew D Tieniber
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ferdinando Rossi
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew N Hanna
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Marion Liu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Mark S Etherington
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer K Loo
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Nesteene Param
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Shan Zeng
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin Do
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Wang
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald P DeMatteo
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
The Lung Cancer Cohort Consortium (LC3), Albanes D, Alcala K, Alcala N, Amos CI, Arslan AA, Bassett JK, Brennan P, Cai Q, Chen C, Feng X, Freedman ND, Guida F, Hung RJ, Hveem K, Johansson M, Johansson M, Koh WP, Langhammer A, Milne RL, Muller D, Onwuka J, Sørgjerd EP, Robbins HA, Sesso HD, Severi G, Shu XO, Sieri S, Smith-Byrne K, Stevens V, Tinker L, Tjønneland A, Visvanathan K, Wang Y, Wang R, Weinstein S, Yuan JM, Zahed H, Zhang X, Zheng W. The blood proteome of imminent lung cancer diagnosis. Nat Commun 2023; 14:3042. [PMID: 37264016 PMCID: PMC10235023 DOI: 10.1038/s41467-023-37979-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/05/2023] [Indexed: 06/03/2023] Open
Abstract
Identification of risk biomarkers may enhance early detection of smoking-related lung cancer. We measured between 392 and 1,162 proteins in blood samples drawn at most three years before diagnosis in 731 smoking-matched case-control sets nested within six prospective cohorts from the US, Europe, Singapore, and Australia. We identify 36 proteins with independently reproducible associations with risk of imminent lung cancer diagnosis (all p < 4 × 10-5). These include a few markers (e.g. CA-125/MUC-16 and CEACAM5/CEA) that have previously been reported in studies using pre-diagnostic blood samples for lung cancer. The 36 proteins include several growth factors (e.g. HGF, IGFBP-1, IGFP-2), tumor necrosis factor-receptors (e.g. TNFRSF6B, TNFRSF13B), and chemokines and cytokines (e.g. CXL17, GDF-15, SCF). The odds ratio per standard deviation range from 1.31 for IGFBP-1 (95% CI: 1.17-1.47) to 2.43 for CEACAM5 (95% CI: 2.04-2.89). We map the 36 proteins to the hallmarks of cancer and find that activation of invasion and metastasis, proliferative signaling, tumor-promoting inflammation, and angiogenesis are most frequently implicated.
Collapse
|
6
|
Krimmer SG, Bertoletti N, Suzuki Y, Katic L, Mohanty J, Shu S, Lee S, Lax I, Mi W, Schlessinger J. Cryo-EM analyses of KIT and oncogenic mutants reveal structural oncogenic plasticity and a target for therapeutic intervention. Proc Natl Acad Sci U S A 2023; 120:e2300054120. [PMID: 36943885 PMCID: PMC10068818 DOI: 10.1073/pnas.2300054120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
The receptor tyrosine kinase KIT and its ligand stem cell factor (SCF) are required for the development of hematopoietic stem cells, germ cells, and other cells. A variety of human cancers, such as acute myeloid leukemia, gastrointestinal stromal tumor, and mast cell leukemia, are driven by somatic gain-of-function KIT mutations. Here, we report cryo electron microscopy (cryo-EM) structural analyses of full-length wild-type and two oncogenic KIT mutants, which show that the overall symmetric arrangement of the extracellular domain of ligand-occupied KIT dimers contains asymmetric D5 homotypic contacts juxtaposing the plasma membrane. Mutational analysis of KIT reveals in D5 region an "Achilles heel" for therapeutic intervention. A ligand-sensitized oncogenic KIT mutant exhibits a more comprehensive and stable D5 asymmetric conformation. A constitutively active ligand-independent oncogenic KIT mutant adopts a V-shaped conformation solely held by D5-mediated contacts. Binding of SCF to this mutant fully restores the conformation of wild-type KIT dimers, including the formation of salt bridges responsible for D4 homotypic contacts and other hallmarks of SCF-induced KIT dimerization. These experiments reveal an unexpected structural plasticity of oncogenic KIT mutants and a therapeutic target in D5.
Collapse
Affiliation(s)
- Stefan G. Krimmer
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Nicole Bertoletti
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Yoshihisa Suzuki
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Luka Katic
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Jyotidarsini Mohanty
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Sheng Shu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Sangwon Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Irit Lax
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Wei Mi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| |
Collapse
|
7
|
DAZAP1 facilitates the alternative splicing of KITLG to promote multiple myeloma cell proliferation via ERK signaling pathway. Aging (Albany NY) 2022; 14:7972-7985. [PMID: 36242590 DOI: 10.18632/aging.204326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy, in which alternative pre-mRNA splicing (AS) acts as one of the key transcriptome modifier. The Deleted in Azoospermia-Associated Protein 1 (DAZAP1) is a splicing factor that has been identified as an oncogene in multiple cancers, yet its role in MM proliferation remains unclear. We first analyzed MM clinical databases and found that MM patients with elevated DAZAP1 had a poor survival. Furthermore, we overexpressed DAZAP1 by lentiviral transfection and utilized siRNA silencing the expression of DAZAP1 in MM cells. DAZAP1 promoted MM cell proliferation in vitro and accelerated MM xenograft tumor growth in vivo. KEGG pathway enrichment analysis showed that ERK signaling pathway was activated in DAZAP1-OE MM cells. The analyses of RIP-seq and RIP-qPCR revealed that DAZAP1 activated alternative splicing of KIT proto-oncogene ligand (KITLG) mRNA. Further study validated that DAZAP1 increased ERK phosphorylation via modulating alternative splicing of KITLG mRNA to promote MM cell proliferation. In conclusion, we establish DAZAP1 as a tumor-promoting gene with therapeutic potential and provide mechanistic insights into targeting DAZAP1 as a new strategy for the diagnosis and treatment of MM.
Collapse
|
8
|
Kim KH, Kim JO, Park SG. A fully human anti-c-Kit monoclonal antibody 2G4 inhibits proliferation and degranulation of human mast cells. Mol Cell Biochem 2022; 478:861-873. [PMID: 36107283 PMCID: PMC10066129 DOI: 10.1007/s11010-022-04557-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Abstract
AbstractGiven that mast cells are pivotal contributors to allergic diseases, various allergy treatments have been developed to inhibit them. Omalizumab, an anti-immunoglobulin E antibody, is a representative therapy that can alleviate allergy symptoms by inhibiting mast cell degranulation. However, omalizumab cannot reduce the proliferation and accumulation of mast cells, which is a fundamental cause of allergic diseases. c-Kit is essential for the proliferation, survival, and differentiation of mast cells. Excessive c-Kit activation triggers various mast cell diseases, such as asthma, chronic spontaneous urticaria, and mastocytosis. Herein, we generated 2G4, an anti-c-Kit antibody, to develop a therapeutic agent for mast cell diseases. The therapeutic efficacy of 2G4 antibody was evaluated in LAD2, a human mast cell line. 2G4 antibody completely inhibited c-Kit signaling by blocking the binding of stem cell factor, known as the c-Kit ligand. Inhibition of c-Kit signaling led to the suppression of proliferation, migration, and degranulation in LAD2 cells. Moreover, 2G4 antibody suppressed the secretion of pro-inflammatory cytokines, including granulocyte–macrophage colony-stimulating factor, vascular endothelial growth factor, C–C motif chemokine ligand 2, brain-derived neurotrophic factor, and complement component C5/C5a, which can exacerbate allergy symptoms. Taken together, these results suggest that 2G4 antibody has potential as a novel therapeutic agent for mast cell diseases.
Collapse
|
9
|
Trenker R, Diwanji D, Verba KA, Jura N. An effective strategy for ligand-mediated pulldown of the HER2/HER3/NRG1β heterocomplex and cryo-EM structure determination at low sample concentrations. Methods Enzymol 2022; 667:633-662. [PMID: 35525557 PMCID: PMC9288110 DOI: 10.1016/bs.mie.2022.03.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Obtaining high-resolution structures of Receptor Tyrosine Kinases that visualize extracellular, transmembrane and intracellular kinase regions simultaneously is an eagerly pursued but still unmet challenge of structural biology. The Human Epidermal Growth Factor Receptor 3 (HER3) that has a catalytically inactive kinase domain (pseudokinase) forms a potent signaling complex upon binding of growth factor neuregulin 1β (NRG1β) and upon dimerization with a close homolog, the HER2 receptor. The HER2/HER3/NRG1β complex is often referred to as an oncogenic driver in breast cancer and is an attractive target for anti-cancer therapies. After overcoming significant hurdles in isolating sufficient amounts of the HER2/HER3/NRG1β complex for structural studies by cryo-electron microscopy (cryo-EM), we recently obtained the first high-resolution structures of the extracellular portion of this complex. Here we describe a step-by-step protocol for obtaining a stable and homogenous HER2/HER3/NRG1β complex for structural studies and our recommendation for collecting and processing cryo-EM data for this sample. We also show improved EM density for the transmembrane and kinase domains of the receptors, which continue to evade structural determination at high resolution. The discussed strategies are tunable and applicable to other membrane receptor complexes.
Collapse
Affiliation(s)
- Raphael Trenker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States
| | - Devan Diwanji
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States; Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, United States
| | - Kliment A Verba
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, United States; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, United States.
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
10
|
Chhetri G. Emerging roles of IL-34 in neurodegenerative and neurological infectious disease. Int J Neurosci 2021; 133:660-671. [PMID: 34347576 DOI: 10.1080/00207454.2021.1963962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurological infections are often devastating in their clinical presentation. Although significant advances have made in neuroimaging techniques and molecular tools for diagnosis, as well as in anti-infective therapy, these diseases always difficult to diagnose and treat. Neuroparasitic infections and virus infections lead to neurological infections. In the nervous system, various cytokines and chemokines act as neuroinflammatory agents, neuromodulators, regulate neurodevelopment, and synaptic transmission. Among the most important cytokines, interleukins (ILs) are a large group of immunomodulatory proteins that elicit a wide variety of responses in cells and tissues. These ILs are involved in pro and anti-inflammatory effects, systemic inflammation, immune system modulation and play crucial roles in fighting cancer, infectious disease, and neurological disorders. Interleukin-34 (IL-34) identified by screening a comprehensive human protein library containing ∼3400 secreted and extracellular domain proteins in a human monocyte viability assay. Recent evidence has disclosed the crucial roles of IL-34 in the proliferation and differentiation of mononuclear phagocyte lineage cells, osteoclastogenesis, and inflammation. Additionally, IL-34 plays an important role in development, homeostasis, and disease. Dysregulation in IL-34 function can lead to various inflammatory and infectious diseases (e.g. Inflammatory bowel disease, liver fibrosis, Systemic Lupus erythematosus, rheumatoid arthritis), neurological disorders (e.g. Alzheimer disease) and neurological infectious disease (e.g. West Nile virus disease). In this review, we explore the biological role of IL-34 in addition to various impairments caused by dysregulation in IL-34 and discuss their potential links that may lead to important therapeutic and/or preventive strategies for these disorders.
Collapse
Affiliation(s)
- Gaurav Chhetri
- School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai, P.R. China
| |
Collapse
|
11
|
Where are the theca cells from: the mechanism of theca cells derivation and differentiation. Chin Med J (Engl) 2021; 133:1711-1718. [PMID: 32530882 PMCID: PMC7401757 DOI: 10.1097/cm9.0000000000000850] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammalian follicles are composed of oocytes, granulosa cells, and theca cells. Theca cells form in the secondary follicles, maintaining follicular structural integrity and secreting steroid hormones. Two main sources of theca cells exist: Wilms tumor 1 positive (Wt1+) cells native to the ovary and Gli1+ mesenchymal cells migrated from the mesonephros. Normal folliculogenesis is a process where oocytes, granulosa cells, and theca cells constantly interact with and support each other through autocrine and paracrine mechanisms. The proliferation and differentiation of theca cells are regulated by oocyte-derived factors, including growth development factor 9 and bone morphogenetic protein 15, and granulosa cell-derived factors, including desert hedgehog, Indian hedgehog, kit ligand, insulin-like growth factor 1, as well as hormones such as insulin and growth hormones. Current research on the origin of theca cells is limited. Identifying the origin of theca cells will help us to systematically elaborate the mechanisms of follicular formation and development.
Collapse
|
12
|
Gavriilidis GI, Ntoufa S, Papakonstantinou N, Kotta K, Koletsa T, Chartomatsidou E, Moysiadis T, Stavroyianni N, Anagnostopoulos A, Papadaki E, Tsiftsoglou AS, Stamatopoulos K. Stem cell factor is implicated in microenvironmental interactions and cellular dynamics of chronic lymphocytic leukemia. Haematologica 2021; 106:692-700. [PMID: 32336682 PMCID: PMC7927890 DOI: 10.3324/haematol.2019.236513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Indexed: 01/03/2023] Open
Abstract
The inflammatory cytokine stem cell factor (SCF, ligand of c-kit receptor)
has been implicated as a pro-oncogenic driver and an adverse
prognosticator in several human cancers. Increased SCF levels have
recently been reported in a small series of patients with chronic lymphocytic
leukemia (CLL), however its precise role in CLL pathophysiology
remains elusive. In this study, CLL cells were found to express predominantly
the membrane isoform of SCF, which is known to elicit a more
robust activation of the c-kit receptor. SCF was significantly overexpressed
in CLL cells compared to healthy tonsillar B cells and it correlated with
adverse prognostic biomarkers, shorter time-to-first treatment and shorter
overall survival. Activation of immune receptors and long-term cell-cell
interactions with the mesenchymal stroma led to an elevation of SCF primarily
in CLL cases with an adverse prognosis. Contrariwise, suppression
of oxidative stress and the BTK inhibitor ibrutinib lowered SCF levels.
Interestingly, SCF significantly correlated with mitochondrial dynamics
and hypoxia-inducible factor-1a which have previously been linked with
clinical aggressiveness in CLL. SCF was able to elicit direct biological
effects in CLL cells, affecting redox homeostasis and cell proliferation.
Overall, the aberrantly expressed SCF in CLL cells emerges as a key
response regulator to microenvironmental stimuli while correlating with
poor prognosis. On these grounds, specific targeting of this inflammatory
molecule could serve as a novel therapeutic approach in CLL.
Collapse
Affiliation(s)
- George I Gavriilidis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavroula Ntoufa
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Nikos Papakonstantinou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Konstantia Kotta
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Triantafyllia Koletsa
- Department of Pathology, Faculty of Medicine, Aristotle University, Thessaloniki, Greece
| | - Elisavet Chartomatsidou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Theodoros Moysiadis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Niki Stavroyianni
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | | | - Eleni Papadaki
- Department of Medicine, University of Crete, Heraklion, Greece
| | - Asterios S Tsiftsoglou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
13
|
Structural studies of full-length receptor tyrosine kinases and their implications for drug design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:311-336. [PMID: 33632469 DOI: 10.1016/bs.apcsb.2020.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Receptor tyrosine kinases (RTKs) are important drug targets for cancer and immunological disorders. Crystal structures of individual RTK domains have contributed greatly to the structure-based drug design of clinically used drugs. Low-resolution structures from electron microscopy are now available for the RTKs, EGFR, PDGFR, and Kit. However, there are still no high-resolution structures of full-length RTKs due to the technical challenges of working with these complex, membrane proteins. Here, we review what has been learned from structural studies of these three RTKs regarding their mechanisms of ligand binding, activation, oligomerization, and inhibition. We discuss the implications for drug design. More structural data on full-length RTKs may facilitate the discovery of druggable sites and drugs with improved specificity and effectiveness against resistant mutants.
Collapse
|
14
|
Chataigner LMP, Leloup N, Janssen BJC. Structural Perspectives on Extracellular Recognition and Conformational Changes of Several Type-I Transmembrane Receptors. Front Mol Biosci 2020; 7:129. [PMID: 32850948 PMCID: PMC7427315 DOI: 10.3389/fmolb.2020.00129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Type-I transmembrane proteins represent a large group of 1,412 proteins in humans with a multitude of functions in cells and tissues. They are characterized by an extracellular, or luminal, N-terminus followed by a single transmembrane helix and a cytosolic C-terminus. The domain composition and structures of the extracellular and intercellular segments differ substantially amongst its members. Most of the type-I transmembrane proteins have roles in cell signaling processes, as ligands or receptors, and in cellular adhesion. The extracellular segment often determines specificity and can control signaling and adhesion. Here we focus on recent structural understanding on how the extracellular segments of several diverse type-I transmembrane proteins engage in interactions and can undergo conformational changes for their function. Interactions at the extracellular side by proteins on the same cell or between cells are enhanced by the transmembrane setting. Extracellular conformational domain rearrangement and structural changes within domains alter the properties of the proteins and are used to regulate signaling events. The combination of structural properties and interactions can support the formation of larger-order assemblies on the membrane surface that are important for cellular adhesion and intercellular signaling.
Collapse
Affiliation(s)
- Lucas M. P. Chataigner
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nadia Leloup
- Structural Biology and Protein Biochemistry, Morphic Therapeutic, Waltham, MA, United States
| | - Bert J. C. Janssen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
15
|
Kim JO, Kim HN, Kim KH, Baek EJ, Park JY, Ha K, Heo DR, Seo MD, Park SG. Development and characterization of a fully human antibody targeting SCF/c-kit signaling. Int J Biol Macromol 2020; 159:66-78. [PMID: 32437800 DOI: 10.1016/j.ijbiomac.2020.05.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/23/2022]
Abstract
CD117/c-kit, a tyrosine kinase receptor, plays a critical role in hematopoiesis, pigmentation, and fertility. The overexpression and activation of c-kit are thought to promote tumor growth and have been reported in various cancers, including leukemia, glioblastoma and mastocytosis. To disrupt the SCF/c-kit signaling axis in cancer, we generated a c-kit antagonist human antibody (NN2101) that binds to domain 2/3 of c-kit. This completely blocked the SCF-mediated phosphorylation of c-kit and inhibited TF-1 cell proliferation, erythroleukemia. In addition, the examination of binding affinity using surface plasmon resonance (SPR) assay showed that NN2101 can bind to c-kit of monkeys (KD = 2.92 × 10-10 M), rats (KD = 1.68 × 10-6 M), mice (KD = 11.5 × 10-9 M), and humans (KD = 2.83 × 10-12 M). We showed that NN2101 does not cause antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The immunogenicity of NN2101 was similar to that of bevacizumab. Furthermore, the crystal structure of NN2101 Fab was determined and the structure of NN2101 Fab:c-kit complex was modeled. Structural information, as well as mutagenesis results, revealed that NN2101 can bind to the SCF-binding regions of c-kit. Collectively, we generated a c-kit neutralizing human antibody (NN2101) for the treatment of erythroleukemia and characterized its biophysical properties. NN2101 can potentially be used as a therapeutic antibody to treat different cancers.
Collapse
Affiliation(s)
- Jin-Ock Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Ha-Neul Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Kwang-Hyeok Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Eun Ji Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Jeong-Yang Park
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Kyungsoo Ha
- New Drug Development Center, Osong Medical Innovation Foundation, Osong 28160, Republic of Korea
| | - Deok Rim Heo
- New Drug Development Center, Osong Medical Innovation Foundation, Osong 28160, Republic of Korea; College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong 28160, Republic of Korea
| | - Min-Duk Seo
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Novelty Nobility, 227 Unjung-ro, Seongnam-si, Gyeonggi-do 13477, Republic of Korea.
| | - Sang Gyu Park
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Novelty Nobility, 227 Unjung-ro, Seongnam-si, Gyeonggi-do 13477, Republic of Korea.
| |
Collapse
|
16
|
Kato M, Yagami A, Tsukamoto T, Shinkai Y, Kato T, Kurahashi H. Novel mutation in the KITLG gene in familial progressive hyperpigmentation with or without hypopigmentation. J Dermatol 2020; 47:669-672. [PMID: 32189379 DOI: 10.1111/1346-8138.15313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/18/2020] [Indexed: 11/27/2022]
Abstract
We herein report a novel mutation in familial progressive hyper- and hypopigmentation (FPHH). The KITLG gene encoding the KIT ligand protein is a disease-causing gene for FPHH. Various disease-causing gain-of-function mutations, which reside within or adjacent to the conserved VTNN motif of this gene, have been described to date. We have now identified a novel KITLG mutation, c.337G>A (p.Glu113Lys), in FPHH which is located within another ligand-receptor interaction site.
Collapse
Affiliation(s)
- Maki Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Akiko Yagami
- Departments of, Department of, Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tetsuya Tsukamoto
- Department of, Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yasuko Shinkai
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Takema Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
17
|
Kim C, Kim E. Rational Drug Design Approach of Receptor Tyrosine Kinase Type III Inhibitors. Curr Med Chem 2020; 26:7623-7640. [PMID: 29932031 DOI: 10.2174/0929867325666180622143548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/27/2018] [Accepted: 05/30/2018] [Indexed: 01/16/2023]
Abstract
Rational drug design is accomplished through the complementary use of structural biology and computational biology of biological macromolecules involved in disease pathology. Most of the known theoretical approaches for drug design are based on knowledge of the biological targets to which the drug binds. This approach can be used to design drug molecules that restore the balance of the signaling pathway by inhibiting or stimulating biological targets by molecular modeling procedures as well as by molecular dynamics simulations. Type III receptor tyrosine kinase affects most of the fundamental cellular processes including cell cycle, cell migration, cell metabolism, and survival, as well as cell proliferation and differentiation. Many inhibitors of successful rational drug design show that some computational techniques can be combined to achieve synergistic effects.
Collapse
Affiliation(s)
- Cheolhee Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Korea
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Korea
| |
Collapse
|
18
|
Liu W, Varier KM, Sample KM, Zacksenhaus E, Gajendran B, Ben-David Y. Erythropoietin Signaling in the Microenvironment of Tumors and Healthy Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:17-30. [PMID: 32030683 DOI: 10.1007/978-3-030-35582-1_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Erythropoietin (EPO), the primary cytokine of erythropoiesis, stimulates both proliferation and differentiation of erythroid progenitors and their maturation to red blood cells. Basal EPO levels maintain the optimum levels of circulating red blood cells. However, during hypoxia, EPO secretion and its expression is elevated drastically in renal interstitial fibroblasts, thereby increasing the number of erythroid progenitors and accelerating their differentiation to mature erythrocytes. A tight regulation of this pathway is therefore of paramount importance. The biological response to EPO is commenced through the involvement of its cognate receptor, EPOR. The receptor-ligand complex results in homodimerization and conformational changes, which trigger downstream signaling events and cause activation or inactivation of critical transcription factors that promote erythroid expansion. In recent years, recombinant human EPO (rEPO) has been widely used as a therapeutic tool to treat a number of anemias induced by infection, and chemotherapy for various cancers. However, several studies have uncovered a tumor promoting ability of EPO in man, which likely occurs through EPOR or alternative receptor(s). On the other hand, some studies have demonstrated a strong anticancer activity of EPO, although the mechanism still remains unclear. A thorough investigation of EPOR signaling could yield enhanced understanding of the pathobiology for a variety of disorders, as well as the potential novel therapeutic strategies. In this chapter, in addition to the clinical relevance of EPO/EPOR signaling, we review its anticancer efficacy within various tumor microenvironments.
Collapse
Affiliation(s)
- Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China
| | - Krishnapriya M Varier
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Klarke M Sample
- Central Laboratory, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China.
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China.
| |
Collapse
|
19
|
Raghav PK, Singh AK, Gangenahalli G. Stem cell factor and NSC87877 combine to enhance c-Kit mediated proliferation of human megakaryoblastic cells. PLoS One 2018; 13:e0206364. [PMID: 30388134 PMCID: PMC6214509 DOI: 10.1371/journal.pone.0206364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/11/2018] [Indexed: 11/19/2022] Open
Abstract
Enhancement of hematopoietic stem cells (HSCs) proliferation is a central aim in bone marrow transplantation (BMT). A stem cell factor (SCF) and c-Kit mediated extracellular signaling trigger proliferation of HSCs. This signaling is negatively regulated by protein tyrosine phosphatases (PTPs), SHP-1 and SHP-2. Although NSC87877 (N) is known to inhibit SHP-1/SHP-2, c-Kit-mediated HSCs proliferation by inhibiting SHP-1/SHP-2 has not been reported. This study investigated the combined effect of SCF (S) and N in c-Kit mediated proliferation and underlying mechanisms. The growth of human megakaryoblastic cell line, MO7e and HSCs, upon treatment with S and N alone, and in combination was assessed by PrestoBlue staining. The expression of c-Kit, phosphorylated c-Kit, SHP-1/SHP-2 and HePTP inhibition using S and N treatment were evaluated in the MO7e cells. Megakaryoblast cell proliferation was determined by quantification of Ki-67+, S-phase, BrdU+ and CFDA-SE+ cells using flow cytometry. The combination of S and N leads to enhanced cell growth compared with either S or N alone. Collectively, the results reveal a novel mechanism by which S in combination with N significantly enhances proliferation of human megakaryoblast cells. The pretreatment of N before S enhances proliferation of cells than S alone. This promising combination would likely play an essential role in enhancing the proliferation of cells.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Timarpur, Delhi, India
| | - Ajay Kumar Singh
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Timarpur, Delhi, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Timarpur, Delhi, India
| |
Collapse
|
20
|
Ameliorative effect of zinc oxide nanoparticles on cyclophosphamide induced testicular injury in adult rat. Tissue Cell 2018; 54:80-93. [DOI: 10.1016/j.tice.2018.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 01/08/2023]
|
21
|
Janostiak R, Vyas M, Cicek AF, Wajapeyee N, Harigopal M. Loss of c-KIT expression in breast cancer correlates with malignant transformation of breast epithelium and is mediated by KIT gene promoter DNA hypermethylation. Exp Mol Pathol 2018; 105:41-49. [PMID: 29852185 DOI: 10.1016/j.yexmp.2018.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/26/2018] [Indexed: 12/21/2022]
Abstract
KIT Proto-Oncogene Receptor Tyrosine Kinase (KIT) is a transmembrane receptor tyrosine kinase which plays an important role in regulation of cell proliferation, survival and migration. Interestingly, the role of c-KIT in malignant transformation seems to be highly tissue-specific and it can act either as an oncogene or tumor suppressor gene. Here we analyzed the expression of c-KIT in normal breast tissues and tissues from different stages encompassing major steps of breast tumor development. Our study showed, that the c-KIT protein expression is gradually lost during the process of breast tissue transformation. The analysis of previously published datasets revealed that c-KIT expression in breast malignancies was downregulated at mRNA level. Because sequencing studies did not identify any recurrent mutations or copy number alterations, we proposed a potential epigenetic mechanism for the downregulation of c-KIT expression. In-silico analysis of the KIT promoter revealed the presence of CpG islands, therefore we performed bisulfite sequencing of normal breast epithelial tissues as well as breast tumor samples. We found, that KIT promoter is hypermethylated in breast tumors compared to normal breast tissues. Furthermore, treatment of breast cancer cell lines, that lack the expression of c-KIT, with methyltransferase inhibitor 5-Azacytidine (5Aza-2dC) resulted in increased expression of c-KIT mRNA. Collectively, our studies demonstrate that c-KIT expression is epigenetically downregulated during breast epithelium transformation and cancer development via KIT promoter hypermethylation.
Collapse
Affiliation(s)
- Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Monika Vyas
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ali Fuat Cicek
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Narendra Wajapeyee
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Malini Harigopal
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
22
|
Zhang L, Geng Z, Meng X, Meng F, Wang L. Screening for key lncRNAs in the progression of gallbladder cancer using bioinformatics analyses. Mol Med Rep 2018; 17:6449-6455. [PMID: 29512694 PMCID: PMC5928615 DOI: 10.3892/mmr.2018.8655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 06/06/2017] [Indexed: 01/17/2023] Open
Abstract
The present study aimed to investigate key long non-coding RNAs (lncRNAs) and genes, and to obtain insights into their roles in the progression of gallbladder cancer (GBC). The gene expression profile and non‑coding RNA profile of GSE62335, which included five separate GBC tissue samples and five matched adjacent gallbladder normal tissue samples, was downloaded from the Gene Expression Omnibus database. The differentially expressed lncRNAs and mRNAs in the GBC tissues were identified, following which RNA binding protein analysis was performed using starBase v2.0 and the co‑expressed lncRNA‑mRNA pairs were predicted. Gene Ontology enrichment analysis for mRNAs was performed using the Database for Annotation Visualization and Integrated Discovery online tool. In addition, upstream microRNAs (miRNAs) were predicted for the co‑expressed lncRNAs and mRNAs. The results revealed that a total of 89 upregulated (13 lncRNAs and 76 mRNAs) and 261 downregulated transcripts (27 lncRNAs and 234 mRNAs) were identified in the GBC tissues. Only 9 lncRNAs had co‑expressed mRNAs, and lncRNA forkhead box P2 (FOXP2) was co‑expressed with the highest number of mRNAs, which were significant associated with the function of cell adhesion. In addition, the analysis of upstream miRNAs showed that FOXF1 adjacent non‑coding developmental regulatory RNA (FENDRR) had common upstream miRNAs, including miR‑18b‑5p, with another 119 differentially expressed genes, and that FENDRR was co‑expressed with adenomatosis polyposis coli downregulated 1 (APCDD1) and v‑kit Hardy‑Zuckerman 4 feline sarcoma viral oncogene homolog (KIT). Taken together, the results suggested that the lncRNAs FOXP2 and FENDRR may be crucial in promoting the progression of GBC via cell adhesion and regulating miR‑18b‑5p, or through interactions with KIT and APCDD1, respectively.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhimin Geng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiankui Meng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fandi Meng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lin Wang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
23
|
Chan IJ, Tharp MD. Comparison of lesional skin c-KIT mutations with clinical phenotype in patients with mastocytosis. Clin Exp Dermatol 2018; 43:416-422. [PMID: 29350409 DOI: 10.1111/ced.13362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Activating c-KIT mutations cause abnormal mast cell growth and appear to play a role in mastocytosis. However, the correlation of c-KIT mutations with disease phenotypes is poorly characterized. AIM To evaluate the correlation of c-KIT mutations with clinical presentations and laboratory findings. METHODS Total cellular RNA was isolated from the skin lesions of 43 adults and 7 children with mastocytosis, and PCR amplicons of cDNA were sequenced for c-KIT mutations. RESULTS The most common activating mutation, KIT-D816V, was identified in 72% of adults and 57% of children. Additional activating mutations, namely, V560G and the internal tandem duplications (ITDs) 502-503dupAY, were detected in 12% of adults and 8% of children. V560G occurred more commonly in our patients than previously reported, and it appeared to be associated with more advanced disease. Otherwise, the presence or absence of activating mutations did not correlate with skin lesion morphology, disease extent or total serum tryptase levels. Four adults had expression only of wild-type KIT, while two others had expression of a truncated KIT lacking tyrosine kinase activity; yet these patients were clinically indistinguishable from those patients with activating c-KIT mutations. CONCLUSIONS Activating c-KIT mutations exist in a significant portion of patients with mastocytosis, but not all patients showed expression of these mutations. Except for V560G, the presence or absence of activating c-KIT mutations did not predict the extent of disease. These observations suggest that although activating c-KIT mutations are associated with mast cell growth, other genes probably play a role in the cause of mastocytosis.
Collapse
Affiliation(s)
- I J Chan
- Department of Dermatology, Rush University Medical Center, Chicago, IL, USA
| | - M D Tharp
- Department of Dermatology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
24
|
Ho CCM, Chhabra A, Starkl P, Schnorr PJ, Wilmes S, Moraga I, Kwon HS, Gaudenzio N, Sibilano R, Wehrman TS, Gakovic M, Sockolosky JT, Tiffany MR, Ring AM, Piehler J, Weissman IL, Galli SJ, Shizuru JA, Garcia KC. Decoupling the Functional Pleiotropy of Stem Cell Factor by Tuning c-Kit Signaling. Cell 2017; 168:1041-1052.e18. [PMID: 28283060 DOI: 10.1016/j.cell.2017.02.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/20/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022]
Abstract
Most secreted growth factors and cytokines are functionally pleiotropic because their receptors are expressed on diverse cell types. While important for normal mammalian physiology, pleiotropy limits the efficacy of cytokines and growth factors as therapeutics. Stem cell factor (SCF) is a growth factor that acts through the c-Kit receptor tyrosine kinase to elicit hematopoietic progenitor expansion but can be toxic when administered in vivo because it concurrently activates mast cells. We engineered a mechanism-based SCF partial agonist that impaired c-Kit dimerization, truncating downstream signaling amplitude. This SCF variant elicited biased activation of hematopoietic progenitors over mast cells in vitro and in vivo. Mouse models of SCF-mediated anaphylaxis, radioprotection, and hematopoietic expansion revealed that this SCF partial agonist retained therapeutic efficacy while exhibiting virtually no anaphylactic off-target effects. The approach of biasing cell activation by tuning signaling thresholds and outputs has applications to many dimeric receptor-ligand systems.
Collapse
Affiliation(s)
- Chia Chi M Ho
- Department of Bioengineering, Stanford University School of Engineering, 443 Via Ortega, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Akanksha Chhabra
- Department of Blood and Marrow Transplantation, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Philipp Starkl
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Peter-John Schnorr
- Department of Blood and Marrow Transplantation, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Stephan Wilmes
- Department of Biology, University of Osnabruck, Barbarastr. 11, 49076 Osnabruck, Germany
| | - Ignacio Moraga
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Hye-Sook Kwon
- Department of Blood and Marrow Transplantation, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Nicolas Gaudenzio
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Riccardo Sibilano
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Tom S Wehrman
- Primity Bio, 48383 Fremont Blvd, Suite 118, Fremont, CA 94538, USA
| | - Milica Gakovic
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Jonathan T Sockolosky
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Matthew R Tiffany
- Department of Pediatrics and Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Aaron M Ring
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA
| | - Jacob Piehler
- Department of Biology, University of Osnabruck, Barbarastr. 11, 49076 Osnabruck, Germany
| | - Irving L Weissman
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA; Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA
| | - Judith A Shizuru
- Department of Blood and Marrow Transplantation, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Ye L, Maji S, Sanghera N, Gopalasingam P, Gorbunov E, Tarasov S, Epstein O, Klein-Seetharaman J. Structure and dynamics of the insulin receptor: implications for receptor activation and drug discovery. Drug Discov Today 2017; 22:1092-1102. [PMID: 28476537 DOI: 10.1016/j.drudis.2017.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/16/2017] [Accepted: 04/19/2017] [Indexed: 01/05/2023]
Abstract
Recently, major progress has been made in uncovering the mechanisms of how insulin engages its receptor and modulates downstream signal transduction. Here, we present in detail the current structural knowledge surrounding the individual components of the complex, binding sites, and dynamics during the activation process. A novel kinase triggering mechanism, the 'bow-arrow model', is proposed based on current knowledge and computational simulations of this system, in which insulin, after its initial interaction with binding site 1, engages with site 2 between the fibronectin type III (FnIII)-1 and -2 domains, which changes the conformation of FnIII-3 and eventually translates into structural changes across the membrane. This model provides a new perspective on the process of insulin binding to its receptor and, thus, could lead to future novel drug discovery efforts.
Collapse
Affiliation(s)
- Libin Ye
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Suvrajit Maji
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Narinder Sanghera
- Division of Metabolic and Vascular Health & Systems, Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Piraveen Gopalasingam
- Division of Metabolic and Vascular Health & Systems, Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Evgeniy Gorbunov
- OOO 'NPF 'MATERIA MEDICA HOLDING', 47-1, Trifonovskaya St, Moscow 129272, Russian Federation
| | - Sergey Tarasov
- OOO 'NPF 'MATERIA MEDICA HOLDING', 47-1, Trifonovskaya St, Moscow 129272, Russian Federation
| | - Oleg Epstein
- The Institute of General Pathology and Pathophysiology, 8, Baltiyskaya St, 125315 Moscow, Russian Federation
| | - Judith Klein-Seetharaman
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Division of Metabolic and Vascular Health & Systems, Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
26
|
Eberle F, Leinberger FH, Saulich MF, Seeger W, Engenhart-Cabillic R, Hänze J, Hattar K, Dikomey E, Subtil FS. In cancer cell lines inhibition of SCF/c-Kit pathway leads to radiosensitization only when SCF is strongly over-expressed. Clin Transl Radiat Oncol 2017; 2:69-75. [PMID: 29658004 PMCID: PMC5893519 DOI: 10.1016/j.ctro.2017.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 01/25/2023] Open
Abstract
Background and purpose The SCF/c-Kit pathway is often overexpressed in human tumors leading to an enhanced tumorigenesis, proliferation and migration. It was now tested for NSCLC and prostate cancer cells growing in 2D and 3D whether the inhibition of this pathway can be used to achieve a significant radiosensitization and whether a respective biomarker may be identified. Material and methods Experiments were performed with different cancer cell lines (NSCLC: H23, H520, H226, H1975 and PrCa: DU145) growing either under 2D or 3D conditions. Expression of SCF and c-Kit was determined by RT-PCR and Western blot, SCF was knocked down by siRNA, c-Kit was inhibited by ISCK03 inhibitor and cell survival was determined by colony formation assay. Results There is a profound variation in the expression of both c-Kit and SCF with no association between each other. Neither levels did correlate with the respective cellular radiosensitivity determined for 2D or 3D with only a trend seen for SCF. Knock-down of SCF was generally found to result in no or only minor reduction of plating efficiency or cellular radioresistance. A significant reduction was only obtained for H520 cells characterized by an extreme over-expression of SCF. The inhibition of c-Kit by a specific inhibitor was also found to result only in minor radiosensitization. Conclusion Generally, the SCF/c-Kit pathway does not have a dominant effect on both, cell survival and radioresponse and, as a consequence, knockdown of this pathway does not result in a strong effect on radioresistance, except when SCF is strongly over-expressed.
Collapse
Affiliation(s)
- Fabian Eberle
- Department of Radiotherapy and Radiooncology, Philipps University, Marburg, Germany
- Corresponding author at: Department of Radiotherapy and Radiooncology, Philipps-University, Baldingerstraße, D-35034 Marburg, Germany. Fax: +49 6421 58 66426.at: Department of Radiotherapy and RadiooncologyPhilipps-UniversityBaldingerstraßeD-35034 MarburgGermany
| | | | - Miriam F. Saulich
- Department of Radiotherapy and Radiooncology, Philipps University, Marburg, Germany
| | - Werner Seeger
- Universities of Giessen & Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiooncology, Philipps University, Marburg, Germany
- Department of Radiotherapy, Justus-Liebig-University, Giessen, Germany
| | - Jörg Hänze
- Department of Urology and Pediatric Urology, Philipps-University, Marburg, Germany
| | - Katja Hattar
- Department of Internal Medicine IV/V, Universities of Giessen & Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ekkehard Dikomey
- Department of Radiotherapy and Radiooncology, Philipps University, Marburg, Germany
| | - Florentine S.B. Subtil
- Department of Radiotherapy and Radiooncology, Philipps University, Marburg, Germany
- Corresponding author at: Department of Radiotherapy and Radiooncology, Philipps-University, Baldingerstraße, D-35034 Marburg, Germany. Fax: +49 6421 58 66426.at: Department of Radiotherapy and RadiooncologyPhilipps-UniversityBaldingerstraßeD-35034 MarburgGermany
| |
Collapse
|
27
|
Vazquez-Mellado MJ, Monjaras-Embriz V, Rocha-Zavaleta L. Erythropoietin, Stem Cell Factor, and Cancer Cell Migration. VITAMINS AND HORMONES 2017. [DOI: 10.1016/bs.vh.2017.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Eberle F, Saulich MF, Leinberger FH, Seeger W, Engenhart-Cabillic R, Dikomey E, Hänze J, Hattar K, Subtil FSB. Cancer cell motility is affected through 3D cell culturing and SCF/c-Kit pathway but not by X-irradiation. Radiother Oncol 2016; 119:537-43. [PMID: 27178146 DOI: 10.1016/j.radonc.2016.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/10/2016] [Accepted: 04/21/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND PURPOSE Success of radiotherapy is often limited by therapy resistance and metastasis resulting from cancer cell motility. It was tested in vitro whether this cancer cell motility is affected by growth condition, active SCF/c-Kit pathway or X-irradiation. MATERIALS AND METHODS Cell motility was measured with BioCoat™ Matrigel™ invasion chamber using four different cancer cell lines (NSCLC: H23, H520, H226 and PrCa: DU145). Cells were grown in 2D or 3D, SCF was knocked down by siRNA and cells were irradiated with 2 or 6Gy. RESULTS All cell lines except H520 showed a 2-3-fold increase in cell motility when grown in 3D. This effect was considered to result from the EMT-like change seen when cells were grown in 3D as indicated by the enhanced expression of vimentin and N-cadherin and reduction of E-cadherin. Just the opposite trends were found for H520 cells. Knockdown of SCF was found to result in reduced cell motility for both 2D and 3D. In contrast, X-irradiation did not modulate cell motility neither under 2D nor 3D. In line with this, X-irradiation did neither induce the expression of EMT-associated genes nor SCF. CONCLUSION X-irradiation affects neither the expression of important EMT genes such as vimentin, E-cadherin and N-cadherin nor SCF/c-Kit signaling and, as a consequence, does not alter cell motility.
Collapse
Affiliation(s)
- Fabian Eberle
- Department of Radiotherapy and Radiooncology, Philipps-University, Marburg, Germany
| | - Miriam F Saulich
- Department of Radiotherapy and Radiooncology, Philipps-University, Marburg, Germany
| | - Florian H Leinberger
- Department of Radiotherapy and Radiooncology, Philipps-University, Marburg, Germany
| | - Werner Seeger
- Department of Internal Medicine II, Universities of Giessen & Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiooncology, Philipps-University, Marburg, Germany; Department of Radiotherapy, Universities of Giessen & Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Ekkehard Dikomey
- Department of Radiotherapy and Radiooncology, Philipps-University, Marburg, Germany; Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Germany
| | - Jörg Hänze
- Department of Urology and Pediatric Urology, Philipps-University, Marburg, Germany
| | - Katja Hattar
- Department of Internal Medicine IV/V, Universities of Giessen & Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Florentine S B Subtil
- Department of Radiotherapy and Radiooncology, Philipps-University, Marburg, Germany; Department of Radiotherapy, Universities of Giessen & Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
29
|
Laugier F, Delyon J, André J, Bensussan A, Dumaz N. Hypoxia and MITF regulate KIT oncogenic properties in melanocytes. Oncogene 2016; 35:5070-7. [PMID: 26973244 DOI: 10.1038/onc.2016.39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 02/06/2023]
Abstract
KIT mutations are frequent in acral, mucosal and chronic sun-damage (CSD) melanoma, but little is known about the mechanisms driving the transformation of KIT-mutated melanocytes into melanoma cells. We showed that exposition of melanocytes harboring the (L576P)KIT mutation to a hypoxic environment induced their transformation into malignant cells. Transformed (L576P)KIT melanocytes showed downregulation of MITF expression characteristic of melanoma initiating cells (MICs). In agreement, these cells were able to form spheres in neural crest cell medium and low-adherence conditions, also a characteristic of MICs. Downregulation of MITF by RNA interference induced transformation of KIT-mutated melanocytes in normoxia and acquisition of a MIC phenotype by these cells. Hence, low level of MITF cooperates with oncogenic KIT to transform melanocytes. Activation of the cAMP pathway in transformed (L576P)KIT melanocytes stimulated MITF expression, and reduced cellular proliferation and sphere formation. These findings highlight the essential role of MITF in revealing the oncogenic activity of KIT in melanocytes and suggest that the cAMP pathway is a therapeutic target in KIT-mutated melanoma.
Collapse
Affiliation(s)
- F Laugier
- INSERM, U976, Centre de Recherche sur la Peau, Hôpital Saint-Louis, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, UMRS976, Paris, France
| | - J Delyon
- INSERM, U976, Centre de Recherche sur la Peau, Hôpital Saint-Louis, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, UMRS976, Paris, France
| | - J André
- INSERM, U976, Centre de Recherche sur la Peau, Hôpital Saint-Louis, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, UMRS976, Paris, France
| | - A Bensussan
- INSERM, U976, Centre de Recherche sur la Peau, Hôpital Saint-Louis, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, UMRS976, Paris, France
| | - N Dumaz
- INSERM, U976, Centre de Recherche sur la Peau, Hôpital Saint-Louis, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, UMRS976, Paris, France
| |
Collapse
|
30
|
Shen B, Jiang W, Fan J, Dai W, Ding X, Jiang Y. Residues 39-56 of Stem Cell Factor Protein Sequence Are Capable of Stimulating the Expansion of Cord Blood CD34+ Cells. PLoS One 2015; 10:e0141485. [PMID: 26505626 PMCID: PMC4624785 DOI: 10.1371/journal.pone.0141485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/08/2015] [Indexed: 01/07/2023] Open
Abstract
Background Stem cell factor (SCF) can stimulate hematopoietic stem cell (HSC) expansion; however, the specific structural region(s) of SCF protein that are critical for this function are still unknown. A novel monoclonal antibody (named 23C8) against recombinant human SCF (rhSCF) was previously found to inhibit the ability of rhSCF to enhance HSC expansion, making it possible to identify the relevant active region to HSC. Methods Eleven polypeptides were synthesized, which were designed to cover the full-length of rhSCF, with overlaps that are at least 3 amino acids long. ELISA was used to identify the polypeptide(s) that specifically react with the anti-SCF. The effects of the synthetic polypeptides on human HSC expansion, or on the ability of the full-length rhSCF to stimulate cell proliferation, were evaluated ex vivo. Total cell number was monitored using hemocytometer whereas CD34+ cell number was calculated based on the proportion determined via flow cytometry on day 6 of culture. Results Of all polypeptides analyzed, only one, named P0, corresponding to the SCF protein sequence at residues 39–56, was recognized by 23C8 mAb during ELISA. P0 stimulated the expansion of CD34+ cells derived from human umbilical cord blood (UCB). Addition of P0 increased the numbers of total mononucleated cells and CD34+ cells, by ~2 fold on day 6. P0 also showed partial competition against full-length rhSCF in the ex vivo cell expansion assay. Conclusion Residues 39–56 of rhSCF comprise a critical functional region for its ability to enhance expansion of human UCB CD34+ cells. The peptide P0 is a potential candidate for further development as a synthetic substitute for rhSCF in laboratory and clinical applications.
Collapse
Affiliation(s)
- Bin Shen
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | | | - Jie Fan
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Wei Dai
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York, United States of America
| | - Xinxin Ding
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York, United States of America
- * E-mail: (YJ); (XD)
| | - Yongping Jiang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- * E-mail: (YJ); (XD)
| |
Collapse
|
31
|
Chen PH, Unger V, He X. Structure of Full-Length Human PDGFRβ Bound to Its Activating Ligand PDGF-B as Determined by Negative-Stain Electron Microscopy. J Mol Biol 2015; 427:3921-34. [PMID: 26463591 DOI: 10.1016/j.jmb.2015.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022]
Abstract
Members of the receptor tyrosine kinases (RTKs) regulate important cellular functions such as cell growth and migration, which are key steps in angiogenesis, in organ morphogenesis and in the unregulated states, cancer formation. One long-standing puzzle regarding RTKs centers on how the extracellular domain (ECD), which detects and binds to growth factors, is coupled with the intracellular domain kinase activation. While extensive structural works on the soluble portions of RTKs have provided critical insights into RTK structures and functions, lack of a full-length receptor structure has hindered a comprehensive overview of RTK activation. In this study, we successfully purified and determined a 27-Å-resolution structure of PDGFRβ [a full-length human platelet-derived growth factor receptor], in complex with its ligand PDGF-B. In the ligand-stimulated complex, two PDGFRβs assemble into a dimer via an extensive interface essentially running along the full-length of the receptor, suggesting that the membrane-proximal region, the transmembrane helix and the kinase domain of PDGFRβ are involved in dimerization. Major structural differences are seen between the full-length and soluble ECD structures, rationalizing previous experimental data on how membrane-proximal domains modulate receptor ligand-binding affinity and dimerization efficiency. Also, in contrast to the 2-fold symmetry of the ECD, the intracellular kinase domains adopt an asymmetric dimer arrangement, in agreement with prior observations for the closely related KIT receptor. In essence, the structure provides a first glimpse into how platelet-derived growth factor receptor ECD, upon ligand stimulation, is coupled to its intracellular domain kinase activation.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vinzenz Unger
- Interdepartmental Biological Science Program, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Science Institute, Northwestern University, Evanston, IL 60208, USA
| | - Xiaolin He
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
32
|
Berenstein R. Class III Receptor Tyrosine Kinases in Acute Leukemia - Biological Functions and Modern Laboratory Analysis. Biomark Insights 2015; 10:1-14. [PMID: 26309392 PMCID: PMC4527365 DOI: 10.4137/bmi.s22433] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/02/2015] [Accepted: 07/04/2015] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a complex disease caused by deregulation of multiple signaling pathways. Mutations in class III receptor tyrosine kinases (RTKs) have been implicated in alteration of cell signals concerning the growth and differentiation of leukemic cells. Point mutations, insertions, or deletions of RTKs as well as chromosomal translocations induce constitutive activation of the receptor, leading to uncontrolled proliferation of undifferentiated myeloid blasts. Aberrations can occur in all domains of RTKs causing either the ligand-independent activation or mimicking the activated conformation. The World Health Organization recommended including RTK mutations in the AML classification since their detection in routine laboratory diagnostics is a major factor for prognostic stratification of patients. Polymerase chain reaction (PCR)-based methods are well-validated for the detection of fms-related tyrosine kinase 3 (FLT3) mutations and can easily be applied for other RTKs. However, when methodological limitations are reached, accessory techniques can be applied. For a higher resolution and more quantitative approach compared to agarose gel electrophoresis, PCR fragments can be separated by capillary electrophoresis. Furthermore, high-resolution melting and denaturing high-pressure liquid chromatography are reliable presequencing screening methods that reduce the sample amount for Sanger sequencing. Because traditional DNA sequencing is time-consuming, next-generation sequencing (NGS) is an innovative modern possibility to analyze a high amount of samples simultaneously in a short period of time. At present, standardized procedures for NGS are not established, but when this barrier is resolved, it will provide a new platform for rapid and reliable laboratory diagnostic of RTK mutations in patients with AML. In this article, the biological and physiological role of RTK mutations in AML as well as possible laboratory methods for their detection will be reviewed.
Collapse
Affiliation(s)
- Rimma Berenstein
- Department of Hematology, Oncology and Tumourimmunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
33
|
Reshetnyak AV, Opatowsky Y, Boggon TJ, Folta-Stogniew E, Tome F, Lax I, Schlessinger J. The strength and cooperativity of KIT ectodomain contacts determine normal ligand-dependent stimulation or oncogenic activation in cancer. Mol Cell 2014; 57:191-201. [PMID: 25544564 DOI: 10.1016/j.molcel.2014.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/14/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022]
Abstract
The receptor tyrosine kinase KIT plays an important role in development of germ cells, hematopoietic cells, and interstitial pacemaker cells. Oncogenic KIT mutations play an important "driver" role in gastrointestinal stromal tumors, acute myeloid leukemias, and melanoma, among other cancers. Here we describe the crystal structure of a recurring somatic oncogenic mutation located in the C-terminal Ig-like domain (D5) of the ectodomain, rendering KIT tyrosine kinase activity constitutively activated. The structural analysis, together with biochemical and biophysical experiments and detailed analyses of the activities of a variety of oncogenic KIT mutations, reveals that the strength of homotypic contacts and the cooperativity in the action of D4D5 regions determines whether KIT is normally regulated or constitutively activated in cancers. We propose that cooperative interactions mediated by multiple weak homotypic contacts between receptor molecules are responsible for regulating normal ligand-dependent or oncogenic RTK activation via a "zipper-like" mechanism for receptor activation.
Collapse
Affiliation(s)
- Andrey V Reshetnyak
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yarden Opatowsky
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ewa Folta-Stogniew
- The Biophysical Resource, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Francisco Tome
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Irit Lax
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
34
|
Cardoso HJ, Figueira MI, Correia S, Vaz CV, Socorro S. The SCF/c-KIT system in the male: Survival strategies in fertility and cancer. Mol Reprod Dev 2014; 81:1064-79. [PMID: 25359157 DOI: 10.1002/mrd.22430] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/25/2014] [Indexed: 12/18/2022]
Abstract
Maintaining the delicate balance between cell survival and death is of the utmost importance for the proper development of germ cells and subsequent fertility. On the other hand, the fine regulation of tissue homeostasis by mechanisms that control cell fate is a factor that can prevent carcinogenesis. c-KIT is a type III receptor tyrosine kinase activated by its ligand, stem cell factor (SCF). c-KIT signaling plays a crucial role in cell fate decisions, specifically controlling cell proliferation, differentiation, survival, and apoptosis. Indeed, deregulating the SCF/c-KIT system by attenuation or overactivation of its signaling strength is linked to male infertility and cancer, and rebalancing its activity via c-KIT inhibitors has proven beneficial in treating human tumors that contain gain-of-function mutations or overexpress c-KIT. This review addresses the roles of SCF and c-KIT in the male reproductive tract, and discusses the potential application of c-KIT target therapies in disorders of the reproductive system.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | | | | | | |
Collapse
|
35
|
Full-length recombinant human SCF1-165 is more thermostable than the truncated SCF1-141 form. PLoS One 2014; 9:e103251. [PMID: 25061857 PMCID: PMC4111497 DOI: 10.1371/journal.pone.0103251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 06/28/2014] [Indexed: 11/19/2022] Open
Abstract
Human stem cell factor initiates a diverse array of cellular responses, including hematopoiesis, cell proliferation, differentiation, migration and survival. To explore the relationship between its structure and function, we produced recombinant soluble human stem cell factor1–165 (wild type) and human stem cell factor1–141 (C-terminal truncated) in a yeast expression system and compared their biological activities and thermal stabilities. The biological activity of the two proteins was measured as a function of TF-1 cell viability and effects on downstream signaling targets after incubation. We found that these proteins enhanced cell viability and downstream signaling to a similar extent, in a dose-dependent manner. The biological activity of recombinant human stem cell factor1–165 was significantly greater than that of recombinant human stem cell factor1–141 after heating the proteins (100 ng/mL) at 25–110°C for 10 minutes (P<0.05 for all temperatures). In addition, circular dichroism spectral analysis indicated that β-sheet structures were altered in recombinant human stem cell factor1–141 but not recombinant human stem cell factor1–165 after heating at 90°C for 15 or 30 min. Molecular modeling and limited proteolytic digestion were also used to compare the thermo stability between human stem cell factor1–165 and human stem cell factor1–141. Together, these data indicate that stem cell factor1–165 is more thermostable than stem cell factor1–141.
Collapse
|
36
|
Manni S, Mineev KS, Usmanova D, Lyukmanova EN, Shulepko MA, Kirpichnikov MP, Winter J, Matkovic M, Deupi X, Arseniev AS, Ballmer-Hofer K. Structural and functional characterization of alternative transmembrane domain conformations in VEGF receptor 2 activation. Structure 2014; 22:1077-1089. [PMID: 24980797 DOI: 10.1016/j.str.2014.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 10/25/2022]
Abstract
Transmembrane signaling by receptor tyrosine kinases (RTKs) entails ligand-mediated dimerization and structural rearrangement of the extracellular domains. RTK activation also depends on the specific orientation of the transmembrane domain (TMD) helices, as suggested by pathogenic, constitutively active RTK mutants. Such mutant TMDs carry polar amino acids promoting stable transmembrane helix dimerization, which is essential for kinase activation. We investigated the effect of polar amino acids introduced into the TMD of vascular endothelial growth factor receptor 2, regulating blood vessel homeostasis. Two mutants showed constitutive kinase activity, suggesting that precise TMD orientation is mandatory for kinase activation. Nuclear magnetic resonance spectroscopy revealed that TMD helices in activated constructs were rotated by 180° relative to the interface of the wild-type conformation, confirming that ligand-mediated receptor activation indeed results from transmembrane helix rearrangement. A molecular dynamics simulation confirmed the transmembrane helix arrangement of wild-type and mutant TMDs revealed by nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Sandro Manni
- Paul Scherrer Institute, Biomolecular Research, 5232 Villigen PSI, Switzerland
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Dinara Usmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Mikhail A Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
| | - Jonas Winter
- Paul Scherrer Institute, Biomolecular Research, 5232 Villigen PSI, Switzerland
| | - Milos Matkovic
- Paul Scherrer Institute, Biomolecular Research, 5232 Villigen PSI, Switzerland
| | - Xavier Deupi
- Paul Scherrer Institute, Biomolecular Research, 5232 Villigen PSI, Switzerland; Paul Scherrer Institute, Condensed Matter Theory Group, 5232 Villigen PSI, Switzerland
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Kurt Ballmer-Hofer
- Paul Scherrer Institute, Biomolecular Research, 5232 Villigen PSI, Switzerland.
| |
Collapse
|
37
|
Poger D, Mark AE. Activation of the Epidermal Growth Factor Receptor: A Series of Twists and Turns. Biochemistry 2014; 53:2710-21. [DOI: 10.1021/bi401632z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Poger
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alan E. Mark
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
38
|
Fernández-Rodríguez A, Estellé J, Blin A, Muñoz M, Créchet F, Demenais F, Vincent-Naulleau S, Bourneuf E. KITand melanoma predisposition in pigs: sequence variants and association analysis. Anim Genet 2014; 45:445-8. [DOI: 10.1111/age.12136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2014] [Indexed: 11/28/2022]
Affiliation(s)
| | - J. Estellé
- UMR 1313 Génétique Animale et Biologie Intégrative; INRA; Jouy-en-Josas F-78352 France
- UMR 1313 Génétique Animale et Biologie Intégrative; AgroParisTech; Jouy-en-Josas F-78352 France
- DSV/iRCM/SREIT/LREG; CEA; Jouy-en-Josas F-78352 France
| | - A. Blin
- UMR 1313 Génétique Animale et Biologie Intégrative; INRA; Jouy-en-Josas F-78352 France
- DSV/iRCM/SREIT/LREG; CEA; Jouy-en-Josas F-78352 France
- Fondation Jean-Dausset-CEPH; INSERM U946; 27 rue Juliette Dodu 75010 Paris France
| | - M. Muñoz
- Departamento de Mejora Genética Animal; INIA; ctra de la Coruña Km7 28040 Madrid Spain
| | - F. Créchet
- UMR 1313 Génétique Animale et Biologie Intégrative; INRA; Jouy-en-Josas F-78352 France
- UMR 1313 Génétique Animale et Biologie Intégrative; AgroParisTech; Jouy-en-Josas F-78352 France
- DSV/iRCM/SREIT/LREG; CEA; Jouy-en-Josas F-78352 France
| | - F. Demenais
- Fondation Jean-Dausset-CEPH; INSERM U946; 27 rue Juliette Dodu 75010 Paris France
| | - S. Vincent-Naulleau
- UMR 1313 Génétique Animale et Biologie Intégrative; INRA; Jouy-en-Josas F-78352 France
- UMR 1313 Génétique Animale et Biologie Intégrative; AgroParisTech; Jouy-en-Josas F-78352 France
- DSV/iRCM/SREIT/LREG; CEA; Jouy-en-Josas F-78352 France
| | - E. Bourneuf
- UMR 1313 Génétique Animale et Biologie Intégrative; INRA; Jouy-en-Josas F-78352 France
- UMR 1313 Génétique Animale et Biologie Intégrative; AgroParisTech; Jouy-en-Josas F-78352 France
- DSV/iRCM/SREIT/LREG; CEA; Jouy-en-Josas F-78352 France
| |
Collapse
|
39
|
Jiang X, Dias JA, He X. Structural biology of glycoprotein hormones and their receptors: insights to signaling. Mol Cell Endocrinol 2014; 382:424-451. [PMID: 24001578 DOI: 10.1016/j.mce.2013.08.021] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/20/2013] [Accepted: 08/24/2013] [Indexed: 01/18/2023]
Abstract
This article reviews the progress made in the field of glycoprotein hormones (GPH) and their receptors (GPHR) by several groups of structural biologists including ourselves aiming to gain insight into GPH signaling mechanisms. The GPH family consists of four members, with follicle-stimulating hormone (FSH) being the prototypic member. GPH members belong to the cystine-knot growth factor superfamily, and their receptors (GPHR), possessing unusually large N-terminal ectodomains, belong to the G-protein coupled receptor Family A. GPHR ectodomains can be divided into two subdomains: a high-affinity hormone binding subdomain primarily centered on the N-terminus, and a second subdomain that is located on the C-terminal region of the ectodomain that is involved in signal specificity. The two subdomains unexpectedly form an integral structure comprised of leucine-rich repeats (LRRs). Following the structure determination of hCG in 1994, the field of FSH structural biology has progressively advanced. Initially, the FSH structure was determined in partially glycosylated free form in 2001, followed by a structure of FSH bound to a truncated FSHR ectodomain in 2005, and the structure of FSH bound to the entire ectodomain in 2012. Comparisons of the structures in three forms led a proposal of a two-step monomeric receptor activation mechanism. First, binding of FSH to the FSHR high-affinity hormone-binding subdomain induces a conformational change in the hormone to form a binding pocket that is specific for a sulfated-tyrosine found as sTyr 335 in FSHR. Subsequently, the sTyr is drawn into the newly formed binding pocket, producing a lever effect on a helical pivot whereby the docking sTyr provides as the 'pull & lift' force. The pivot helix is flanked by rigid LRRs and locked by two disulfide bonds on both sides: the hormone-binding subdomain on one side and the last short loop before the first transmembrane helix on the other side. The lift of the sTyr loop frees the tethered extracellular loops of the 7TM domain, thereby releasing a putative inhibitory influence of the ectodomain, ultimately leading to the activating conformation of the 7TM domain. Moreover, the data lead us to propose that FSHR exists as a trimer and to present an FSHR activation mechanism consistent with the observed trimeric crystal form. A trimeric receptor provides resolution of the enigmatic, but important, biological roles played by GPH residues that are removed from the primary FSH-binding site, as well as several important GPCR phenomena, including negative cooperativity and asymmetric activation. Further reflection pursuant to this review process revealed additional novel structural characteristics such as the identification of a 'seat' sequence in GPH. Together with the 'seatbelt', the 'seat' enables a common heteodimeric mode of association of the common α subunit non-covalently and non-specifically with each of the three different β subunits. Moreover, it was possible to establish a dimensional order that can be used to estimate LRR curvatures. A potential binding pocket for small molecular allosteric modulators in the FSHR 7TM domain has also been identified.
Collapse
Affiliation(s)
- Xuliang Jiang
- EMD Serono Research & Development Institute, Billerica, MA 01821, United States.
| | - James A Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany-SUNY, Albany, NY 12222, United States
| | - Xiaolin He
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| |
Collapse
|
40
|
Structure, domain organization, and different conformational states of stem cell factor-induced intact KIT dimers. Proc Natl Acad Sci U S A 2014; 111:1772-7. [PMID: 24449920 DOI: 10.1073/pnas.1323254111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Using electron microscopy and fitting of crystal structures, we present the 3D reconstruction of ligand-induced dimers of intact receptor tyrosine kinase, KIT. We observe that KIT protomers form close contacts throughout the entire structure of ligand-bound receptor dimers, and that the dimeric receptors adopt multiple, defined conformational states. Interestingly, the homotypic interactions in the membrane proximal Ig-like domain of the extracellular region differ from those observed in the crystal structure of the unconstrained extracellular regions. We observe two prevalent conformations in which the tyrosine kinase domains interact asymmetrically. The asymmetric arrangement of the cytoplasmic regions may represent snapshots of molecular interactions occurring during trans autophosphorylation. Moreover, the asymmetric arrangements may facilitate specific intermolecular interactions necessary for trans phosphorylation of different KIT autophosphorylation sites that are required for stimulation of kinase activity and recruitment of signaling proteins by activated KIT.
Collapse
|
41
|
Asghari S, Shekari Khaniani M, Darabi M, Mansoori Derakhshan S. Cloning of Soluble Human Stem Cell Factor in pET-26b(+) Vector. Adv Pharm Bull 2014; 4:91-5. [PMID: 24409415 DOI: 10.5681/apb.2014.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Stem cell factor (SCF) plays an important role in the survival, proliferation and differentiation of hematopoietic stem cells and progenitor cells. Potential therapeutic applications of SCF include hematopoietic stem cell mobilization, exvivo stem/progenitor cell expansion, gene therapy, and immunotherapy. Considering the cost and problem in accessibility of this product in Iran, clears the importance of indigenizing production of rhSCF. In the present work, we describe the construction of the soluble rhSCF expression vector in pET-26b (+) with periplasmic localization potential. METHODS Following PCR amplification of human SCF ORF, it is cloned in pET-26b (+) vector in NcoI and XhoI sites. The recombinant construct was transformed into BL21 (DE3) Ecoli strains. RESULTS The construction of recombinant vector was verified by colony PCR and sequence analysis of pET26b-hSCF vector. Sequence analyses proved that human SCF ORF has been inserted into NcoI and XhoI site with correct orientation downstream of strong T7 promotor and showed no nucleotide errors. CONCLUSION The SCF ORF was successfully cloned in pET-26b (+) expression vector and is ready for future production of SCF protein.
Collapse
Affiliation(s)
- Salman Asghari
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences,Tabriz, Iran
| | - Masood Darabi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences,Tabriz, Iran
| |
Collapse
|
42
|
Huang Z, Ruan HB, Zhang ZD, Chen W, Lin Z, Zeng H, Gao X. Mutation in the first Ig-like domain of Kit leads to JAK2 activation and myeloproliferation in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:122-32. [PMID: 24211109 DOI: 10.1016/j.ajpath.2013.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/10/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022]
Abstract
Myeloproliferative neoplasms constitute a group of hematopoietic neoplasms at the myeloid stem cell level. Although mutations in the receptor tyrosine kinase KIT have been identified in patients with myeloproliferative neoplasm, the functional causality is unknown because of a lack of animal models. Here, we describe a mouse strain harboring a point mutation in the first Ig-like domain of Kit. Intriguingly, the mutant mice develop a myeloproliferative disorder with typical loss-of-function phenotypes in other tissues. The mutant Kit is incompletely N-glycosylated, shows compromised receptor dimerization, and down-regulates Akt and extracellular signal-regulating kinase 1/2 signaling. However, the mutation increases the association of Kit to Janus kinase (JAK)2 and hence the activation of JAK2. The β common receptor of the gp140 family interacts and synergizes with Kit to promote JAK2 phosphorylation, which is further enhanced by the Kit mutation. Inhibition of JAK2 suppresses the proliferation of hematopoietic progenitors in vitro and partially rescues myeloproliferation in mice. Our data suggest that overactivation of JAK2 leads to myeloproliferation in Kit mutant mice and provide mechanistic insights for the diagnosis and treatment of myeloproliferative neoplasms in humans.
Collapse
Affiliation(s)
- Zan Huang
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Hai-Bin Ruan
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Zeng-Di Zhang
- Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Weiqian Chen
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Institute for Cardiovascular Science, Soochow University, Suzhou, China; Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhaoyu Lin
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Hu Zeng
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xiang Gao
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China.
| |
Collapse
|
43
|
Structural basis for KIT receptor tyrosine kinase inhibition by antibodies targeting the D4 membrane-proximal region. Proc Natl Acad Sci U S A 2013; 110:17832-7. [PMID: 24127596 DOI: 10.1073/pnas.1317118110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Somatic oncogenic mutations in the receptor tyrosine kinase KIT function as major drivers of gastrointestinal stromal tumors and a subset of acute myeloid leukemia, melanoma, and other cancers. Although treatment of these cancers with tyrosine kinase inhibitors shows dramatic responses and durable disease control, drug resistance followed by clinical progression of disease eventually occurs in virtually all patients. In this report, we describe inhibitory KIT antibodies that bind to the membrane-proximal Ig-like D4 of KIT with significant overlap with an epitope in D4 that mediates homotypic interactions essential for KIT activation. Crystal structures of the anti-KIT antibody in complex with KIT D4 and D5 allowed design of affinity-matured libraries that were used to isolate variants with increased affinity and efficacy. Isolated antibodies showed KIT inhibition together with suppression of cell proliferation driven by ligand-stimulated WT or constitutively activated oncogenic KIT mutant. These antibodies represent a unique therapeutic approach and a step toward the development of "naked" or toxin-conjugated KIT antibodies for the treatment of KIT-driven cancers.
Collapse
|
44
|
Stoleru B, Popescu AM, Tache DE, Neamtu OM, Emami G, Tataranu LG, Buteica AS, Dricu A, Purcaru SO. Tropomyosin-receptor-kinases signaling in the nervous system. MAEDICA 2013; 8:43-48. [PMID: 24023598 PMCID: PMC3749761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 02/16/2013] [Indexed: 06/02/2023]
Abstract
The development and function of the nervous system is dependent on many growth factors and their signaling. Tropomyosin-receptor-kinase receptor family controls synaptic strength and plasticity in the mammalian nervous system. Dysregulation of Tropomyosin-receptor-kinase receptors signaling can lead to neural developmental disorders and has been reported in certain diseases of the nervous system. Apart from their role in the nervous system, these tyrosine kinase receptors are also involved in cancer biology. Tropomyosin-receptor-kinases and their ligands, neurotrophins, are also involved in neural precursor stem cells differentiation. This review focuses on Tropomyosin-receptor-kinases, the most abundant receptors in mammalian nervous system.
Collapse
Affiliation(s)
- Bogdan Stoleru
- University of Medicine and Pharmacy of Craiova, Faculty of Medicine, Romania ; Equal Contribution
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yao K, Ge W. Spatial distribution and receptor specificity of zebrafish Kit system--evidence for a Kit-mediated bi-directional communication system in the preovulatory ovarian follicle. PLoS One 2013; 8:e56192. [PMID: 23409152 PMCID: PMC3568072 DOI: 10.1371/journal.pone.0056192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/07/2013] [Indexed: 01/28/2023] Open
Abstract
Consisting of Kit ligand and receptor Kit, the Kit system is involved in regulating many ovarian functions such as follicle activation, granulosa cell proliferation, and oocyte growth and maturation. In mammals, Kit ligand is derived from the granulosa cells and Kit receptor is expressed in the oocyte and theca cells. In the zebrafish, the Kit system contains two ligands (Kitlga and Kitlgb) and two receptors (Kita and Kitb). Interestingly, Kitlga and Kitb are localized in the somatic follicle cells, but Kitlgb and Kita are expressed in the oocyte. Using recombinant zebrafish Kitlga and Kitlgb, we demonstrated that Kitlga preferentially activated Kita whereas Kitlgb specifically activated Kitb by Western analysis for receptor phosphorylation. In support of this, Kitlgb triggered a stronger and longer MAPK phosphorylation in follicle cells than Kitlga, whereas Kitlga but not Kitlgb activated MAPK in the denuded oocytes, in agreement with the distribution of Kita and Kitb in the follicle and their specificity for Kitlga and Kitlgb. Further analysis of the interaction between Kit ligands and receptors by homology modeling showed that Kitlga-Kita and Kitlgb-Kitb both have more stable electrostatic interaction than Kitlgb-Kita or Kitlga-Kitb. A functional study of Kit involvement in final oocyte maturation showed that Kitlga and Kitlgb both suppressed the spontaneous maturation significantly; in contrast, Kitlgb but not Kitlga significantly promoted 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) -induced oocyte maturation. Our results provided strong evidence for a Kit-mediated bi-directional communication system in the zebrafish ovarian follicle, which could be part of the complex interplay between the oocyte and the follicle cells in the development of follicles.
Collapse
Affiliation(s)
- Kai Yao
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wei Ge
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- * E-mail:
| |
Collapse
|
46
|
Bourillon A, Hu HH, Hetet G, Lacapere JJ, André J, Descamps V, Basset-Seguin N, Ogbah Z, Puig S, Saiag P, Bagot M, Bensussan A, Grandchamp B, Dumaz N, Soufir N. Genetic variation at KIT locus may predispose to melanoma. Pigment Cell Melanoma Res 2012; 26:88-96. [PMID: 23020152 DOI: 10.1111/pcmr.12032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 09/28/2012] [Indexed: 01/06/2023]
Abstract
As loss of KIT frequently occurs in melanoma progression, we hypothesized that KIT is implicated in predisposition to melanoma (MM). Thus, we sequenced the KIT coding region in 112 familial MM cases and 143 matched controls and genotyped tag single-nucleotide polymorphisms (SNPs) in two cohorts of melanoma patients and matched controls. Five rare KIT substitutions, all predicted possibly or probably deleterious, were identified in five patients, but none in controls [RR = 2.26 (1.26-2.26)]. Expressed in melanocyte lines, three substitutions inhibited KIT signaling. Comparison with exomes database (7020 alleles) confirmed a significant excess of rare deleterious KIT substitutions in patients. Additionally, a common SNP, rs2237028, was associated with MM risk, and 6 KIT variants were associated with nevus count. Our data strongly suggest that rare KIT substitutions predispose to melanoma and that common variants at KIT locus may also impact nevus count and melanoma risk.
Collapse
Affiliation(s)
- Agnes Bourillon
- Département de Génétique, Hôpital Bichat-Claude Bernard, APHP, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Al-Sajee D, Huizinga JD. Interstitial Cells of Cajal: Pathology, injury and repair. Sultan Qaboos Univ Med J 2012; 12:411-21. [PMID: 23275836 DOI: 10.12816/0003165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 02/08/2012] [Accepted: 02/12/2012] [Indexed: 12/30/2022] Open
Abstract
Interstitial cells of cajal (ICC) are specialised cells located within the musculature of the gastrointestinal tract (GIT). Although they form only 5% of the cells in the musculature of the GIT, they play a critical role in regulating smooth muscle function and GIT motility in coordination with the enteric nervous system. C-kit is a transmembrane glycoprotein that plays a critical role in ICC development and maturation. Physiological conditions such as ageing, as well as pathological conditions that have different disease processes, negatively affect ICC networks and function. Absent or disordered ICC networks can be associated with disorders in GIT motility. This review highlights the mechanism of ICC recovery from various types of injury which entails understanding the development of ICC and the factors affecting it. ICC transformation into malignant tumours (gastrointestinal stromal tumours) and their potential as contributors to therapeutic resistance is also discussed.
Collapse
|
48
|
Chen PH, Chen X, He X. Platelet-derived growth factors and their receptors: structural and functional perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:2176-86. [PMID: 23137658 DOI: 10.1016/j.bbapap.2012.10.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/24/2012] [Accepted: 10/26/2012] [Indexed: 12/13/2022]
Abstract
The four types of platelet-derived growth factors (PDGFs) and the two types of PDGF receptors (PDGFRs, which belong to class III receptor tyrosine kinases) have important functions in the development of connective tissue cells. Recent structural studies have revealed novel mechanisms of PDGFs in propeptide loading and receptor recognition/activation. The detailed structural understanding of PDGF-PDGFR signaling has provided a template that can aid therapeutic intervention to counteract the aberrant signaling of this normally silent pathway, especially in proliferative diseases such as cancer. This review summarizes the advances in the PDGF system with a focus on relating the structural and functional understandings, and discusses the basic aspects of PDGFs and PDGFRs, the mechanisms of activation, and the insights into the therapeutic antagonism of PDGFRs. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Searle 8-417, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | |
Collapse
|
49
|
Verstraete K, Savvides SN. Extracellular assembly and activation principles of oncogenic class III receptor tyrosine kinases. Nat Rev Cancer 2012; 12:753-66. [PMID: 23076159 DOI: 10.1038/nrc3371] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intracellular signalling cascades initiated by class III receptor tyrosine kinases (RTK-IIIs) and their cytokine ligands contribute to haematopoiesis and mesenchymal tissue development. They are also implicated in a wide range of inflammatory disorders and cancers. Recent snapshots of RTK-III ectodomains in complex with cognate cytokines have revealed timely insights into the structural determinants of RTK-III activation, evolution and pathology. Importantly, candidate 'driver' and 'passenger' mutations that have been identified in RTK-IIIs can now be collectively mapped for the first time to structural scaffolds of the corresponding RTK-III ectodomains. Such insights will generate a renewed interest in dissecting the mechanistic effects of such mutations and their therapeutic relevance.
Collapse
Affiliation(s)
- Kenneth Verstraete
- Unit for Structural Biology, Laboratory for Protein Biochemistry and Biomolecular Engineering, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| | | |
Collapse
|
50
|
Wang X. Structural studies of GDNF family ligands with their receptors-Insights into ligand recognition and activation of receptor tyrosine kinase RET. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:2205-12. [PMID: 23085183 DOI: 10.1016/j.bbapap.2012.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 10/05/2012] [Indexed: 12/21/2022]
Abstract
RET is the receptor for glial cell line-derived neurotrophic factor family of ligands (GFLs). It is different from most other members in the receptor tyrosine kinase (RTK) family with the requirement of a co-receptor, GFRα, for ligand recognition and activation. Through the common signal transducer RET, GFLs are crucial for the development and maintenance of distinct sets of central and peripheral neurons, which has led to a series of studies towards understanding the structure, function and signaling mechanisms of GFLs with GFRα and RET receptors. Here I summarize our current understanding of the molecular basis underlying ligand recognition and activation of RET, focusing on the interactions of GFLs with their respective GFRα receptors, the recently determined crystal structure of RET extracellular region and a proposed GFL-GFRα-RET ternary complex model based on extensive structural, biochemical and functional data. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.
Collapse
Affiliation(s)
- Xinquan Wang
- Center for Structural Biology, School of Life Sciences, Ministry of Education Key Laboratory of Protein Science, Medical Science Building C226, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|