1
|
Lee JH, Kim JM, Kwon JK, Kang BC. Fine mapping of the Chilli veinal mottle virus resistance 4 (cvr4) gene in pepper (Capsicum annuum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:19. [PMID: 39777543 PMCID: PMC11706928 DOI: 10.1007/s00122-024-04805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
KEY MESSAGE The single recessive Chilli veinal mottle virus resistance locus, cvr4, was fine-mapped in pepper through bulked segregant RNA sequencing combined with gene silencing analysis. Chilli veinal mottle virus (ChiVMV) is a widespread pathogen affecting the production of peppers (Capsicum annuum L.) in Asia and Africa. Few loci conferring resistance to ChiVMV have been identified, severely limiting the development of resistant cultivars. To identify ChiVMV resistance genes, we constructed an F2:3 segregating population derived from a cross between the ChiVMV-resistant cultivar 'CV9' and the susceptible cultivar 'Jeju'. The inheritance study of F2:3 populations showed a 1:3 ratio of resistant to susceptible individuals, demonstrating the existence of a single recessive ChiVMV resistance gene in CV9; we named this gene cvr4. To map the cvr4 locus, we employed bulked segregant analysis by RNA sequencing (BSR-seq) of pools from resistant and susceptible F2:3 individuals. We mapped cvr4 to the telomeric region of pepper chromosome 11. To narrow down the cvr4 locus, we developed additional molecular markers in the cvr4 target region, leading to a 2-Mb region of chromosome 11 showing complete co-segregation with the ChiVMV resistance phenotype. Using the polymorphisms identified during BSR-seq, we defined a list of 15 candidate genes for cvr4, which we tested through virus-induced gene silencing analysis for ChiVMV resistance. Of these, the silencing of several genes (DEM.v1.00021323, DEM.v1.00021336, and DEM.v1.00021337) restricted virus spread. Although DEM.v1.00021323 transcript levels were similar between the resistant and susceptible bulks, its alternative spliced isoforms differed in abundance, suggesting that the splicing variants of DEM.v1.00021323 might affect viral infection. These findings may facilitate the breeding of ChiVMV-resistant cultivars in pepper.
Collapse
Affiliation(s)
- Joung-Ho Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Min Kim
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- FarmyirehSe Co., Ltd., Seoul, 08826, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- FarmyirehSe Co., Ltd., Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Brown SL, May JP. Viral condensates formed by Pea enation mosaic virus 2 sequester ribosomal components and suppress translation. Virology 2025; 601:110301. [PMID: 39549315 PMCID: PMC11649027 DOI: 10.1016/j.virol.2024.110301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Viral proteins with intrinsic disorder, such as the p26 movement protein from Pea enation mosaic virus 2 (PEMV2), can phase separate and form condensates that aid specific stages of virus replication. However, little is known about the impact of viral condensate formation on essential cellular processes, like translation. In this study, we performed mass spectrometry on affinity-purified p26 condensates and found an enrichment of RNA-binding proteins involved in translation and ribosome biogenesis. Puromycin assays and polysome profiling show that ectopic p26 expression suppresses ribosome assembly and translation in Nicotiana benthamiana, mirroring defects in late-stage PEMV2 infection. Despite interactions with the 2'-O-methyltransferase fibrillarin, p26 does not inhibit translation by altering rRNA methylation but instead binds directly to rRNAs and decreases their solubility. Disruption of ribosome assembly and translation by p26 during late PEMV2 infection may promote stages of the virus replication cycle that are incompatible with translation, including systemic movement.
Collapse
Affiliation(s)
- Shelby L Brown
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO, 64110, USA
| | - Jared P May
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO, 64110, USA.
| |
Collapse
|
3
|
Lee S, Seo YE, Choi J, Yan X, Kim T, Choi D, Lee JH. Nucleolar actions in plant development and stress responses. PLANT, CELL & ENVIRONMENT 2024; 47:5189-5204. [PMID: 39169813 DOI: 10.1111/pce.15099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
The nucleolus is conventionally acknowledged for its role in ribosomal RNA (rRNA) synthesis and ribosome biogenesis. Recent research has revealed its multifaceted involvement in plant biology, encompassing regulation of the cell cycle, development, and responses to environmental stresses. This comprehensive review explores the diverse roles of the nucleolus in plant growth and responses to environmental stresses. The introduction delves into its traditional functions in rRNA synthesis and potential participation in nuclear liquid-liquid phase separation. By examining the multifaceted roles of nucleolar proteins in plant development, we highlight the impacts of various nucleolar mutants on growth, development, and embryogenesis. Additionally, we reviewed the involvement of nucleoli in responses to abiotic and biotic stresses. Under abiotic stress conditions, the nucleolar structure undergoes morphological changes. In the context of biotic stress, the nucleolus emerges as a common target for effectors of pathogens for manipulation of host immunity to enhance pathogenicity. The detailed exploration of how pathogens interact with nucleoli and manipulate host responses provides valuable insights into plant stress responses as well as plant growth and development. Understanding these processes may pave the way for promising strategies to enhance crop resilience and mitigate the impact of biotic and abiotic stresses in agricultural systems.
Collapse
Affiliation(s)
- Soeui Lee
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ye-Eun Seo
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Jeen Choi
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Xin Yan
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Taewon Kim
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Joo Hyun Lee
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Atabekova AK, Lazareva EA, Lezzhov AA, Golyshev SA, Skulachev BI, Morozov SY, Solovyev AG. Defense Responses Induced by Viral Movement Protein and Its Nuclear Localization Modulate Virus Cell-to-Cell Transport. PLANTS (BASEL, SWITZERLAND) 2024; 13:2550. [PMID: 39339524 PMCID: PMC11435296 DOI: 10.3390/plants13182550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Movement proteins (MPs) encoded by plant viruses are essential for cell-to-cell transport of viral genomes through plasmodesmata. The genome of hibiscus green spot virus contains a module of two MP genes termed 'binary movement block' (BMB), encoding the proteins BMB1 and BMB2. Here, BMB1 is shown to induce a defense response in Nicotiana benthamiana plants that inhibits BMB-dependent virus transport. This response is characterized by the accumulation of reactive oxygen species, callose deposition in the cell wall, and upregulation of 9-LOX expression. However, the BMB1-induced response is inhibited by coexpression with BMB2. Furthermore, BMB1 is found to localize to subnuclear structures, in particular to Cajal bodies, in addition to the cytoplasm. As shown in experiments with a BMB1 mutant, the localization of BMB1 to nuclear substructures enhances BMB-dependent virus transport. Thus, the virus transport mediated by BMB proteins is modulated by (i) a BMB1-induced defense response that inhibits transport, (ii) suppression of the BMB1-induced response by BMB2, and (iii) the nuclear localization of BMB1 that promotes virus transport. Collectively, the data presented demonstrate multiple levels of interactions between viral pathogens and their plant hosts during virus cell-to-cell transport.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (E.A.L.); (A.A.L.); (S.A.G.); (B.I.S.); (S.Y.M.)
| |
Collapse
|
5
|
Kalinina NO, Spechenkova N, Ilina I, Samarskaya VO, Bagdasarova P, Zavriev SK, Love AJ, Taliansky M. Disruption of Poly(ADP-ribosyl)ation Improves Plant Tolerance to Methyl Viologen-Mediated Oxidative Stress via Induction of ROS Scavenging Enzymes. Int J Mol Sci 2024; 25:9367. [PMID: 39273315 PMCID: PMC11395660 DOI: 10.3390/ijms25179367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
ADP-ribosylation (ADPRylation) is a mechanism which post-translationally modifies proteins in eukaryotes in order to regulate a broad range of biological processes including programmed cell death, cell signaling, DNA repair, and responses to biotic and abiotic stresses. Poly(ADP-ribosyl) polymerases (PARPs) play a key role in the process of ADPRylation, which modifies target proteins by attaching ADP-ribose molecules. Here, we investigated whether and how PARP1 and PARylation modulate responses of Nicotiana benthamiana plants to methyl viologen (MV)-induced oxidative stress. It was found that the burst of reactive oxygen species (ROS), cell death, and loss of tissue viability invoked by MV in N. benthamiana leaves was significantly delayed by both the RNA silencing of the PARP1 gene and by applying the pharmacological inhibitor 3-aminobenzamide (3AB) to inhibit PARylation activity. This in turn reduced the accumulation of PARylated proteins and significantly increased the gene expression of major ROS scavenging enzymes including SOD (NbMnSOD; mitochondrial manganese SOD), CAT (NbCAT2), GR (NbGR), and APX (NbAPX5), and inhibited cell death. This mechanism may be part of a broader network that regulates plant sensitivity to oxidative stress through various genetically programmed pathways.
Collapse
Affiliation(s)
- Natalia O Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Irina Ilina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Viktoriya O Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Polina Bagdasarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Sergey K Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Andrew J Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
6
|
Ranty-Roby S, Pontvianne F, Quentin M, Favery B. The overlooked manipulation of nucleolar functions by plant pathogen effectors. FRONTIERS IN PLANT SCIENCE 2024; 15:1445097. [PMID: 39175483 PMCID: PMC11339880 DOI: 10.3389/fpls.2024.1445097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
Pathogens need to manipulate plant functions to facilitate the invasion of their hosts. They do this by secreting a cocktail of molecules called effectors. Studies of these molecules have mostly focused on the mechanisms underlying their recognition and the subsequent transcriptional reprogramming of cells, particularly in the case of R gene-dependent resistance. However, the roles of these effectors are complex, as they target all cell compartments and their plant targets remain largely uncharacterized. An understanding of the mechanisms involved would be a considerable asset for plant breeding. The nucleolus is the site of many key cellular functions, such as ribosome biogenesis, cellular stress regulation and many other functions that could be targets for pathogenicity. However, little attention has been paid to effectors targeting nucleolar functions. In this review, we aim to fill this gap by providing recent findings on pathogen effectors that target and manipulate nucleolar functions and dynamics to promote infection. In particular, we look at how some effectors hijack ribosome biogenesis, the modulation of transcription or alternative splicing, all key functions occurring at least partially in the nucleolus. By shedding light on the role of the plant nucleolus in pathogen interactions, this review highlights the importance of understanding nucleolar biology in the context of plant immunity and the mechanisms manipulated by plant pathogens.
Collapse
Affiliation(s)
- Sarah Ranty-Roby
- INRAE, Université Côte d’Azur, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis F-06903, Sophia Antipolis, France
| | | | - Michaël Quentin
- INRAE, Université Côte d’Azur, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis F-06903, Sophia Antipolis, France
| | - Bruno Favery
- INRAE, Université Côte d’Azur, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis F-06903, Sophia Antipolis, France
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Jing X, Wang P, Liu J, Xiang M, Song X, Wang C, Li P, Li H, Wu Z, Zhang C. A viral protein competitively bound to rice CIPK23 inhibits potassium absorption and facilitates virus systemic infection in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2348-2363. [PMID: 38578842 PMCID: PMC11258980 DOI: 10.1111/pbi.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/02/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
Potassium (K+) plays a crucial role as a macronutrient in the growth and development of plants. Studies have definitely determined the vital roles of K+ in response to pathogen invasion. Our previous investigations revealed that rice plants infected with rice grassy stunt virus (RGSV) displayed a reduction in K+ content, but the mechanism by which RGSV infection subverts K+ uptake remains unknown. In this study, we found that overexpression of RGSV P1, a specific viral protein encoded by viral RNA1, results in enhanced sensitivity to low K+ stress and exhibits a significantly lower rate of K+ influx compared to wild-type rice plants. Further investigation revealed that RGSV P1 interacts with OsCIPK23, an upstream regulator of Shaker K+ channel OsAKT1. Moreover, we found that the P1 protein recruits the OsCIPK23 to the Cajal bodies (CBs). In vivo assays demonstrated that the P1 protein competitively binds to OsCIPK23 with both OsCBL1 and OsAKT1. In the nucleus, the P1 protein enhances the binding of OsCIPK23 to OsCoilin, a homologue of the signature protein of CBs in Arabidopsis, and facilitates their trafficking through these CB structures. Genetic analysis indicates that mutant in oscipk23 suppresses RGSV systemic infection. Conversely, osakt1 mutants exhibited increased sensitivity to RGSV infection. These findings suggest that RGSV P1 hinders the absorption of K+ in rice plants by recruiting the OsCIPK23 to the CB structures. This process potentially promotes virus systemic infection but comes at the expense of inhibiting OsAKT1 activity.
Collapse
Affiliation(s)
- Xinxin Jing
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
- Fujian Province Key Laboratory of Plant VirologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Pengyue Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
- Fujian Province Key Laboratory of Plant VirologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jianjian Liu
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
- Hubei Engineering Research Center for Pest Forewarning and ManagementCollege of AgronomyYangtze UniversityJingzhouChina
| | - Meirong Xiang
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Xia Song
- Fujian Province Key Laboratory of Plant VirologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chaonan Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Pengbai Li
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Honglian Li
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant VirologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chao Zhang
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
8
|
Marmisolle FE, Borniego MB, Cambiagno DA, Gonzalo L, García ML, Manavella PA, Hernández C, Reyes CA. Citrus psorosis virus 24K protein inhibits the processing of miRNA precursors by interacting with components of the biogenesis machinery. Microbiol Spectr 2024; 12:e0351323. [PMID: 38785434 PMCID: PMC11218507 DOI: 10.1128/spectrum.03513-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide. Virus infections in this crop can interfere with cellular processes, causing dramatic economic losses. By performing RT-qPCR analyses, we demonstrated that citrus psorosis virus (CPsV)-infected orange plants exhibited higher levels of unprocessed microRNA (miRNA) precursors than healthy plants. This result correlated with the reported reduction of mature miRNAs species. The protein 24K, the CPsV suppressor of RNA silencing (VSR), interacts with miRNA precursors in vivo. Thus, this protein becomes a candidate responsible for the increased accumulation of unprocessed miRNAs. We analyzed 24K RNA-binding and protein-protein interaction domains and described patterns of its subcellular localization. We also showed that 24K colocalizes within nuclear D-bodies with the miRNA biogenesis proteins DICER-LIKE 1 (DCL1), HYPONASTIC LEAVES 1 (HYL1), and SERRATE (SE). According to the results of bimolecular fluorescence complementation and co-immunoprecipitation assays, the 24K protein interacts with HYL1 and SE. Thus, 24K may inhibit miRNA processing in CPsV-infected citrus plants by direct interaction with the miRNA processing complex. This work contributes to the understanding of how a virus can alter the regulatory mechanisms of the host, particularly miRNA biogenesis and function.IMPORTANCESweet oranges can suffer from disease symptoms induced by virus infections, thus resulting in drastic economic losses. In sweet orange plants, CPsV alters the accumulation of some precursors from the regulatory molecules called miRNAs. This alteration leads to a decreased level of mature miRNA species. This misregulation may be due to a direct association of one of the viral proteins (24K) with miRNA precursors. On the other hand, 24K may act with components of the cell miRNA processing machinery through a series of predicted RNA-binding and protein-protein interaction domains.
Collapse
Affiliation(s)
- Facundo E. Marmisolle
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - María B. Borniego
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Damián A. Cambiagno
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Lucia Gonzalo
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María L. García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Pablo A. Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - Carina A. Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| |
Collapse
|
9
|
Leastro MO, Pallás V, Sánchez-Navarro JÁ. The capsid protein of citrus leprosis virus C shows a nuclear distribution and interacts with the nucleolar fibrillarin protein. Virus Res 2024; 340:199297. [PMID: 38070688 PMCID: PMC10758971 DOI: 10.1016/j.virusres.2023.199297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Brevipalpus-transmitted viruses (BTVs) have a significant negative economic impact on the citrus industry in Central and South America. Until now, only a few studies have explored the intracellular distribution and interaction of BTVs-encoded proteins with host factors, particularly for cileviruses, the main BTV responsible for the Citrus Leprosis (CL) disease. This study describes the nuclear localization of citrus leprosis virus C (CiLV-C) capsid protein (p29) and its interaction with the fibrillarin (Fib2) within the nucleolar compartment and cell cytoplasm. Our results, obtained by computer predictions and laser scanning confocal microscopy analyses, including colocalization and bimolecular fluorescence complementation (BiFC) approaches, revealed that a fraction of the p29 is localized in the nucleus and colocalizes with the Fib2 in both the nucleolus and cytosol. The nuclear localization of p29 correlated with a smaller nucleus size. Furthermore, co-immunoprecipitation (Co-IP) assays confirmed the interactions between p29 and Fib2. The implications of these findings for the functionalities of the cilevirus capsid protein are discussed.
Collapse
Affiliation(s)
- Mikhail Oliveira Leastro
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain.
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Jesús Ángel Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain.
| |
Collapse
|
10
|
Li Q, Liu Y, Zhang X. Biomolecular condensates in plant RNA silencing: insights into formation, function, and stress responses. THE PLANT CELL 2024; 36:227-245. [PMID: 37772963 PMCID: PMC10827315 DOI: 10.1093/plcell/koad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Biomolecular condensates are dynamic structures formed through diverse mechanisms, including liquid-liquid phase separation. These condensates have emerged as crucial regulators of cellular processes in eukaryotic cells, enabling the compartmentalization of specific biological reactions while allowing for dynamic exchange of molecules with the surrounding environment. RNA silencing, a conserved gene regulatory mechanism mediated by small RNAs (sRNAs), plays pivotal roles in various biological processes. Multiple types of biomolecular condensate, including dicing bodies, processing bodies, small interfering RNA bodies, and Cajal bodies, have been identified as key players in RNA silencing pathways. These biomolecular condensates provide spatial compartmentation for the biogenesis, loading, action, and turnover of small RNAs. Moreover, they actively respond to stresses, such as viral infections, and modulate RNA silencing activities during stress responses. This review summarizes recent advances in understanding of dicing bodies and other biomolecular condensates involved in RNA silencing. We explore their formation, roles in RNA silencing, and contributions to antiviral resistance responses. This comprehensive overview provides insights into the functional significance of biomolecular condensates in RNA silencing and expands our understanding of their roles in gene expression and stress responses in plants.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- HainanYazhou Bay Seed Lab, Sanya, China
| |
Collapse
|
11
|
Gomaa AE, El Mounadi K, Parperides E, Garcia-Ruiz H. Cell Fractionation and the Identification of Host Proteins Involved in Plant-Virus Interactions. Pathogens 2024; 13:53. [PMID: 38251360 PMCID: PMC10819628 DOI: 10.3390/pathogens13010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Plant viruses depend on host cellular factors for their replication and movement. There are cellular proteins that change their localization and/or expression and have a proviral role or antiviral activity and interact with or target viral proteins. Identification of those proteins and their roles during infection is crucial for understanding plant-virus interactions and to design antiviral resistance in crops. Important host proteins have been identified using approaches such as tag-dependent immunoprecipitation or yeast two hybridization that require cloning individual proteins or the entire virus. However, the number of possible interactions between host and viral proteins is immense. Therefore, an alternative method is needed for proteome-wide identification of host proteins involved in host-virus interactions. Here, we present cell fractionation coupled with mass spectrometry as an option to identify protein-protein interactions between viruses and their hosts. This approach involves separating subcellular organelles using differential and/or gradient centrifugation from virus-free and virus-infected cells (1) followed by comparative analysis of the proteomic profiles obtained for each subcellular organelle via mass spectrometry (2). After biological validation, prospect host proteins with proviral or antiviral roles can be subject to fundamental studies in the context of basic biology to shed light on both virus replication and cellular processes. They can also be targeted via gene editing to develop virus-resistant crops.
Collapse
Affiliation(s)
- Amany E. Gomaa
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Kaoutar El Mounadi
- Department of Biology, Kutztown University of Pennsylvania, Kutztown, PA 19530, USA
| | - Eric Parperides
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
| |
Collapse
|
12
|
Lettin L, Erbay B, Blair GE. Viruses and Cajal Bodies: A Critical Cellular Target in Virus Infection? Viruses 2023; 15:2311. [PMID: 38140552 PMCID: PMC10747631 DOI: 10.3390/v15122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Nuclear bodies (NBs) are dynamic structures present in eukaryotic cell nuclei. They are not bounded by membranes and are often considered biomolecular condensates, defined structurally and functionally by the localisation of core components. Nuclear architecture can be reorganised during normal cellular processes such as the cell cycle as well as in response to cellular stress. Many plant and animal viruses target their proteins to NBs, in some cases triggering their structural disruption and redistribution. Although not all such interactions have been well characterised, subversion of NBs and their functions may form a key part of the life cycle of eukaryotic viruses that require the nucleus for their replication. This review will focus on Cajal bodies (CBs) and the viruses that target them. Since CBs are dynamic structures, other NBs (principally nucleoli and promyelocytic leukaemia, PML and bodies), whose components interact with CBs, will also be considered. As well as providing important insights into key virus-host cell interactions, studies on Cajal and associated NBs may identify novel cellular targets for development of antiviral compounds.
Collapse
Affiliation(s)
- Lucy Lettin
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
| | - Bilgi Erbay
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
- Moleküler Biyoloji ve Genetik Bölümü, Fen Fakültesi, Van Yuzuncu Yil University, Van 65140, Türkiye
| | - G. Eric Blair
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
| |
Collapse
|
13
|
White L, Erbay B, Blair GE. The Cajal body protein p80-coilin forms a complex with the adenovirus L4-22K protein and facilitates the nuclear export of adenovirus mRNA. mBio 2023; 14:e0145923. [PMID: 37795984 PMCID: PMC10653806 DOI: 10.1128/mbio.01459-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/11/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE The architecture of sub-nuclear structures of eucaryotic cells is often changed during the infectious cycle of many animal and plant viruses. Cajal bodies (CBs) form a major sub-nuclear structure whose functions may include the regulation of cellular RNA metabolism. During the lifecycle of human adenovirus 5 (Ad5), CBs are reorganized from their spherical-like structure into smaller clusters termed microfoci. The mechanism of this reorganization and its significance for virus replication has yet to be established. Here we show that the major CB protein, p80-coilin, facilitates the nuclear export of Ad5 transcripts. Depletion of p80-coilin by RNA interference led to lowered levels of viral proteins and infectious virus. p80-coilin was found to form a complex with the viral L4-22K protein in Ad5-infected cells and in some reorganized microfoci. These findings assign a new role for p80-coilin as a potential regulator of infection by a human DNA virus.
Collapse
Affiliation(s)
- Laura White
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Bilgi Erbay
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - G. Eric Blair
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
14
|
Lee S, Kim J, Kim MS, Min CW, Kim ST, Choi SB, Lee JH, Choi D. The Phytophthora nucleolar effector Pi23226 targets host ribosome biogenesis to induce necrotrophic cell death. PLANT COMMUNICATIONS 2023; 4:100606. [PMID: 37087572 PMCID: PMC10504586 DOI: 10.1016/j.xplc.2023.100606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/15/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Pathogen effectors target diverse subcellular organelles to manipulate the plant immune system. Although the nucleolus has emerged as a stress marker and several effectors are localized in the nucleolus, the roles of nucleolar-targeted effectors remain elusive. In this study, we showed that Phytophthora infestans infection of Nicotiana benthamiana results in nucleolar inflation during the transition from the biotrophic to the necrotrophic phase. Multiple P. infestans effectors were localized in the nucleolus: Pi23226 induced cell death in N. benthamiana and nucleolar inflation similar to that observed in the necrotrophic stage of infection, whereas its homolog Pi23015 and a deletion mutant (Pi23226ΔC) did not induce cell death or affect nucleolar size. RNA immunoprecipitation and individual-nucleotide-resolution UV crosslinking and immunoprecipitation sequencing analysis indicated that Pi23226 bound to the 3' end of 25S rRNA precursors, resulting in accumulation of unprocessed 27S pre-rRNAs. The nucleolar stress marker NAC082 was strongly upregulated under Pi23226-expressing conditions. Pi23226 subsequently inhibited global protein translation in host cells by interacting with ribosomes. Pi23226 enhanced P. infestans pathogenicity, indicating that Pi23226-induced ribosome malfunction and cell death were beneficial for pathogenesis in the host. Our results provide evidence for the molecular mechanism underlying RNA-binding effector activity in host ribosome biogenesis and lead to new insights into the nucleolar action of effectors in pathogenesis.
Collapse
Affiliation(s)
- Soeui Lee
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehwan Kim
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Myung-Shin Kim
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Programs in Agricultural Genomics, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Division of Bioscience and Bioinformatics, Myongji University, Yongin 449-728, Republic of Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Sang-Bong Choi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449-728, Republic of Korea
| | - Joo Hyun Lee
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
15
|
Chkuaseli T, White K. Dimerization of an umbravirus RNA genome activates subgenomic mRNA transcription. Nucleic Acids Res 2023; 51:8787-8804. [PMID: 37395397 PMCID: PMC10484742 DOI: 10.1093/nar/gkad550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
Many eukaryotic RNA viruses transcribe subgenomic (sg) mRNAs during infections to control expression of a subset of viral genes. Such transcriptional events are commonly regulated by local or long-range intragenomic interactions that form higher-order RNA structures within these viral genomes. In contrast, here we report that an umbravirus activates sg mRNA transcription via base pair-mediated dimerization of its plus-strand RNA genome. Compelling in vivo and in vitro evidence demonstrate that this viral genome dimerizes via a kissing-loop interaction involving an RNA stem-loop structure located just upstream from its transcriptional initiation site. Both specific and non-specific features of the palindromic kissing-loop complex were found to contribute to transcriptional activation. Structural and mechanistic aspects of the process in umbraviruses are discussed and compared with genome dimerization events in other RNA viruses. Notably, probable dimer-promoting RNA stem-loop structures were also identified in a diverse group of umbra-like viruses, suggesting broader utilization of this unconventional transcriptional strategy.
Collapse
Affiliation(s)
- Tamari Chkuaseli
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
16
|
Taliansky ME, Love AJ, Kołowerzo-Lubnau A, Smoliński DJ. Cajal bodies: Evolutionarily conserved nuclear biomolecular condensates with properties unique to plants. THE PLANT CELL 2023; 35:3214-3235. [PMID: 37202374 PMCID: PMC10473218 DOI: 10.1093/plcell/koad140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
Proper orchestration of the thousands of biochemical processes that are essential to the life of every cell requires highly organized cellular compartmentalization of dedicated microenvironments. There are 2 ways to create this intracellular segregation to optimize cellular function. One way is to create specific organelles, enclosed spaces bounded by lipid membranes that regulate macromolecular flux in and out of the compartment. A second way is via membraneless biomolecular condensates that form due to to liquid-liquid phase separation. Although research on these membraneless condensates has historically been performed using animal and fungal systems, recent studies have explored basic principles governing the assembly, properties, and functions of membraneless compartments in plants. In this review, we discuss how phase separation is involved in a variety of key processes occurring in Cajal bodies (CBs), a type of biomolecular condensate found in nuclei. These processes include RNA metabolism, formation of ribonucleoproteins involved in transcription, RNA splicing, ribosome biogenesis, and telomere maintenance. Besides these primary roles of CBs, we discuss unique plant-specific functions of CBs in RNA-based regulatory pathways such as nonsense-mediated mRNA decay, mRNA retention, and RNA silencing. Finally, we summarize recent progress and discuss the functions of CBs in responses to pathogen attacks and abiotic stresses, responses that may be regulated via mechanisms governed by polyADP-ribosylation. Thus, plant CBs are emerging as highly complex and multifunctional biomolecular condensates that are involved in a surprisingly diverse range of molecular mechanisms that we are just beginning to appreciate.
Collapse
Affiliation(s)
| | - Andrew J Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Agnieszka Kołowerzo-Lubnau
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| | - Dariusz Jan Smoliński
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| |
Collapse
|
17
|
Spechenkova N, Samarskaya VO, Kalinina NO, Zavriev SK, MacFarlane S, Love AJ, Taliansky M. Plant Poly(ADP-Ribose) Polymerase 1 Is a Potential Mediator of Cross-Talk between the Cajal Body Protein Coilin and Salicylic Acid-Mediated Antiviral Defence. Viruses 2023; 15:1282. [PMID: 37376582 DOI: 10.3390/v15061282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
The nucleolus and Cajal bodies (CBs) are sub-nuclear domains with well-known roles in RNA metabolism and RNA-protein assembly. However, they also participate in other important aspects of cell functioning. This study uncovers a previously unrecognised mechanism by which these bodies and their components regulate host defences against pathogen attack. We show that the CB protein coilin interacts with poly(ADP-ribose) polymerase 1 (PARP1), redistributes it to the nucleolus and modifies its function, and that these events are accompanied by substantial increases in endogenous concentrations of salicylic acid (SA), activation of SA-responsive gene expression and callose deposition leading to the restriction of tobacco rattle virus (TRV) systemic infection. Consistent with this, we also find that treatment with SA subverts the negative effect of the pharmacological PARP inhibitor 3-aminobenzamide (3AB) on plant recovery from TRV infection. Our results suggest that PARP1 could act as a key molecular actuator in the regulatory network which integrates coilin activities as a stress sensor for virus infection and SA-mediated antivirus defence.
Collapse
Affiliation(s)
- Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Viktoriya O Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalya O Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey K Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - S MacFarlane
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Andrew J Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
18
|
Ramos RN, Zhang N, Lauff DB, Valenzuela-Riffo F, Figueroa CR, Martin GB, Pombo MA, Rosli HG. Loss-of-function mutations in WRKY22 and WRKY25 impair stomatal-mediated immunity and PTI and ETI responses against Pseudomonas syringae pv. tomato. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01358-0. [PMID: 37226022 DOI: 10.1007/s11103-023-01358-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/27/2023] [Indexed: 05/26/2023]
Abstract
Plants defend themselves against pathogens using a two-layered immune system. The first response, pattern-triggered immunity (PTI), is activated upon recognition of microbe-associated molecular patterns (MAMPs). Virulent bacteria such as Pseudomonas syringae pv. tomato (Pst), deliver effector proteins into the plant cell to promote susceptibility. However, some plants possess resistance (R) proteins that recognize specific effectors leading to the activation of the second response, effector-triggered immunity (ETI). Resistant tomatoes such as Río Grande-PtoR recognize two Pst effectors (AvrPto and AvrPtoB) through the host Pto/Prf complex and activate ETI. We previously showed that the transcription factors (TF) WRKY22 and WRKY25 are positive regulators of plant immunity against bacterial and potentially non-bacterial pathogens in Nicotiana benthamiana. Here, the CRISPR-Cas9 technique was used to develop three knockout tomato lines for either one or both TFs. The single and double mutants were all compromised in Pto/Prf-mediated ETI and had a weaker PTI response. The stomata apertures in all of the mutant lines did not respond to darkness or challenge with Pst DC3000. The WRKY22 and WRKY25 proteins both localize in the nucleus, but we found no evidence of a physical interaction between them. The WRKY22 TF was found to be involved in the transcriptional regulation of WRKY25, supporting the idea that they are not functionally redundant. Together, our results indicate that both WRKY TFs play a role in modulating stomata and are positive regulators of plant immunity in tomato.
Collapse
Affiliation(s)
- Romina N Ramos
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Diana B Lauff
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Felipe Valenzuela-Riffo
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Carlos R Figueroa
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Marina A Pombo
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina.
| | - Hernan G Rosli
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
19
|
Spechenkova N, Kalinina NO, Zavriev SK, Love AJ, Taliansky M. ADP-Ribosylation and Antiviral Resistance in Plants. Viruses 2023; 15:241. [PMID: 36680280 PMCID: PMC9861866 DOI: 10.3390/v15010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
ADP-ribosylation (ADPRylation) is a versatile posttranslational modification in eukaryotic cells which is involved in the regulation of a wide range of key biological processes, including DNA repair, cell signalling, programmed cell death, growth and development and responses to biotic and abiotic stresses. Members of the poly(ADP-ribosyl) polymerase (PARP) family play a central role in the process of ADPRylation. Protein targets can be modified by adding either a single ADP-ribose moiety (mono(ADP-ribosyl)ation; MARylation), which is catalysed by mono(ADP-ribosyl) transferases (MARTs or PARP "monoenzymes"), or targets may be decorated with chains of multiple ADP-ribose moieties (PARylation), via the activities of PARP "polyenzymes". Studies have revealed crosstalk between PARylation (and to a lesser extent, MARylation) processes in plants and plant-virus interactions, suggesting that these tight links may represent a novel factor regulating plant antiviral immunity. From this perspective, we go through the literature linking PARylation-associated processes with other plant regulation pathways controlling virus resistance. Once unraveled, these links may serve as the basis of innovative strategies to improve crop resistance to viruses under challenging environmental conditions which could mitigate yield losses.
Collapse
Affiliation(s)
- Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalya O. Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey K. Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrew J. Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, 117997 Moscow, Russia
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
20
|
Fefilova AS, Antifeeva IA, Gavrilova AA, Turoverov KK, Kuznetsova IM, Fonin AV. Reorganization of Cell Compartmentalization Induced by Stress. Biomolecules 2022; 12:1441. [PMID: 36291650 PMCID: PMC9599104 DOI: 10.3390/biom12101441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
The discovery of intrinsically disordered proteins (IDPs) that do not have an ordered structure and nevertheless perform essential functions has opened a new era in the understanding of cellular compartmentalization. It threw the bridge from the mostly mechanistic model of the organization of the living matter to the idea of highly dynamic and functional "soft matter". This paradigm is based on the notion of the major role of liquid-liquid phase separation (LLPS) of biopolymers in the spatial-temporal organization of intracellular space. The LLPS leads to the formation of self-assembled membrane-less organelles (MLOs). MLOs are multicomponent and multifunctional biological condensates, highly dynamic in structure and composition, that allow them to fine-tune the regulation of various intracellular processes. IDPs play a central role in the assembly and functioning of MLOs. The LLPS importance for the regulation of chemical reactions inside the cell is clearly illustrated by the reorganization of the intracellular space during stress response. As a reaction to various types of stresses, stress-induced MLOs appear in the cell, enabling the preservation of the genetic and protein material during unfavourable conditions. In addition, stress causes structural, functional, and compositional changes in the MLOs permanently present inside the cells. In this review, we describe the assembly of stress-induced MLOs and the stress-induced modification of existing MLOs in eukaryotes, yeasts, and prokaryotes in response to various stress factors.
Collapse
Affiliation(s)
| | | | | | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of RAS, 194064 St. Petersburg, Russia
| | | | | |
Collapse
|
21
|
Abulfaraj AA, Alhoraibi HM, Mariappan K, Bigeard J, Zhang H, Almeida-Trapp M, Artyukh O, Abdulhakim F, Parween S, Pflieger D, Blilou I, Hirt H, Rayapuram N. Analysis of the Arabidopsis coilin mutant reveals a positive role of AtCOILIN in plant immunity. PLANT PHYSIOLOGY 2022; 190:745-761. [PMID: 35674377 PMCID: PMC9434284 DOI: 10.1093/plphys/kiac280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Biogenesis of ribonucleoproteins occurs in dynamic subnuclear compartments called Cajal bodies (CBs). COILIN is a critical scaffolding component essential for CB formation, composition, and activity. We recently showed that Arabidopsis (Arabidopsis thaliana) AtCOILIN is phosphorylated in response to bacterial elicitor treatment. Here, we further investigated the role of AtCOILIN in plant innate immunity. Atcoilin mutants are compromised in defense responses to bacterial pathogens. Besides confirming a role of AtCOILIN in alternative splicing (AS), Atcoilin showed differential expression of genes that are distinct from those of AS, including factors involved in RNA biogenesis, metabolism, plant immunity, and phytohormones. Atcoilin mutant plants have reduced levels of defense phytohormones. As expected, the mutant plants were more sensitive to the necrotrophic fungal pathogen Botrytis cinerea. Our findings reveal an important role for AtCOILIN in innate plant immunity.
Collapse
Affiliation(s)
- Aala A Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Hanna M Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21551 Jeddah, Saudi Arabia
| | - Kiruthiga Mariappan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jean Bigeard
- Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, Université de Paris, Orsay 91405, France
| | - Huoming Zhang
- Corelabs, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Marilia Almeida-Trapp
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Olga Artyukh
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Fatimah Abdulhakim
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Sabiha Parween
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Delphine Pflieger
- Universite Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048 38000, Grenoble, France
| | - Ikram Blilou
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | | | | |
Collapse
|
22
|
Zheng L, Fu S, Xie Y, Han Y, Zhou X, Wu J. Discovery and Characterization of a Novel Umbravirus from Paederia scandens Plants Showing Leaf Chlorosis and Yellowing Symptoms. Viruses 2022; 14:1821. [PMID: 36016443 PMCID: PMC9414234 DOI: 10.3390/v14081821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Umbraviruses are a special class of plant viruses that do not encode any viral structural proteins. Here, a novel umbravirus that has been tentatively named Paederia scandens chlorosis yellow virus (PSCYV) was discovered through RNA-seq in Paederia scandens plants showing leaf chlorosis and yellowing symptoms. The PSCYV genome is a 4301 nt positive-sense, single strand RNA that contains four open reading frames (ORFs), i.e., ORF1-4, that encode P1-P4 proteins, respectively. Together, ORF1 and ORF2 are predicted to encode an additional protein, RdRp, through a -1 frameshift mechanism. The P3 protein encoded by ORF3 was predicted to be the viral long-distance movement protein. P4 was determined to function as the viral cell-to-cell movement protein (MP) and transcriptional gene silencing (TGS) suppressor. Both P1 and RdRp function as weak post-transcriptional gene silencing (PTGS) suppressors of PSCYV. The PVX-expression system indicated that all viral proteins may be symptom determinants of PSCYV. Phylogenetic analysis indicated that PSCYV is evolutionarily related to members of the genus Umbravirus in the family Tombusviridae. Furthermore, a cDNA infectious clone of PSCYV was successfully constructed and used to prove that PSCYV can infect both Paederia scandens and Nicotiana benthamiana plants through mechanical inoculation, causing leaf chlorosis and yellowing symptoms. These findings have broadened our understanding of umbraviruses and their host range.
Collapse
Affiliation(s)
- Lianshun Zheng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yi Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yang Han
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
23
|
Wang L, Lozano-Duran R. Arabidopsis AGO4 loses its Cajal body localization when heterologously expressed in Nicotiana benthamiana. Commun Integr Biol 2022; 15:88-91. [PMID: 35356538 PMCID: PMC8959500 DOI: 10.1080/19420889.2022.2051843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In plants, the RNA-directed DNA methylation (RdDM) pathway plays a major role in establishing DNA methylation. At least some components of the RdDM machinery, including the central component AGO4, are known to concentrate in a subnuclear compartment called the Cajal body in the model plant Arabidopsis thaliana. The molecular underpinnings of Cajal body localization, however, have remained elusive so far. Here, we found that Arabidopsis AGO4 (AtAGO4) fused to GFP does not present its typical Cajal body localization, when transiently expressed in Nicotiana benthamiana. Nevertheless, the endogenous AGO4 protein from N. benthamiana shows a clear accumulation in the Cajal body. Thus, our results suggest that the Cajal body localization of AtAGO4 requires specific molecular machinery that cannot be replaced by orthologues in N. benthamiana. This study presents an experimental system that could lead to mechanistic insights into the targeting of proteins to and localization in the Cajal body in plants.
Collapse
Affiliation(s)
- Liping Wang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China.,Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
24
|
Pérez-Cañamás M, Hevia E, Katsarou K, Hernández C. Genetic evidence for the involvement of Dicer-like 2 and 4 as well as Argonaute 2 in the Nicotiana benthamiana response against Pelargonium line pattern virus. J Gen Virol 2021; 102:001656. [PMID: 34623234 PMCID: PMC8604191 DOI: 10.1099/jgv.0.001656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
In plants, RNA silencing functions as a potent antiviral mechanism. Virus-derived double-stranded RNAs (dsRNAs) trigger this mechanism, being cleaved by Dicer-like (DCL) enzymes into virus small RNAs (vsRNAs). These vsRNAs guide sequence-specific RNA degradation upon their incorporation into an RNA-induced silencing complex (RISC) that contains a slicer of the Argonaute (AGO) family. Host RNA dependent-RNA polymerases, particularly RDR6, strengthen antiviral silencing by generating more dsRNA templates from RISC-cleavage products that, in turn, are converted into secondary vsRNAs by DCLs. Previous work showed that Pelargonium line pattern virus (PLPV) is a very efficient inducer and target of RNA silencing as PLPV-infected Nicotiana benthamiana plants accumulate extraordinarily high amounts of vsRNAs that, strikingly, are independent of RDR6 activity. Several scenarios may explain these observations including a major contribution of dicing versus slicing for defence against PLPV, as the dicing step would not be affected by the RNA silencing suppressor encoded by the virus, a protein that acts via vsRNA sequestration. Taking advantage of the availability of lines of N. benthamiana with DCL or AGO2 functions impaired, here we have tried to get further insights into the components of the silencing machinery that are involved in anti-PLPV-silencing. Results have shown that DCL4 and, to lesser extent, DCL2 contribute to restrict viral infection. Interestingly, AGO2 apparently makes even a higher contribution in the defence against PLPV, extending the number of viruses that are affected by this particular slicer. The data support that both dicing and slicing activities participate in the host race against PLPV.
Collapse
Affiliation(s)
- Miryam Pérez-Cañamás
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia). Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Elizabeth Hevia
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia). Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, GR-7110 Heraklion, Crete, Greece
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia). Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
25
|
Brown SL, Garrison DJ, May JP. Phase separation of a plant virus movement protein and cellular factors support virus-host interactions. PLoS Pathog 2021; 17:e1009622. [PMID: 34543360 PMCID: PMC8483311 DOI: 10.1371/journal.ppat.1009622] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/30/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Both cellular and viral proteins can undergo phase separation and form membraneless compartments that concentrate biomolecules. The p26 movement protein from single-stranded, positive-sense Pea enation mosaic virus 2 (PEMV2) separates into a dense phase in nucleoli where p26 and related orthologues must interact with fibrillarin (Fib2) as a pre-requisite for systemic virus movement. Using in vitro assays, viral ribonucleoprotein complexes containing p26, Fib2, and PEMV2 genomic RNAs formed droplets that may provide the basis for self-assembly in planta. Mutating basic p26 residues (R/K-G) blocked droplet formation and partitioning into Fib2 droplets or the nucleolus and prevented systemic movement of a Tobacco mosaic virus (TMV) vector in Nicotiana benthamiana. Mutating acidic residues (D/E-G) reduced droplet formation in vitro, increased nucleolar retention 6.5-fold, and prevented systemic movement of TMV, thus demonstrating that p26 requires electrostatic interactions for droplet formation and charged residues are critical for nucleolar trafficking and virus movement. p26 readily partitioned into stress granules (SGs), which are membraneless compartments that assemble by clustering of the RNA binding protein G3BP following stress. G3BP is upregulated during PEMV2 infection and over-expression of G3BP restricted PEMV2 RNA accumulation >20-fold. Deletion of the NTF2 domain that is required for G3BP condensation restored PEMV2 RNA accumulation >4-fold, demonstrating that phase separation enhances G3BP antiviral activity. These results indicate that p26 partitions into membraneless compartments with either proviral (Fib2) or antiviral (G3BP) factors.
Collapse
Affiliation(s)
- Shelby L. Brown
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Dana J. Garrison
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Jared P. May
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| |
Collapse
|
26
|
Jiang J, Kuo YW, Salem N, Erickson A, Falk BW. Carrot mottle virus ORF4 movement protein targets plasmodesmata by interacting with the host cell SUMOylation system. THE NEW PHYTOLOGIST 2021; 231:382-398. [PMID: 33774829 DOI: 10.1111/nph.17370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Plant virus movement proteins (MPs) facilitate virus spread in their plant hosts, and some of them are known to target plasmodesmata (PD). However, how the MPs target PD is still largely unknown. Carrot mottle virus (CMoV) encodes the ORF3 and ORF4 proteins, which are involved in CMoV movement. In this study, we used CMoV as a model to study the PD targeting of a plant virus MP. We showed that the CMoV ORF4 protein, but not the ORF3 protein, modified PD and led to the virus movement. We found that the CMoV ORF4 protein interacts with the host cell small ubiquitin-like modifier (SUMO) 1, 2 and the SUMO-conjugating enzyme SCE1, resulting in the ORF4 protein SUMOylation. Downregulation of mRNAs for NbSCE1 and NbSUMO impaired CMoV infection. The SUMO-interacting motifs (SIMs) LVIVF, VIWV, and a lysine residue at position 78 (K78) are required for the ORF4 protein SUMOylation. The mutation of these motifs prevented the protein to efficiently target PD, and further slowed or completely abolished CMoV systemic movement. Finally, we found that some of these motifs are highly conserved among umbraviruses. Our data suggest that the CMoV ORF4 protein targets PD by interacting with the host cell SUMOylation system.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Nidà Salem
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, 11942, Jordan
| | - Anna Erickson
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Bryce W Falk
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
27
|
Decle-Carrasco S, Rodríguez-Zapata LC, Castano E. Plant viral proteins and fibrillarin: the link to complete the infective cycle. Mol Biol Rep 2021; 48:4677-4686. [PMID: 34036480 DOI: 10.1007/s11033-021-06401-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
The interaction between viruses with the nucleolus is already a well-defined field of study in plant virology. This interaction is not restricted to those viruses that replicate in the nucleus, in fact, RNA viruses that replicate exclusively in the cytoplasm express proteins that localize in the nucleolus. Some positive single stranded RNA viruses from animals and plants have been reported to interact with the main nucleolar protein, Fibrillarin. Among nucleolar proteins, Fibrillarin is an essential protein that has been conserved in sequence and function throughout evolution. Fibrillarin is a methyltransferase protein with more than 100 methylation sites in the pre-ribosomal RNA, involved in multiple cellular processes, including initiation of transcription, oncogenesis, and apoptosis, among others. Recently, it was found that AtFib2 shows a ribonuclease activity. In plant viruses, Fibrillarin is involved in long-distance movement and cell-to-cell movement, being two highly different processes. The mechanism that Fibrillarin performs is still unknown. However, and despite belonging to very different viral families, the majority comply with the following. (1) They are positive single stranded RNA viruses; (2) encode different types of viral proteins that partially localize in the nucleolus; (3) interacts with Fibrillarin exporting it to the cytoplasm; (4) the viral protein-Fibrillarin interaction forms an RNP complex with the viral RNA and; (5) Fibrillarin depletion affects the infective cycle of the virus. Here we review the relationship of those plant viruses with Fibrillarin interaction, with special focus on the molecular processes of the virus to sequester Fibrillarin to complete its infective cycle.
Collapse
Affiliation(s)
- Stefano Decle-Carrasco
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México.
| |
Collapse
|
28
|
Wu M, Wei H, Tan H, Pan S, Liu Q, Bejarano ER, Lozano-Durán R. Plant DNA polymerases α and δ mediate replication of geminiviruses. Nat Commun 2021; 12:2780. [PMID: 33986276 PMCID: PMC8119979 DOI: 10.1038/s41467-021-23013-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Geminiviruses are causal agents of devastating diseases in crops. Geminiviruses have circular single-stranded (ss) DNA genomes that are replicated in the nucleus of the infected plant cell through double-stranded (ds) DNA intermediates by the plant DNA replication machinery. Which host DNA polymerase mediates geminiviral multiplication, however, has so far remained elusive. Here, we show that subunits of the nuclear replicative DNA polymerases α and δ physically interact with the geminivirus-encoded replication enhancer protein, C3, and that these polymerases are required for viral replication. Our results suggest that, while DNA polymerase α is essential to generate the viral dsDNA intermediate, DNA polymerase δ mediates the synthesis of new copies of the geminiviral ssDNA genome, and that the virus-encoded C3 may act selectively, recruiting DNA polymerase δ over ε to favour productive replication.
Collapse
Affiliation(s)
- Mengshi Wu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hua Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Huang Tan
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shaojun Pan
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qi Liu
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Area de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, Málaga, Spain
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
29
|
Decle-Carrasco S, Rodríguez-Zapata LC, Castano E. Plant viral proteins and fibrillarin: the link to complete the infective cycle. Mol Biol Rep 2021. [PMID: 34036480 DOI: 10.1007/s11033-021-06401-1/tables/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The interaction between viruses with the nucleolus is already a well-defined field of study in plant virology. This interaction is not restricted to those viruses that replicate in the nucleus, in fact, RNA viruses that replicate exclusively in the cytoplasm express proteins that localize in the nucleolus. Some positive single stranded RNA viruses from animals and plants have been reported to interact with the main nucleolar protein, Fibrillarin. Among nucleolar proteins, Fibrillarin is an essential protein that has been conserved in sequence and function throughout evolution. Fibrillarin is a methyltransferase protein with more than 100 methylation sites in the pre-ribosomal RNA, involved in multiple cellular processes, including initiation of transcription, oncogenesis, and apoptosis, among others. Recently, it was found that AtFib2 shows a ribonuclease activity. In plant viruses, Fibrillarin is involved in long-distance movement and cell-to-cell movement, being two highly different processes. The mechanism that Fibrillarin performs is still unknown. However, and despite belonging to very different viral families, the majority comply with the following. (1) They are positive single stranded RNA viruses; (2) encode different types of viral proteins that partially localize in the nucleolus; (3) interacts with Fibrillarin exporting it to the cytoplasm; (4) the viral protein-Fibrillarin interaction forms an RNP complex with the viral RNA and; (5) Fibrillarin depletion affects the infective cycle of the virus. Here we review the relationship of those plant viruses with Fibrillarin interaction, with special focus on the molecular processes of the virus to sequester Fibrillarin to complete its infective cycle.
Collapse
Affiliation(s)
- Stefano Decle-Carrasco
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México.
| |
Collapse
|
30
|
Alers-Velazquez R, Jacques S, Muller C, Boldt J, Schoelz J, Leisner S. Cauliflower mosaic virus P6 inclusion body formation: A dynamic and intricate process. Virology 2021; 553:9-22. [PMID: 33197754 DOI: 10.1016/j.virol.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 11/17/2022]
Abstract
During an infection, Cauliflower mosaic virus (CaMV) forms inclusion bodies (IBs) mainly composed of viral protein P6, where viral activities occur. Because viral processes occur in IBs, understanding the mechanisms by which they are formed is crucial. FL-P6 expressed in N. benthamiana leaves formed IBs of a variety of shapes and sizes. Small IBs were dynamic, undergoing fusion/dissociation events. Co-expression of actin-binding polypeptides with FL-P6 altered IB size distribution and inhibited movement. This suggests that IB movement is required for fusion and growth. A P6 deletion mutant was discovered that formed a single large IB per cell, which suggests it exhibited altered fusion/dissociation dynamics. Myosin-inhibiting drugs did not affect small IB movement, while those inhibiting actin polymerization did. Large IBs colocalized with components of the aggresome pathway, while small ones generally did not. This suggests a possible involvement of the aggresome pathway in large IB formation.
Collapse
Affiliation(s)
- Roberto Alers-Velazquez
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Sarah Jacques
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Clare Muller
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Jennifer Boldt
- USDA-Agricultural Research Service, Application Technology Research Unit, 2801 West Bancroft Street, Mail Stop 604, Toledo, OH, 43606, USA
| | - James Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Scott Leisner
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA.
| |
Collapse
|
31
|
Ouyang W, Xiong D, Li G, Li X. Unraveling the 3D Genome Architecture in Plants: Present and Future. MOLECULAR PLANT 2020; 13:1676-1693. [PMID: 33065269 DOI: 10.1016/j.molp.2020.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/09/2020] [Accepted: 10/08/2020] [Indexed: 05/02/2023]
Abstract
The eukaryotic genome has a hierarchical three-dimensional (3D) organization with functional implications for DNA replication, DNA repair, and transcriptional regulation. Over the past decade, scientists have endeavored to elucidate the spatial characteristics and functions of plant genome architecture using high-throughput chromatin conformation capturing technologies such as Hi-C, ChIA-PET, and HiChIP. Here, we systematically review current understanding of chromatin organization in plants at multiple scales. We also discuss the emerging opinions and concepts in 3D genome research, focusing on state-of-the-art 3D genome techniques, RNA-chromatin interactions, liquid-liquid phase separation, and dynamic chromatin alterations. We propose the application of single-cell/single-molecule multi-omics, multiway (DNA-DNA, DNA-RNA, and RNA-RNA interactions) chromatin conformation capturing methods, and proximity ligation-independent 3D genome-mapping technologies to explore chromatin organization structure and function in plants. Such methods could reveal the spatial interactions between trait-related SNPs and their target genes at various spatiotemporal resolutions, and elucidate the molecular mechanisms of the interactions among DNA elements, RNA molecules, and protein factors during the formation of key traits in plants.
Collapse
Affiliation(s)
- Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
32
|
Wang L, Ding Y, He L, Zhang G, Zhu JK, Lozano-Duran R. A virus-encoded protein suppresses methylation of the viral genome through its interaction with AGO4 in the Cajal body. eLife 2020; 9:e55542. [PMID: 33064077 PMCID: PMC7567605 DOI: 10.7554/elife.55542] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
In plants, establishment of de novo DNA methylation is regulated by the RNA-directed DNA methylation (RdDM) pathway. RdDM machinery is known to concentrate in the Cajal body, but the biological significance of this localization has remained elusive. Here, we show that the antiviral methylation of the Tomato yellow leaf curl virus (TYLCV) genome requires the Cajal body in Nicotiana benthamiana cells. Methylation of the viral genome is countered by a virus-encoded protein, V2, which interacts with the central RdDM component AGO4, interfering with its binding to the viral DNA; Cajal body localization of the V2-AGO4 interaction is necessary for the viral protein to exert this function. Taken together, our results draw a long sought-after functional connection between RdDM, the Cajal body, and antiviral DNA methylation, paving the way for a deeper understanding of DNA methylation and antiviral defences in plants.
Collapse
Affiliation(s)
- Liping Wang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Yi Ding
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Li He
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| | - Guiping Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
33
|
Davino S, Ruiz-Ruiz S, Serra P, Forment J, Flores R. Revisiting the cysteine-rich proteins encoded in the 3'-proximal open reading frame of the positive-sense single-stranded RNA of some monopartite filamentous plant viruses: functional dissection of p15 from grapevine virus B. Arch Virol 2020; 165:2229-2239. [PMID: 32676682 DOI: 10.1007/s00705-020-04729-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/09/2020] [Indexed: 10/23/2022]
Abstract
A reexamination of proteins with conserved cysteines and basic amino acids encoded by the 3'-proximal gene of the positive-sense single-stranded RNA of some monopartite filamentous plant viruses has been carried out. The cysteines are involved in a putative Zn-finger domain, which, together with the basic amino acids, form part of the nuclear or nucleolar localization signals. An in-depth study of one of these proteins, p15 from grapevine B virus (GVB), has shown: (i) a three-dimensional structure with four α-helices predicted by two independent in silico approaches, (ii) the nucleolus as the main accumulation site by applying confocal laser microscopy to a fusion between p15 and the green fluorescent protein, (iii) the involvement of the basic amino acids and the putative Zn-finger domain, mapping at the N-terminal region of p15, in the nucleolar localization signal, as revealed by the effect of six alanine substitution mutations, (iv) the p15 suppressor function of sense-mediated RNA silencing as revealed by agroinfiltration in a transgenic line of Nicotiana benthamiana, and (v) the enhancer activity of p15 on viral pathogenicity in N. benthamiana when expressed from a potato virus X vector. In addition, we elaborate on an evolutionary scenario for these filamentous viruses, invoking takeover by a common ancestor(s) of viral or host genes coding for those cysteine-rich proteins, followed by divergence, which would also explain why they are encoded in the 3'-proximal gene of the genomic single-stranded viral RNA.
Collapse
Affiliation(s)
- Salvatore Davino
- Instituto de Biologia Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022, Valencia, Spain
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze Building 5, 90128, Palermo, Italy
| | - Susana Ruiz-Ruiz
- Instituto de Biologia Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022, Valencia, Spain
| | - Pedro Serra
- Instituto de Biologia Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022, Valencia, Spain
| | - Javier Forment
- Instituto de Biologia Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022, Valencia, Spain
| | - Ricardo Flores
- Instituto de Biologia Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022, Valencia, Spain.
| |
Collapse
|
34
|
Zheng L, Hong P, Guo X, Li Y, Xie L. Rice stripe virus p2 Colocalizes and Interacts with Arabidopsis Cajal Bodies and Its Domains in Plant Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5182164. [PMID: 32685498 PMCID: PMC7317325 DOI: 10.1155/2020/5182164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 05/18/2020] [Indexed: 12/05/2022]
Abstract
p2 of rice stripe virus may translocate from the nucleus to the cytoplasm and recruit nucleolar functions to promote virus systemic movement. Cajal bodies (CBs) are nuclear components associated with the nucleolus, which play a major role in plant virus infection. Coilin, a marker protein of CBs, is essential for CB formation and function. Coilin contains three domains, the N-terminal, the center, and the C-terminal fragments. Using yeast two-hybrid, colocalization, and bimolecular fluorescence complementation (BiFC) approaches, we show that p2 interacts with the full-length of Arabidopsis thaliana coilin (Atcoilin), the center and C-terminal domain of Atcoilin in the nucleus. Moreover, the N-terminal is indispensable for Atcoilin to interact with Cajal bodies.
Collapse
Affiliation(s)
- Luping Zheng
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengxiang Hong
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaonan Guo
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yang Li
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Xie
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
35
|
May JP, Johnson PZ, Ilyas M, Gao F, Simon AE. The Multifunctional Long-Distance Movement Protein of Pea Enation Mosaic Virus 2 Protects Viral and Host Transcripts from Nonsense-Mediated Decay. mBio 2020; 11:e00204-20. [PMID: 32156817 PMCID: PMC7064760 DOI: 10.1128/mbio.00204-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
The nonsense-mediated decay (NMD) pathway presents a challenge for RNA viruses with termination codons that precede extended 3' untranslated regions (UTRs). The umbravirus Pea enation mosaic virus 2 (PEMV2) is a nonsegmented, positive-sense RNA virus with an unusually long 3' UTR that is susceptible to NMD. To establish a systemic infection, the PEMV2 long-distance movement protein p26 was previously shown to both stabilize viral RNAs and bind them for transport through the plant's vascular system. The current study demonstrated that p26 protects both viral and nonviral messenger RNAs from NMD. Although p26 localizes to both the cytoplasm and nucleolus, p26 exerts its anti-NMD effects exclusively in the cytoplasm independently of long-distance movement. Using a transcriptome-wide approach in the model plant Nicotiana benthamiana, p26 protected a subset of cellular NMD target transcripts, particularly those containing long, structured, GC-rich 3' UTRs. Furthermore, transcriptome sequencing (RNA-seq) revealed that the NMD pathway is highly dysfunctional during PEMV2 infection, with 1,820 (48%) of NMD targets increasing in abundance. Widespread changes in the host transcriptome are common during plant RNA virus infections, and these results suggest that, in at least some instances, virus-mediated NMD inhibition may be a major contributing factor.IMPORTANCE Nonsense-mediated decay (NMD) represents an RNA regulatory pathway that degrades both natural and faulty messenger RNAs with long 3' untranslated regions. NMD targets diverse families of RNA viruses, requiring that viruses counteract the NMD pathway for successful amplification in host cells. A protein required for long-distance movement of Pea enation mosaic virus 2 (PEMV2) is shown to also protect both viral and host mRNAs from NMD. RNA-seq analyses of the Nicotiana benthamiana transcriptome revealed that PEMV2 infection significantly impairs the host NMD pathway. RNA viruses routinely induce large-scale changes in host gene expression, and, like PEMV2, may use NMD inhibition to alter the host transcriptome in an effort to increase virus amplification.
Collapse
Affiliation(s)
- Jared P May
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Philip Z Johnson
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Muhammad Ilyas
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| |
Collapse
|
36
|
Ding Y, Lozano-Durán R. The Cajal Body in Plant-Virus Interactions. Viruses 2020; 12:E250. [PMID: 32102236 PMCID: PMC7077289 DOI: 10.3390/v12020250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/23/2023] Open
Abstract
Cajal bodies (CBs) are nuclear membraneless bodies composed of proteins and RNA. Although it is known that CBs play a role in RNA metabolism and the formation of functional ribonucleoprotein (RNP) particles, the whole breadth of CB functions is far from being fully elucidated. In this short review, we will summarize and discuss the growing body of evidence pointing to an involvement of this subnuclear compartment in plant-virus interactions.
Collapse
Affiliation(s)
- Yi Ding
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China;
- Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai 201602, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China;
- Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai 201602, China
| |
Collapse
|
37
|
Xu M, Mazur MJ, Tao X, Kormelink R. Cellular RNA Hubs: Friends and Foes of Plant Viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:40-54. [PMID: 31415225 DOI: 10.1094/mpmi-06-19-0161-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA granules are dynamic cellular foci that are widely spread in eukaryotic cells and play essential roles in cell growth and development, and immune and stress responses. Different types of granules can be distinguished, each with a specific function and playing a role in, for example, RNA transcription, modification, processing, decay, translation, and arrest. By means of communication and exchange of (shared) components, they form a large regulatory network in cells. Viruses have been reported to interact with one or more of these either cytoplasmic or nuclear granules, and act either proviral, to enable and support viral infection and facilitate viral movement, or antiviral, protecting or clearing hosts from viral infection. This review describes an overview and recent progress on cytoplasmic and nuclear RNA granules and their interplay with virus infection, first in animal systems and as a prelude to the status and current developments on plant viruses, which have been less well studied on this thus far.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Magdalena J Mazur
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Xiaorong Tao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
38
|
Medina-Puche L, Lozano-Duran R. Tailoring the cell: a glimpse of how plant viruses manipulate their hosts. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:164-173. [PMID: 31731105 DOI: 10.1016/j.pbi.2019.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Viruses are intracellular parasites that completely rely on the molecular machinery of the infected host to complete their cycle. Upon invasion of a susceptible cell, viruses dramatically reshape the intracellular environment to suit their needs, in a complex process that requires the fine manipulation of multiple aspects of the host cell biology, including those enabling replication of the viral genome, facilitating suppression or avoidance of anti-viral plant defence mechanisms, and supporting precise intra-cellular and inter-cellular trafficking of viral components. This tailoring of the cell to fit viral functions occurs through the coordinated action of fast-evolving, multifunctional viral proteins, which efficiently target host factors. In this review, we intend to offer a glimpse of how plant viruses manipulate their hosts from a cell biology perspective, focusing on recent advances covering three specific aspects of the viral infection: viral manipulation of organelle function; virus-induced formation of viral replication complexes through membrane remodelling; and viral evasion of autophagy.
Collapse
Affiliation(s)
- Laura Medina-Puche
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
39
|
Shaw J, Yu C, Makhotenko AV, Makarova SS, Love AJ, Kalinina NO, MacFarlane S, Chen J, Taliansky ME. Interaction of a plant virus protein with the signature Cajal body protein coilin facilitates salicylic acid-mediated plant defence responses. THE NEW PHYTOLOGIST 2019; 224:439-453. [PMID: 31215645 DOI: 10.1111/nph.15994] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/06/2019] [Indexed: 05/22/2023]
Abstract
In addition to well-known roles in RNA metabolism, the nucleolus and Cajal bodies (CBs), both located within the nucleus, are involved in plant responses to biotic and abiotic stress. Previously we showed that plants in which expression of the CB protein coilin is downregulated are more susceptible to certain viruses including tobacco rattle virus (TRV), suggesting a role of coilin in antiviral defence. Experiments with coilin-deficient plants and the deletion mutant of the TRV 16K protein showed that both 16K and coilin are required for restriction of systemic TRV infection. The potential mechanisms of coilin-mediated antiviral defence were elucidated via experiments involving co-immunoprecipitation, use of NahG transgenic plants deficient in salicylic acid (SA) accumulation, measurement of endogenous SA concentrations and assessment of SA-responsive gene expression. Here we show that TRV 16K interacts with and relocalizes coilin to the nucleolus. In wild-type plants these events are accompanied by activation of SA-responsive gene expression and restriction of TRV systemic infection. By contrast, viral systemic spread was enhanced in NahG plants, implicating SA in these processes. Our findings suggest that coilin is involved in plant defence, responding to TRV infection by recognition of the TRV-encoded 16K protein and activating SA-dependent defence pathways.
Collapse
Affiliation(s)
- Jane Shaw
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Chulang Yu
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 117997, China
| | - Antonida V Makhotenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
| | - Svetlana S Makarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
| | - Andrew J Love
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Natalia O Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
| | - Stuart MacFarlane
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 117997, China
| | - Michael E Taliansky
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia
| |
Collapse
|
40
|
Navarro JA, Sanchez-Navarro JA, Pallas V. Key checkpoints in the movement of plant viruses through the host. Adv Virus Res 2019; 104:1-64. [PMID: 31439146 DOI: 10.1016/bs.aivir.2019.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses cannot exploit any of the membrane fusion-based routes of entry described for animal viruses. In addition, one of the distinctive structures of plant cells, the cell wall, acts as the first barrier against the invasion of pathogens. To overcome the rigidity of the cell wall, plant viruses normally take advantage of the way of life of different biological vectors. Alternatively, the physical damage caused by environmental stresses can facilitate virus entry. Once inside the cell and taking advantage of the characteristic symplastic continuity of plant cells, viruses need to remodel and/or modify the restricted pore size of the plasmodesmata (channels that connect plant cells). In a successful interaction for the virus, it can reach the vascular tissue to systematically invade the plant. The connections between the different cell types in this path are not designed to allow the passage of molecules with the complexity of viruses. During this process, viruses face different cell barriers that must be overcome to reach the distal parts of the plant. In this review, we highlight the current knowledge about how plant RNA viruses enter plant cells, move between them to reach vascular cells and overcome the different physical and cellular barriers that the phloem imposes. Finally, we update the current research on cellular organelles as key regulator checkpoints in the long-distance movement of plant viruses.
Collapse
Affiliation(s)
- Jose A Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Jesus A Sanchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
41
|
Simões M, Freitas FB, Leitão A, Martins C, Ferreira F. African swine fever virus replication events and cell nucleus: New insights and perspectives. Virus Res 2019; 270:197667. [PMID: 31319112 DOI: 10.1016/j.virusres.2019.197667] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/13/2019] [Accepted: 07/14/2019] [Indexed: 12/30/2022]
Abstract
African swine fever (ASF) is currently matter for major concerns in global swine industry as it is highly contagious and causes acute fatal haemorrhagic fever in domestic pigs and wild boar. The absence of effective vaccines and treatments pushes ASF control to relay on strict sanitary and stamping out measures with costly socio-economic impacts. The current epidemic scenario of fast spreading throughout Asiatic countries impels further studies on prevention and combat strategies against ASF. Herein we review knowledge on African Swine Fever Virus (ASFV) interactions with the host cell nucleus and on the functional properties of different viral DNA-replication related proteins. This entails, the confirmation of an intranuclear viral DNA replication phase, the characterization of cellular DNA damage responses (DDR), the subnuclear compartments disruption due to viral modulation, and the unravelling of the biological role of several viral proteins (A104R, I215 L, P1192R, QP509 L and Q706 L), so to contribute to underpin rational strategies for vaccine candidates development.
Collapse
Affiliation(s)
- Margarida Simões
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal; Laboratório de Virologia, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Quinta do Marquês, 2780-157, Oeiras, Portugal
| | - Ferdinando B Freitas
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Alexandre Leitão
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Carlos Martins
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Fernando Ferreira
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal.
| |
Collapse
|
42
|
Zhao J, Xu J, Chen B, Cui W, Zhou Z, Song X, Chen Z, Zheng H, Lin L, Peng J, Lu Y, Deng Z, Chen J, Yan F. Characterization of Proteins Involved in Chloroplast Targeting Disturbed by Rice Stripe Virus by Novel Protoplast⁻Chloroplast Proteomics. Int J Mol Sci 2019; 20:E253. [PMID: 30634635 PMCID: PMC6358847 DOI: 10.3390/ijms20020253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/19/2018] [Accepted: 01/06/2019] [Indexed: 12/21/2022] Open
Abstract
Rice stripe virus (RSV) is one of the most devastating viral pathogens in rice and can also cause the general chlorosis symptom in Nicotiana benthamiana plants. The chloroplast changes associated with chlorosis symptom suggest that RSV interrupts normal chloroplast functions. Although the change of proteins of the whole cell or inside the chloroplast in response to RSV infection have been revealed by proteomics, the mechanisms resulted in chloroplast-related symptoms and the crucial factors remain to be elucidated. RSV infection caused the malformation of chloroplast structure and a global reduction of chloroplast membrane protein complexes in N. benthamiana plants. Here, both the protoplast proteome and the chloroplast proteome were acquired simultaneously upon RSV infection, and the proteins in each fraction were analyzed. In the protoplasts, 1128 proteins were identified, among which 494 proteins presented significant changes during RSV; meanwhile, 659 proteins were identified from the chloroplasts, and 279 of these chloroplast proteins presented significant change. According to the label-free LC⁻MS/MS data, 66 nucleus-encoded chloroplast-related proteins (ChRPs), which only reduced in chloroplast but not in the whole protoplast, were identified, indicating that these nuclear-encoded ChRPswere not transported to chloroplasts during RSV infection. Gene ontology (GO) enrichment analysis confirmed that RSV infection changed the biological process of protein targeting to chloroplast, where 3 crucial ChRPs (K4CSN4, K4CR23, and K4BXN9) were involved in the regulation of protein targeting into chloroplast. In addition to these 3 proteins, 41 among the 63 candidate proteins were characterized to have chloroplast transit peptides. These results indicated that RSV infection changed the biological process of protein targeting into chloroplast and the location of ChRPs through crucial protein factors, which illuminated a new layer of RSV⁻host interaction that might contribute to the symptom development.
Collapse
Affiliation(s)
- Jinping Zhao
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Texas A&M University AgriLife Research Center at Dallas, Dallas, TX 75252, USA.
| | - Jingjing Xu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Binghua Chen
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
- Center of Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Weijun Cui
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Zhongjing Zhou
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Xijiao Song
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhuo Chen
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Center of Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Hongying Zheng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Lin Lin
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Jiejun Peng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Yuwen Lu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Zhiping Deng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Jianping Chen
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
43
|
Folimonova SY, Tilsner J. Hitchhikers, highway tolls and roadworks: the interactions of plant viruses with the phloem. CURRENT OPINION IN PLANT BIOLOGY 2018; 43:82-88. [PMID: 29476981 DOI: 10.1016/j.pbi.2018.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 05/24/2023]
Abstract
The phloem is of central importance to plant viruses, providing the route by which they spread throughout their host. Compared with virus movement in non-vascular tissue, phloem entry, exit, and long-distance translocation usually involve additional viral factors and complex virus-host interactions, probably, because the phloem has evolved additional protection against these molecular 'hitchhikers'. Recent progress in understanding phloem trafficking of endogenous mRNAs along with observations of membranous viral replication 'factories' in sieve elements challenge existing conceptions of virus long-distance transport. At the same time, the central role of the phloem in plant defences against viruses and the sophisticated viral manipulation of this host tissue are beginning to emerge.
Collapse
Affiliation(s)
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom; Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom.
| |
Collapse
|
44
|
Li Z, Zhang Y, Jiang Z, Jin X, Zhang K, Wang X, Han C, Yu J, Li D. Hijacking of the nucleolar protein fibrillarin by TGB1 is required for cell-to-cell movement of Barley stripe mosaic virus. MOLECULAR PLANT PATHOLOGY 2018; 19:1222-1237. [PMID: 28872759 PMCID: PMC6638131 DOI: 10.1111/mpp.12612] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 05/18/2023]
Abstract
Barley stripe mosaic virus (BSMV) Triple Gene Block1 (TGB1) is a multifunctional movement protein with RNA-binding, ATPase and helicase activities which mainly localizes to the plasmodesmata (PD) in infected cells. Here, we show that TGB1 localizes to the nucleus and the nucleolus, as well as the cytoplasm, and that TGB1 nuclear-cytoplasmic trafficking is required for BSMV cell-to-cell movement. Prediction analyses and laser scanning confocal microscopy (LSCM) experiments verified that TGB1 possesses a nucleolar localization signal (NoLS) (amino acids 95-104) and a nuclear localization signal (NLS) (amino acids 227-238). NoLS mutations reduced BSMV cell-to-cell movement significantly, whereas NLS mutations almost completely abolished movement. Furthermore, neither the NoLS nor NLS mutant viruses could infect Nicotiana benthamiana systemically, although the NoLS mutant virus was able to establish systemic infections of barley. Protein interaction experiments demonstrated that TGB1 interacts directly with the glycine-arginine-rich (GAR) domain of the nucleolar protein fibrillarin (Fib2). Moreover, in BSMV-infected cells, Fib2 accumulation increased by about 60%-70% and co-localized with TGB1 in the plasmodesmata. In addition, BSMV cell-to-cell movement in fib2 knockdown transgenic plants was reduced to less than one-third of that of non-transgenic plants. Fib2 also co-localized with both TGB1 and BSMV RNA, which are the main components of the ribonucleoprotein (RNP) movement complex. Collectively, these results show that TGB1-Fib2 interactions play a direct role in cell-to-cell movement, and we propose that Fib2 is hijacked by BSMV TGB1 to form a BSMV RNP which functions in cell-to-cell movement.
Collapse
Affiliation(s)
- Zhenggang Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Yongliang Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Zhihao Jiang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Xuejiao Jin
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Kun Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Xianbing Wang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Chenggui Han
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Jialin Yu
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Dawei Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| |
Collapse
|
45
|
Kehr J, Kragler F. Long distance RNA movement. THE NEW PHYTOLOGIST 2018; 218:29-40. [PMID: 29418002 DOI: 10.1111/nph.15025] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/28/2017] [Indexed: 05/06/2023]
Abstract
Contents Summary 29 I. Introduction 29 II. Phloem as a conduit for macromolecules 30 III. Classes of phloem transported RNAs and their function 32 IV. Mode of RNA transport 35 V. Conclusions 37 Acknowledgements 37 References 37 SUMMARY: In higher plants, small noncoding RNAs and large messenger RNA (mRNA) molecules are transported between cells and over long distances via the phloem. These large macromolecules are thought to get access to the sugar-conducting phloem vessels via specialized plasmodesmata (PD). Analyses of the phloem exudate suggest that all classes of RNA molecules, including silencing-induced RNAs (siRNAs), micro RNAs (miRNAs), transfer RNAs (tRNAs), ribosomal RNA (rRNAs) and mRNAs, are transported via the vasculature to distant tissues. Although the functions of mobile siRNAs and miRNAs as signalling molecules are well established, we lack a profound understanding of mobile mRNA function(s) in recipient cells and tissues, and how they are selected for transport. A surprisingly high number of up to thousands of mRNAs were described in diverse plant species such as cucumber, pumpkin, Arabidopsis and grapevine to move long distances over graft junctions to distinct body parts. In this review, we present an overview of the classes of mobile RNAs, the potential mechanisms facilitating RNA long-distance transport, and the roles of mobile RNAs in regulating transcription and translation. Furthermore, we address potential function(s) of mobile protein-encoding mRNAs with respect to their characteristics and evolutionary constraints.
Collapse
Affiliation(s)
- Julia Kehr
- Biocenter Klein Flottbek, Molekulare Pflanzengenetik, University Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Friedrich Kragler
- Department II, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| |
Collapse
|
46
|
Cowan GH, Roberts AG, Jones S, Kumar P, Kalyandurg PB, Gil JF, Savenkov EI, Hemsley PA, Torrance L. Potato Mop-Top Virus Co-Opts the Stress Sensor HIPP26 for Long-Distance Movement. PLANT PHYSIOLOGY 2018; 176:2052-2070. [PMID: 29374107 PMCID: PMC5841704 DOI: 10.1104/pp.17.01698] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/12/2018] [Indexed: 05/03/2023]
Abstract
Virus movement proteins facilitate virus entry into the vascular system to initiate systemic infection. The potato mop-top virus (PMTV) movement protein, TGB1, is involved in long-distance movement of both viral ribonucleoprotein complexes and virions. Here, our analysis of TGB1 interactions with host Nicotiana benthamiana proteins revealed an interaction with a member of the heavy metal-associated isoprenylated plant protein family, HIPP26, which acts as a plasma membrane-to-nucleus signal during abiotic stress. We found that knockdown of NbHIPP26 expression inhibited virus long-distance movement but did not affect cell-to-cell movement. Drought and PMTV infection up-regulated NbHIPP26 gene expression, and PMTV infection protected plants from drought. In addition, NbHIPP26 promoter-reporter fusions revealed vascular tissue-specific expression. Mutational and biochemical analyses indicated that NbHIPP26 subcellular localization at the plasma membrane and plasmodesmata was mediated by lipidation (S-acylation and prenylation), as nonlipidated NbHIPP26 was predominantly in the nucleus. Notably, coexpression of NbHIPP26 with TGB1 resulted in a similar nuclear accumulation of NbHIPP26. TGB1 interacted with the carboxyl-terminal CVVM (prenyl) domain of NbHIPP26, and bimolecular fluorescence complementation revealed that the TGB1-HIPP26 complex localized to microtubules and accumulated in the nucleolus, with little signal at the plasma membrane or plasmodesmata. These data support a mechanism where interaction with TGB1 negates or reverses NbHIPP26 lipidation, thus releasing membrane-associated NbHIPP26 and redirecting it via microtubules to the nucleus, thereby activating the drought stress response and facilitating virus long-distance movement.
Collapse
Affiliation(s)
- Graham H Cowan
- James Hutton Institute, Invergowrie DD2 5DA, United Kingdom
| | | | - Susan Jones
- James Hutton Institute, Invergowrie DD2 5DA, United Kingdom
| | - Pankaj Kumar
- School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Pruthvi B Kalyandurg
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Jose F Gil
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Eugene I Savenkov
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Piers A Hemsley
- James Hutton Institute, Invergowrie DD2 5DA, United Kingdom
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, United Kingdom
| | - Lesley Torrance
- James Hutton Institute, Invergowrie DD2 5DA, United Kingdom
- School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
47
|
Kalinina NO, Makarova S, Makhotenko A, Love AJ, Taliansky M. The Multiple Functions of the Nucleolus in Plant Development, Disease and Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:132. [PMID: 29479362 PMCID: PMC5811523 DOI: 10.3389/fpls.2018.00132] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/23/2018] [Indexed: 05/18/2023]
Abstract
The nucleolus is the most conspicuous domain in the eukaryotic cell nucleus, whose main function is ribosomal RNA (rRNA) synthesis and ribosome biogenesis. However, there is growing evidence that the nucleolus is also implicated in many other aspects of cell biology, such as regulation of cell cycle, growth and development, senescence, telomerase activity, gene silencing, responses to biotic and abiotic stresses. In the first part of the review, we briefly assess the traditional roles of the plant nucleolus in rRNA synthesis and ribosome biogenesis as well as possible functions in other RNA regulatory pathways such as splicing, nonsense-mediated mRNA decay and RNA silencing. In the second part of the review we summarize recent progress and discuss already known and new hypothetical roles of the nucleolus in plant growth and development. In addition, this part will highlight studies showing new nucleolar functions involved in responses to pathogen attack and abiotic stress. Cross-talk between the nucleolus and Cajal bodies is also discussed in the context of their association with poly(ADP ribose)polymerase (PARP), which is known to play a crucial role in various physiological processes including growth, development and responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Natalia O. Kalinina
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Natalia O. Kalinina
| | - Svetlana Makarova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Antonida Makhotenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Michael Taliansky
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: Michael Taliansky
| |
Collapse
|
48
|
Fujita N, Komatsu K, Ayukawa Y, Matsuo Y, Hashimoto M, Netsu O, Teraoka T, Yamaji Y, Namba S, Arie T. N-terminal region of cysteine-rich protein (CRP) in carlaviruses is involved in the determination of symptom types. MOLECULAR PLANT PATHOLOGY 2018; 19:180-190. [PMID: 27868376 PMCID: PMC6638135 DOI: 10.1111/mpp.12513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 10/19/2016] [Accepted: 11/14/2016] [Indexed: 05/04/2023]
Abstract
Plant viruses in the genus Carlavirus include more than 65 members. Plants infected with carlaviruses exhibit various symptoms, including leaf malformation and plant stunting. Cysteine-rich protein (CRP) encoded by carlaviruses has been reported to be a pathogenicity determinant. Carlavirus CRPs contain two motifs in their central part: a nuclear localization signal (NLS) and a zinc finger motif (ZF). In addition to these two conserved motifs, carlavirus CRPs possess highly divergent, N-terminal, 34 amino acid residues with unknown function. In this study, to analyse the role of these distinct domains, we tested six carlavirus CRPs for their RNA silencing suppressor activity, ability to enhance the pathogenicity of a heterologous virus and effects on virus accumulation levels. Although all six tested carlavirus CRPs showed RNA silencing suppressor activity at similar levels, symptoms induced by the Potato virus X (PVX) heterogeneous system exhibited two different patterns: leaf malformation and whole-plant stunting. The expression of each carlavirus CRP enhanced PVX accumulation levels, which were not correlated with symptom patterns. PVX-expressing CRP with mutations in either NLS or ZF did not induce symptoms, suggesting that both motifs play critical roles in symptom expression. Further analysis using chimeric CRPs, in which the N-terminal region was replaced with the corresponding region of another CRP, suggested that the N-terminal region of carlavirus CRPs determined the exhibited symptom types. The up-regulation of a plant gene upp-L, which has been reported in a previous study, was also observed in this study; however, the expression level was not responsible for symptom types.
Collapse
Affiliation(s)
- Naoko Fujita
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of Tokyo113‐8657 TokyoJapan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
| | - Yu Ayukawa
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
- United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyFuchu183‐8509Japan
| | - Yuki Matsuo
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of Tokyo113‐8657 TokyoJapan
| | - Osamu Netsu
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of Tokyo113‐8657 TokyoJapan
| | - Tohru Teraoka
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of Tokyo113‐8657 TokyoJapan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of Tokyo113‐8657 TokyoJapan
| | - Tsutomu Arie
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
| |
Collapse
|
49
|
Gao F, Simon AE. Differential use of 3'CITEs by the subgenomic RNA of Pea enation mosaic virus 2. Virology 2017; 510:194-204. [PMID: 28750323 PMCID: PMC5891822 DOI: 10.1016/j.virol.2017.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/30/2022]
Abstract
The genomic RNA (gRNA) of Pea enation mosaic virus 2 (PEMV2) is the template for p33 and -1 frameshift product p94. The PEMV2 subgenomic RNA (sgRNA) encodes two overlapping ORFs, p26 and p27, which are required for movement and stability of the gRNA. Efficient translation of p33 requires two of three 3' proximal cap-independent translation enhancers (3'CITEs): the kl-TSS, which binds ribosomes and engages in a long-distance interaction with the 5'end; and the adjacent eIF4E-binding PTE. Unlike the gRNA, all three 3'CITEs were required for efficient translation of the sgRNA, which included the ribosome-binding 3'TSS. A hairpin in the 5' proximal coding region of p26/p27 supported translation by the 3'CITEs by engaging in a long-distance RNA:RNA interaction with the kl-TSS. These results strongly suggest that the 5' ends of PEMV2 gRNA and sgRNA connect with the 3'UTR through similar long-distance interactions while having different requirements for 3'CITEs.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
50
|
Love AJ, Yu C, Petukhova NV, Kalinina NO, Chen J, Taliansky ME. Cajal bodies and their role in plant stress and disease responses. RNA Biol 2017; 14:779-790. [PMID: 27726481 PMCID: PMC5519230 DOI: 10.1080/15476286.2016.1243650] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/19/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022] Open
Abstract
Cajal bodies (CBs) are distinct sub-nuclear structures that are present in eukaryotic living cells and are often associated with the nucleolus. CBs play important roles in RNA metabolism and formation of RNPs involved in transcription, splicing, ribosome biogenesis, and telomere maintenance. Besides these primary roles, CBs appear to be involved in additional functions that may not be directly related to RNA metabolism and RNP biogenesis. In this review, we assess possible roles of plant CBs in RNA regulatory pathways such as nonsense-mediated mRNA decay and RNA silencing. We also summarize recent progress and discuss new non-canonical functions of plant CBs in responses to stress and disease. It is hypothesized that CBs can regulate these responses via their interaction with poly(ADP ribose)polymerase (PARP), which is known to play an important role in various physiological processes including responses to biotic and abiotic stresses. It is suggested that CBs and their components modify PARP activities and functions.
Collapse
Affiliation(s)
- Andrew J. Love
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Chulang Yu
- State Key Laboratory Breeding Base for Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Natalia O. Kalinina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia
| | - Jianping Chen
- State Key Laboratory Breeding Base for Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Michael E. Taliansky
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
- State Key Laboratory Breeding Base for Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|