1
|
Dedloff MR, Lazear HM. Antiviral and Immunomodulatory Effects of Interferon Lambda at the Maternal-Fetal Interface. Annu Rev Virol 2024; 11:363-379. [PMID: 38848605 DOI: 10.1146/annurev-virology-111821-101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Interferon lambda (IFN-λ, type III IFN, IL-28/29) is a family of antiviral cytokines that are especially important at barrier sites, including the maternal-fetal interface. Recent discoveries have identified important roles for IFN-λ during pregnancy, particularly in the context of congenital infections. Here, we provide a comprehensive review of the activity of IFN-λ at the maternal-fetal interface, highlighting cell types that produce and respond to IFN-λ in the placenta, decidua, and endometrium. Further, we discuss the role of IFN-λ during infections with congenital pathogens including Zika virus, human cytomegalovirus, rubella virus, and Listeria monocytogenes. We discuss advances in experimental models that can be used to fill important knowledge gaps about IFN-λ-mediated immunity.
Collapse
Affiliation(s)
- Margaret R Dedloff
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| | - Helen M Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| |
Collapse
|
2
|
Rouzbahani AK, Hosseini SZ, Bandehpour M, Kazemi B, Tavasoli A, Mamaghani AJ, Kheirandish F. Heterologous Expression of Human IFNγ and Anti-IL17 Antibody in Leishmania tarentolae Promastigote. Acta Parasitol 2024; 69:1107-1114. [PMID: 38536611 DOI: 10.1007/s11686-024-00822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/31/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Leishmania is an intracellular flagellate protozoan parasite that causes a wide range of clinical diseases in humans. The basis of immunological resistance against leishmaniasis depends on Thl reactions and is within the time period of cytokine function. METHODS In this study, human anti-IL17 antibody and IFNγ-producing promastigote were produced to be used in leishmanization. A sequence of light and heavy chains' gene of anti-IL17 antibody and human IFNγ (hIFNγ) was obtained from the NCBI database and synthesized in the ECORV reaction site in the plasmid pGH, which it's called pGH-hIFNγ-antiIL17. The synthesized part using the restriction enzyme ECORV was extracted from the plasmid and after purification by electroporation was transferred to Iranian lizard Leishmania (I.L.L). Evaluation of structural presence in the I.L.L genome at the level of DNA and mRNA was assessed. The expressions of hIFNγ and anti-IL17 were evaluated and confirmed using ELISA and western blot analysis. The hIFNγ secreted from the culture medium was collected at high concentrations of 124.36 ± 6.47 pg/mL. RESULTS Targeted gene replacement into the I.L.L genome was successfully performed for the first time using the pGH-hIFNγ-antiIL17 plasmid in an identical replacement process. Stabilized recombinant DNA contains a target gene that has no toxicity to the parasite. CONCLUSIONS The effective achievement of producing a recombinant gene was done for the first time by replacing the I.L.L-CPC gene with plasmid pGH-hIFNγ-antiIL17 by targeted gene replacement. This cab can regulate the production of hIFNγ and anti-IL17. This makes it a viable choice for eliminating leishmania.
Collapse
Affiliation(s)
- Arian Karimi Rouzbahani
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Seyedeh-Zeinab Hosseini
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Tavasoli
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Amirreza Javadi Mamaghani
- Hepatitis Research Center, Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farnaz Kheirandish
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
3
|
Solstad AD, Denz PJ, Kenney AD, Mahfooz NS, Speaks S, Gong Q, Robinson RT, Long ME, Forero A, Yount JS, Hemann EA. IFN-λ uniquely promotes CD8 T cell immunity against SARS-CoV-2 relative to type I IFN. JCI Insight 2024; 9:e171830. [PMID: 38973611 PMCID: PMC11383353 DOI: 10.1172/jci.insight.171830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
Optimization of protective immune responses against SARS-CoV-2 remains an urgent worldwide priority. In this regard, type III IFN (IFN-λ) restricts SARS-CoV-2 infection in vitro, and treatment with IFN-λ limits infection, inflammation, and pathogenesis in murine models. Furthermore, IFN-λ has been developed for clinical use to limit COVID-19 severity. However, whether endogenous IFN-λ signaling has an effect on SARS-CoV-2 antiviral immunity and long-term immune protection in vivo is unknown. In this study, we identified a requirement for IFN-λ signaling in promoting viral clearance and protective immune programming in SARS-CoV-2 infection of mice. Expression of both IFN and IFN-stimulated gene (ISG) in the lungs were minimally affected by the absence of IFN-λ signaling and correlated with transient increases in viral titers. We found that IFN-λ supported the generation of protective CD8 T cell responses against SARS-CoV-2 by facilitating accumulation of CD103+ DC in lung draining lymph nodes (dLN). IFN-λ signaling specifically in DCs promoted the upregulation of costimulatory molecules and the proliferation of CD8 T cells. Intriguingly, antigen-specific CD8 T cell immunity to SARS-CoV-2 was independent of type I IFN signaling, revealing a nonredundant function of IFN-λ. Overall, these studies demonstrate a critical role for IFN-λ in protective innate and adaptive immunity upon infection with SARS-CoV-2 and suggest that IFN-λ serves as an immune adjuvant to support CD8 T cell immunity.
Collapse
Affiliation(s)
- Abigail D. Solstad
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Parker J. Denz
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Najmus S. Mahfooz
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Samuel Speaks
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Qiaoke Gong
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Richard T. Robinson
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Matthew E. Long
- Dorothy M. Davis Heart and Lung Research Institute and
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Adriana Forero
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute and
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Emily A. Hemann
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute and
| |
Collapse
|
4
|
Liu YG, Jin SW, Zhang SS, Xia TJ, Liao YH, Pan RL, Yan MZ, Chang Q. Interferon lambda in respiratory viral infection: immunomodulatory functions and antiviral effects in epithelium. Front Immunol 2024; 15:1338096. [PMID: 38495892 PMCID: PMC10940417 DOI: 10.3389/fimmu.2024.1338096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Type III interferon (IFN-λ), a new member of the IFN family, was initially considered to possess antiviral functions similar to those of type I interferon, both of which are induced via the JAK/STAT pathway. Nevertheless, recent findings demonstrated that IFN-λ exerts a nonredundant antiviral function at the mucosal surface, preferentially produced in epithelial cells in contrast to type I interferon, and its function cannot be replaced by type I interferon. This review summarizes recent studies showing that IFN-λ inhibits the spread of viruses from the cell surface to the body. Further studies have found that the role of IFN-λ is not only limited to the abovementioned functions, but it can also can exert direct and/or indirect effects on immune cells in virus-induced inflammation. This review focuses on the antiviral activity of IFN-λ in the mucosal epithelial cells and its action on immune cells and summarizes the pathways by which IFN-λ exerts its action and differentiates it from other interferons in terms of mechanism. Finally, we conclude that IFN-λ is a potent epidermal antiviral factor that enhances the respiratory mucosal immune response and has excellent therapeutic potential in combating respiratory viral infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Zhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Hoyer A, Chakraborty S, Lilienthal I, Konradsen JR, Katayama S, Söderhäll C. The functional role of CST1 and CCL26 in asthma development. Immun Inflamm Dis 2024; 12:e1162. [PMID: 38270326 PMCID: PMC10797655 DOI: 10.1002/iid3.1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Asthma is the most common chronic disease in children with an increasing prevalence. Its development is caused by genetic and environmental factors and allergic sensitization is a known trigger. Dog allergens affect up to 30% of all children and dog dander-sensitized children show increased expression of cystatin-1 (CST1) and eotaxin-3 (CCL26) in nasal epithelium. The aim of our study was to investigate the functional mechanism of CST1 and CCL26 in the alveolar basal epithelial cell line A549. METHODS A549 cells were transfected with individual overexpression vectors for CST1 and CCL26 and RNA sequencing was performed to examine the transcriptomics. edgeR was used to identify differentially expressed genes (= DEG, |log2 FC | ≥ 2, FDR < 0.01). The protein expression levels of A549 cells overexpressing CST1 and CCL26 were analyzed using the Target 96 inflammation panel from OLINK (antibody-mediated proximity extension-based assay; OLINK Proteomics). Differentially expressed proteins were considered with a |log2 FC| ≥ 1, p < .05. RESULTS The overexpression of CST1 resulted in a total of 27 DEG (1 upregulated and 26 downregulated) and the overexpression of CCL26 in a total of 137 DEG (0 upregulated and 137 downregulated). The gene ontology enrichment analysis showed a significant downregulation of type I and III interferon signaling pathway genes as well as interferon-stimulated genes. At the protein level, overexpression of CST1 induced a significantly increased expression of CCL3, whereas CCL26 overexpression led to increased expression of HGF, and a decrease of CXCL11, CCL20, CCL3 and CXCL10. CONCLUSION Our results indicate that an overexpression of CST1 and CCL26 cause a downregulation of interferon related genes and inflammatory proteins. It might cause a higher disease susceptibility, mainly for allergic asthma, as CCL26 is an agonist for CCR-3-carrying cells, such as eosinophils and Th2 lymphocytes, mostly active in allergic asthma.
Collapse
Affiliation(s)
- Angela Hoyer
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Sandip Chakraborty
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Ingrid Lilienthal
- Childhood Cancer Research Unit, Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
| | - Jon R. Konradsen
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Shintaro Katayama
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Stem Cells and Metabolism Research ProgramUniversity of HelsinkiHelsinkiFinland
- Folkhälsan Research CenterHelsinkiFinland
| | - Cilla Söderhäll
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| |
Collapse
|
6
|
He J, Zhao M, Ma X, Li D, Kong J, Yang F. The role and application of three IFN-related reactions in psoriasis. Biomed Pharmacother 2023; 167:115603. [PMID: 37776636 DOI: 10.1016/j.biopha.2023.115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
The pathophysiology of psoriasis is a highly complicated one. Due to the disease's specificity, it not only affects the patient's skin negatively but also manifests systemic pathological changes. These clinical symptoms seriously harm the patient's physical and mental health. IFN, a common immunomodulatory factor, has been increasingly demonstrated to have a significant role in the development of psoriatic skin disease. Psoriasis is connected with a variety of immunological responses. New targets for the therapy of autoimmune skin diseases may emerge from further research on the mechanics of the associated IFN upstream and downstream pathways. Different forms of IFNs do not behave in the same manner in psoriasis, and understanding how different types of IFNs are involved in psoriasis may provide a better notion for future research. This review focuses on the involvement of three types of IFNs in psoriasis and related therapeutic investigations, briefly describing the three IFNs' production and signaling, as well as the dual effects of IFNs on the skin. It is intended that it would serve as a model for future research.
Collapse
Affiliation(s)
- Jiaming He
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Minghui Zhao
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyu Ma
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dilong Li
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyan Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Fan Yang
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
7
|
Cao L, Qian W, Li W, Ma Z, Xie S. Type III interferon exerts thymic stromal lymphopoietin in mediating adaptive antiviral immune response. Front Immunol 2023; 14:1250541. [PMID: 37809098 PMCID: PMC10556530 DOI: 10.3389/fimmu.2023.1250541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Previously, it was believed that type III interferon (IFN-III) has functions similar to those of type I interferon (IFN-I). However, recently, emerging findings have increasingly indicated the non-redundant role of IFN-III in innate antiviral immune responses. Still, the regulatory activity of IFN-III in adaptive immune response has not been clearly reported yet due to the low expression of IFN-III receptors on most immune cells. In the present study, we reviewed the adjuvant, antiviral, antitumor, and disease-moderating activities of IFN-III in adaptive immunity; moreover, we further elucidated the mechanisms of IFN-III in mediating the adaptive antiviral immune response in a thymic stromal lymphopoietin (TSLP)-dependent manner, a pleiotropic cytokine involved in mucosal adaptive immunity. Research has shown that IFN-III can enhance the antiviral immunogenic response in mouse species by activating germinal center B (GC B) cell responses after stimulating TSLP production by microfold (M) cells, while in human species, TSLP exerts OX40L for regulating GC B cell immune responses, which may also depend on IFN-III. In conclusion, our review highlights the unique role of the IFN-III/TSLP axis in mediating host adaptive immunity, which is mechanically different from IFN-I. Therefore, the IFN-III/TSLP axis may provide novel insights for clinical immunotherapy.
Collapse
Affiliation(s)
- Luhong Cao
- Department of Otolaryngology Head and Neck Surgery Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weiwei Qian
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
| | - Wanlin Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Zhiyue Ma
- Department of Otolaryngology Head and Neck Surgery Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shenglong Xie
- Department of Thoracic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Chua KJ, Ling H, Hwang IY, Lee HL, March JC, Lee YS, Chang MW. An Engineered Probiotic Produces a Type III Interferon IFNL1 and Reduces Inflammations in in vitro Inflammatory Bowel Disease Models. ACS Biomater Sci Eng 2023; 9:5123-5135. [PMID: 36399014 PMCID: PMC10498420 DOI: 10.1021/acsbiomaterials.2c00202] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
The etiology of inflammatory bowel diseases (IBDs) frequently results in the uncontrolled inflammation of intestinal epithelial linings and the local environment. Here, we hypothesized that interferon-driven immunomodulation could promote anti-inflammatory effects. To test this hypothesis, we engineered probiotic Escherichia coli Nissle 1917 (EcN) to produce and secrete a type III interferon, interferon lambda 1 (IFNL1), in response to nitric oxide (NO), a well-known colorectal inflammation marker. We then validated the anti-inflammatory effects of the engineered EcN strains in two in vitro models: a Caco-2/Jurkat T cell coculture model and a scaffold-based 3D coculture IBD model that comprises intestinal epithelial cells, myofibroblasts, and T cells. The IFNL1-expressing EcN strains upregulated Foxp3 expression in T cells and thereafter reduced the production of pro-inflammatory cytokines such as IL-13 and -33, significantly ameliorating inflammation. The engineered strains also rescued the integrity of the inflamed epithelial cell monolayer, protecting epithelial barrier integrity even under inflammation. In the 3D coculture model, IFNL1-expressing EcN treatment enhanced the population of regulatory T cells and increased anti-inflammatory cytokine IL-10. Taken together, our study showed the anti-inflammatory effects of IFNL1-expressing probiotics in two in vitro IBD models, demonstrating their potential as live biotherapeutics for IBD immunotherapy.
Collapse
Affiliation(s)
- Koon Jiew Chua
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore,117596, Singapore
- Wilmar-NUS
Corporate Laboratory, National University
of Singapore, 117599, Singapore
| | - Hua Ling
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore,117596, Singapore
- Wilmar-NUS
Corporate Laboratory, National University
of Singapore, 117599, Singapore
| | - In Young Hwang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore,117596, Singapore
- Wilmar-NUS
Corporate Laboratory, National University
of Singapore, 117599, Singapore
| | - Hui Ling Lee
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore,117596, Singapore
- Wilmar-NUS
Corporate Laboratory, National University
of Singapore, 117599, Singapore
| | - John C. March
- Department
of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yung Seng Lee
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
- Department
of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - Matthew Wook Chang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore,117596, Singapore
- Wilmar-NUS
Corporate Laboratory, National University
of Singapore, 117599, Singapore
| |
Collapse
|
9
|
Ren J, Antony F, Rouse BT, Suryawanshi A. Role of Innate Interferon Responses at the Ocular Surface in Herpes Simplex Virus-1-Induced Herpetic Stromal Keratitis. Pathogens 2023; 12:437. [PMID: 36986359 PMCID: PMC10058014 DOI: 10.3390/pathogens12030437] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the host's life and is more common in people with a compromised immune system. HSV-1 causes various diseases depending on the site of lytic HSV-1 replication. These include herpes labialis, herpetic stromal keratitis (HSK), meningitis, and herpes simplex encephalitis (HSE). HSK is an immunopathological condition and is usually the consequence of HSV-1 reactivation, anterograde transport to the corneal surface, lytic replication in the epithelial cells, and activation of the host's innate and adaptive immune responses in the cornea. HSV-1 is recognized by cell surface, endosomal, and cytoplasmic pattern recognition receptors (PRRs) and activates innate immune responses that include interferons (IFNs), chemokine and cytokine production, as well as the recruitment of inflammatory cells to the site of replication. In the cornea, HSV-1 replication promotes type I (IFN-α/β) and type III (IFN-λ) IFN production. This review summarizes our current understanding of HSV-1 recognition by PRRs and innate IFN-mediated antiviral immunity during HSV-1 infection of the cornea. We also discuss the immunopathogenesis of HSK, current HSK therapeutics and challenges, proposed experimental approaches, and benefits of promoting local IFN-λ responses.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| |
Collapse
|
10
|
Sardarmelli Z, Sheikh V, Solgi G, Behzad M. Enhanced production of interleukin-29 and related genes are associated with T helper 1 cell parameters in patients with type 2 diabetes mellitus. Hum Immunol 2023; 84:235-240. [PMID: 36635158 DOI: 10.1016/j.humimm.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The production of interleukin (IL)-29 andthe genes related to IL-29 signaling pathway (STAT1, NF-κB, and NFATc1), and T helper (Th) 1 cells (T-bet, IFN-γ, TNF-α, and IL-2) were evaluated in type 2 diabetes mellitus (T2DM). Correlations between IL-29 and diabetes parameters, and between gene expression in IL-29 pathway and Th1 cells were also examined. MATERIALS AND METHODS 41 newly diagnosed patients with T2DM and 41 healthy controls were recruited. CD4+ T cells were purifed and the production of IL-29 in the supernatant of anti- CD3 and anti- CD28 activated Th cells was detected using ELISA. The expression of IL-29- and Th1- related genes was determined with real-time PCR. RESULTS The secretion of IL-29 and the expression levels of NF-κB, NFATc1, IFN-γ, and TNF-α in Th cells were seen to be increased in diabetes persons compared to controls. Positive connections between IL-29 with hemoglobin A1c (HbA1c) and fasting plasma glucose (FPG) were found in diabetes persons. IL-29 was positively correlated with NFATc1 and TNF-α. NFATc1 was positively related to TNF-α. CONCLUSION Abnormal expression levels of IL-29- and Th1- related genes are linked with T2DM pathogenesis. IL-29 may amplify the expression of Th1-specific genes especially TNF-α by upregulating NFATc1 expression.
Collapse
Affiliation(s)
- Zahra Sardarmelli
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vida Sheikh
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Solgi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Behzad
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
11
|
Santer DM, Li D, Ghosheh Y, Zahoor MA, Prajapati D, Hansen BE, Tyrrell DLJ, Feld JJ, Gehring AJ. Interferon-λ treatment accelerates SARS-CoV-2 clearance despite age-related delays in the induction of T cell immunity. Nat Commun 2022; 13:6992. [PMID: 36385011 PMCID: PMC9667439 DOI: 10.1038/s41467-022-34709-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
Interferons induced early after SARS-CoV-2 infection are crucial for shaping immunity and preventing severe COVID-19. We previously demonstrated that injection of pegylated interferon-lambda accelerated viral clearance in COVID-19 patients (NCT04354259). To determine if the viral decline is mediated by enhanced immunity, we assess in vivo responses to interferon-lambda by single cell RNA sequencing and measure SARS-CoV-2-specific T cell and antibody responses between placebo and interferon-lambda-treated patients. Here we show that interferon-lambda treatment induces interferon stimulated genes in peripheral immune cells expressing IFNLR1, including plasmacytoid dendritic cells and B cells. Interferon-lambda does not affect SARS-CoV-2-specific antibody levels or the magnitude of virus-specific T cells. However, we identify delayed T cell responses in older adults, suggesting that interferon-lambda can overcome delays in adaptive immunity to accelerate viral clearance in high-risk patients. Altogether, interferon-lambda offers an early COVID-19 treatment option for outpatients to boost innate antiviral defenses without dampening peripheral adaptive immunity.
Collapse
Affiliation(s)
- Deanna M. Santer
- grid.21613.370000 0004 1936 9609Department of Immunology, University of Manitoba, Winnipeg, MB Canada
| | - Daniel Li
- grid.17063.330000 0001 2157 2938Institute of Medical Science, University of Toronto, Toronto, ON Canada ,grid.231844.80000 0004 0474 0428Toronto Centre for Liver Disease, University Health Network, Toronto, ON Canada
| | - Yanal Ghosheh
- grid.231844.80000 0004 0474 0428Toronto Centre for Liver Disease, University Health Network, Toronto, ON Canada
| | - Muhammad Atif Zahoor
- grid.231844.80000 0004 0474 0428Toronto Centre for Liver Disease, University Health Network, Toronto, ON Canada
| | - Dhanvi Prajapati
- grid.21613.370000 0004 1936 9609Department of Immunology, University of Manitoba, Winnipeg, MB Canada
| | - Bettina E. Hansen
- grid.231844.80000 0004 0474 0428Toronto Centre for Liver Disease, University Health Network, Toronto, ON Canada
| | - D. Lorne J. Tyrrell
- grid.17089.370000 0001 2190 316XDepartment of Medical Microbiology & Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB Canada
| | - Jordan J. Feld
- grid.17063.330000 0001 2157 2938Institute of Medical Science, University of Toronto, Toronto, ON Canada ,grid.231844.80000 0004 0474 0428Toronto Centre for Liver Disease, University Health Network, Toronto, ON Canada
| | - Adam J. Gehring
- grid.17063.330000 0001 2157 2938Institute of Medical Science, University of Toronto, Toronto, ON Canada ,grid.231844.80000 0004 0474 0428Toronto Centre for Liver Disease, University Health Network, Toronto, ON Canada
| |
Collapse
|
12
|
Role of Interferons in Mycobacterium tuberculosis Infection. Clin Pract 2022; 12:788-796. [PMID: 36286068 PMCID: PMC9600403 DOI: 10.3390/clinpract12050082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Considerable measures have been implemented in healthcare institutions to screen for and treat tuberculosis (TB) in developed countries; however, in low- and middle-income countries, many individuals still suffer from TB’s deleterious effects. TB is caused by an infection from the Mycobacterium tuberculosis (M. tb) bacteria. Symptoms of TB may range from an asymptomatic latent-phase affecting the pulmonary tract to a devastating active and disseminated stage that can cause central nervous system demise, musculoskeletal impairments, and genitourinary compromise. Following M. tb infection, cytokines such as interferons (IFNs) are released as part of the host immune response. Three main classes of IFNs prevalent during the immune defense include: type I IFN (α and β), type II IFN (IFN-γ), and type III IFN (IFN-λ). The current literature reports that type I IFN plays a role in diminishing the host defense against M. tb by attenuating T-cell activation. In opposition, T-cell activation drives type II IFN release, which is the primary cytokine mediating protection from M. tb by stimulating macrophages and their oxidative defense mechanisms. Type III IFN has a subsidiary part in improving the Th1 response for host cell protection against M. tb. Based on the current evidence available, our group aims to summarize the role that each IFN serves in TB within this literature review.
Collapse
|
13
|
Talukdar P, Junecko BF, Lane DS, Maiello P, Mattila JT. Macrophages and neutrophils express IFNλs in granulomas from Mycobacterium tuberculosis-infected nonhuman primates. Front Immunol 2022; 13:985405. [PMID: 36189279 PMCID: PMC9516334 DOI: 10.3389/fimmu.2022.985405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Granulomas are the hallmark of Mycobacterium tuberculosis (Mtb) infection. Cytokine-mediated signaling can modulate immune function; thus, understanding the cytokine milieu in granulomas is critical for understanding immunity in tuberculosis (TB). Interferons (IFNs) are important immune mediators in TB, and while type 1 and 2 IFNs have been extensively studied, less is known about type 3 IFNs (IFNλs) in TB. To determine if IFNλs are expressed in granulomas, which cells express them, and how granuloma microenvironments influence IFNλ expression, we investigated IFNλ1 and IFNλ4 expression in macaque lung granulomas. We identified IFNλ expression in granulomas, and IFNλ levels negatively correlated with bacteria load. Macrophages and neutrophils expressed IFNλ1 and IFNλ4, with neutrophils expressing higher levels of each protein. IFNλ expression varied in different granuloma microenvironments, with lymphocyte cuff macrophages expressing more IFNλ1 than epithelioid macrophages. IFNλ1 and IFNλ4 differed in their subcellular localization, with IFNλ4 predominantly localizing inside macrophage nuclei. IFNλR1 was also expressed in granulomas, with intranuclear localization in some cells. Further investigation demonstrated that IFNλ signaling is driven in part by TLR2 ligation and was accompanied by nuclear translocation of IFNλR1. Our data indicate that IFNλs are part of the granuloma cytokine milieu that may influence myeloid cell function and immunity in TB.
Collapse
Affiliation(s)
- Priyanka Talukdar
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Beth F. Junecko
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Daniel S. Lane
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Pauline Maiello
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joshua T. Mattila
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Duodu P, Sosa G, Canar J, Chhugani O, Gamero AM. Exposing the Two Contrasting Faces of STAT2 in Inflammation. J Interferon Cytokine Res 2022; 42:467-481. [PMID: 35877097 PMCID: PMC9527059 DOI: 10.1089/jir.2022.0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022] Open
Abstract
Inflammation is a natural immune defense mechanism of the body's response to injury, infection, and other damaging triggers. Uncontrolled inflammation may become chronic and contribute to a range of chronic inflammatory diseases. Signal transducer and activator of transcription 2 (STAT2) is an essential transcription factor exclusive to type I and type III interferon (IFN) signaling pathways. Both pathways are involved in multiple biological processes, including powering the immune system as a means of controlling infection that must be tightly regulated to offset the development of persistent inflammation. While studies depict STAT2 as protective in promoting host defense, new evidence is accumulating that exposes the deleterious side of STAT2 when inappropriately regulated, thus prompting its reevaluation as a signaling molecule with detrimental effects in human disease. This review aims to provide a comprehensive summary of the findings based on literature regarding the inflammatory behavior of STAT2 in microbial infections, cancer, autoimmune, and inflammatory diseases. In conveying the extent of our knowledge of STAT2 as a proinflammatory mediator, the aim of this review is to stimulate further investigations into the role of STAT2 in diseases characterized by deregulated inflammation and the mechanisms responsible for triggering severe responses.
Collapse
Affiliation(s)
- Philip Duodu
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Geohaira Sosa
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Jorge Canar
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Olivia Chhugani
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Ana M. Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Du X, Yuan L, Yao Y, Yang Y, Zhou K, Wu X, Wang L, Qin L, Li W, Xiang Y, Qu X, Liu H, Qin X, Yang M, Liu C. ITGB4 Deficiency in Airway Epithelium Aggravates RSV Infection and Increases HDM Sensitivity. Front Immunol 2022; 13:912095. [PMID: 35958591 PMCID: PMC9357881 DOI: 10.3389/fimmu.2022.912095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background The heterogeneity of RSV-infected pathology phenotype in early life is strongly associate with increased susceptibility of asthma in later life. However, the inner mechanism of this heterogeneity is still obscure. ITGB4 is a down-regulated adhesion molecular in the airway epithelia of asthma patients which may participate in the regulation of RSV infection related intracellular pathways. Object This study was designed to observe the involvement of ITGB4 in the process of RSV infection and the effect of ITGB4 deficiency on anti-RSV responses of airway epithelia. Results RSV infection caused a transient decrease of ITGB4 expression both in vitro and in vivo. Besides, ITGB4 deficiency induced not only exacerbated RSV infection, but also enhanced HDM sensitivity in later life. Moreover, IFN III (IFN-λ) was significantly suppressed during RSV infection in ITGB4 deficient airway epithelial cells. Furthermore, the suppression of IFN-λ were regulated by IRF-1 through the phosphorylation of EGFR in airway epithelial cells after RSV infection. Conclusion These results demonstrated the involvement of ITGB4 deficiency in the development of enhance RSV infection in early life and the increased HDM sensitivity in later life by down-regulation of IFN-λ through EGFR/IRF-1 pathway in airway epithelial cells.
Collapse
Affiliation(s)
- Xizi Du
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ye Yao
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Yu Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Kai Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Leyuan Wang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Wenkai Li
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ming Yang
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, NSW, Australia
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
- Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine Central South University, Changsha, China
- *Correspondence: Chi Liu,
| |
Collapse
|
16
|
Alphonse N, Dickenson RE, Alrehaili A, Odendall C. Functions of IFNλs in Anti-Bacterial Immunity at Mucosal Barriers. Front Immunol 2022; 13:857639. [PMID: 35663961 PMCID: PMC9159784 DOI: 10.3389/fimmu.2022.857639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Type III interferons (IFNs), or IFNλs, are cytokines produced in response to microbial ligands. They signal through the IFNλ receptor complex (IFNLR), which is located on epithelial cells and select immune cells at barrier sites. As well as being induced during bacterial or viral infection, type III IFNs are produced in response to the microbiota in the lung and intestinal epithelium where they cultivate a resting antiviral state. While the multiple anti-viral activities of IFNλs have been extensively studied, their roles in immunity against bacteria are only recently emerging. Type III IFNs increase epithelial barrier integrity and protect from infection in the intestine but were shown to increase susceptibility to bacterial superinfections in the respiratory tract. Therefore, the effects of IFNλ can be beneficial or detrimental to the host during bacterial infections, depending on timing and biological contexts. This duality will affect the potential benefits of IFNλs as therapeutic agents. In this review, we summarize the current knowledge on IFNλ induction and signaling, as well as their roles at different barrier sites in the context of anti-bacterial immunity.
Collapse
Affiliation(s)
- Noémie Alphonse
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,Immunoregulation Laboratory, Francis Crick Institute, London, United Kingdom
| | - Ruth E Dickenson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Abrar Alrehaili
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Charlotte Odendall
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Zhou B, Li J, Liu R, Zhu L, Peng C. The Role of Crosstalk of Immune Cells in Pathogenesis of Chronic Spontaneous Urticaria. Front Immunol 2022; 13:879754. [PMID: 35711438 PMCID: PMC9193815 DOI: 10.3389/fimmu.2022.879754] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic spontaneous urticaria (CSU) is defined as recurrent episodes of spontaneous wheal development and/or angioedema for more than six weeks and at least twice a week. The core link in the pathogenesis of CSU is the activation of mast cells, T cells, eosinophils, and other immune cells infiltrating around the small venules of the lesion. Increased vascular permeability, vasodilatation, and recruitment of inflammatory cells directly depend on mast cell mediators’ release. Complex regulatory systems tightly influence the critical roles of mast cells in the local microenvironment. The bias toward Th2 inflammation and autoantibodies derived from B cells, histamine expressed by basophils, and initiation of the extrinsic coagulation pathway by eosinophils or monocytes exerts powerful modulatory influences on mast cells. Cell-to-cell interactions between mast cells and eosinophils/T cells also are regulators of their function and may involve CSU’s pathomechanism. This review summarizes up-to-date knowledge regarding the crosstalk between mast cells and other immune cells, providing the impetus to develop new research concepts and treatment strategies for CSU.
Collapse
Affiliation(s)
- Bingjing Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Runqiu Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Cong Peng,
| |
Collapse
|
18
|
Manivasagam S, Williams JL, Vollmer LL, Bollman B, Bartleson JM, Ai S, Wu GF, Klein RS. Targeting IFN-λ Signaling Promotes Recovery from Central Nervous System Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1341-1351. [PMID: 35181638 PMCID: PMC9012116 DOI: 10.4049/jimmunol.2101041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Type III IFNs (IFNLs) are newly discovered cytokines, acting at epithelial and other barriers, that exert immunomodulatory functions in addition to their primary roles in antiviral defense. In this study, we define a role for IFNLs in maintaining autoreactive T cell effector function and limiting recovery in a murine model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis. Genetic or Ab-based neutralization of the IFNL receptor (IFNLR) resulted in lack of disease maintenance during experimental autoimmune encephalomyelitis, with loss of CNS Th1 effector responses and limited axonal injury. Phenotypic effects of IFNLR signaling were traced to increased APC function, with associated increase in T cell production of IFN-γ and GM-CSF. Consistent with this, IFNL levels within lesions of CNS tissues derived from patients with MS were elevated compared with MS normal-appearing white matter. Furthermore, expression of IFNLR was selectively elevated in MS active lesions compared with inactive lesions or normal-appearing white matter. These findings suggest IFNL signaling as a potential therapeutic target to prevent chronic autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Sindhu Manivasagam
- Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | | | - Lauren L Vollmer
- Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Bryan Bollman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO; and
| | - Juliet M Bartleson
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Shenjian Ai
- Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Gregory F Wu
- Department of Neurology, Washington University in St. Louis, St. Louis, MO; and
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Robyn S Klein
- Department of Medicine, Washington University in St. Louis, St. Louis, MO;
- Department of Neurology, Washington University in St. Louis, St. Louis, MO; and
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
19
|
Hassouna SS, Tayel MY, Elzawawy AI, Amin RM, Tahoun M. MicroRNA548ac expression level in relation to BDCAF scored Behçet’s disease activity and history of treatment response. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2022. [DOI: 10.1186/s43162-022-00107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Behçet’s disease gives a challenge to be diagnosed and followed up due to lack of specific biomarkers. MicroRNAs showed relations to different disease states including immunological and inflammatory illnesses. In this study, we are estimating microRNA548ac levels for the first time to be tested in the disease to see if there is a link to disease activity and if microRNA548ac can be used as a biomarker for activity or remission and prognosis of Behçet’s disease. MicroRNA548ac has been shown to have a role in autoimmunity and some inflammatory conditions. Blood samples were taken from patients to measure white blood cells expression of microRNA548ac, and compared to its expression in healthy subjects, disease activity was assessed by usage of Behçet’s Disease Current Activity Form (BDCAF).
Results
MicroRNA548ac expression decreased but not significantly with increased Behçet’s disease activity, and expression was having a significant positive correlation with increased treatment response history.
Conclusions
MicroRNA548ac appeared not to be related to disease activity which needs confirmation in further studies, but it may predict response to treatment so that patients having higher expression of microRNA548ac may have a better response to treatment. Here, microRNA548ac could be used as a disease biomarker for disease prognosis.
Collapse
|
20
|
Krammer S, Sicorschi Gutu C, Grund JC, Chiriac MT, Zirlik S, Finotto S. Regulation and Function of Interferon-Lambda (IFNλ) and Its Receptor in Asthma. Front Immunol 2021; 12:731807. [PMID: 34899691 PMCID: PMC8660125 DOI: 10.3389/fimmu.2021.731807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Asthma is a chronic respiratory disease affecting people of all ages, especially children, worldwide. Origins of asthma are suggested to be placed in early life with heterogeneous clinical presentation, severity and pathophysiology. Exacerbations of asthma disease can be triggered by many factors, including viral respiratory tract infections. Rhinovirus (RV) induced respiratory infections are the predominant cause of the common cold and also play a crucial role in asthma development and exacerbations. Rhinovirus mainly replicates in epithelial cells lining the upper and lower respiratory tract. Type III interferons, also known as interferon-lambda (IFNλ), are potent immune mediators of resolution of infectious diseases but they are known to be involved in autoimmune diseases as well. The protective role of type III IFNs in antiviral, antibacterial, antifungal and antiprotozoal functions is of major importance for our innate immune system. The IFNλ receptor (IFNλR) is expressed in selected types of cells like epithelial cells, thus orchestrating a specific immune response at the site of viruses and bacteria entry into the body. In asthma, IFNλ restricts the development of TH2 cells, which are induced in the airways of asthmatic patients. Several studies described type III IFNs as the predominant type of interferon increased after infection caused by respiratory viruses. It efficiently reduces viral replication, viral spread into the lungs and viral transmission from infected to naive individuals. Several reports showed that bronchial epithelial cells from asthmatic subjects have a deficient response of type III interferon after RV infection ex vivo. Toll like Receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) expressed on infectious agents, and induce the development of antiviral and antibacterial immunity. We recently discovered that activation of TLR7/8 resulted in enhanced IFNλ receptor mRNA expression in PBMCs of healthy and asthmatic children, opening new therapeutic frontiers for rhinovirus-induced asthma. This article reviews the recent advances of the literature on the regulated expression of type III Interferons and their receptor in association with rhinovirus infection in asthmatic subjects.
Collapse
Affiliation(s)
- Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Cristina Sicorschi Gutu
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina C Grund
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mircea T Chiriac
- Medical Clinic 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sabine Zirlik
- Medical Clinic 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.,Medical Clinic 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
21
|
Vitiello GAF, Ferreira WAS, Cordeiro de Lima VC, Medina TDS. Antiviral Responses in Cancer: Boosting Antitumor Immunity Through Activation of Interferon Pathway in the Tumor Microenvironment. Front Immunol 2021; 12:782852. [PMID: 34925363 PMCID: PMC8674309 DOI: 10.3389/fimmu.2021.782852] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
In recent years, it became apparent that cancers either associated with viral infections or aberrantly expressing endogenous retroviral elements (EREs) are more immunogenic, exhibiting an intense intra-tumor immune cell infiltration characterized by a robust cytolytic apparatus. On the other hand, epigenetic regulation of EREs is crucial to maintain steady-state conditions and cell homeostasis. In line with this, epigenetic disruptions within steady-state cells can lead to cancer development and trigger the release of EREs into the cytoplasmic compartment. As such, detection of viral molecules by intracellular innate immune sensors leads to the production of type I and type III interferons that act to induce an antiviral state, thus restraining viral replication. This knowledge has recently gained momentum due to the possibility of triggering intratumoral activation of interferon responses, which could be used as an adjuvant to elicit strong anti-tumor immune responses that ultimately lead to a cascade of cytokine production. Accordingly, several therapeutic approaches are currently being tested using this rationale to improve responses to cancer immunotherapies. In this review, we discuss the immune mechanisms operating in viral infections, show evidence that exogenous viruses and endogenous retroviruses in cancer may enhance tumor immunogenicity, dissect the epigenetic control of EREs, and point to interferon pathway activation in the tumor milieu as a promising molecular predictive marker and immunotherapy target. Finally, we briefly discuss current strategies to modulate these responses within tumor tissues, including the clinical use of innate immune receptor agonists and DNA demethylating agents.
Collapse
Affiliation(s)
| | - Wallax Augusto Silva Ferreira
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute, Ananindeua, Brazil
| | | | - Tiago da Silva Medina
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| |
Collapse
|
22
|
Manivasagam S, Klein RS. Type III Interferons: Emerging Roles in Autoimmunity. Front Immunol 2021; 12:764062. [PMID: 34899712 PMCID: PMC8660671 DOI: 10.3389/fimmu.2021.764062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Type III interferons (IFNs) or the lambda IFNs (IFNLs or IFN-λs) are antimicrobial cytokines that play key roles in immune host defense at endothelial and epithelial barriers. IFNLs signal via their heterodimeric receptor, comprised of two subunits, IFNLR1 and interleukin (IL)10Rβ, which defines the cellular specificity of the responses to the cytokines. Recent studies show that IFNL signaling regulates CD4+ T cell differentiation, favoring Th1 cells, which has led to the identification of IFNL as a putative therapeutic target for autoimmune diseases. Here, we summarize the IFNL signaling pathways during antimicrobial immunity, IFNL-mediated immunomodulation of both innate and adaptive immune cells, and induction of autoimmunity.
Collapse
Affiliation(s)
- Sindhu Manivasagam
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Robyn S. Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
23
|
Cakmak Genc G, Karakas Celık S, Kocaaga A, Koca R, Dursun A. Association Between IL28B, IL29 Gene Polymorphisms and Clinical Manifestations of Behçet's Disease. Immunol Invest 2021; 50:906-913. [PMID: 32646311 DOI: 10.1080/08820139.2020.1791176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Behçet's disease (BD) is a chronic, multisystemic, inflammatory disease characterized by relapsing episodes of a wide spectrum of clinical findings. The role and mechanism of IFN-λs in BD remain unknown. The aim of this study was to investigate the relationship between IL29 and IL28B gene polymorphisms and BD or clinical manifestations. METHODS Using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method, single-nucleotide polymorphisms of IL28B rs8099917 (IL28 G/T), rs12979860 (IL28 C/T) and IL29 rs30461 (IL29 T/C) were studied in 94 patients with BD and 90 healthy controls. RESULTS Our study did not show any relationship between Behçet Disease and genotype or allele frequencies of IL28B (rs8099917, rs12979860) and IL29 (rs30461) gene polymorphisms (p > .05). We found that the TT genotype of rs12979860 (IL28 C/T) polymorphism is higher in healthy controls and patients without central nervous system (CNS) involvement compared to patients with CNS involvement (p = .014 and p = .022). CONCLUSIONS As a result, although the relationship was found between IL28 and IL29 gene polymorphisms with some clinical manifestations of BD, it was not directly related to the predisposition of the disease. The relationship between IL-28 and IL-29 which act as regulators in inflammatory processes, with Behçet disease, needs to be investigated in further studies.
Collapse
Affiliation(s)
- G Cakmak Genc
- Department of Medical Genetics, Zonguldak Bülent Ecevit University Health Practice and Research Center, Zonguldak, Turkey
| | - S Karakas Celık
- Department of Medical Genetics, Zonguldak Bülent Ecevit University Health Practice and Research Center, Zonguldak, Turkey
| | - A Kocaaga
- Department of Medical Genetics, Zonguldak Bülent Ecevit University Health Practice and Research Center, Zonguldak, Turkey
| | - R Koca
- Department of Dermatology, Zonguldak Bülent Ecevit University Health Practice and Research Center, Zonguldak, Turkey
| | - A Dursun
- Department of Medical Genetics, Zonguldak Bülent Ecevit University Health Practice and Research Center, Zonguldak, Turkey
| |
Collapse
|
24
|
De M, Bhushan A, Chinnaswamy S. Monocytes differentiated into macrophages and dendritic cells in the presence of human IFN-λ3 or IFN-λ4 show distinct phenotypes. J Leukoc Biol 2021; 110:357-374. [PMID: 33205487 PMCID: PMC7611425 DOI: 10.1002/jlb.3a0120-001rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Human IFN-λ4 is expressed by only a subset of individuals who possess the ΔG variant allele at the dinucleotide polymorphism rs368234815. Recent genetic studies have shown an association between rs368234815 and different infectious and inflammatory disorders. It is not known if IFN-λ4 has immunomodulatory activity. The expression of another type III IFN, IFN-λ3, is also controlled by genetic polymorphisms that are strongly linked to rs368234815. Therefore, it is of interest to compare these two IFNs for their effects on immune cells. Herein, using THP-1 cells, it was confirmed that IFN-λ4 could affect the differentiation status of macrophage-like cells and dendritic cells (DCs). The global gene expression changes induced by IFN-λ4 were also characterized in in vitro generated primary macrophages. Next, human PBMC-derived CD14+ monocytes were used to obtain M1 and M2 macrophages and DCs in the presence of IFN-λ3 or IFN-λ4. These DCs were cocultured with CD4+ Th cells derived from allogenic donors and their in vitro cytokine responses were measured. The specific activity of recombinant IFN-λ4 was much lower than that of IFN-λ3, as shown by induction of IFN-stimulated genes. M1 macrophages differentiated in the presence of IFN-λ4 showed higher IL-10 secretion than those differentiated in IFN-λ3. Coculture experiments suggested that IFN-λ4 could confer a Th2-biased phenotype to allogenic Th cells, wherein IFN-λ3, under similar circumstances, did not induce a significant bias toward either a Th1 or Th2 phenotype. This study shows for the first time that IFN-λ4 may influence immune responses by immunomodulation.
Collapse
Affiliation(s)
- Manjarika De
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
| | - Anand Bhushan
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
| | | |
Collapse
|
25
|
Fu LX, Chen T, Guo ZP, Cao N, Zhang LW, Zhou PM. Enhanced serum interferon-lambda 1 interleukin-29 levels in patients with psoriasis vulgaris. An Bras Dermatol 2021; 96:416-421. [PMID: 34030913 PMCID: PMC8245709 DOI: 10.1016/j.abd.2020.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/29/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Interferon (IFN)-λ1, also named Interleukin (IL)-29, is a new member of the Type III IFN or IFN-λ family. IL-29 plays an important role in the pathogenesis of many types of autoimmune and inflammatory diseases. OBJECTIVE To study the role of IL-29 in the pathogenesis of psoriasis vulgaris. METHODS The authors detected the serum levels of IL-29 in forty-one patients with psoriasis vulgaris, twenty-three patients with atopic dermatitis and thirty-eight age and gender-matched controls by sandwich Enzyme-Linked Immunosorbent Assay (ELISA). The effects of IL-29 on the expression of cytokines, such as IL-6, IL-17, IL-8, IL-4, IL10, Interferon (IFN-γ) and Tumor Necrosis Factor-α (TNF-α), in PBMCs and HaCat cells were determined by real-time quantitative PCR. RESULTS Our data indicated that serum IL-29 levels were significantly elevated in patients with psoriasis vulgaris when compared with atopic dermatitis patients and the control group. Moreover, Serum levels of IL-29 were closely associated with the severity of psoriasis vulgaris. Furthermore, IL-29 up-regulated the mRNA expression levels of IL-6, IL-17 and TNF-α in PBMCs from psoriasis vulgaris patients. In addition, IL-29 enhanced the IL-6 and IL-8 expression from the HaCat cells. CONCLUSION This study provides the first observations on the association of IL-29 and psoriasis vulgaris and showed elevated IL-29 serum levels. The authors suggest that IL-29 may play a role in the pathogenesis of psoriasis vulgaris.
Collapse
Affiliation(s)
- Li-Xin Fu
- Department of Dermatovenereology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Tao Chen
- Department of Dermatovenereology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Zai-Pei Guo
- Department of Dermatovenereology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Na Cao
- Department of Dermatovenereology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Li-Wen Zhang
- Department of Dermatovenereology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Pei-Mei Zhou
- Department of Dermatovenereology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Zhang X, Wang S, Zhu Y, Zhang M, Zhao Y, Yan Z, Wang Q, Li X. Double-edged effects of interferons on the regulation of cancer-immunity cycle. Oncoimmunology 2021; 10:1929005. [PMID: 34262796 PMCID: PMC8253121 DOI: 10.1080/2162402x.2021.1929005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are a large family of pleiotropic cytokines that regulate both innate and adaptive immunity and show anti-cancer effects in various cancer types. Moreover, it was revealed that IFN signaling plays critical roles in the success of cancer therapy strategies, thereby enhancing their therapeutic effects. However, IFNs have minimal or even adverse effects on cancer eradication, and mediate cancer immune escape in some instances. Thus, IFNs have a double-edged effect on the cancer immune response. Recent studies suggest that IFNs regulate each step of the cancer immunity-cycle, consisting of cancer antigen release, presentation of antigens and activation of T cells, trafficking and infiltration of effector T cells into the tumor microenvironment, and recognition and killing of cancer cells, which contributes to our understanding of the mechanisms of IFNs in regulating cancer immunity. In this review, we focus on IFNs and cancer immunity and elaborate on the roles of IFNs in regulating the cancer-immunity cycle.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Stomatology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Pathology, Harbin Medical University, Harbin, China
| | - Song Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yuanyuan Zhu
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Yan Zhao
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Zhengbin Yan
- Department of Stomatology, the PeopIe's Hospital of Longhua, Shenzhen, China
| | - Qiuxu Wang
- Department of Stomatology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Stomatology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiaobo Li
- Department of Stomatology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
27
|
Lübbers J, Eveline Li RJ, Gorki FS, Bruijns SCM, Gallagher A, Kalay H, Ambrosini M, Molenaar D, Van den Bossche J, van Vliet SJ, van Kooyk Y. α2-3 Sialic acid binding and uptake by human monocyte-derived dendritic cells alters metabolism and cytokine release and initiates tolerizing T cell programming. IMMUNOTHERAPY ADVANCES 2021; 1:ltab012. [PMID: 35919745 PMCID: PMC9327115 DOI: 10.1093/immadv/ltab012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/03/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Summary
Dendritic cells (DCs) are key in the initiation of the adaptive T cell responses to tailor adequate immunity that corresponds to the type of pathogen encountered. Oppositely, DCs control the resolution phase of inflammation and are able to induce tolerance after receiving anti-inflammatory cytokines or upon encounter of self-associated molecular patterns, such as α2-3 linked sialic acid (α2-3sia).
Objective: We here investigated whether α2-3sia, that bind immune inhibitory Siglec receptors, would alter signaling and reprogramming of LPS-stimulated human monocyte-derived DCs (moDCs).
Methods and Results: Transcriptomic analysis of moDCs stimulated with α2-3sia-conjugated dendrimers revealed differentially expressed genes related to metabolic pathways, cytokines, and T cell differentiation. An increase in genes involved in ATPase regulator activity, oxidoreductase activity, and glycogen metabolic processes was detected. Metabolic extracellular flux analysis confirmed a more energetic moDC phenotype upon α2-3sia binding as evidenced by an increase in both glycolysis and mitochondrial oxidative phosphorylation. TH1 differentiation promoting genes IFNL and IL27, were significantly downregulated in the presence of α2-3sia. Functional assays confirmed that α2-3sia binding to moDCs induced phosphorylation of Siglec-9, reduced production of inflammatory cytokines IL-12 and IL-6, and increased IL-10. Surprisingly, α2-3sia-differentiated moDCs promoted FoxP3+CD25+/-CD127- regulatory T cell differentiation and decreased FoxP3-CD25-CD127- effector T cell proliferation.
Conclusions: In conclusion, we demonstrate that α2-3sia binding to moDCs, phosphorylates Siglec-9, alters metabolic pathways, cytokine signaling, and T cell differentiation processes in moDCs and promotes regulatory T cells. The sialic acid-Siglec axis on DCs is therefore, a novel target to induce tolerance and to explore for immunotherapeutic interventions aimed to restore inflammatory processes.
Collapse
Affiliation(s)
- Joyce Lübbers
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Rui-Jún Eveline Li
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Friederike S Gorki
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sven C M Bruijns
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Ashley Gallagher
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Hakan Kalay
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Martino Ambrosini
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Douwe Molenaar
- Systems Bioinformatics, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Jan Van den Bossche
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Sandra J van Vliet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Falkowski B, Szczepanek-Parulska E, Krygier A, Wrotkowska E, Ruchala M. Evaluation of interleukin-29 in autoimmune and inflammatory thyroid diseases. Clin Endocrinol (Oxf) 2021; 94:998-1003. [PMID: 33449383 DOI: 10.1111/cen.14418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Interleukins play an important role in the development of autoimmune disorders. The aim of this study was to compare the concentration of interleukin-29 (IL-29) between healthy controls (CS) and patients with selected thyroid disorders: Graves' disease (GD), Hashimoto's thyroiditis (HT) and subacute thyroiditis (SAT). DESIGN AND METHODS The following parameters were examined in the group of 95 individuals (45 with GD, 22 with HT, 28 with SAT) and 72 CS: thyroid hormones and autoantibodies, inflammatory markers and the concentration of IL-29 in serum. RESULTS The concentration of IL-29 in the GD subgroup was higher than that in the CS subgroup [264.0 (62.5-1018.0) vs. 62.5 (62.5-217.0) pg/mL, P = .001]. We found no differences in IL-29 concentrations between the CS and HT or SAT subgroups. Multivariable linear regression analysis indicated that IL-29 was a statistically significant independent predictor of GD presence (r = 0.24; P = .003) after adjustment for TRAb (R2 = 0.45; P < .001). The ROC analysis of IL-29 at GD diagnosis revealed an IL-29 cut-off of 123 pg/mL (sensitivity: 0.689 and specificity: 0.625) as the best value, which significantly indicated the presence of GD [area under the ROC curve (AUC): 0.676; 95% confidence interval (CI): 0.574-0.778, P < .001]. CONCLUSION This is the first study to demonstrate elevated IL-29 serum levels in patients with GD. Our results suggest that IL-29 might be engaged in one of the pathogenetic pathways of GD, but no HT and SAT. Future studies are required to evaluate the potential of the protein as a therapeutic target in GD.
Collapse
Affiliation(s)
- Bogusz Falkowski
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewelina Szczepanek-Parulska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Krygier
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Elzbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchala
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
29
|
Goel RR, Kotenko SV, Kaplan MJ. Interferon lambda in inflammation and autoimmune rheumatic diseases. Nat Rev Rheumatol 2021; 17:349-362. [PMID: 33907323 PMCID: PMC8077192 DOI: 10.1038/s41584-021-00606-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 12/23/2022]
Abstract
Interferons are potent antiviral cytokines that modulate immunity in response to infection or other danger signals. In addition to their antiviral functions, type I interferons (IFNα and IFNβ) are important in the pathogenesis of autoimmune diseases. Type III interferons (IFNλs) were initially described as a specialized system that inhibits viral replication at epithelial barrier surfaces while limiting inflammatory damage. However, evidence now suggests that type III interferons have complex effects on both innate and adaptive immune responses and might also be pathogenic in systemic autoimmune diseases. Concentrations of IFNλs are increased in blood and tissues in a number of autoimmune rheumatic diseases, including systemic lupus erythematosus, and are further associated with specific clinical and laboratory parameters. This Review is aimed at providing a critical evaluation of the current literature on IFNλ biology and how type III interferons might contribute to immune dysregulation and tissue damage in autoimmunity. The potential effects of type III interferons on treatment strategies for autoimmune rheumatic diseases, such as interferon blockade, are also considered.
Collapse
Affiliation(s)
- Rishi R Goel
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Wang SQ, Shen Y, Li J, Liu Y, Cheng LS, Wu SD, She WM, Jiang W. Entecavir-induced interferon-λ1 suppresses type 2 innate lymphoid cells in patients with hepatitis B virus-related liver cirrhosis. J Viral Hepat 2021; 28:795-808. [PMID: 33482039 DOI: 10.1111/jvh.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 12/09/2022]
Abstract
The immunomodulatory effects of entecavir (ETV) in anti-hepatitis B virus (HBV) therapy have long been recognized. This study aimed to determine the effects of ETV on non-natural killer innate lymphoid cells (non-NK ILCs) in HBV-related liver disease progression. We enrolled treatment-naïve chronic hepatitis B (CHB) and HBV-related liver cirrhosis (LC) patients treated with ETV for 24 months. Before and after therapy, the frequency and cytokine profiles of ILC2s and non-NK ILCs subset homeostasis and their clinical significance were determined, and serial serum interferon (IFN)-λ levels were analysed. Peripheral blood mononuclear cells (PBMCs) of untreated LC patients were cultured with serum from untreated and ETV-treated LC patients in addition to being subject to IFN-λ1 neutralization and stimulation, and the frequency and cytokine production of ILC2s as well as non-NK ILCs subset ratios were calculated. Furthermore, IFN-λ receptor expression on non-NK ILCs and dendritic cells (DCs) was measured. After 24 months of ETV treatment, the frequency and cytokine production of ILC2s (IL-4, IL-13, IFN-γ, TNF-α) decreased with increased ILC1/ILC2 and decreased ILC2/ILC3 ratios, revealing a close association with disease status in LC patients. Long-term ETV administration-induced serum IFN-λ1 levels were negatively correlated with ILC2s. ETV-treated LC serum culture and IFN-λ1 stimulation yielded similar effects on suppression of ILC2s, and IFN-λ1 neutralization in serum culture partly inhibited this effect. The IFN-λ receptor was detected on DCs but not on non-NK ILCs. In conclusion, ETV suppresses the frequency and cytokine profiles of ILC2s by increasing IFN-λ1 in LC patients.
Collapse
Affiliation(s)
- Si-Qi Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Yue Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Jing Li
- Department of Gastroenterology, Tongji Hospital, Tongji University, Shanghai, China
| | - Yun Liu
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Sha Cheng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Sheng-Di Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Wei-Min She
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Wei Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
- Department of Gastroenterology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian, China
| |
Collapse
|
31
|
Hahn WO, Pepper M, Liles WC. B cell intrinsic expression of IFNλ receptor suppresses the acute humoral immune response to experimental blood-stage malaria. Virulence 2021; 11:594-606. [PMID: 32407154 PMCID: PMC7549950 DOI: 10.1080/21505594.2020.1768329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antibodies play a critical protective role in the host response to blood-stage malaria infection. The role of cytokines in shaping the antibody response to blood-stage malaria is unclear. Interferon lambda (IFNλ), a type III interferon, is a cytokine produced early during blood-stage malaria infection that has an unknown physiological role during malaria infection. We demonstrate that B cell-intrinsic IFNλ signals suppress the acute antibody response, acute plasmablast response, and impede acute parasite clearance during a primary blood-stage malaria infection. Our findings demonstrate a previously unappreciated role for B cell intrinsic IFNλ-signaling in the initiation of the humoral immune response in the host response to experimental malaria.
Collapse
Affiliation(s)
- William O Hahn
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington , Seattle, USA
| | - Marion Pepper
- Department of Immunology, University of Washington , Seattle, USA
| | - W Conrad Liles
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington , Seattle, USA
| |
Collapse
|
32
|
Quench me if you can: Alpha-2-macroglobulin trypsin complexes enable serum biomarker analysis by MALDI mass spectrometry. Biochimie 2021; 185:87-95. [PMID: 33744341 DOI: 10.1016/j.biochi.2021.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022]
Abstract
One of the main functions of alpha-2-macroglobulin (A2M) in human blood serum is the binding of all classes of protease. It is known that trypsin, after such interaction, possesses modified proteolytic activity. Trypsin first hydrolyzes two bonds in A2M's 'bait region', and the peptide 705VGFYESDVMGR715 is released from A2M. In this work, specifics of the A2M-trypsin interaction were used to determine A2M concentration directly in human blood serum using MALDI mass-spectrometry. Following exogenous addition of trypsin to human blood serum in vitro, the concentration of the VGFYESDVMGR peptide was measured, using its isotopically-labeled analogue (18O), and A2M concentration was calculated. The optimized mass spectrometric approach was verified using a standard method for A2M concentration determination (ELISA) and the relevant statistical analysis methods. It was also shown that trypsin's modified proteolytic activity in the presence of serum A2M can be used to analyze other serum proteins, including potential biomarkers of pathological processes. Thus, this work describes a promising approach to serum biomarker analysis that can be technically extended in several useful directions.
Collapse
|
33
|
Coto-Llerena M, Lepore M, Spagnuolo J, Di Blasi D, Calabrese D, Suslov A, Bantug G, Duong FH, Terracciano LM, De Libero G, Heim MH. Interferon lambda 4 can directly activate human CD19 + B cells and CD8 + T cells. Life Sci Alliance 2021; 4:e201900612. [PMID: 33158978 PMCID: PMC7668538 DOI: 10.26508/lsa.201900612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Compared with the ubiquitous expression of type I (IFNα and IFNβ) interferon receptors, type III (IFNλ) interferon receptors are mainly expressed in epithelial cells of mucosal barriers of the of the intestine and respiratory tract. Consequently, IFNλs are important for innate pathogen defense in the lung and intestine. IFNλs also determine the outcome of hepatitis C virus (HCV) infections, with IFNλ4 inhibiting spontaneous clearance of HCV. Because viral clearance is dependent on T cells, we explored if IFNλs can directly bind to and regulate human T cells. We found that human B cells and CD8+ T cells express the IFNλ receptor and respond to IFNλs, including IFNλ4. IFNλs were not inhibitors but weak stimulators of B- and T-cell responses. Furthermore, IFNλ4 showed neither synergistic nor antagonistic effects in co-stimulatory experiments with IFNλ1 or IFNα. Multidimensional flow cytometry of cells from liver biopsies of hepatitis patients from IFNλ4-producers showed accumulation of activated CD8+ T cells with a central memory-like phenotype. In contrast, CD8+ T cells with a senescent/exhausted phenotype were more abundant in IFNλ4-non-producers. It remains to be elucidated how IFNλ4 promotes CD8 T-cell responses and inhibits the host immunity to HCV infections.
Collapse
Affiliation(s)
- Mairene Coto-Llerena
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Marco Lepore
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Julian Spagnuolo
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Daniela Di Blasi
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Diego Calabrese
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Aleksei Suslov
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Glenn Bantug
- Department of Biomedicine, Immunobiology, University Hospital and University of Basel, Basel, Switzerland
| | - Francois Ht Duong
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Luigi M Terracciano
- Molecular Pathology Division, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Gennaro De Libero
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Markus H Heim
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
- Division of Gastroenterology and Hepatology, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
34
|
Keshani F, Tabari Z, Hematzadeh S. IL29 expression in gingival tissues of chronic periodontitis and aggressive periodontitis patients: An immunohistochemical analysis. Dent Res J (Isfahan) 2021. [DOI: 10.4103/1735-3327.324025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
35
|
Nam GH, Choi Y, Kim GB, Kim S, Kim SA, Kim IS. Emerging Prospects of Exosomes for Cancer Treatment: From Conventional Therapy to Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002440. [PMID: 33015883 DOI: 10.1002/adma.202002440] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/29/2020] [Indexed: 05/05/2023]
Abstract
Exosomes are a class of extracellular vesicles of around 100 nm in diameter that are secreted by most cells and contain various bioactive molecules reflecting their cellular origin and mediate intercellular communication. Studies of these exosomal features in tumor pathogenesis have led to the development of therapeutic and diagnostic approaches using exosomes for cancer therapy. Exosomes have many advantages for conveying therapeutic agents such as small interfering RNAs, microRNAs, membrane-associated proteins, and chemotherapeutic compounds; thus, they are considered a prime candidate as a delivery tool for cancer treatment. Since exosomes also provide an optimal microenvironment for the effective function of immunomodulatory factors, exosomes harboring bioactive molecules have been bioengineered as cancer immunotherapies that can effectively activate each stage of the cancer immunity cycle to successfully elicit cancer-specific immunity. This review discusses the advantages of exosomes for treating cancer and the challenges that must be overcome for their successful clinical development.
Collapse
Affiliation(s)
- Gi-Hoon Nam
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yoonjeong Choi
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gi Beom Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seohyun Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seong A Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
36
|
Xu T, Yan T, Li P. Interleukin-29 regulates T follicular helper cells by repressing BCL6 in rheumatoid arthritis patients. Clin Rheumatol 2020; 39:3797-3804. [PMID: 32468318 DOI: 10.1007/s10067-020-05151-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/17/2020] [Accepted: 05/05/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION We aimed to investigate whether Interleukin-29 (IL-29) directly affects T follicular helper (Tfh) cell frequency in rheumatoid arthritis (RA), which are both related to RA-specific antibody responses. METHODS Here, we explored the effect of IL-29 on Tfh cell production in RA patients using a combination of enzyme-linked immunosorbent assay (ELISA), flow cytometry (FCM), CD4+ T cell culture, western blotting, and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS We reported that serum IL-29 levels, peripheral blood CD4+CXCR5+ Tfh cell frequency, CD4+CXCR5+CD40L+ Tfh cell frequency, and IL-28 receptor (IL-28Rα) and IL-10 receptor (IL-10R2) levels in peripheral blood Tfh cells were higher in RA patients than in healthy controls (HCs). Serum IL-29 levels were positively correlated with peripheral blood CD4+CXCR5+CD40L+ Tfh cell frequency in RA patients, and both parameters also correlated with anti-cyclic citrullinated peptide (anti-CCP) antibodies. Furthermore, we showed that IL-29 may suppress Tfh cell differentiation in RA patients partly via decreased BCL6 level through reduced STAT3 activity. CONCLUSIONS Taken together, our findings reveal the regulatory effect of IL-29 on Tfh cells, which participate in the pathogenesis of RA and provide new targets for its clinical treatment. Key Points • There is an increase in circulating Tfh cells and IL-29 levels in RA patients, which are correlated to anti-CCP antibodies levels and may be associated with RA pathogenesis. • We show for the first time that IL-29 may contribute to RA by inhibiting Tfh cell production, through decreasing the activity of STAT3 and downregulating the expression of BCL6. • The use of IL-29 biologics in patients with RA inhibits the production of Tfh cells, may prevent progression in patients with RA, and provides new targets for clinical treatment.
Collapse
Affiliation(s)
- Tingshuang Xu
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, No.126 Xiantai Street, Changchun, 130033, Jilin, China
- Jilin University First Hospital, Changchun, 130021, China
| | - Tianyi Yan
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, No.126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Ping Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, No.126 Xiantai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
37
|
Lozhkov AA, Klotchenko SA, Ramsay ES, Moshkoff HD, Moshkoff DA, Vasin AV, Salvato MS. The Key Roles of Interferon Lambda in Human Molecular Defense against Respiratory Viral Infections. Pathogens 2020; 9:pathogens9120989. [PMID: 33255985 PMCID: PMC7760417 DOI: 10.3390/pathogens9120989] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Interferons (IFN) are crucial for the innate immune response. Slightly more than two decades ago, a new type of IFN was discovered: the lambda IFN (type III IFN). Like other IFN, the type III IFN display antiviral activity against a wide variety of infections, they induce expression of antiviral, interferon-stimulated genes (MX1, OAS, IFITM1), and they have immuno-modulatory activities that shape adaptive immune responses. Unlike other IFN, the type III IFN signal through distinct receptors is limited to a few cell types, primarily mucosal epithelial cells. As a consequence of their greater and more durable production in nasal and respiratory tissues, they can determine the outcome of respiratory infections. This review is focused on the role of IFN-λ in the pathogenesis of respiratory viral infections, with influenza as a prime example. The influenza virus is a major public health problem, causing up to half a million lethal infections annually. Moreover, the virus has been the cause of four pandemics over the last century. Although IFN-λ are increasingly being tested in antiviral therapy, they can have a negative influence on epithelial tissue recovery and increase the risk of secondary bacterial infections. Therefore, IFN-λ expression deserves increased scrutiny as a key factor in the host immune response to infection.
Collapse
Affiliation(s)
- Alexey A. Lozhkov
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (A.A.L.); (D.A.M.); (A.V.V.)
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 196376 St. Petersburg, Russia; (S.A.K.); (E.S.R.)
| | - Sergey A. Klotchenko
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 196376 St. Petersburg, Russia; (S.A.K.); (E.S.R.)
| | - Edward S. Ramsay
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 196376 St. Petersburg, Russia; (S.A.K.); (E.S.R.)
| | - Herman D. Moshkoff
- Russian Technological University (MIREA), 119454 Moscow, Russia;
- US Pharma Biotechnology, Inc., 5000 Thayer Center, Suite C, Oakland, MD 21550, USA
| | - Dmitry A. Moshkoff
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (A.A.L.); (D.A.M.); (A.V.V.)
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 196376 St. Petersburg, Russia; (S.A.K.); (E.S.R.)
- US Pharma Biotechnology, Inc., 5000 Thayer Center, Suite C, Oakland, MD 21550, USA
- Global Virus Network(GVN), 725 W Lombard St, Baltimore, MD 21201, USA
| | - Andrey V. Vasin
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (A.A.L.); (D.A.M.); (A.V.V.)
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 196376 St. Petersburg, Russia; (S.A.K.); (E.S.R.)
- Global Virus Network(GVN), 725 W Lombard St, Baltimore, MD 21201, USA
- St. Petersburg State Chemical-Pharmaceutical Academy, 197022 St. Petersburg, Russia
| | - Maria S. Salvato
- Global Virus Network(GVN), 725 W Lombard St, Baltimore, MD 21201, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
38
|
Jafarzadeh A, Nemati M, Saha B, Bansode YD, Jafarzadeh S. Protective Potentials of Type III Interferons in COVID-19 Patients: Lessons from Differential Properties of Type I- and III Interferons. Viral Immunol 2020; 34:307-320. [PMID: 33147113 DOI: 10.1089/vim.2020.0076] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
While an appropriately regulated production of interferons (IFNs) performs a fundamental role in the defense against coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), dysregulated overproduction of inflammatory mediators can play an important role in the development of SARS-CoV-2 infection-related complications, such as acute respiratory distress syndrome. As the principal constituents of innate immunity, both type I and III IFNs share antiviral features. However, important properties, including preferential expression at mucosal barriers (such as respiratory tract), local influences, lower receptor distribution, smaller target cell types, noninflammatory effects, and immunomodulatory impacts, were attributed only to type III IFNs. Accordingly, type III IFNs can establish an optimal effective antiviral response, without triggering exaggerated systemic inflammation that is generally attributed to the type I IFNs. However, some harmful effects were attributed to the III IFNs and there are also major differences between human and mouse concerning the immunomodulatory effects of III IFNs. Here, we describe the differential properties of type I and type III IFNs and present a model of IFN response during SARS-COV-2 infection, while highlighting the superior potential of type III IFNs in COVID-19.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Bhaskar Saha
- National Center for Cell Science, Pune, India.,Trident Academy of Creative Technology, Bhubaneswar, India
| | | | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
39
|
Rich HE, Antos D, Melton NR, Alcorn JF, Manni ML. Insights Into Type I and III Interferons in Asthma and Exacerbations. Front Immunol 2020; 11:574027. [PMID: 33101299 PMCID: PMC7546400 DOI: 10.3389/fimmu.2020.574027] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/25/2020] [Indexed: 01/16/2023] Open
Abstract
Asthma is a highly prevalent, chronic respiratory disease that impacts millions of people worldwide and causes thousands of deaths every year. Asthmatics display different phenotypes with distinct genetic components, environmental causes, and immunopathologic signatures, and are broadly characterized into type 2-high or type 2-low (non-type 2) endotypes by linking clinical characteristics, steroid responsiveness, and molecular pathways. Regardless of asthma severity and adequate disease management, patients may experience acute exacerbations of symptoms and a loss of disease control, often triggered by respiratory infections. The interferon (IFN) family represents a group of cytokines that play a central role in the protection against and exacerbation of various infections and pathologies, including asthma. Type I and III IFNs in particular play an indispensable role in the host immune system to fight off pathogens, which seems to be altered in both pediatric and adult asthmatics. Impaired IFN production leaves asthmatics susceptible to infection and with uncontrolled type 2 immunity, promotes airway hyperresponsiveness (AHR), and inflammation which can lead to asthma exacerbations. However, IFN deficiency is not observed in all asthmatics, and alterations in IFN expression may be independent of type 2 immunity. In this review, we discuss the link between type I and III IFNs and asthma both in general and in specific contexts, including during viral infection, co-infection, and bacterial/fungal infection. We also highlight several studies which examine the potential role for type I and III IFNs as asthma-related therapies.
Collapse
Affiliation(s)
- Helen E Rich
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Danielle Antos
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Natalie R Melton
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Michelle L Manni
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
40
|
Freitas IT, Tinago W, Sawa H, McAndrews J, Doak B, Prior-Fuller C, Sheehan G, Lambert JS, Muldoon E, Cotter AG, Hall WW, Mallon PWG, Carr MJ. Interferon lambda rs368234815 ΔG/ΔG is associated with higher CD4 +:CD8 + T-cell ratio in treated HIV-1 infection. AIDS Res Ther 2020; 17:13. [PMID: 32295609 PMCID: PMC7194102 DOI: 10.1186/s12981-020-00269-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/03/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The objectives of this study were to investigate the relationships between polymorphisms at the interferon lambda (IFNL) locus and CD4+:CD8+ ratio normalisation in people living with HIV (PLWH) on effective antiretroviral therapy (ART); and to examine whether these polymorphisms influence the composition of T lymphocyte compartments in long-term treated HIV-1 infection. METHODS A cross-sectional study in PLWH enrolled into the Mater Immunology study. We performed IFNL genotyping on stored samples and evaluated the association of IFNL single-nucleotide polymorphisms (rs368234815 and rs12979860) with CD4+:CD8+ ratio normalization (> 1) and expanded CD4+ and CD8+ T-cell subsets; CD45RO+CD62L+ (central-memory), CD45RO+ CD62L-(effector-memory) and CD45RO-CD62L+ (naïve), using logistic and linear regression models, respectively. RESULTS 190 ambulatory PLWH recruited to the main study, 143 were included in the analysis (38 had no stored DNA and 9 no T-lymphocyte subpopulation). Of 143 included, the median age (IQR) was 45(39-48) years, 64% were male and 66% were of Caucasian ethnicity. Heterosexual-contact (36%), injecting drug-use (33%) and men who have sex with men (24%) were the most presented HIV-transmission risk groups. The majority of subjects (90.2%) were on ART with 79% of the cohort having an undetectable HIV-RNA (< 40 copies/ml) and the time since ART initiation was 7.5 (3.7-10.4) year. rs368234815 and rs12979860 displayed similar allelic frequencies, with minor alleles ΔG and T representing 39% and 42%, respectively, of circulating alleles. rs368234815 ΔG/ΔG minor homozygotes were significantly associated with increased odds for attaining a normalised CD4+:CD8+ ratio compared to rs368234815 T/T major homozygotes in PLWH virologically suppressed on effective ART (OR = 3.11; 95% CI [1.01:9.56]). rs368234815 ΔG/ΔG homozygosity was also significantly associated with lower levels of CD4+ effector memory T-cells (regression coefficient: - 7.1%, p = 0.04) and CD8+ naïve T-cell subsets were significantly higher in HIV-1 mono-infected PLWH with rs368234815 ΔG/ΔG (regression coefficient: + 7.2%, p = 0.04). CONCLUSIONS In virally-suppressed, long-term ART-treated PLWH, rs368234815 ΔG/ΔG homozygotes were more likely to have attained normalisation of their CD4+:CD8+ ratio, displayed lower CD4+ effector memory and higher naive CD8+ T-cells. Further studies are needed to replicate our findings in other, larger and more diverse cohorts and to determine the impact of IFNL genetic-variation on CD4+:CD8+ ratio normalisation and clinical outcomes in PLWH.
Collapse
Affiliation(s)
- Inês T Freitas
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Willard Tinago
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Hirofumi Sawa
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo, 001-0020, Japan
- Global Virus Network (GVN), 801 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Julie McAndrews
- Department of Immunology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Brenda Doak
- Department of Immunology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | | | - Gerard Sheehan
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Disease, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - John S Lambert
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Disease, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Eavan Muldoon
- Department of Infectious Disease, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Aoife G Cotter
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Dublin 4, Ireland
- Global Virus Network (GVN), 801 W. Baltimore St., Baltimore, MD, 21201, USA
- Department of Infectious Disease, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - William W Hall
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Dublin 4, Ireland
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo, 001-0020, Japan
- Global Virus Network (GVN), 801 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Patrick W G Mallon
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin 4, Ireland
| | - Michael J Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo, 001-0020, Japan
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
41
|
Santer DM, Minty GES, Golec DP, Lu J, May J, Namdar A, Shah J, Elahi S, Proud D, Joyce M, Tyrrell DL, Houghton M. Differential expression of interferon-lambda receptor 1 splice variants determines the magnitude of the antiviral response induced by interferon-lambda 3 in human immune cells. PLoS Pathog 2020; 16:e1008515. [PMID: 32353085 PMCID: PMC7217487 DOI: 10.1371/journal.ppat.1008515] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/12/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Type III interferons (IFN-lambdas(λ)) are important cytokines that inhibit viruses and modulate immune responses by acting through a unique IFN-λR1/IL-10RB heterodimeric receptor. Until now, the primary antiviral function of IFN-λs has been proposed to be at anatomical barrier sites. Here, we examine the regulation of IFN-λR1 expression and measure the downstream effects of IFN-λ3 stimulation in primary human blood immune cells, compared with lung or liver epithelial cells. IFN-λ3 directly bound and upregulated IFN-stimulated gene (ISG) expression in freshly purified human B cells and CD8+ T cells, but not monocytes, neutrophils, natural killer cells, and CD4+ T cells. Despite similar IFNLR1 transcript levels in B cells and lung epithelial cells, lung epithelial cells bound more IFN-λ3, which resulted in a 50-fold greater ISG induction when compared to B cells. The reduced response of B cells could be explained by higher expression of the soluble variant of IFN-λR1 (sIFN-λR1), which significantly reduced ISG induction when added with IFN-λ3 to peripheral blood mononuclear cells or liver epithelial cells. T-cell receptor stimulation potently, and specifically, upregulated membrane-bound IFNLR1 expression in CD4+ T cells, leading to greater antiviral gene induction, and inhibition of human immunodeficiency virus type 1 infection. Collectively, our data demonstrate IFN-λ3 directly interacts with the human adaptive immune system, unlike what has been previously shown in published mouse models, and that type III IFNs could be potentially utilized to suppress both mucosal and blood-borne viral infections.
Collapse
Affiliation(s)
- Deanna M. Santer
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Gillian E. S. Minty
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dominic P. Golec
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Julia Lu
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Julia May
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Afshin Namdar
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Juhi Shah
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - David Proud
- Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Michael Joyce
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - D. Lorne Tyrrell
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Houghton
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
42
|
da Rocha Junior LF, Branco Pinto Duarte AL, de Melo Rêgo MJB, de Almeida AR, de Melo Vilar K, de Lima HD, Tavares Dantas A, de Ataíde Mariz H, da Rocha Pitta I, da Rocha Pitta MG. Sensitivity and specificity of Interleukin 29 in patients with rheumatoid arthritis and other rheumatic diseases. Immunol Lett 2020; 220:38-43. [PMID: 31954799 DOI: 10.1016/j.imlet.2020.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/26/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic and progressive inflammation that can cause a high degree of disability in affected individuals. Proinflammatory cytokines play central roles in the development of degradative and inflammatory responses in RA. IL-29 has been identified in RA and reported as a biomarker of the disease. OBJECTIVE To analyze serum levels and accuracy of IL-29 in RA patients compared to healthy subjects and patients with other rheumatic diseases. METHODS IL-29 serum levels were measured in 121 patients with RA, 53 patients with systemic lupus erythematosus (SLE), 60 patients with systemic sclerosis (SSc), 29 patients with fibromyalgia (FM), 50 patients with osteoarthritis (OA) and 68 healthy individuals as controls. IL-29 levels in serum were investigated by ELISA. Sensitivity, specificity and likelihood ratios (LR) for having RA were calculated. RESULTS Serum levels of IL-29 were increased in RA patients 113.6 (IQR = 31.25-308.5) pg/ml compared to non-RA patients (SLE, SSc, OA, and FM) (31.25 pg/ml) and healthy controls (31.25 pg/ml, p < 0.001). The IL-29 cut-off values to distinguish patients with RA from non-RA patients were 61.11 pg/ml (sensitivity 57.02, specificity 92.71, LR: 7.82) and for all subjects 32.96 pg/ml (sensitivity 64.46, specificity 87.31, LR: 5.08). Additionally, IL-29 correlated negatively with age (r=-0189, p = 0.038) and disease duration (-0.192, p = 0.037). Interestingly, IL-29 correlated positively with neutrophil count in RA patients positive for rheumatoid factor (r = 0.259, p = 0.022). CONCLUSION IL-29 is higher in the serum of patients with RA compared to non-RA subjects and may have potential for use as a biological marker.
Collapse
Affiliation(s)
- Laurindo Ferreira da Rocha Junior
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife-PE, Brazil; Departamento de Reumatologia, Hospital das Clínicas da Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Angela Luzia Branco Pinto Duarte
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife-PE, Brazil; Departamento de Reumatologia, Hospital das Clínicas da Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Anderson Rodrigues de Almeida
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Kamila de Melo Vilar
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Hugo Deleon de Lima
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Andréa Tavares Dantas
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife-PE, Brazil; Departamento de Reumatologia, Hospital das Clínicas da Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Henrique de Ataíde Mariz
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife-PE, Brazil; Departamento de Reumatologia, Hospital das Clínicas da Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Ivan da Rocha Pitta
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Maira Galdino da Rocha Pitta
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife-PE, Brazil.
| |
Collapse
|
43
|
Wang J, Huang A, Xu W, Su L. Insights into IL-29: Emerging role in inflammatory autoimmune diseases. J Cell Mol Med 2019; 23:7926-7932. [PMID: 31578802 PMCID: PMC6850914 DOI: 10.1111/jcmm.14697] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/01/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
Interleukin-29 (IL-29) is a newly discovered member of type III interferon. It mediates signal transduction via binding to its receptor complex and activates downstream signalling pathways, and therefore induces the generation of inflammatory components. Recent studies reported that expression of IL-29 is dysregulated in inflammatory autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis, Sjögren's syndrome, psoriasis and systemic sclerosis. Furthermore, functional analysis revealed that IL-29 may involve in the pathogenesis of the inflammatory autoimmune disorders. In this review, we will systematically review the current knowledge about IL-29. The information collected revealed the regulatory role of IL-29 and may give important implications for its potential in clinical treatment.
Collapse
Affiliation(s)
- Jia‐Min Wang
- Department of Evidence‐Based MedicineSchool of Public HealthSouthwest Medical UniversitySichuanChina
| | - An‐Fang Huang
- Department of Rheumatology and ImmunologyAffiliated Hospital of Southwest Medical UniversitySichuanChina
| | - Wang‐Dong Xu
- Department of Evidence‐Based MedicineSchool of Public HealthSouthwest Medical UniversitySichuanChina
| | - Lin‐Chong Su
- Department of Rheumatology and ImmunologyMinda Hospital of Hubei Minzu UniversityEnshiChina
| |
Collapse
|
44
|
Read SA, Wijaya R, Ramezani-Moghadam M, Tay E, Schibeci S, Liddle C, Lam VWT, Yuen L, Douglas MW, Booth D, George J, Ahlenstiel G. Macrophage Coordination of the Interferon Lambda Immune Response. Front Immunol 2019; 10:2674. [PMID: 31798594 PMCID: PMC6878940 DOI: 10.3389/fimmu.2019.02674] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
Lambda interferons (IFN-λs) are a major component of the innate immune defense to viruses, bacteria, and fungi. In human liver, IFN-λ not only drives antiviral responses, but also promotes inflammation and fibrosis in viral and non-viral diseases. Here we demonstrate that macrophages are primary responders to IFN-λ, uniquely positioned to bridge the gap between IFN-λ producing cells and lymphocyte populations that are not intrinsically responsive to IFN-λ. While CD14+ monocytes do not express the IFN-λ receptor, IFNLR1, sensitivity is quickly gained upon differentiation to macrophages in vitro. IFN-λ stimulates macrophage cytotoxicity and phagocytosis as well as the secretion of pro-inflammatory cytokines and interferon stimulated genes that mediate immune cell chemotaxis and effector functions. In particular, IFN-λ induced CCR5 and CXCR3 chemokines, stimulating T and NK cell migration, as well as subsequent NK cell cytotoxicity. Using immunofluorescence and cell sorting techniques, we confirmed that human liver macrophages expressing CD14 and CD68 are highly responsive to IFN-λ ex vivo. Together, these data highlight a novel role for macrophages in shaping IFN-λ dependent immune responses both directly through pro-inflammatory activity and indirectly by recruiting and activating IFN-λ unresponsive lymphocytes.
Collapse
Affiliation(s)
- Scott A Read
- Blacktown Medical School, Western Sydney University, Blacktown, NSW, Australia.,Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Ratna Wijaya
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Mehdi Ramezani-Moghadam
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Enoch Tay
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Steve Schibeci
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Christopher Liddle
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Vincent W T Lam
- Department of Upper Gastrointestinal Surgery, Westmead Hospital, Westmead, NSW, Australia.,Discipline of Surgery, University of Sydney, Sydney, NSW, Australia
| | - Lawrence Yuen
- Department of Upper Gastrointestinal Surgery, Westmead Hospital, Westmead, NSW, Australia.,Discipline of Surgery, University of Sydney, Sydney, NSW, Australia
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - David Booth
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Golo Ahlenstiel
- Blacktown Medical School, Western Sydney University, Blacktown, NSW, Australia.,Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia.,Blacktown Hospital, Western Sydney Local Health District (WSLHD), Blacktown, NSW, Australia
| |
Collapse
|
45
|
Vlachiotis S, Andreakos E. Lambda interferons in immunity and autoimmunity. J Autoimmun 2019; 104:102319. [DOI: 10.1016/j.jaut.2019.102319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/23/2023]
|
46
|
Wisgrill L, Wessely I, Netzl A, Pummer L, Sadeghi K, Spittler A, Berger A, Förster‐Waldl E. Diminished secretion and function of IL-29 is associated with impaired IFN-α response of neonatal plasmacytoid dendritic cells. J Leukoc Biol 2019; 106:1177-1185. [PMID: 31211458 PMCID: PMC6852569 DOI: 10.1002/jlb.4a0518-189r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are key players in the antiviral immune response and type III IFNs such as IL-29 appear to play a pivotal role in pDC function. Pronounced susceptibility to viral infections in neonates is partly resulting from diminished antiviral immune mechanisms. Accordingly, the aim of the present study was to investigate the impact of IL-29 in the altered immune response of neonatal pDCs. PBMCs of adult and term newborns were stimulated with CpG-ODN2216 in the presence or absence of IL-29 and assessed for IFN-α production, downstream-signaling, and activation marker expression. A significantly lower IL-29 production after TLR9-specific stimulation was demonstrated in neonatal pDCs. IL-29 enhanced the IFN-α production of pDCs in adults compared to newborns. Newborn pDCs displayed a significantly lower surface expression of IL-10 and IL-28Rα receptor resulting in diminished STAT1 and IRF7 activation. Interestingly, concomitant stimulation with CpG-ODN2216/IL-29 had no impact on the expression of surface activation and maturation markers of pDCs in neither population. The diminished antiviral immune response of neonatal pDCs is associated with reduced production and cellular responses toward IL-29. Potential therapeutic agents enhancing the IL-29 response in neonatal pDCs possibly augment viral protection in newborns.
Collapse
Affiliation(s)
- Lukas Wisgrill
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Isabelle Wessely
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Antonia Netzl
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Linda Pummer
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Kambis Sadeghi
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Andreas Spittler
- Department of Surgery & Core Facility Flow CytometryMedical University of ViennaViennaAustria
| | - Angelika Berger
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Elisabeth Förster‐Waldl
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
- Center for Congenital ImmunodeficienciesMedical University of ViennaViennaAustria
| |
Collapse
|
47
|
Møhlenberg M, Gad HH, Hartmann R. The Influence of the rs30461 Single Nucleotide Polymorphism on IFN-λ1 Activity and Secretion. J Interferon Cytokine Res 2019; 39:661-667. [PMID: 31120365 DOI: 10.1089/jir.2019.0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic variation within the IFNL loci is associated with several diseases and evidence indicates that the IFNL genes have been subjects of strong selection during recent human evolution. The nonsynonymous rs30461 single nucleotide polymorphism (SNP), generating interferon (IFN)-λ1 D188N, shows a strong signature of positive selection in European and Asian populations. Nevertheless, genetic association studies have failed to show any coupling of rs30461 to diseases such as psoriasis and periodontitis. Based on these observations, we purified IFN-λ1 N188 and IFN-λ1 D188 to compare the biological activity of these 2 IFN-λ1 versions. Furthermore, we evaluated the secretion of the 2 different IFN-λ1 versions. We were unable to observe any differences between IFN-λ1 N188 and IFN-λ1 D188 based on biological activity or secretion that could account for the positive selection.
Collapse
Affiliation(s)
- Michelle Møhlenberg
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Hans Henrik Gad
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
48
|
Differential interferon gene expression in bronchiolitis caused by respiratory syncytial virus-A genotype ON1. Med Microbiol Immunol 2019; 209:23-28. [DOI: 10.1007/s00430-019-00633-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
|
49
|
Chyuan IT, Tzeng HT, Chen JY. Signaling Pathways of Type I and Type III Interferons and Targeted Therapies in Systemic Lupus Erythematosus. Cells 2019; 8:cells8090963. [PMID: 31450787 PMCID: PMC6769759 DOI: 10.3390/cells8090963] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
Type I and type III interferons (IFNs) share several properties in common, including the induction of signaling pathways, the activation of gene transcripts, and immune responses, against viral infection. Recent advances in the understanding of the molecular basis of innate and adaptive immunity have led to the re-examination of the role of these IFNs in autoimmune diseases. To date, a variety of IFN-regulated genes, termed IFN signature genes, have been identified. The expressions of these genes significantly increase in systemic lupus erythematosus (SLE), highlighting the role of type I and type III IFNs in the pathogenesis of SLE. In this review, we first discussed the signaling pathways and the immunoregulatory roles of type I and type III IFNs. Next, we discussed the roles of these IFNs in the pathogenesis of autoimmune diseases, including SLE. In SLE, IFN-stimulated genes induced by IFN signaling contribute to a positive feedback loop of autoimmunity, resulting in perpetual autoimmune inflammation. Based on this, we discussed the use of several specific IFN blocking strategies using anti-IFN-α antibodies, anti-IFN-α receptor antibodies, and IFN-α-kinoid or downstream small molecules, which intervene in Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways, in clinical trials for SLE patients. Hopefully, the development of novel regimens targeting IFN signaling pathways will shed light on promising future therapeutic applications for SLE patients.
Collapse
Affiliation(s)
- I-Tsu Chyuan
- Department of Internal Medicine, Cathay General Hospital, Taipei 10630, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Hong-Tai Tzeng
- Institute for translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ji-Yih Chen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33375, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33375, Taiwan.
| |
Collapse
|
50
|
Mast Cells and Natural Killer Cells-A Potentially Critical Interaction. Viruses 2019; 11:v11060514. [PMID: 31167464 PMCID: PMC6631774 DOI: 10.3390/v11060514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells play critical roles in host defense against infectious agents or neoplastic cells. NK cells provide a rapid innate immune response including the killing of target cells without the need for priming. However, activated NK cells can show improved effector functions. Mast cells are also critical for early host defense against a variety of pathogens and are predominately located at mucosal surfaces and close to blood vessels. Our group has recently shown that virus-infected mast cells selectively recruit NK cells and positively modulate their functions through mechanisms dependent on soluble mediators, such as interferons. Here, we review the possible consequences of this interaction in both host defense and pathologies involving NK cell and mast cell activation.
Collapse
|