1
|
Kumar A, Das SK, Emdad L, Fisher PB. Applications of tissue-specific and cancer-selective gene promoters for cancer diagnosis and therapy. Adv Cancer Res 2023; 160:253-315. [PMID: 37704290 DOI: 10.1016/bs.acr.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Current treatment of solid tumors with standard of care chemotherapies, radiation therapy and/or immunotherapies are often limited by severe adverse toxic effects, resulting in a narrow therapeutic index. Cancer gene therapy represents a targeted approach that in principle could significantly reduce undesirable side effects in normal tissues while significantly inhibiting tumor growth and progression. To be effective, this strategy requires a clear understanding of the molecular biology of cancer development and evolution and developing biological vectors that can serve as vehicles to target cancer cells. The advent and fine tuning of omics technologies that permit the collective and spatial recognition of genes (genomics), mRNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics), epiomics (epigenomics, epitranscriptomics, and epiproteomics), and their interactomics in defined complex biological samples provide a roadmap for identifying crucial targets of relevance to the cancer paradigm. Combining these strategies with identified genetic elements that control target gene expression uncovers significant opportunities for developing guided gene-based therapeutics for cancer. The purpose of this review is to overview the current state and potential limitations in developing gene promoter-directed targeted expression of key genes and highlights their potential applications in cancer gene therapy.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
2
|
Bowman KER, Ahne L, O'Brien L, Vander Mause ER, Lu P, Wallis B, Evason KJ, Lim CS. p53-Bad* Fusion Gene Therapy Induces Apoptosis In Vitro and Reduces Zebrafish Tumor Burden in Hepatocellular Carcinoma. Mol Pharm 2023; 20:331-340. [PMID: 36490361 PMCID: PMC10760808 DOI: 10.1021/acs.molpharmaceut.2c00665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With few curative treatments and a global yearly death rate of over 800,000, hepatocellular carcinoma (HCC) desperately needs new therapies. Although wild-type p53 gene therapy has been shown to be safe in HCC patients, it has not shown enough efficacy to merit approval. This work aims to show how p53 can be re-engineered through fusion to the pro-apoptotic BH3 protein Bcl-2 antagonist of cell death (Bad) to improve anti-HCC activity and potentially lead to a novel HCC therapeutic, p53-Bad*. p53-Bad* is a fusion of p53 and Bad, with two mutations, S112A and S136A. We determined mitochondrial localization of p53-Bad* in liver cancer cell lines with varying p53 mutation statuses via fluorescence microscopy. We defined the apoptotic activity of p53-Bad* in four liver cancer cell lines using flow cytometry. To determine the effects of p53-Bad* in vivo, we generated and analyzed transgenic zebrafish expressing hepatocyte-specific p53-Bad*. p53-Bad* localized to the mitochondria regardless of the p53 mutation status and demonstrated superior apoptotic activity over WT p53 in early, middle, and late apoptosis assays. Tumor burden in zebrafish HCC was reduced by p53-Bad* as measured by the liver-to-body mass ratio and histopathology. p53-Bad* induced significant apoptosis in zebrafish HCC as measured by TUNEL staining but did not induce apoptosis in non-HCC fish. p53-Bad* can induce apoptosis in a panel of liver cancer cell lines with varying p53 mutation statuses and induce apoptosis/reduce HCC tumor burden in vivo in zebrafish. p53-Bad* warrants further investigation as a potential new HCC therapeutic.
Collapse
Affiliation(s)
- Katherine E Redd Bowman
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
| | - Lisa Ahne
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Institute of Pharmacy, Experimental Pharmacology for Natural Sciences, Martin Luther University, Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Liam O'Brien
- Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, United States
| | - Erica R Vander Mause
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
| | - Phong Lu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
| | - Bryce Wallis
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kimberley J Evason
- Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, United States
| | - Carol S Lim
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Short term but highly efficient Cas9 expression mediated by excisional system using adenovirus vector and Cre. Sci Rep 2021; 11:24369. [PMID: 34934130 PMCID: PMC8692473 DOI: 10.1038/s41598-021-03803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Genome editing techniques such as CRISPR/Cas9 have both become common gene engineering technologies and have been applied to gene therapy. However, the problems of increasing the efficiency of genome editing and reducing off-target effects that induce double-stranded breaks at unexpected sites in the genome remain. In this study, we developed a novel Cas9 transduction system, Exci-Cas9, using an adenovirus vector (AdV). Cas9 was expressed on a circular molecule excised by the site-specific recombinase Cre and succeeded in shortening the expression period compared to AdV, which expresses the gene of interest for at least 6 months. As an example, we chose hepatitis B, which currently has more than 200 million carriers in the world and frequently progresses to liver cirrhosis or hepatocellular carcinoma. The efficiencies of hepatitis B virus genome disruption by Exci-Cas9 and Cas9 expression by AdV directly (Avec) were the same, about 80–90%. Furthermore, Exci-Cas9 enabled cell- or tissue-specific genome editing by expressing Cre from a cell- or tissue-specific promoter. We believe that Exci-Cas9 developed in this study is useful not only for resolving the persistent expression of Cas9, which has been a problem in genome editing, but also for eliminating long-term DNA viruses such as human papilloma virus.
Collapse
|
4
|
Luo Y, Lin C, Ren W, Ju F, Xu Z, Liu H, Yu Z, Chen J, Zhang J, Liu P, Huang C, Xia N. Intravenous Injections of a Rationally Selected Oncolytic Herpes Virus as a Potent Virotherapy for Hepatocellular Carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:153-165. [PMID: 31720372 PMCID: PMC6838930 DOI: 10.1016/j.omto.2019.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
As a clinical setting in which novel treatment options are urgently needed, hepatocellular carcinoma (HCC) exhibits intriguing opportunities for oncolytic virotherapy. Here we report the rational generation of a novel herpes simplex virus type 1 (HSV-1)-based oncolytic vector for targeting HCC, named Ld0-GFP, which was derived from oncolytic ICP0-null virus (d0-GFP), had a fusogenic phenotype, and was a novel killer against HCC as well as other types of cancer cells. Compared with d0-GFP, Ld0-GFP exhibited superior cancer cell-killing ability in vitro and in vivo. Ld0-GFP targets a broad spectrum of HCC cells and can result in significantly enhanced immunogenic tumor cell death. Intratumoral and intravenous injections of Ld0-GFP showed effective antitumor capabilities in multiple tumor models, leading to increased survival. We speculated that more active cell-killing capability of oncolytic virus and enhanced immunogenic cell death may lead to better tumor regression. Additionally, Ld0-GFP had an improved safety profile, showing reduced neurovirulence and systemic toxicity. Ld0-GFP virotherapy could offer a potentially less toxic, more effective option for both local and systemic treatment of HCC. This approach also provides novel insights toward ongoing efforts to develop an optimal oncolytic vector for cancer therapy.
Collapse
Affiliation(s)
- Yong Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Chaolong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Wenfeng Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Fei Ju
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Zilong Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Huiling Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Zeng Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Jun Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Pingguo Liu
- Department of Hepatobiliary Surgery, ZhongShan Hospital Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory and Chronic Liver Disease and Hepatocellular Carcinoma, ZhongShan Hospital Xiamen University, Xiamen, China
| | - Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Marzulli M, Mazzacurati L, Zhang M, Goins WF, Hatley ME, Glorioso JC, Cohen JB. A Novel Oncolytic Herpes Simplex Virus Design based on the Common Overexpression of microRNA-21 in Tumors. ACTA ACUST UNITED AC 2018; 3. [PMID: 30465046 PMCID: PMC6241327 DOI: 10.13188/2381-3326.1000007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Recognition sequences for microRNAs (miRs) that are down-regulated in tumor cells have recently been used to render lytic viruses tumor-specific. Since different tumor types down-regulate different miRs, this strategy requires virus customization to the target tumor. We have explored a feature that is shared by many tumor types, the up-regulation of miR-21, as a means to generate an oncolytic herpes simplex virus (HSV) that is applicable to a broad range of cancers. Methods We assembled an expression construct for a dominant-negative (dn) form of the essential HSV replication factor UL9 and inserted tandem copies of the miR-21 recognition sequence (T21) in the 3' untranslated region. Bacterial Artificial Chromosome (BAC) recombineering was used to introduce the dnUL9 construct with or without T21 into the HSV genome. Virus was produced by transfection and replication was assessed in different tumor and control cell lines. Results Virus production was conditional on the presence of the T21 sequence. The dnUL9-T21 virus replicated efficiently in tumor cell lines, less efficiently in cells that contained reduced miR-21 activity, and not at all in the absence of miR-21. Conclusion miR-21-sensitive expression of a dominant-negative inhibitor of HSV replication allows preferential destruction of tumor cells in vitro. This observation provides a basis for further development of a widely applicable oncolytic HSV.
Collapse
Affiliation(s)
- M Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - L Mazzacurati
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - M Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - W F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - M E Hatley
- Department of Oncology, St. Jude Children's Research Hospital, USA
| | - J C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - J B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| |
Collapse
|
6
|
RETRACTED ARTICLE: Transcriptional retargeting of herpes simplex virus for cell-specific replication to control cancer. J Cancer Res Clin Oncol 2018; 144:2107. [PMID: 29305707 DOI: 10.1007/s00432-017-2566-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
|
7
|
Peters C, Rabkin SD. Designing Herpes Viruses as Oncolytics. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30012-2. [PMID: 26462293 PMCID: PMC4599707 DOI: 10.1038/mto.2015.10] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oncolytic herpes simplex virus (oHSV) was one of the first genetically-engineered oncolytic viruses. Because herpes simplex virus (HSV) is a natural human pathogen that can cause serious disease, it is incumbent that it be genetically-engineered or significantly attenuated for safety. Here we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are non-essential for growth in tissue culture cells but are important for growth in post-mitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be 'armed' with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate anti-tumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity.
Collapse
Affiliation(s)
- Cole Peters
- Program in Virology, Harvard Medical School, Boston, MA, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston MA
| | - Samuel D Rabkin
- Program in Virology, Harvard Medical School, Boston, MA, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston MA
| |
Collapse
|
8
|
Braidwood L, Learmonth K, Graham A, Conner J. Potent efficacy signals from systemically administered oncolytic herpes simplex virus (HSV1716) in hepatocellular carcinoma xenograft models. J Hepatocell Carcinoma 2014; 1:149-61. [PMID: 27508184 PMCID: PMC4918275 DOI: 10.2147/jhc.s71019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Oncolytic herpes simplex virus (HSV1716), lacking the neurovirulence factor ICP34.5, has highly selective replication competence for cancer cells and has been used in clinical studies of glioma, melanoma, head and neck squamous cell carcinoma, pediatric non-central nervous system solid tumors, and malignant pleural mesothelioma. To date, 88 patients have received HSV1716 and the virus is well tolerated, with selective replication in tumor cells and no spread to surrounding normal tissue. We assessed the potential value of HSV1716 in preclinical studies with two human hepatocellular carcinoma cell lines, HuH7 and HepG2-luc. HSV1716 displayed excellent replication kinetics in vitro in HepG2-luc cells, a cell line engineered to express luciferase, and virus-mediated cell killing correlated with loss of light emissions from the cells. In vivo, the HepG2-luc cells readily formed light-emitting xenografts that were easily visualized by an in vivo imaging system and efficiently eliminated by HSV1716 oncolysis after intratumoral injection. HSV1716 also demonstrated strong efficacy signals in subcutaneous HuH7 xenografts in nude mice after intravenous administration of virus. In the HuH7 model, the intravenously injected virus replicated prolifically immediately after efficient tumor localization, resulting in highly significant reductions in tumor growth and enhanced survival. Our preclinical results demonstrate excellent tumor uptake of HSV1716, with prolific replication and potent oncolysis. These observations warrant a clinical study of HSV1716 in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lynne Braidwood
- Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK
| | - Kirsty Learmonth
- Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK
| | - Alex Graham
- Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK
| | - Joe Conner
- Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK
| |
Collapse
|
9
|
Hypoxia/hepatoma dual specific suicide gene expression plasmid delivery using bio-reducible polymer for hepatocellular carcinoma therapy. J Control Release 2013; 171:1-10. [PMID: 23830978 DOI: 10.1016/j.jconrel.2013.06.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 11/23/2022]
Abstract
Gene therapy is suggested as a promising alternative strategy of hepatocellular carcinoma (HCC, also called hepatoma) therapy. To achieve a successful and safe gene therapy, tight regulation of gene expression is required to minimize side-effects in normal tissues. In this study, we developed a novel hypoxia and hepatoma dual specific gene expression vector. The constructed vectors were transfected into various cell lines using bio-reducible polymer, PAM-ABP. First, pAFPS-Luc or pAFPL-Luc vector was constructed with the alpha-fectoprotein (AFP) promoter and enhancer for hepatoma tissue specific gene expression. Then, pEpo-AFPL-Luc was constructed by insertion of the erythropoietin (Epo) enhancer for hypoxic cancer specific gene expression. In vitro transfection assay showed that pEpo-AFPL-Luc transfected hepatoma cell increased gene expression under hypoxic condition. To confirm the therapeutic effect of dual specific vector, herpes simplex virus thymidine kinase (HSV-TK) gene was introduced for cancer cell killing. The pEpo-AFPL-TK was transfected into hepatoma cell lines in the presence of ganciclovir (GCV) pro-drug. Caspase-3/7, MTT and TUNEL assays elucidated that pEpo-AFPL-TK transfected cells showed significant increasing of death rate in hypoxic hepatoma cells compared to controls. Therefore, the hypoxia/hepatoma dual specific gene expression vector with the Epo enhancer and AFP promoter may be useful for hepatoma specific gene therapy.
Collapse
|
10
|
Ausubel LJ, Meseck M, Derecho I, Lopez P, Knoblauch C, McMahon R, Anderson J, Dunphy N, Quezada V, Khan R, Huang P, Dang W, Luo M, Hsu D, Woo SLC, Couture L. Current good manufacturing practice production of an oncolytic recombinant vesicular stomatitis viral vector for cancer treatment. Hum Gene Ther 2011; 22:489-97. [PMID: 21083425 DOI: 10.1089/hum.2010.159] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 10(9) plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 10(10) PFU/ml (total yield, 1 × 10(13) PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC.
Collapse
Affiliation(s)
- L J Ausubel
- Center for Biomedicine and Genetics, and Center for Applied Technology Development, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chen EQ, Song XQ, Wang YL, Zhou TY, Bai L, Liu L, Liu C, Cheng X, Tang H. Construction of a highly-active, liver-specific transcriptional regulatory element through combination of the albumin promoter and α-fetoprotein enhancer. Plasmid 2011; 65:125-131. [PMID: 21108965 DOI: 10.1016/j.plasmid.2010.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 11/18/2022]
Abstract
In an attempt to construct a highly active, liver-specific transcriptional regulatory element, the mouse albumin promoter (ALBp) and α-fetoprotein enhancer (AFPe) were obtained. To verify its hepatic specificity and activity, the AFPe-ALBp-containing fragment was cloned into the plasmids, pVAX-S and pGL3-Luc with original promoter removed. Plasmid pVAX-AFPe-ALBp-S was then transfected into hepatic and non-hepatic cells in vitro, and delivered into mouse by intravenous injection and intramuscular injection, respectively. In addition, pGL3-AFPe-ALBp-Luc was transfected into hepatic and non-hepatic cell lines; pVAX1, pVAX1/S, and pGL3-ALBp-Luc were used as controls. The expression of hepatitis B surface antigen (HBsAg) was observed, and luciferase activity in cells was measured. For plasmid pVAX-AFPe-ALBp-S, the expression of HBsAg was observed in hepatic cell lines, but not in a non-hepatic cell line. Using pVAX-S, the expression of HBsAg was observed in both hepatic and non-hepatic cell lines. In cells expressing pGL3-AFPe-ALBp-Luc, the level of luciferase activity was significantly higher in hepatic cell lines, compared with the non-hepatic cell lines. In addition, the level of luciferase activity in cells expressing pGL3-AFPe-ALBp-Luc was significantly higher than that of pGL3-ALBp-Luc in hepatic cell lines, suggesting that AFPe could enhance target gene expression under the control of ALBp. The expression of HBsAg was detected in mouse liver, but not muscle when using pVAX-AFPe-ALBp-S. In contrast, the expression of HBsAg was detected in both mouse liver and muscle upon transfection with pVAX-S. In conclusion, the AFPe-ALBp element could be used as a tool to induce liver-specific expression of a target gene.
Collapse
Affiliation(s)
- En-Qiang Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Longo SL, Griffith C, Glass A, Shillitoe EJ, Post DE. Development of an oncolytic herpes simplex virus using a tumor-specific HIF-responsive promoter. Cancer Gene Ther 2010; 18:123-34. [PMID: 20930860 PMCID: PMC3021095 DOI: 10.1038/cgt.2010.62] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We exploited the differential activation of hypoxia-inducible factor (HIF)-dependent gene expression in tumors versus normal tissue for the design of a targeted oncolytic Herpes simplex virus type-1 (HSV-1). A gene that is essential for viral replication, ICP4, was placed under the regulation of a HIF-responsive promoter and then introduced into the thymidine kinase locus (UL23) of HSV d120 which contains partial deletions in the two endogenous ICP4 genes. Recombinant HIF-HSV were isolated and their derivation from d120 was verified by expression of a truncated, nonfunctional form of ICP4 protein. Disruption of the UL23 locus was confirmed by loss of thymidine kinase expression and resistance to acyclovir. Unexpectedly, HIF-HSV expressed ICP4 and induced tumor cell lysis at similar levels under normoxia and hypoxia. The lack of HIF-dependent ICP4 transgene expression by HIF-HSV was due to two factors that have not previously been reported- reversion of the ICP4 gene region to its wild-type configuration and increased HIF-transcriptional activity under normoxia when cells were infected with any strain of HSV-1. The findings that an oncolytic HSV-1 is genetically unstable and can activate a tumor-related promoter in a non-specific manner have important implications for any proposed use of this virus in cancer therapy.
Collapse
Affiliation(s)
- S L Longo
- Department of Neurosurgery, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | | | | | | | | |
Collapse
|
13
|
Duan Y, Yang C, Zhang Z, Liu J, Zheng J, Kong D. Poly(ethylene glycol)-Grafted Polyethylenimine Modified with G250 Monoclonal Antibody for Tumor Gene Therapy. Hum Gene Ther 2010; 21:191-8. [DOI: 10.1089/hum.2009.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yajun Duan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Cuihong Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Zhenfang Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Jianfeng Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Junnian Zheng
- Laboratory of Urology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Marozin S, Altomonte J, Stadler F, Thasler WE, Schmid RM, Ebert O. Inhibition of the IFN-β Response in Hepatocellular Carcinoma by Alternative Spliced Isoform of IFN Regulatory Factor-3. Mol Ther 2008; 16:1789-1797. [DOI: 10.1038/mt.2008.201] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 08/19/2008] [Indexed: 12/21/2022] Open
|
15
|
Lam PYP, Sia KC, Khong JH, De Geest B, Lim KS, Ho IAW, Wang GY, Miao LV, Huynh H, Hui KM. An efficient and safe herpes simplex virus type 1 amplicon vector for transcriptionally targeted therapy of human hepatocellular carcinomas. Mol Ther 2007; 15:1129-1136. [PMID: 17426711 DOI: 10.1038/sj.mt.6300165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 03/06/2007] [Indexed: 12/15/2022] Open
Abstract
Our previous studies have shown that transgene expression could be targeted to proliferating cells when cell cycle transcriptional regulatory elements were incorporated into herpes simplex virus type 1 (HSV-1) amplicon backbone vectors. In the study reported here, we further demonstrated the transcriptional activation of transgene expression in association with the onset of cellular proliferation using the mouse partial hepatectomy model. Moreover, transcriptional regulation could be rendered specific to human hepatocellular carcinoma (HCC) cells by inserting the chimeric gene Gal4/NF-YA under the regulation of the HCC-specific hybrid promoter. The hybrid promoter, which consists of four copies of the apolipoprotein E (ApoE) enhancer element inserted upstream of the human alpha1-antitrypsin(hAAT) promoter, induced an higher level of transcription than other liver-specific promoters such as alpha-fetoprotein (AFP) and albumin (Alb) promoter. As a consequence, the enhancement of tissue-specific expression in the context of Gal4/NF-YA fusion proteins enabled the monitoring of transgene expression using a bioluminescence imaging system. Furthermore, these vectors have been shown to be non-toxic and exhibited potent infectivity for proliferating primary HCC cells and HCC cell lines. Together, these results demonstrated that the new hybrid vectors could provide options for the design of safe and efficient systemic gene therapeutic strategies for human HCC.
Collapse
Affiliation(s)
- Paula Y P Lam
- Laboratory of Cancer Gene Therapy, Division of Cellular and Molecular Research, National Cancer Centre, Singapore.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kanai R, Tomita H, Hirose Y, Ohba S, Goldman S, Okano H, Kawase T, Yazaki T. Augmented therapeutic efficacy of an oncolytic herpes simplex virus type 1 mutant expressing ICP34.5 under the transcriptional control of musashi1 promoter in the treatment of malignant glioma. Hum Gene Ther 2007; 18:63-73. [PMID: 17238803 DOI: 10.1089/hum.2006.107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although second-generation replication-conditional herpes simplex virus type 1 (HSV-1) vectors defective for both ribonucleotide reductase (RR) and the virulence factor gamma(1)34.5 have been proven safe through a number of animal experiments and clinical trials, their therapeutic efficacy was also markedly reduced. To overcome this situation, we concentrated on the use of a tumor-specific promoter in this study, to express ICP34.5 selectively in malignant glioma cells. As a molecular marker for malignant glioma, we focused on the neural RNA-binding protein, Musashi1. On the basis of the results of defective vector dvM345, as reported previously, we created, via homologous recombination, a novel HSV-1 vector termed KeM34.5, which expresses ICP34.5 under the transcriptional control of the musashi1 gene promoter (P/musashi1). Cytotoxicity mediated by KeM34.5 was significantly enhanced in human glioma cell lines (U87MG, U87MG-E6, U251, and T98G), resulting in an approximately 2-log increase in viral yield, compared with its parental vector G207. This virus also showed much higher therapeutic efficacy in the in vivo glioma model, while maintaining the desirable neuroattenuated phenotype. These results suggest that oncolytic HSV-1 expressing ICP34.5 under the transcriptional control of the musashi1 gene promoter could be a promising therapeutic agent for the treatment of malignant glioma.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Female
- Gene Expression Regulation, Viral/genetics
- Genetic Therapy
- Genetic Vectors
- Glioma/genetics
- Glioma/metabolism
- Glioma/therapy
- Glioma/virology
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/metabolism
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mutation
- Neoplasm Transplantation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/therapy
- Neoplasms, Experimental/virology
- Nerve Tissue Proteins/genetics
- Oncolytic Virotherapy
- Promoter Regions, Genetic
- RNA-Binding Proteins/genetics
- Transduction, Genetic
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Ryuichi Kanai
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kanai R, Eguchi K, Takahashi M, Goldman S, Okano H, Kawase T, Yazaki T. Enhanced therapeutic efficacy of oncolytic herpes vector G207 against human non-small cell lung cancer--expression of an RNA-binding protein, Musashi1, as a marker for the tailored gene therapy. J Gene Med 2007; 8:1329-40. [PMID: 16955534 DOI: 10.1002/jgm.965] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oncolytic herpes vectors like G207 have shown considerable promise in the treatment of solid tumors, but their potency must be enhanced for the full achievement of therapeutic efficacy. Deletion of the innate gamma34.5 gene made these vectors extremely safe, but their efficacy was also severely attenuated. Use of tumor-specific promoters is one method to direct toxicity and enhance efficacy against tumors. Recently, Musashi1 has been shown expressed in some tumor tissues. METHODS Eleven human cancer cell lines including five non-small cell lung cancers (NSCLCs) were investigated. Musashi1 mRNA expression was examined by RT-PCR analysis. Western blotting was also performed. Transcriptional activity of P/musashi1 in NSCLCs was assayed by GFP reporter plasmids. Then we constructed a defective amplicon vector containing musashi1 promoter/ICP34.5 with G207 as helper virus (dvM345). In vitro cytotoxicity against NSCLCs and growth characteristics of helper virus were examined. A Lu-99 subcutaneous tumor model was used in an animal study. The tumor volume treated with G207 alone or dvM345 was measured. RESULTS Musashi1 mRNA was detected in four cell lines. Two in five NSCLCs were positive, and P/musashi1 was proved functional within them. Against these cell lines, dvM345 showed enhanced cytotoxicity, and helper viral growth was augmented. A subcutaneous tumor study confirmed the enhanced therapeutic efficacy of G207 by dvM345 without compromising safety. CONCLUSIONS These results suggest that Musashi1 might be involved in the development of several carcinomas including NSCLC. In the context of oncolytic herpes vector strategy, the P/musashi1-ICP34.5 method could be used for the treatment of cancers expressing Musashi1.
Collapse
MESH Headings
- Animals
- Base Sequence
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Line, Tumor
- Female
- Genetic Therapy/methods
- Genetic Vectors
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/therapy
- Mice
- Mice, Nude
- Neoplasm Transplantation
- Nerve Tissue Proteins/genetics
- Oncolytic Virotherapy/methods
- Oncolytic Viruses/genetics
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA-Binding Proteins/genetics
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Ryuichi Kanai
- Molecular Neurosurgery Laboratory, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Kanai R, Tomita H, Hirose Y, Ohba S, Goldman S, Okano H, Kawase T, Yazaki T. Augmented Therapeutic Efficacy of an Oncolytic Herpes Simplex Virus Type 1 Mutant Expressing ICP34.5 Under the Transcriptional Control ofmusashi1Promoter in the Treatment of Malignant Glioma. Hum Gene Ther 2006. [DOI: 10.1089/hum.2007.18.ft-280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Kuroda T, Rabkin SD, Martuza RL. Effective Treatment of Tumors with Strong β-Catenin/T-Cell Factor Activity by Transcriptionally Targeted Oncolytic Herpes Simplex Virus Vector. Cancer Res 2006; 66:10127-35. [PMID: 17047077 DOI: 10.1158/0008-5472.can-06-2744] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Wnt/beta-catenin/T-cell factor (Tcf) pathway is aberrantly up-regulated in the majority of colorectal cancers (CRC) and hepatoblastomas due to either an APC or beta-catenin gene mutation. We constructed synthetic promoters, T and TE, which contain tandem repeats of a Tcf responsive element without and with the human 4F2 gene intronic enhancer, respectively. Although the T and TE promoters showed higher transcriptional activity than a control promoter in all CRC and hepatoblastoma cell lines tested, with low activities in most other tumor cell lines, the level of transcription varied considerably among the CRC and hepatoblastoma cell lines. In some CRC cell lines, the TE promoter displayed higher levels of transcription than even the human CMV(IE) promoter. In those CRC cells, the APC gene mutations were located within a small segment between the first and second 20-amino-acid repeats in the mutation cluster region of the APC protein. We created a transcriptionally targeted oncolytic herpes simplex virus vector (bM24-TE) in which replication is driven by the TE promoter. This vector efficiently and specifically replicated in and killed tumor cells with strong beta-catenin/Tcf signaling. Intratumoral injection of bM24-TE significantly reduced the growth of highly beta-catenin active SW480 CRC tumors and induced a complete response in half of them, whereas it had no effect on the growth of beta-catenin-inactive A549 tumors. Our results suggest that a transcriptionally regulated oncolytic herpes vector targeting beta-catenin/Tcf signal is very efficacious against CRC tumors carrying an APC gene mutation between the first and second 20-amino-acid repeats.
Collapse
Affiliation(s)
- Toshihiko Kuroda
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
20
|
Kuroda T, Martuza RL, Todo T, Rabkin SD. Flip-Flop HSV-BAC: bacterial artificial chromosome based system for rapid generation of recombinant herpes simplex virus vectors using two independent site-specific recombinases. BMC Biotechnol 2006; 6:40. [PMID: 16995942 PMCID: PMC1609115 DOI: 10.1186/1472-6750-6-40] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 09/22/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oncolytic herpes simplex virus (HSV) vectors that specifically replicate in and kill tumor cells sparing normal cells are a promising cancer therapy. Traditionally, recombinant HSV vectors have been generated through homologous recombination between the HSV genome and a recombination plasmid, which usually requires laborious screening or selection and can take several months. Recent advances in bacterial artificial chromosome (BAC) technology have enabled cloning of the whole HSV genome as a BAC plasmid and subsequent manipulation in E. coli. Thus, we sought a method to generate recombinant oncolytic HSV vectors more easily and quickly using BAC technology. RESULTS We have developed an HSV-BAC system, termed the Flip-Flop HSV-BAC system, for the rapid generation of oncolytic HSV vectors. This system has the following features: (i) two site-specific recombinases, Cre and FLPe, are used sequentially to integrate desired sequences and to excise the BAC sequences, respectively; and (ii) the size of the HSV-BAC-insert genome exceeds the packaging limit of HSV so only correctly recombined virus grows efficiently. We applied this to the construction of an HSV-BAC plasmid that can be used for the generation of transcriptionally-targeted HSV vectors. BAC sequences were recombined into the UL39 gene of HSV ICP4-deletion mutant d120 to generate M24-BAC virus, from which HSV-BAC plasmid pM24-BAC was isolated. An ICP4 expression cassette driven by an exogenous promoter was re-introduced to pM24-BAC by Cre-mediated recombination and nearly pure preparations of recombinant virus were obtained typically in two weeks. Insertion of the ICP4 coding sequence alone did not restore viral replication and was only minimally better than an ICP4-null construct, whereas insertion of a CMVIE promoter-ICP4 transgene (bM24-CMV) efficiently drove viral replication. The levels of bM24-CMV replication in tumor cells varied considerably compared to hrR3 (UL39 mutant). CONCLUSION Our Flip-Flop HSV-BAC system enables rapid generation of HSV vectors carrying transgene inserts. By introducing a tumor-specific-promoter-driven ICP4 cassette into pM24-BAC using this system, one should be able to generate transcriptionally-targeted oncolytic HSV vectors. We believe this system will greatly facilitate the screening of a plethora of clinically useful tumor-specific promoters in the context of oncolytic HSV vectors.
Collapse
Affiliation(s)
- Toshihiko Kuroda
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, 185 Cambridge St., CPZN-3800, Boston, MA 02114, USA
| | - Robert L Martuza
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, 185 Cambridge St., CPZN-3800, Boston, MA 02114, USA
| | - Tomoki Todo
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, 185 Cambridge St., CPZN-3800, Boston, MA 02114, USA
- Present address: Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Samuel D Rabkin
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, 185 Cambridge St., CPZN-3800, Boston, MA 02114, USA
| |
Collapse
|
21
|
Glinka EM, Edelweiss EF, Deyev SM. Eukaryotic expression vectors and immunoconjugates for cancer therapy. BIOCHEMISTRY (MOSCOW) 2006; 71:597-606. [PMID: 16827650 DOI: 10.1134/s0006297906060022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review considers ways to address specificity to therapeutic targeted anticancer agents. These include transcriptional activation of tissue- and tumor-specific promoters in eukaryotic expression vectors and use of antitumor-directed immunoconjugates. The review deals with analysis of strategies used for selection of targeted promoters and examples of antibody fusion proteins exhibiting antitumor activity. A new direction in antitumor treatment pooling together methods of gene therapy and antibody therapy has appeared. This direction is based on the development of vectors encoding secreted forms of immunoconjugates. After vector introduction into a cell, the latter is capable of synthesizing and secreting antibody fusion protein composed of a therapeutic anticancer agent and antibody specifically targeted to cancer cells.
Collapse
Affiliation(s)
- E M Glinka
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | |
Collapse
|
22
|
Kanai R, Tomita H, Shinoda A, Takahashi M, Goldman S, Okano H, Kawase T, Yazaki T. Enhanced therapeutic efficacy of G207 for the treatment of glioma through Musashi1 promoter retargeting of gamma34.5-mediated virulence. Gene Ther 2006; 13:106-16. [PMID: 16163378 DOI: 10.1038/sj.gt.3302636] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G207 is a conditionally replicating derivative of herpes simplex virus type1 (HSV-1) engineered with deletions of both ICP34.5 loci and a lacZ insertion disabling the ICP6 gene. G207 exhibits an efficient oncolytic activity in vitro and in vivo, yet minimal toxicity in normal tissue, and is now in clinical trial for malignant glioma. According to the results of clinical trials, however, although G207 was proved to be safe, the efficacy was not so impressive. Deletion of the ICP34.5 gene coding for virulence made G207 extremely safe, but it markedly reduced the cytotoxicity mediated by HSV-1. To enhance the therapeutic efficacy of G207 without diminishing its safety, we used a defective vector containing Musashi1 promoter/ICP34.5, with G207 as helper virus. P/musashi1 was functional selectively in human glioma cell lines (U87MG, U251, T98G) in this study and dvM345 showed a much higher therapeutic efficacy both in culture and in the in vivo glioma model, than G207 alone, without diminishing its favorable toxicity profile. These results suggest that transcriptional regulation of ICP34.5 by P/musashi1 can be used to target HSV-1 virulence toward gliomas while maintaining the desirable neuroattenuated phenotype.
Collapse
Affiliation(s)
- R Kanai
- Molecular Neurosurgery Laboratory, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen L, Altman A, Mier W, Lu H, Zhu R, Haberkorn U. 99mTc-pertechnetate uptake in hepatoma cells due to tissue-specific human sodium iodide symporter gene expression. Nucl Med Biol 2006; 33:575-80. [PMID: 16720251 DOI: 10.1016/j.nucmedbio.2006.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/11/2006] [Accepted: 01/17/2006] [Indexed: 12/16/2022]
Abstract
UNLABELLED The sodium iodide symporter (NIS) gene could be used as an ideal reporter gene as well as a promising therapeutic gene. 99mTc-pertechnetate has proven to be more advantageous than 131I-iodide with respect to image quality, procedure and radiation dose in examination of thyroid uptake and scintigraphy. Herein, we investigated the feasibility of monitoring human sodium iodide symporter (hNIS) gene expression with 99mTc-pertechnetate in hepatoma cells (MH3924A) following tissue-specific expression. METHODS MH3924A cells were stably transfected with the recombinant retroviral vector, in which hNIS cDNA was driven by murine albumin enhancer/promoter (mAlb) and coupled to hygromycin resistance gene using an internal ribosomal entry site. Functional NIS expression in hepatoma cells was confirmed by an 125I(-) uptake assay. The dynamic uptake and efflux of 99mTc-pertechnetate was determined both in vitro and in vivo. RESULTS The 99mTc-pertechnetate was up to 254-fold higher in stably transfected MH3924A cells than in wild-type cells. However, the in vitro efflux of 99mTc-pertechnetate out of recombinant cells was rapid with a half-life of less than 2 min. Further, the in vivo studies yielded clear images and quantitative data of mAlbhNIS-infected tumor xenografts using 99mTc-pertechnetate and gamma camera. CONCLUSION The current study demonstrates enhanced 99mTc-pertechnetate uptake in hepatoma cells in vitro and in vivo following tissue-specific gene transfer using a recombinant retrovirus with the albumin enhancer/promoter and the hNIS gene. It is feasible to monitor hNIS gene expression noninvasively and quantitatively using conventional gamma camera and 99mTc-pertechnetate.
Collapse
Affiliation(s)
- Libo Chen
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, 200233 Shanghai, P.R. China
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
For the minority of patients with hepatocellular carcinoma (HCC), surgical or locally ablative therapies may offer the prospect of cure. However, the majority of patients present with advanced disease, such that treatment with curative intent is no longer possible. For some of these patients, with good hepatic reserve and a patent portal venous system, chemoembolisation may afford a modest survival benefit. The remainder of patients are frequently treated with systemic therapies with palliative intent. However, no drug treatment has yet clearly demonstrated a significant beneficial effect on survival or quality of life. Thus, there is an urgent need for novel approaches. Gene- and immunotherapy approaches using a variety of strategies are in development at present. HCC possesses several characteristics that make it an attractive target for these therapies. This review aims to summarise the approaches to gene- and immunotherapy for HCC, with particular reference to strategies that are entering clinical trials. It will then describe some of the obstacles to the success of these new approaches and provide opinion regarding ongoing and future developments. The challenge remains to design clinical trials to optimally evaluate these agents and allow feedback to the laboratory for their ongoing development.
Collapse
Affiliation(s)
- Daniel H Palmer
- CR UK Institute for Cancer Studies, Clinical Research Block, University of Birmingham, Birmingham, B15 2TT, UK.
| | | | | |
Collapse
|
25
|
Abstract
The application of replicating viruses for the treatment of cancers represents a novel therapy that is distinct from traditional treatment modalities. It is apparent that the genetic changes that a virus produces within an infected cell in order to create an environment conducive to viral replication are often similar to the processes involved in cellular transformation. These include uncontrolled cellular proliferation, prevention of apoptosis, and resistance to host organism immune effector mechanisms. Deletions of viral genes involved in these processes have been exploited to produce viral mutants whose replication is selective for transformed cells. The use of tissue-specific transcriptional response or RNA stability elements to control the expression of critical viral genes has also resulted in targeted viruses. Work also is being undertaken to restrict or alter the tropism of viruses by altering their ability to infect certain cell types. Finally, the addition of exogenous genes can be used to increase the virus's lytic potential and/or bystander killing; to further induce the host's immune response against cancer cells; and/or to permit the controlled downregulation of viral replication if necessary. The combination of different tumor-targeting mutations in parallel with the expression of foreign genes has resulted in the evolution of second- and third-generation viruses that continue to become further distinct from their native parental strains. The movement of these viruses into the clinic has begun to demonstrate the potential of this approach in the treatment of cancers.
Collapse
Affiliation(s)
- Stephen H Thorne
- Department of Pediatrics and Bio-X Program, Stanford University School of Medicine, Stanford, CA 94305-5427, USA.
| | | | | |
Collapse
|
26
|
Kasuya H, Takeda S, Nomoto S, Nakao A. The potential of oncolytic virus therapy for pancreatic cancer. Cancer Gene Ther 2005; 12:725-36. [PMID: 15818382 DOI: 10.1038/sj.cgt.7700830] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The objective of this paper was to review a new category of gene therapy using oncolytic viruses for the treatment of pancreatic cancer. The eligibility and feasibility of oncolytic virus therapy as a novel therapeutic agent against pancreatic cancer are discussed as well as basic research for clinical trials, including a historical perspective and the current status of these novel agents. Even combination therapy, such as surgery with radiation and chemotherapy, has not significantly improved the survival rate of pancreatic cancer. Recently, a clinical trial (phase I and II) using an oncolytic adenovirus, ONYX-015, was completed in patients with pancreatic cancer. The phase II trial yielded beneficial results (tumor reduction or stabilization) in about 50% of the patients. A phase I study of the efficacy of oncolytic herpes viruses, G207, OncoVEX GM-CSF, and 1716 against a variety of tumors has been completed, and G207 is in phase II trials for use against brain tumors. In addition, a phase I trial using the herpesvirus showed good tolerance at all dosages. We discuss the basic scientific principles and current results of the above clinical trials with respect to these oncolytic viruses, and then compare the relative advantages and disadvantages of adenoviruses and herpesviruses as oncolytic agents. We also review the published literature on newly developed oncolytic viruses. The concept of oncolytic therapy has been studied for a century. Recent technological developments have made these oncolytic viruses more tumor-specific by exploiting the tumor cell environments. In addition, these viruses have been reported to increase the immunosusceptibility of the tumor cells, and have been designed to express other genes to increase the susceptibility of tumor cells to other therapeutic agents. Oncolytic virus therapy certainly appears to be a feasible treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Hideki Kasuya
- Surgery II, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan.
| | | | | | | |
Collapse
|
27
|
Everts B, van der Poel HG. Replication-selective oncolytic viruses in the treatment of cancer. Cancer Gene Ther 2005; 12:141-61. [PMID: 15472714 DOI: 10.1038/sj.cgt.7700771] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the search for novel strategies, oncolytic virotherapy has recently emerged as a viable approach to specifically kill tumor cells. Unlike conventional gene therapy, it uses replication competent viruses that are able to spread through tumor tissue by virtue of viral replication and concomitant cell lysis. Recent advances in molecular biology have allowed the design of several genetically modified viruses, such as adenovirus and herpes simplex virus that specifically replicate in, and kill tumor cells. On the other hand, viruses with intrinsic oncolytic capacity are also being evaluated for therapeutic purposes. In this review, an overview is given of the general mechanisms and genetic modifications by which these viruses achieve tumor cell-specific replication and antitumor efficacy. However, although generally the oncolytic efficacy of these approaches has been demonstrated in preclinical studies the therapeutic efficacy in clinical trails is still not optimal. Therefore, strategies are evaluated that could further enhance the oncolytic potential of conditionally replicating viruses. In this respect, the use of tumor-selective viruses in conjunction with other standard therapies seems most promising. However, still several hurdles regarding clinical limitations and safety issues should be overcome before this mode of therapy can become of clinical relevance.
Collapse
Affiliation(s)
- Bart Everts
- Department of Biomedical sciences, University of Amsterdam, Kruislaan 318, 1098 SM, Amsterdam, The Netherlands
| | | |
Collapse
|
28
|
Campbell SA, Gromeier M. Oncolytic viruses for cancer therapy II. Cell-internal factors for conditional growth in neoplastic cells. Oncol Res Treat 2005; 28:209-15. [PMID: 15840970 DOI: 10.1159/000084010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent advances in our understanding of virus-host interactions have fueled new studies in the field of oncolytic viruses. The first part of this review explained how cell-external factors, such as cellular receptors, influence tumor tropism and specificity of oncolytic virus candidates. In the second part of this review, we focus on cellinternal factors that mediate tumor-specific virus growth. An oncolytic virus must be able to replicate within cancerous cells and kill them without collateral damage to healthy surrounding cells. This desirable property is inherent to some proposed oncolytic viral agents or has been achieved by genetic manipulation in others.
Collapse
Affiliation(s)
- Stephanie A Campbell
- Deptartment of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
29
|
Abstract
Molecular research has vastly advanced our understanding of the mechanism of cancer growth and spread. Targeted approaches utilizing molecular science have yielded provocative results in the treatment of cancer. Oncolytic viruses genetically programmed to replicate within cancer cells and directly induce toxic effect via cell lysis or apoptosis are currently being explored in the clinic. Safety has been confirmed and despite variable efficacy results several dramatic responses have been observed with some oncolytic viruses. This review summarizes results of clinical trials with oncolytic viruses in cancer.
Collapse
Affiliation(s)
- Eugene Lin
- Mary Crowley Medical Research Center, Dallas, Texas, USA
| | | |
Collapse
|
30
|
Shinozaki K, Ebert O, Woo SLC. Eradication of advanced hepatocellular carcinoma in rats via repeated hepatic arterial infusions of recombinant VSV. Hepatology 2005; 41:196-203. [PMID: 15619242 DOI: 10.1002/hep.20536] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Viruses that replicate selectively in cancer cells hold considerable promise as novel therapeutic agents for the treatment of malignancy. Vesicular stomatitis virus (VSV) is a nonpathogenic RNA virus with intrinsic oncolytic specificity due to attenuated antiviral responses in many tumors. We report that repeated hepatic arterial infusion of recombinant syncytia-forming VSV vector in advanced multifocal hepatocellular carcinoma (HCC)-bearing rats at a 10-fold reduced vector dose resulted in sustained tumor-selective virus replication until the onset of high-titer neutralizing antibodies in blood. No significant elevations in serum transaminases and liver pathology were noted, indicating a lack of hepatotoxicity. Substantially improved tumor response was achieved with completely necrotic tumor nodules surrounded by mononuclear phagocytic cells, followed by fibrosis and calcification of the lesions, angiogenesis, and regeneration of normal hepatic parenchyma. Survival of tumor-bearing rats treated with repeated vector infusions was not only significantly improved over that of animals after a single injection at 10 times the vector dose (P = .001), but 18% of animals in the former treatment group also achieved long-term and tumor-free survival compared with 0% of animals in the latter treatment group. In conclusion, this treatment regimen will be very useful in the future development of VSV-mediated virotherapy as a novel therapeutic modality for patients with advanced HCC.
Collapse
Affiliation(s)
- Katsunori Shinozaki
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | |
Collapse
|
31
|
Shinozaki K, Ebert O, Kournioti C, Tai YS, Woo SLC. Oncolysis of multifocal hepatocellular carcinoma in the rat liver by hepatic artery infusion of vesicular stomatitis virus. Mol Ther 2004; 9:368-76. [PMID: 15006603 DOI: 10.1016/j.ymthe.2003.12.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Accepted: 12/09/2003] [Indexed: 01/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy with poor prognosis and few effective treatments, as well as ever-increasing frequencies in the Western world. Viruses that replicate selectively in cancer cells hold considerable promise as novel therapeutic agents for the treatment of malignancy. Vesicular stomatitis virus (VSV) is a negative-strand RNA virus with intrinsic oncolytic specificity due to significantly attenuated antiviral responses in many tumor cells. The aim of this study was to evaluate the potential of VSV, administered via the hepatic artery, as an effective and safe therapeutic agent for treating "multifocal" HCC in the rat liver. Recombinant VSV vector expressing beta-galactosidase (rVSV-beta-gal) was generated by reverse genetics and infused into the hepatic artery of Buffalo rats bearing orthotopically implanted multifocal HCC. Access by the virus to multifocal HCC lesions in the liver, as well as the kinetic profiles of intratumoral viral replication and spread, was established by X-gal staining of liver and tumor sections. Plaque assays were also performed to determine the infectious viral yields in tumor and normal liver tissues. Pharmacotoxicology studies, including serum chemistries and proinflammatory cytokine production, as well as organ histopathology, were performed. Buffer- or vector-treated tumor-bearing rats were followed for survival and the results were analyzed by the Kaplan-Meier method and the log-rank test. Hepatic arterial infusion of rVSV-beta-gal at the maximum tolerated dose in tumor-bearing rats resulted in efficient viral transduction of multifocal HCC lesions in their livers, tumor-selective viral replication, and extensive oncolysis. Importantly, no significant vector-associated toxicities were noted and, in particular, no damage to the hepatic parenchyma was seen. Finally, survival of vector-treated rats was substantially prolonged over that of animals in the control treatment group (p < 0.028). Thus, hepatic arterial administration of VSV is both effective and safe in an orthotopic animal model of multifocal HCC. The results suggest that oncolytic VSV can be developed into an effective and safe therapeutic modality for patients with multifocal HCC in the future.
Collapse
Affiliation(s)
- Katsunori Shinozaki
- Carl C. Icahn Center for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Abstract
The field of cancer gene therapy is in continuous expansion, and technology is quickly moving ahead as far as gene targeting and regulation of gene expression are concerned. This review focuses on the endocrine aspects of gene therapy, including the possibility to exploit hormone and hormone receptor functions for regulating therapeutic gene expression, the use of endocrine-specific genes as new therapeutic tools, the effects of viral vector delivery and transgene expression on the endocrine system, and the endocrine response to viral vector delivery. Present ethical concerns of gene therapy and the risk of germ cell transduction are also discussed, along with potential lines of innovation to improve cell and gene targeting.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, I-35121 Padua, Italy
| | | | | |
Collapse
|
34
|
Huang TG, Ebert O, Shinozaki K, García-Sastre A, Woo SLC. Oncolysis of hepatic metastasis of colorectal cancer by recombinant vesicular stomatitis virus in immune-competent mice. Mol Ther 2003; 8:434-40. [PMID: 12946316 DOI: 10.1016/s1525-0016(03)00204-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With currently available treatments, patients with metastatic colorectal cancer (CRC) have a median survival of 14.8 months and a 5-year survival rate of less than 10%. In recent years, tumor-targeted replicating viruses have rapidly emerged as potential novel oncolytic agents for cancer treatment. Vesicular stomatitis virus (VSV) is a negative-strand RNA virus with inherent selectivity for replication in tumor cells due to their attenuated antiviral response. VSV is particularly appealing as an oncolytic agent for its exceptionally rapid replication cycle in tumor cells, whereby it is capable of manifesting its maximal oncolytic effects before the onset of neutralizing antiviral immune responses in the host. In this study, we used a recombinant VSV vector expressing the green fluorescent protein gene (rVSV-GFP) to monitor VSV replication easily in CRC cells. Using this GFP-expressing virus, we found that rVSV-GFP efficiently replicated and lysed murine and human CRC cell lines in vitro. We also evaluated the potential of rVSV-GFP to treat MCA26 CRC metastases implanted orthotopically into the livers of syngeneic BALB/c mice. We provide conclusive evidence that rVSV-GFP is able to replicate extensively in the tumors, but not in normal liver cells, in tumor-bearing mice. A single intratumoral injection also caused extensive tumor necrosis, which led to a significant prolongation of animal survival. Our results indicate that VSV can be an effective and safe oncolytic agent against hepatic CRC metastasis in immune-competent mice and may be developed for the treatment of cancer patients in the future.
Collapse
Affiliation(s)
- Tian-Gui Huang
- Carl C. Icahn Center for Gene Therapy and Molecular Medicine, New York, New York 10029-6574, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Cancer gene therapy has been one of the most exciting areas of therapeutic research in the past decade. In this review, we discuss strategies to restrict transcription of transgenes to tumour cells. A range of promoters which are tissue-specific, tumour-specific, or inducible by exogenous agents are presented. Transcriptional targeting should prevent normal tissue toxicities associated with other cancer treatments, such as radiation and chemotherapy. In addition, the specificity of these strategies should provide improved targeting of metastatic tumours following systemic gene delivery. Rapid progress in the ability to specifically control transgenes will allow systemic gene delivery for cancer therapy to become a real possibility in the near future.
Collapse
Affiliation(s)
- Tracy Robson
- School of Biomedical Sciences, University of Ulster, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| | - David G. Hirst
- School of Biomedical Sciences, University of Ulster, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| |
Collapse
|
36
|
Abstract
Although the cytotoxic effects of viruses are usually viewed in terms of pathogenicity, it is possible to harness this activity for therapeutic purposes. Viral genomes are highly versatile, and can be modified to direct their cytotoxicity towards cancer cells. These viruses are known as oncolytic viruses. How are viruses engineered to become tumour specific, and can they be used to safely treat cancer in humans?
Collapse
Affiliation(s)
- E Antonio Chiocca
- Molecular Neuro-Oncology Laboratories, Neurosurgery Service, Massachusetts General Hospital, East Building, 13th Street, Bldg 149, Charlestown, Massachusetts 02129, USA. chioccahelix.mgh.harvard.edu
| |
Collapse
|
37
|
Varghese S, Rabkin SD. Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther 2002; 9:967-78. [PMID: 12522436 DOI: 10.1038/sj.cgt.7700537] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Indexed: 12/29/2022]
Abstract
Oncolytic herpes simplex virus type 1 (HSV-1) vectors are emerging as an effective and powerful therapeutic approach for cancer. Replication-competent HSV-1 vectors with mutations in genes that affect viral replication, neuropathogenicity, and immune evasiveness have been developed and tested for their safety and efficacy in a variety of mouse models. Evidence to-date following administration into the brain attests to their safety, an important observation in light of the neuropathogenicity of the virus. Phase I clinical traits of three vectors, G207, 1716, and NV1020, are either ongoing or completed, with no adverse events attributed to the virus. These and other HSV-1 vectors are effective against a myriad of solid tumors in mice, including glioma, melanoma, breast, prostate, colon, ovarian, and pancreatic cancer. Enhancement of activity was observed when HSV-1 vectors were used in combination with traditional therapies such as radiotherapy and chemotherapy, providing an attractive strategy to pursue in the clinic. Oncolytic HSV-1 vectors expressing "suicide" genes (thymidine kinase, cytosine deaminase, rat cytochrome P450) or immunostimulatory genes (IL-12, GM-CSF, etc.) have been constructed to maximize tumor destruction through multimodal therapeutic mechanisms. Further advances in virus delivery and tumor specificity should improve the likelihood for successful translation to the clinic.
Collapse
Affiliation(s)
- Susan Varghese
- Molecular Neurosurgery Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
38
|
Abstract
Tissue- or cell-specific targeting of vectors is critical to the success of gene therapy. I describe a novel approach to viral-mediated gene therapy, where viral replication and associated cytotoxicity are limited to a specific cell-type by the regulated expression of an essential immediate-early viral gene product. This is illustrated with two herpes simplex virus type 1 vectors (G92A and d12.CALP) whose growth are restricted to albumin- or calponin-expressing cells, respectively. G92A was constructed by inserting an albumin enhancer/promoter--ICP4 transgene into the thymidine kinase gene of mutant herpes simplex virus type 1 d120, deleted for both copies of the ICP4 gene. This vector also contains the Escherichia coli lacZ gene under control of the thymidine kinase promoter, a viral early promoter, to permit easy detection of infected cells containing replicating vector. In the adult, albumin is expressed uniquely in the liver and in hepatocellular carcinoma and is transcriptionally regulated. G92A efficiently replicated in vitro in two human hepatoma cell lines expressing albumin, but not in three human non-hepatoma, albumin-non-expressing tumor cell lines, while all cell lines were equally susceptible to a tissue non-specific HSV recombinant, hrR3. In vivo, G92A replicated well in subcutaneous xenografts of human hepatoma cells (Hep3B) in athymic mice, but not in non-hepatoma subcutaneous tumors (PC3 and HeLa), whereas, hrR3 replicated well in both tumor types. Intratumoral inoculation of G92A inhibited the growth of established subcutaneous hepatoma tumors in nude mice, but not prostate tumors. D12CALP also revealed the cell-specific replication to leiomyosarcoma in which calponin expression was augmented. Using hrR3, we demonstrated inhibition of re-stenosis of rat carotid arteries caused by balloon injury. The antiproliferative effects of this virus was marked in the proliferating smooth muscle cells, however, there still remained the fear for the injury of the endothelial cells. Confining a productive, cytotoxic viral infection to a specific cell-type should be useful for tumor therapy and the ablation of specific cell-types for the generation of animal models of disease. Further experiments using d12CALP will be focused on the arteriosclerosis due to balloon angioplasty or organ transplantation.
Collapse
|
39
|
Advani SJ, Weichselbaum RR, Whitley RJ, Roizman B. Friendly fire: redirecting herpes simplex virus-1 for therapeutic applications. Clin Microbiol Infect 2002; 8:551-63. [PMID: 12427216 DOI: 10.1046/j.1469-0691.2002.00432.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herpes simplex virus-1 (HSV-1) is a relatively large double-stranded DNA virus encoding at least 89 proteins with well characterized disease pathology. An understanding of the functions of viral proteins together with the ability to genetically engineer specific viral mutants has led to the development of attenuated HSV-1 for gene therapy. This review highlights the progress in creating attenuated genetically engineered HSV-1 mutants that are either replication competent (viral non-essential gene deleted) or replication defective (viral essential gene deleted). The choice between a replication-competent or -defective virus is based on the end-goal of the therapeutic intervention. Replication-competent HSV-1 mutants have primarily been employed as antitumor oncolytic viruses, with the lytic nature of the virus harnessed to destroy tumor cells selectively. In replacement gene therapy, replication-defective viruses have been utilized as delivery vectors. The advantages of HSV-1 vectors are that they infect quiescent and dividing cells efficiently and can encode for relatively large transgenes.
Collapse
Affiliation(s)
- S J Advani
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
40
|
Zhang L, Akbulut H, Tang Y, Peng X, Pizzorno G, Sapi E, Manegold S, Deisseroth A. Adenoviral vectors with E1A regulated by tumor-specific promoters are selectively cytolytic for breast cancer and melanoma. Mol Ther 2002; 6:386-93. [PMID: 12231175 DOI: 10.1006/mthe.2002.0680] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously demonstrated that a truncated form of the L-plastin promoter can confer tumor-specific patterns of expression on replication-incompetent adenoviral vector reporter and therapeutic transcription units. In this report, a 2.5-kb truncated version of the L-plastin promoter was placed 5' to the E1A gene of a wild-type adenovirus. The vector generated (Ad-Lp-E1A) was directly cytotoxic to established breast and ovarian cancer cell lines and to primary explant cultures derived from ovarian cancer, but was not cytotoxic to explant cultures of normal mammary epithelial cells. This vector was not cytotoxic to cell lines in which the L-plastin E1A transcription unit was not expressed, whereas the same cell lines were sensitive to the cytotoxic effect of a replication-competent adenoviral vector in which the cytomegalovirus (CMV) promoter drove E1A expression. When the tyrosinase promoter/enhancer was placed 5' to the E1A gene in the adenoviral backbone, the resulting vector (Ad-Tyr-E1A) was selectively toxic to melanoma cells and one percent as toxic to explants of ovarian cancer cells as the Ad-Lp-E1A vector. Injection of these vectors (Ad-Lp-E1A and Ad-Tyr-E1A) into nodules derived from the MCF-7 and MDA-MB-468 human breast cancer cell lines and the TF-2 human melanoma cell line, respectively, which were growing subcutaneously in severe combined immunodeficiency (SCID) mice, induced regression of these tumors. Such vectors may therefore be useful in cancer treatment.
Collapse
Affiliation(s)
- Lixin Zhang
- Genetic Therapy Program of the Sidney Kimmel Cancer Center, San Diego, California 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The concept of using replicating viruses as anticancer agents is not a new one, but the ability to genetically modify these viruses into increasingly potent and tumor-specific vectors is a recent phenomenon. As more is learned about the functions of viral gene products in controlling the mammalian cell cycle and in disabling cellular defense mechanisms, specific viral functions can be augmented or eliminated to enhance antineoplastic efficacy. In this article, general mechanisms by which oncolytic viruses achieve their antitumor efficacy and specificity are reviewed. The paradoxical roles of the immune response are addressed with respect to oncolytic viral therapy, as it, on one hand, impedes the spread of viral infection, and on the other, augments tumor cell destruction through the recruitment of T cells "vaccinated" against tumor antigens. The most commonly used oncolytic viruses are each reviewed in turn, including adenoviruses, herpes simplex viruses, vaccinia viruses, reoviruses, and Newcastle disease viruses. Special attention is focused on the unique biology of each of these viruses as well as the status of several of these mutants in clinical trials.
Collapse
Affiliation(s)
- John T Mullen
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114-2696, USA
| | | |
Collapse
|
42
|
Bromberg JS, Boros P, Ding Y, Fu S, Ku T, Qin L, Sung R. Gene transfer methods for transplantation. Methods Enzymol 2002; 346:199-224. [PMID: 11883069 DOI: 10.1016/s0076-6879(02)46057-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- J S Bromberg
- Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The resistance of cancers to conventional therapies has inspired the search for novel strategies. One such approach, namely gene therapy, is based upon the introduction of genes such as those encoding suicide proteins, tumour suppressor proteins or cytokines into tumour cells by means of a genetic vector. The efficiency with which viruses transfer their genes from one host cell to another has led to the widespread use of viruses as genetic vectors. For safety reasons, such virus vectors are generally replication-defective but, unfortunately, this has limited the efficacy of treatment by restricting the number of cells to which the therapeutic gene is delivered. For this reason, the use of replication-competent viruses has been proposed, since virus replication would be expected to lead to amplification and spread of the therapeutic genes in vivo. The replication of many viruses results in lysis of the host cells. This inherent cytotoxicity, together with the efficiency with which viruses can spread from one cell to another, has inspired the notion that replication-competent viruses could be exploited for cancer treatment. Some viruses have been shown to replicate more efficiently in transformed cells but it is unlikely that such examples will exhibit a high enough degree of tumour selectivity, and hence safety, for the treatment of patients. Our increasing knowledge of the pathogenesis of virus disease and the ability to manipulate specific regions of viral genomes have allowed the construction of viruses that are attenuated in normal cells but retain their ability to lyse tumour cells. Such manipulations have included modifying the ability of viruses to bind to, or replicate in, particular cell types, while others have involved the construction of replication-competent viruses encoding suicide proteins or cytokines. Naturally occurring or genetically engineered oncolytic viruses based upon adenovirus, herpes simplex virus, Newcastle disease virus, poliovirus, vesicular stomatitis virus, weasles virus and reovirus have been described. The results of animal studies are encouraging and a number of viruses are now being evaluated in clinical trials.
Collapse
Affiliation(s)
- Christopher J A Ring
- Gene Interference, Glaxo SmithKline Research & Development, Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK1
| |
Collapse
|
44
|
Harrington KJ, Bateman AR, Melcher AA, Ahmed A, Vile RG. Cancer gene therapy: Part 1. Vector development and regulation of gene expression. Clin Oncol (R Coll Radiol) 2002; 14:3-16. [PMID: 11898782 DOI: 10.1053/clon.2001.0002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kevin J Harrington
- CRC Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, London, UK.
| | | | | | | | | |
Collapse
|
45
|
Tang ZY. Hepatocellular carcinoma--cause, treatment and metastasis. World J Gastroenterol 2001; 7:445-54. [PMID: 11819809 PMCID: PMC4688653 DOI: 10.3748/wjg.v7.i4.445] [Citation(s) in RCA: 302] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2001] [Revised: 07/20/2001] [Accepted: 07/27/2001] [Indexed: 02/06/2023] Open
Abstract
In the recent decades, the incidence of hepatocellular carcinoma (HCC) has been found to be increasing in males in some countries. In China, HCC ranked second of cancer mortality since 1990s. Hepatitis B and C viruses (HBV and HCV) and dietary aflatoxin intake remain the major causative factors of HCC. Surgery plays a major role in the treatment of HCC, particularly for small HCC. Down-staging unresectable huge HCC to smaller HCC and followed by resection will probably be a new approach for further study. Liver transplantation is indicated for small HCC, however, some issues remain to be solved. Different modes of regional cancer therapy for HCC have been tried. Systemic chemotherapy has been disappointing in the past but the future can be promising. Biotherapy, such as cytokines, differentiation inducers, anti-angiogenic agents, gene therapy and tumor vaccine will probably play a role, particularly in the prevention of tumor recurrence. HCC invasiveness is currently the major target of study. Tremendous works have been done at the molecular level, which will provide clues for biomarker of HCC progression as well as targets for intervention.
Collapse
Affiliation(s)
- Z Y Tang
- Liver Cancer Institute of Fudan University, 136 Yixueyuan Road, Zhongshan Hospital, Shanghai 200032, China.
| |
Collapse
|
46
|
Castro MG, Williams JC, Southgate TD, Smith-Arica J, Stone D, Hurtado-Lorenzo A, Umana P, Lowenstein PR. Cell Type Specific and Inducible Transgenesis in the Anterior Pituitary Gland. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/978-1-4615-1633-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
47
|
Harrington KJ, Linardakis E, Vile RG. Transcriptional control: an essential component of cancer gene therapy strategies? Adv Drug Deliv Rev 2000; 44:167-84. [PMID: 11072113 DOI: 10.1016/s0169-409x(00)00093-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The therapeutic index of cancer gene therapy approaches will, at least in part, be dictated by the spatial and temporal control of expression of the therapeutic transgenes. Strategies which allow precise control of gene transcription are likely to play a crucial role in the future pre-clinical and clinical development of gene therapy. In this review, we discuss these issues as they relate to tissue and tumor specific promoters. In addition, the exciting opportunities offered by the development of regulated gene expression systems using small molecules, radiation and heat are reviewed. It is realistic to expect that the future offers the prospect of amalgamating elements of a number of these different systems in a co-ordinated gene delivery approach with the potential to increase the efficacy and reduce the toxicity of treatment.
Collapse
Affiliation(s)
- K J Harrington
- Molecular Medicine Program, Guggenheim 1836, Mayo Clinic, 200 1st Street SW, Rochester, MN 55902, USA
| | | | | |
Collapse
|
48
|
Kurihara T, Brough DE, Kovesdi I, Kufe DW. Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest 2000; 106:763-71. [PMID: 10995787 PMCID: PMC381391 DOI: 10.1172/jci9180] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The DF3/MUC1 gene is aberrantly overexpressed in human breast and other carcinomas. Previous studies have demonstrated that the DF3/MUC1 promoter/enhancer confers selective expression of diverse transgenes in MUC1-positive breast cancer cells. In this study, we show that an adenoviral vector (Ad.DF3-E1) in which the DF3/MUC1 promoter drives expression of E1A selectively replicates in MUC1-positive breast cancer cells. We also show that Ad.DF3-E1 infection of human breast tumor xenografts in nude mice is associated with inhibition of tumor growth. In contrast to a replication-incompetent adenoviral vector that infects along the injection track, Ad.DF3-E1 infection was detectable throughout the tumor xenografts. To generate an Ad.DF3-E1 vector with the capacity for incorporating therapeutic products, we inserted the cytomegalovirus (CMV) promoter upstream of the TNF cDNA. Infection with Ad.DF3-E1/CMV-TNF was associated with selective replication and production of TNF in cells that express MUC1. Moreover, treatment of MUC1-positive, but not MUC1-negative, xenografts with a single injection of Ad.DF3-E1/CMV-TNF was effective in inducing stable tumor regression. These findings demonstrate that the DF3/MUC1 promoter confers competence for selective replication of Ad.DF3-E1 in MUC1-positive breast tumor cells, and that the antitumor activity of this vector is potentiated by integration of the TNF cDNA.
Collapse
Affiliation(s)
- T Kurihara
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
49
|
Sundaresan P, Hunter WD, Martuza RL, Rabkin SD. Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation in mice. J Virol 2000; 74:3832-41. [PMID: 10729157 PMCID: PMC111891 DOI: 10.1128/jvi.74.8.3832-3841.2000] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) mutants that are attenuated for neurovirulence are being used for the treatment of cancer. We have examined the safety of G207, a multimutated replication-competent HSV-1 vector, in mice. BALB/c mice inoculated intracerebrally or intracerebroventricularly with 10(7) PFU of G207 survived for over 20 weeks with no apparent symptoms of disease. In contrast, over 80% of animals inoculated intracerebrally with 1.5 x 10(3) PFU of HSV-1 wild-type strain KOS and 50% of animals inoculated intracerebroventricularly with 10(4) PFU of wild-type strain F died within 10 days. Similarly, after intrahepatic inoculation of G207 (3 x 10(7) PFU) all animals survived for over 10 weeks, whereas no animals survived for even 1 week after inoculation with 10(6) PFU of KOS. After intracerebroventricular inoculation, LacZ expression was initially observed in the cells lining the ventricles and subarachnoid space; expression decreased until almost absent within 5 days postinfection, with no apparent loss of ependymal cells. G207 DNA could be detected by PCR in the brains of mice 8 weeks after intracerebral inoculation; however, no infectious virus could be detected after 2 days. As a model for latent HSV in the brain, we used survivors of an intracerebral inoculation of HSV-1 KOS at the 50% lethal dose. Inoculation of a high dose of G207 at the same stereotactic coordinates did not result in reactivation of detectable infectious virus or symptoms of disease. We conclude that G207 is safe at or above doses that were efficacious in mouse tumor studies.
Collapse
Affiliation(s)
- P Sundaresan
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Georgetown University Medical Center, Washington, D.C. 20007, USA
| | | | | | | |
Collapse
|
50
|
Affiliation(s)
- R L Martuza
- Harvard Medical School, Massachusetts General Hospital, WHT502 55 Fruit Street, Boston, Massachusetts 02114, USA.
| |
Collapse
|