1
|
Dean B, Hopper S, Scarr E. Changes in levels of the zinc transporter SLC39A12 in Brodmann's area 44: Effects of sex, suicide, CNS pH and schizophrenia. J Psychiatr Res 2024; 177:177-184. [PMID: 39024742 DOI: 10.1016/j.jpsychires.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Disturbed CNS zinc homeostasis is suggested as part of the pathophysiology of schizophrenia. Our data, from multiple studies, suggests levels of cortical RNA for the solute carrier family 39 member 12 (SLC39A12), a putative zinc transporter, is higher in people with schizophrenia and is more perturbed in a sub-group of people with the disorder that can be separated because they have very low levels of muscarinic M1 receptors (MRDS). In this study qPCR was used to measure levels of two RNA splice variants of SLC39A12 (a and b) in Brodmann's area (BA) 44 from new cohorts of controls and people with schizophrenia. For the first time, in our study cohort as a whole, we report levels of both splice variants of SLC39A12 are lower in females compared to males and there are correlations between levels of SLC39A12 a and b and CNS pH. Levels of both splice variants were also lower in people with schizophrenia who were suicide completers compared to those who were not. Accounting for these factors, we showed levels of SLC39A12 a and b were higher in BA 44 in schizophrenia compared to controls. In further analyses, with and without our previous data on SLC39A12 a and b, we confirmed changes in levels of SLC39A12 RNAs were more profound in MRDS. In conclusion, our study argues there are higher levels of SLC39A12 a and b in BA 44 in schizophrenia which could be contributing to the breakdown in CNS zinc homeostasis suggested as part of the pathophysiology of schizophrenia, particularly in those with MRDS.
Collapse
Affiliation(s)
- Brian Dean
- The Molecular Psychiatry Laboratory, The Florey, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| | - Shaun Hopper
- The Molecular Psychiatry Laboratory, The Florey, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Mori D, Ikeda R, Sawahata M, Yamaguchi S, Kodama A, Hirao T, Arioka Y, Okumura H, Inami C, Suzuki T, Hayashi Y, Kato H, Nawa Y, Miyata S, Kimura H, Kushima I, Aleksic B, Mizoguchi H, Nagai T, Nakazawa T, Hashimoto R, Kaibuchi K, Kume K, Yamada K, Ozaki N. Phenotypes for general behavior, activity, and body temperature in 3q29 deletion model mice. Transl Psychiatry 2024; 14:138. [PMID: 38453903 PMCID: PMC10920862 DOI: 10.1038/s41398-023-02679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 03/09/2024] Open
Abstract
Whole genome analysis has identified rare copy number variations (CNV) that are strongly involved in the pathogenesis of psychiatric disorders, and 3q29 deletion has been found to have the largest effect size. The 3q29 deletion mice model (3q29-del mice) has been established as a good pathological model for schizophrenia based on phenotypic analysis; however, circadian rhythm and sleep, which are also closely related to neuropsychiatric disorders, have not been investigated. In this study, our aims were to reevaluate the pathogenesis of 3q29-del by recreating model mice and analyzing their behavior and to identify novel new insights into the temporal activity and temperature fluctuations of the mouse model using a recently developed small implantable accelerometer chip, Nano-tag. We generated 3q29-del mice using genome editing technology and reevaluated common behavioral phenotypes. We next implanted Nano-tag in the abdominal cavity of mice for continuous measurements of long-time activity and body temperature. Our model mice exhibited weight loss similar to that of other mice reported previously. A general behavioral battery test in the model mice revealed phenotypes similar to those observed in mouse models of schizophrenia, including increased rearing frequency. Intraperitoneal implantation of Nano-tag, a miniature acceleration sensor, resulted in hypersensitive and rapid increases in the activity and body temperature of 3q29-del mice upon switching to lights-off condition. Similar to the 3q29-del mice reported previously, these mice are a promising model animals for schizophrenia. Successive quantitative analysis may provide results that could help in treating sleep disorders closely associated with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan.
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Ryosuke Ikeda
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Sho Yamaguchi
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Akiko Kodama
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Hirao
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Hiroki Okumura
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Chihiro Inami
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Toshiaki Suzuki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiko Miyata
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Japan
| | - Takanobu Nakazawa
- Laboratory of Molecular Biology, Department of Bioscience, Graduate School of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kusukake-cho, Toyoake, Aichi, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
3
|
Ko MY, Park H, Chon SH, Kim YB, Cha SW, Lee BS, Hyun SA, Ka M. Differential regulations of neural activity and survival in primary cortical neurons by PFOA or PFHpA. CHEMOSPHERE 2024; 352:141379. [PMID: 38316277 DOI: 10.1016/j.chemosphere.2024.141379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Perfluorinated compounds (PFCs), organofluoride compounds comprising carbon-fluorine and carbon-carbon bonds, are used as water and oil repellents in textiles and pharmaceutical tablets; however, they are associated with potential neurotoxic effects. Moreover, the impact of PFCs on neuronal survival, activity, and regulation within the brain remains unclear. Additionally, the mechanisms through which PFCs induce neuronal toxicity are not well-understood because of the paucity of data. This study elucidates that perfluorooctanoic acid (PFOA) and perfluoroheptanoic acid (PFHpA) exert differential effects on the survival and activity of primary cortical neurons. Although PFOA triggers apoptosis in cortical neurons, PFHpA does not exhibit this effect. Instead, PFHpA modifies dendritic spine morphogenesis and synapse formation in primary cortical neuronal cultures, additionally enhancing neural activity and synaptic transmission. This research uncovers a novel mechanism through which PFCs (PFHpA and PFOA) cause distinct alterations in dendritic spine morphogenesis and synaptic activity, shedding light on the molecular basis for the atypical behaviors noted following PFC exposure. Understanding the distinct effects of PFHpA and PFOA could guide regulatory policies on PFC usage and inform clinical approaches to mitigate their neurotoxic effects, especially in vulnerable population.
Collapse
Affiliation(s)
- Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Heejin Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea; Collage of Veterinary of Medicine, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Sun-Hwa Chon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Yong-Bum Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Sin-Woo Cha
- Department of Nonclinical Studies, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| |
Collapse
|
4
|
Bellon A. Comparing stem cells, transdifferentiation and brain organoids as tools for psychiatric research. Transl Psychiatry 2024; 14:127. [PMID: 38418498 PMCID: PMC10901833 DOI: 10.1038/s41398-024-02780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 03/01/2024] Open
Abstract
The inaccessibility of neurons coming directly from patients has hindered our understanding of mental illnesses at the cellular level. To overcome this obstacle, six different cellular approaches that carry the genetic vulnerability to psychiatric disorders are currently available: Olfactory Neuroepithelial Cells, Mesenchymal Stem Cells, Pluripotent Monocytes, Induced Pluripotent Stem Cells, Induced Neuronal cells and more recently Brain Organoids. Here we contrast advantages and disadvantages of each of these six cell-based methodologies. Neuronal-like cells derived from pluripotent monocytes are presented in more detail as this technique was recently used in psychiatry for the first time. Among the parameters used for comparison are; accessibility, need for reprograming, time to deliver differentiated cells, differentiation efficiency, reproducibility of results and cost. We provide a timeline on the discovery of these cell-based methodologies, but, our main goal is to assist researchers selecting which cellular approach is best suited for any given project. This manuscript also aims to help readers better interpret results from the published literature. With this goal in mind, we end our work with a discussion about the differences and similarities between cell-based techniques and postmortem research, the only currently available tools that allow the study of mental illness in neurons or neuronal-like cells coming directly from patients.
Collapse
Affiliation(s)
- Alfredo Bellon
- Penn State Hershey Medical Center, Department of Psychiatry and Behavioral Health, Hershey, PA, USA.
- Penn State Hershey Medical Center, Department of Pharmacology, Hershey, PA, USA.
| |
Collapse
|
5
|
Zuccoli GS, Nascimento JM, Moraes-Vieira PM, Rehen SK, Martins-de-Souza D. Mitochondrial, cell cycle control and neuritogenesis alterations in an iPSC-based neurodevelopmental model for schizophrenia. Eur Arch Psychiatry Clin Neurosci 2023; 273:1649-1664. [PMID: 37039888 DOI: 10.1007/s00406-023-01605-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023]
Abstract
Schizophrenia is a severe psychiatric disorder of neurodevelopmental origin that affects around 1% of the world's population. Proteomic studies and other approaches have provided evidence of compromised cellular processes in the disorder, including mitochondrial function. Most of the studies so far have been conducted on postmortem brain tissue from patients, and therefore, do not allow the evaluation of the neurodevelopmental aspect of the disorder. To circumvent that, we studied the mitochondrial and nuclear proteomes of neural stem cells (NSCs) and neurons derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients versus healthy controls to assess possible alterations related to energy metabolism and mitochondrial function during neurodevelopment in the disorder. Our results revealed differentially expressed proteins in pathways related to mitochondrial function, cell cycle control, DNA repair and neuritogenesis and their possible implication in key process of neurodevelopment, such as neuronal differentiation and axonal guidance signaling. Moreover, functional analysis of NSCs revealed alterations in mitochondrial oxygen consumption in schizophrenia-derived cells and a tendency of higher levels of intracellular reactive oxygen species (ROS). Hence, this study shows evidence that alterations in important cellular processes are present during neurodevelopment and could be involved with the establishment of schizophrenia, as well as the phenotypic traits observed in adult patients. Neural stem cells (NSCs) and neurons were derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients and controls. Proteomic analyses were performed on the enriched mitochondrial and nuclear fractions of NSCs and neurons. Whole-cell proteomic analysis was also performed in neurons. Our results revealed alteration in proteins related to mitochondrial function, cell cycle control, among others. We also performed energy pathway analysis and reactive oxygen species (ROS) analysis of NSCs, which revealed alterations in mitochondrial oxygen consumption and a tendency of higher levels of intracellular ROS in schizophrenia-derived cells.
Collapse
Affiliation(s)
- Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil.
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.
| |
Collapse
|
6
|
Allen CA, Goderie SK, Liu M, Kiehl TR, Farjood F, Wang Y, Boles NC, Temple S. Adult Mouse Leptomeninges Exhibit Regional and Age-related Cellular Heterogeneity Implicating Mental Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.557097. [PMID: 37745502 PMCID: PMC10515796 DOI: 10.1101/2023.09.10.557097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The leptomeninges envelop the central nervous system (CNS) and contribute to cerebrospinal fluid (CSF) production and homeostasis. We analyzed the meninges overlying the anterior or posterior forebrain in the adult mouse by single nuclear RNA-sequencing (snucRNA-seq). This revealed regional differences in fibroblast and endothelial cell composition and gene expression. Surprisingly, these non-neuronal cells co-expressed genes implicated in neural functions. The regional differences changed with aging, from 3 to 18 months. Cytokine analysis revealed specific soluble factor production from anterior vs posterior meninges that also altered with age. Secreted factors from the leptomeninges from different regions and ages differentially impacted the survival of anterior or posterior cortical neuronal subsets, neuron morphology, and glia proliferation. These findings suggest that meningeal dysfunction in different brain regions could contribute to specific neural pathologies. The disease-associations of meningeal cell genes differentially expressed with region and age were significantly enriched for mental and substance abuse disorders.
Collapse
Affiliation(s)
| | | | - Mo Liu
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | | | | | - Yue Wang
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | | | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| |
Collapse
|
7
|
Yao Y, Han W. Proline Metabolism in Neurological and Psychiatric Disorders. Mol Cells 2022; 45:781-788. [PMID: 36324271 PMCID: PMC9676987 DOI: 10.14348/molcells.2022.0115] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022] Open
Abstract
Proline plays a multifaceted role in protein synthesis, redox balance, cell fate regulation, brain development, and other cellular and physiological processes. Here, we focus our review on proline metabolism in neurons, highlighting the role of dysregulated proline metabolism in neuronal dysfunction and consequently neurological and psychiatric disorders. We will discuss the association between genetic and protein function of enzymes in the proline pathway and the development of neurological and psychiatric disorders. We will conclude with a potential mechanism of proline metabolism in neuronal function and mental health.
Collapse
Affiliation(s)
- Yuxiao Yao
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138667
| |
Collapse
|
8
|
Ka M, Kim HG, Kim WY. WDR5-HOTTIP Histone Modifying Complex Regulates Neural Migration and Dendrite Polarity of Pyramidal Neurons via Reelin Signaling. Mol Neurobiol 2022; 59:5104-5120. [PMID: 35672601 PMCID: PMC9378496 DOI: 10.1007/s12035-022-02905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022]
Abstract
WD-repeat domain 5 (WDR5), a core component of histone methyltransferase complexes, is associated with Kabuki syndrome and Kleefstra syndrome that feature intellectual disability and neurodevelopmental delay. Despite its critical status in gene regulation and neurological disorders, the role of WDR5 in neural development is unknown. Here we show that WDR5 is required for normal neuronal placement and dendrite polarization in the developing cerebral cortex. WDR5 knockdown led to defects in both entry into the bipolar transition of pyramidal neurons within the intermediate zone and radial migration into cortical layers. Moreover, WDR5 deficiency disrupted apical and basal polarity of cortical dendrites. Aberrant dendritic spines and synapses accompanied the dendrite polarity phenotype. WDR5 deficiency reduced expression of reelin signaling receptors, ApoER and VdldR, which were associated with abnormal H3K4 methylation and H4 acetylation on their promoter regions. Finally, an lncRNA, HOTTIP, was found to be a partner of WDR5 to regulate dendritic polarity and reelin signaling via histone modification. Our results demonstrate a novel role for WDR5 in neuronal development and provide mechanistic insights into the neuropathology associated with histone methyltransferase dysfunction.
Collapse
Affiliation(s)
- Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamid Bin Khalifa University, Doha, Qatar
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
9
|
Hyun SA, Ko MY, Jang S, Lee BS, Rho J, Kim KK, Kim WY, Ka M. Bisphenol-A impairs synaptic formation and function by RGS4-mediated negative regulation of BDNF/NTRK2 signaling in the cerebral cortex. Dis Model Mech 2022; 15:276081. [PMID: 35781563 PMCID: PMC9346518 DOI: 10.1242/dmm.049177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Bisphenol-A (BPA) is a representative endocrine disruptor, widely used in a variety of products including plastics, medical equipment and receipts. Hence, most people are exposed to BPA via the skin, digestive system or inhalation in everyday life. Furthermore, BPA crosses the blood–brain barrier and is linked to multiple neurological dysfunctions found in neurodegenerative and neuropsychological disorders. However, the mechanisms underlying BPA-associated neurological dysfunctions remain poorly understood. Here, we report that BPA exposure alters synapse morphology and function in the cerebral cortex. Cortical pyramidal neurons treated with BPA showed reduced size and number of dendrites and spines. The density of excitatory synapses was also decreased by BPA treatment. More importantly, we found that BPA disrupted normal synaptic transmission and cognitive behavior. RGS4 and its downstream BDNF/NTRK2 pathway appeared to mediate the effect of BPA on synaptic and neurological function. Our findings provide molecular mechanistic insights into anatomical and physiological neurotoxic consequences related to a potent endocrine modifier. Summary: Bisphenol-A (BPA) disrupts normal synaptic transmission and cognitive behavior in mice. Rgs4 transcription factor and its downstream BDNF/NTRK2 pathway appear to mediate the effect of BPA on synaptic and neurological function.
Collapse
Affiliation(s)
- Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.,Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Sumi Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kee K Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| |
Collapse
|
10
|
Optimization of Neurite Tracing and Further Characterization of Human Monocyte-Derived-Neuronal-like Cells. Brain Sci 2021; 11:brainsci11111372. [PMID: 34827371 PMCID: PMC8615477 DOI: 10.3390/brainsci11111372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
Deficits in neuronal structure are consistently associated with neurodevelopmental illnesses such as autism and schizophrenia. Nonetheless, the inability to access neurons from clinical patients has limited the study of early neurostructural changes directly in patients’ cells. This obstacle has been circumvented by differentiating stem cells into neurons, although the most used methodologies are time consuming. Therefore, we recently developed a relatively rapid (~20 days) protocol for transdifferentiating human circulating monocytes into neuronal-like cells. These monocyte-derived-neuronal-like cells (MDNCs) express several genes and proteins considered neuronal markers, such as MAP-2 and PSD-95. In addition, these cells conduct electrical activity. We have also previously shown that the structure of MDNCs is comparable with that of human developing neurons (HDNs) after 5 days in culture. Moreover, the neurostructure of MDNCs responds similarly to that of HDNs when exposed to colchicine and dopamine. In this manuscript, we expanded our characterization of MDNCs to include the expression of 12 neuronal genes, including tau. Following, we compared three different tracing approaches (two semi-automated and one automated) that enable tracing using photographs of live cells. This comparison is imperative for determining which neurite tracing method is more efficient in extracting neurostructural data from MDNCs and thus allowing researchers to take advantage of the faster yield provided by these neuronal-like cells. Surprisingly, it was one of the semi-automated methods that was the fastest, consisting of tracing only the longest primary and the longest secondary neurite. This tracing technique also detected more structural deficits. The only automated method tested, Volocity, detected MDNCs but failed to trace the entire neuritic length. Other advantages and disadvantages of the three tracing approaches are also presented and discussed.
Collapse
|
11
|
Glenn MJ, Batallán Burrowes AA, Yu W, Blackmer‐Raynolds L, Norchi A, Doak AL. Progression of behavioral deficits during periadolescent development differs in female and male DISC1 knockout rats. GENES, BRAIN, AND BEHAVIOR 2021; 21:e12741. [PMID: 33960643 PMCID: PMC9744521 DOI: 10.1111/gbb.12741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
Mutations in the disrupted in schizophrenia-1 (DISC1) gene are associated with an increased risk of developing psychological disorders including schizophrenia, bipolar disorder, and depression. Assessing the impact of knocking out genes, like DISC1, in animal models provides valuable insights into the relationship between the gene and behavioral outcomes. Previous research has relied on mouse models to assess these impacts, however these may not yield as reliable or rich a behavioral analysis as can be obtained using rats. Thus, the goal of the present study was to characterize the behavioral effects of a biallelic functional deletion of the DISC1 gene in the Sprague Dawley rat. Female and male wild type and DISC1 knockout rats were assessed beginning just prior to weaning and during the post-weaning periadolescent period. The primary outcomes evaluated were activity, anxiety, responses to novel objects and conspecifics, and prepulse inhibition. These behaviors were selected as analogous indices of psychological dysfunction in humans. The DISC1 knockout had significant effects on behavior, although the kind and magnitude of deficits was different for females and males: in females, effects included hyperactivity, aversion to novelty, and a modest prepulse inhibition deficit; in males, effects in anxiety and neophobia were mild but their prepulse inhibition deficit was large. These data confirm that the DISC1 knockout rat model is an excellent way to reproduce and study symptoms of psychological disorders and provides compelling evidence for differential consequences of its dysfunction for females and males in the progression and emergence of specific behavioral deficits.
Collapse
Affiliation(s)
| | - Ariel A. Batallán Burrowes
- Department of PsychologyColby CollegeWatervilleMaineUSA,Present address:
Center for Studies in Behavioral Neurobiology, Department of PsychologyConcordia UniversityMontréalQuébecCanada
| | - Waylin Yu
- Department of PsychologyColby CollegeWatervilleMaineUSA,Present address:
Department of Pharmacology, School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Lisa Blackmer‐Raynolds
- Department of PsychologyColby CollegeWatervilleMaineUSA,Present address:
Department of PhysiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Amanda Norchi
- Department of PsychologyColby CollegeWatervilleMaineUSA
| | | |
Collapse
|
12
|
Betaine ameliorates schizophrenic traits by functionally compensating for KIF3-based CRMP2 transport. Cell Rep 2021; 35:108971. [PMID: 33852848 DOI: 10.1016/j.celrep.2021.108971] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/22/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
In schizophrenia (SCZ), neurons in the brain tend to undergo gross morphological changes, but the related molecular mechanism remains largely elusive. Using Kif3b+/- mice as a model with SCZ-like behaviors, we found that a high-betaine diet can significantly alleviate schizophrenic traits related to neuronal morphogenesis and behaviors. According to a deficiency in the transport of collapsin response mediator protein 2 (CRMP2) by the KIF3 motor, we identified a significant reduction in lamellipodial dynamics in developing Kif3b+/- neurons as a cause of neurite hyperbranching. Betaine administration significantly decreases CRMP2 carbonylation, which enhances the F-actin bundling needed for proper lamellipodial dynamics and microtubule exclusion and may thus functionally compensate for KIF3 deficiency. Because the KIF3 expression levels tend to be downregulated in the human prefrontal cortex of the postmortem brains of SCZ patients, this mechanism may partly participate in human SCZ pathogenesis, which we hypothesize could be alleviated by betaine administration.
Collapse
|
13
|
Dong F, Mao J, Chen M, Yoon J, Mao Y. Schizophrenia risk ZNF804A interacts with its associated proteins to modulate dendritic morphology and synaptic development. Mol Brain 2021; 14:12. [PMID: 33446247 PMCID: PMC7809827 DOI: 10.1186/s13041-021-00729-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/01/2021] [Indexed: 11/30/2022] Open
Abstract
Schizophrenia (SZ) is a devastating brain disease that affects about 1% of world population. Among the top genetic associations, zinc finger protein 804A (ZNF804A) gene encodes a zinc finger protein, associated with SZ and biolar disorder (BD). Copy number variants (CNVs) of ZNF804A have been observed in patients with autism spectrum disorders (ASDs), anxiety disorder, and BD, suggesting that ZNF804A is a dosage sensitive gene for brain development. However, its molecular functions have not been fully determined. Our previous interactomic study revealed that ZNF804A interacts with multiple proteins to control protein translation and neural development. ZNF804A is localized in the cytoplasm and neurites in the human cortex and is expressed in various types of neurons, including pyramidal, dopaminergic, GABAergic, and Purkinje neurons in mouse brain. To further examine the effect of gene dosage of ZNF804A on neurite morphology, both knockdown and overexpression of ZNF804A in primary neuronal cells significantly attenuate dendritic complex and spine formation. To determine the factors mediating these phenotypes, interestingly, three binding proteins of ZNF804A, galectin 1 (LGALS1), fasciculation and elongation protein zeta 1 (FEZ1) and ribosomal protein SA (RPSA), show different effects on reversing the deficits. LGALS1 and FEZ1 stimulate neurite outgrowth at basal level but RPSA shows no effect. Intriguingly, LGALS1 but not FEZ1, reverses the neurite outgrowth deficits induced by ZNF804A knockdown. However, FEZ1 and RPSA but not LGALS1, can ameliorate ZNF804A overexpression-mediated dendritic abnormalities. Thus, our results uncover a critical post-mitotic role of ZNF804A in neurite and synaptic development relevant to neurodevelopmental pathologies.
Collapse
Affiliation(s)
- Fengping Dong
- Department of Biology, Pennsylvania State University, 214 Life Sciences Building, University Park, PA, 16802, USA
| | - Joseph Mao
- Department of Biology, Pennsylvania State University, 214 Life Sciences Building, University Park, PA, 16802, USA
| | - Miranda Chen
- Department of Biology, Pennsylvania State University, 214 Life Sciences Building, University Park, PA, 16802, USA
| | - Joy Yoon
- Department of Biology, Pennsylvania State University, 214 Life Sciences Building, University Park, PA, 16802, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, 214 Life Sciences Building, University Park, PA, 16802, USA.
| |
Collapse
|
14
|
Wang J, Gao X, Wang Y, Wang M, Ge C, Liu Z, Xie XE, Chen Z, Song J, Lu C. The physiological modulation by intracellular kinases of hippocampal γ-oscillation in vitro. Am J Physiol Cell Physiol 2020; 318:C879-C888. [PMID: 32023074 DOI: 10.1152/ajpcell.00199.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hippocampal network oscillations at gamma frequency band (γ-oscillation, 20-80 Hz) are synchronized synaptic activities generated by the interactions between the excitatory and inhibitory interneurons and are associated with higher brain function such as learning and memory. Despite extensive studies about the modulation of intracellular kinases on synaptic transmission and plasticity, little is known about the effects of these kinases on γ-oscillations. In this study, we examined the effects of several critical intracellular kinases such as cyclic AMP-dependent protein kinase (PKA), protein kinase B (PKB)/Akt, protein kinase C (PKC), extracellular-regulated protein kinases (ERK) and AMP-activated protein kinase (AMPK), known to regulate synaptic transmission, on hippocampal γ-oscillations in vitro. We found that AMPK inhibitor but not PKA, PKC, or ERK inhibitor, strongly enhanced the power of γ-oscillation (γ-power) and that Akt inhibitor weakly increased γ-power. Western blot analysis confirmed that AMPK inhibitor reduced the expression of p-AMPK but not total AMPK. By using the slice whole cell voltage-clamp technique, we found that AMPK inhibitor increased the frequency but not amplitude of spontaneous inhibitory postsynaptic currents (sIPSC) and had no effect on either frequency or amplitude of spontaneous excitatory postsynaptic currents (sEPSC). Therefore, AMPK activation negatively modulates hippocampal γ-oscillation via modulation of the inhibitory neurons.
Collapse
Affiliation(s)
- JianGang Wang
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Neurorestoratology, The first Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, People's Republic of China.,The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - XiaHuan Gao
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - YaLi Wang
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - MengMeng Wang
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - ChunBo Ge
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - ZhiHua Liu
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - Xin-E Xie
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - ZhengYue Chen
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - JingGui Song
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - ChengBiao Lu
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
15
|
Huang XF, Song X. Effects of antipsychotic drugs on neurites relevant to schizophrenia treatment. Med Res Rev 2018; 39:386-403. [PMID: 29785841 DOI: 10.1002/med.21512] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/06/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
Although antipsychotic drugs are mainly used for treating schizophrenia, they are widely used for treating various psychiatric diseases in adults, the elderly, adolescents and even children. Today, about 1.2% of the worldwide population suffers from psychosis and related disorders, which translates to about 7.5 million subjects potentially targeted by antipsychotic drugs. Neurites project from the cell body of neurons and connect neurons to each other to form neural networks. Deficits in neurite outgrowth and integrity are implicated in psychiatric diseases including schizophrenia. Neurite deficits contribute to altered brain development, neural networking and connectivity as well as symptoms including psychosis and altered cognitive function. This review revealed that (1) antipsychotic drugs could have profound effects on neurites, synaptic spines and synapse, by which they may influence and regulate neural networking and plasticity; (2) antipsychotic drugs target not only neurotransmitter receptors but also intracellular signaling molecules regulating the signaling pathways responsible for neurite outgrowth and maintenance; (3) high doses and chronic administration of antipsychotic drugs may cause some loss of neurites, synaptic spines, or synapsis in the cortical structures. In addition, confounding effects causing neurite deficits may include elevated inflammatory cytokines and antipsychotic drug-induced metabolic side effects in patients on chronic antipsychotic therapy. Unraveling how antipsychotic drugs affect neurites and neural connectivity is essential for improving therapeutic outcomes and preventing aversive effects for patients on antipsychotic drug treatment.
Collapse
Affiliation(s)
- Xu-Feng Huang
- Henan Medical Key Laboratory of Translational Research on Psychiatric Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,The Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, Australia
| | - Xueqin Song
- Henan Medical Key Laboratory of Translational Research on Psychiatric Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Sokpor G, Xie Y, Rosenbusch J, Tuoc T. Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders. Front Mol Neurosci 2017; 10:243. [PMID: 28824374 PMCID: PMC5540894 DOI: 10.3389/fnmol.2017.00243] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
The ATP-dependent BRG1/BRM associated factor (BAF) chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute of Neuroanatomy, University Medical Center, Georg-August-University GoettingenGoettingen, Germany
| | - Yuanbin Xie
- Institute of Neuroanatomy, University Medical Center, Georg-August-University GoettingenGoettingen, Germany
| | - Joachim Rosenbusch
- Institute of Neuroanatomy, University Medical Center, Georg-August-University GoettingenGoettingen, Germany
| | - Tran Tuoc
- Institute of Neuroanatomy, University Medical Center, Georg-August-University GoettingenGoettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the BrainGoettingen, Germany
| |
Collapse
|
17
|
Cdk5 Regulation of the GRAB-Mediated Rab8-Rab11 Cascade in Axon Outgrowth. J Neurosci 2017; 37:790-806. [PMID: 28123016 DOI: 10.1523/jneurosci.2197-16.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 11/21/2022] Open
Abstract
Neurons communicate with each other through their axons and dendrites. However, a full characterization of the molecular mechanisms involved in axon and dendrite formation is still incomplete. Neurite outgrowth requires the supply of membrane components for surface expansion. Two membrane sources for axon outgrowth are suggested: Golgi secretary vesicles and endocytic recycling endosomes. In non-neuronal cells, trafficking of secretary vesicles from Golgi is regulated by Rab8, a member of Rab small GTPases, and that of recycling endosomes is by Rab11, another member of Rabs. However, whether these vesicles are coordinately or independently transported in growing axons is unknown. Herein, we find that GRAB, a guanine nucleotide exchange factor for Rab8, is a novel regulator of axon outgrowth. Knockdown of GRAB suppressed axon outgrowth of cultured mouse brain cortical neurons. GRAB mediates the interaction between Rab11A and Rab8A, and this activity is regulated by phosphorylation at Ser169 and Ser180 by Cdk5-p35. The nonphosphorylatable GRAB mutant S169/180A promoted axonal outgrowth to a greater extent than did the phosphomimetic GRAB mutant S169/180D. Phosphorylation of GRAB suppressed its guanine nucleotide exchange factor activity and its ability to recruit Rab8A- to Rab11A-positive endosomes. In vivo function of GRAB and its Cdk5-phophorylation were shown in migration and process formation of developing neurons in embryonic mouse brains. These results indicate that GRAB regulates axonal outgrowth via activation and recruitment of Rab8A- to Rab11A-positive endosomes in a Cdk5-dependent manner. SIGNIFICANCE STATEMENT While axon outgrowth requires membrane supply for surface expansion, the molecular mechanisms regulating the membrane transport in growing axons remain unclear. Here, we demonstrate that GRAB, a guanine nucleotide exchange factor for Rab8, is a novel regulator of axon outgrowth. GRAB promotes the axonal membrane transport by mediating the interaction between Rab11 and Rab8 in neurons. The activity of GRAB is regulated by phosphorylation with Cdk5. We describe an in vivo role for GRAB and its Cdk5 phosphorylation during neuronal migration and process formation in embryonic brains. Thus, the membrane supply for axonal outgrowth is regulated by Cdk5 through the Rab11-GRAB-Rab8 cascade.
Collapse
|
18
|
Giersch A, Lalanne L, Isope P. Implicit Timing as the Missing Link between Neurobiological and Self Disorders in Schizophrenia? Front Hum Neurosci 2016; 10:303. [PMID: 27378893 PMCID: PMC4913093 DOI: 10.3389/fnhum.2016.00303] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/03/2016] [Indexed: 12/29/2022] Open
Abstract
Disorders of consciousness and the self are at the forefront of schizophrenia symptomatology. Patients are impaired in feeling themselves as the authors of their thoughts and actions. In addition, their flow of consciousness is disrupted, and thought fragmentation has been suggested to be involved in the patients' difficulties in feeling as being one unique, unchanging self across time. Both impairments are related to self disorders, and both have been investigated at the experimental level. Here we review evidence that both mechanisms of motor control and the temporal structure of signal processing are impaired in schizophrenia patients. Based on this review, we propose that the sequencing of action and perception plays a key role in the patients' impairments. Furthermore, the millisecond time scale of the disorders, as well as the impaired sequencing, highlights the cooperation between brain networks including the cerebellum, as proposed by Andreasen (1999). We examine this possibility in the light of recent knowledge on the anatomical and physiological properties of the cerebellum, its role in timing, and its involvement in known physiological impairments in patients with schizophrenia, e.g., resting states and brain dynamics. A disruption in communication between networks involving the cerebellum, related to known impairments in dopamine, glutamate and GABA transmission, may help to better explain why patients experience reduced attunement with the external world and possibly with themselves.
Collapse
Affiliation(s)
- Anne Giersch
- Department of Psychiatry, INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University Hospital Strasbourg, France
| | - Laurence Lalanne
- Department of Psychiatry, INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University Hospital Strasbourg, France
| | - Philippe Isope
- Institute of Cellular and Integrative Neurosciences (INCI), CNRS UPR 3212, Strasbourg University Strasbourg, France
| |
Collapse
|
19
|
Impairments in dendrite morphogenesis as etiology for neurodevelopmental disorders and implications for therapeutic treatments. Neurosci Biobehav Rev 2016; 68:946-978. [PMID: 27143622 DOI: 10.1016/j.neubiorev.2016.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Dendrite morphology is pivotal for neural circuitry functioning. While the causative relationship between small-scale dendrite morphological abnormalities (shape, density of dendritic spines) and neurodevelopmental disorders is well established, such relationship remains elusive for larger-scale dendrite morphological impairments (size, shape, branching pattern of dendritic trees). Here, we summarize published data on dendrite morphological irregularities in human patients and animal models for neurodevelopmental disorders, with focus on autism and schizophrenia. We next discuss high-risk genes for these disorders and their role in dendrite morphogenesis. We finally overview recent developments in therapeutic attempts and we discuss how they relate to dendrite morphology. We find that both autism and schizophrenia are accompanied by dendritic arbor morphological irregularities, and that majority of their high-risk genes regulate dendrite morphogenesis. Thus, we present a compelling argument that, along with smaller-scale morphological impairments in dendrites (spines and synapse), irregularities in larger-scale dendrite morphology (arbor shape, size) may be an important part of neurodevelopmental disorders' etiology. We suggest that this should not be ignored when developing future therapeutic treatments.
Collapse
|
20
|
Microtubule-Actin Crosslinking Factor 1 Is Required for Dendritic Arborization and Axon Outgrowth in the Developing Brain. Mol Neurobiol 2015; 53:6018-6032. [PMID: 26526844 DOI: 10.1007/s12035-015-9508-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/22/2015] [Indexed: 12/20/2022]
Abstract
Dendritic arborization and axon outgrowth are critical steps in the establishment of neural connectivity in the developing brain. Changes in the connectivity underlie cognitive dysfunction in neurodevelopmental disorders. However, molecules and associated mechanisms that play important roles in dendritic and axon outgrowth in the brain are only partially understood. Here, we show that microtubule-actin crosslinking factor 1 (MACF1) regulates dendritic arborization and axon outgrowth of developing pyramidal neurons by arranging cytoskeleton components and mediating GSK-3 signaling. MACF1 deletion using conditional mutant mice and in utero gene transfer in the developing brain markedly decreased dendritic branching of cortical and hippocampal pyramidal neurons. MACF1-deficient neurons showed reduced density and aberrant morphology of dendritic spines. Also, loss of MACF1 impaired the elongation of callosal axons in the brain. Actin and microtubule arrangement appeared abnormal in MACF1-deficient neurites. Finally, we found that GSK-3 is associated with MACF1-controlled dendritic differentiation. Our findings demonstrate a novel role for MACF1 in neurite differentiation that is critical to the creation of neuronal connectivity in the developing brain.
Collapse
|
21
|
Merelo V, Durand D, Lescallette AR, Vrana KE, Hong LE, Faghihi MA, Bellon A. Associating schizophrenia, long non-coding RNAs and neurostructural dynamics. Front Mol Neurosci 2015; 8:57. [PMID: 26483630 PMCID: PMC4588008 DOI: 10.3389/fnmol.2015.00057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/10/2015] [Indexed: 01/10/2023] Open
Abstract
Several lines of evidence indicate that schizophrenia has a strong genetic component. But the exact nature and functional role of this genetic component in the pathophysiology of this mental illness remains a mystery. Long non-coding RNAs (lncRNAs) are a recently discovered family of molecules that regulate gene transcription through a variety of means. Consequently, lncRNAs could help us bring together apparent unrelated findings in schizophrenia; namely, genomic deficiencies on one side and neuroimaging, as well as postmortem results on the other. In fact, the most consistent finding in schizophrenia is decreased brain size together with enlarged ventricles. This anomaly appears to originate from shorter and less ramified dendrites and axons. But a decrease in neuronal arborizations cannot explain the complex pathophysiology of this psychotic disorder; however, dynamic changes in neuronal structure present throughout life could. It is well recognized that the structure of developing neurons is extremely plastic. This structural plasticity was thought to stop with brain development. However, breakthrough discoveries have shown that neuronal structure retains some degree of plasticity throughout life. What the neuroscientific field is still trying to understand is how these dynamic changes are regulated and lncRNAs represent promising candidates to fill this knowledge gap. Here, we present evidence that associates specific lncRNAs with schizophrenia. We then discuss the potential role of lncRNAs in neurostructural dynamics. Finally, we explain how dynamic neurostructural modifications present throughout life could, in theory, reconcile apparent unrelated findings in schizophrenia.
Collapse
Affiliation(s)
- Veronica Merelo
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miller School of Medicine Miami, FL, USA
| | - Dante Durand
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miller School of Medicine Miami, FL, USA
| | - Adam R Lescallette
- Penn State Hershey Medical Center, Department of Pharmacology Hershey, PA, USA ; Penn State Hershey Medical Center, Department of Psychiatry Hershey, PA, USA
| | - Kent E Vrana
- Penn State Hershey Medical Center, Department of Pharmacology Hershey, PA, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine Baltimore, MD, USA
| | - Mohammad Ali Faghihi
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences University of Miami, Miller School of Medicine Miami, FL, USA
| | - Alfredo Bellon
- Penn State Hershey Medical Center, Department of Pharmacology Hershey, PA, USA ; Penn State Hershey Medical Center, Department of Psychiatry Hershey, PA, USA
| |
Collapse
|
22
|
Copf T. Importance of gene dosage in controlling dendritic arbor formation during development. Eur J Neurosci 2015; 42:2234-49. [PMID: 26108333 DOI: 10.1111/ejn.13002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/05/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Proper dendrite morphology is crucial for normal nervous system functioning. While a number of genes have been implicated in dendrite morphogenesis in both invertebrates and mammals, it remains unclear how developing dendrites respond to changes in gene dosage and what type of patterns their responses may follow. To understand this, I review here evidence from the recent literature, focusing on the genetic studies performed in the Drosophila larval dendritic arborization class IV neuron, an excellent cell type to understand dendrite morphogenesis. I summarize how class IV arbors change morphology in response to developmental fluctuations in the expression levels of 47 genes, studied by means of genetic manipulations such as loss-of-function and gain-of-function, and for which sufficient information is available. I find that arbors can respond to changing gene dosage in several distinct ways, each characterized by a singular dose-response curve. Interestingly, in 72% of cases arbors are sensitive, and thus adjust their morphology, in response to both decreases and increases in the expression of a given gene, indicating that dendrite morphogenesis is a process particularly sensitive to gene dosage. By summarizing the parallels between Drosophila and mammals, I show that many Drosophila dendrite morphogenesis genes have orthologs in mammals, and that some of these are associated with mammalian dendrite outgrowth and human neurodevelopmental disorders. One notable disease-related molecule is kinase Dyrk1A, thought to be a causative factor in Down syndrome. Both increases and decreases in Dyrk1A gene dosage lead to impaired dendrite morphogenesis, which may contribute to Down syndrome pathoetiology.
Collapse
Affiliation(s)
- Tijana Copf
- Institute of Molecular Biology and Biotechnology, Nikolaou Plastira 100, PO Box 1385, Heraklion, GR-70013, Crete, Greece
| |
Collapse
|
23
|
Zhang L, Liu S, Zhang L, You H, Huang R, Sun L, He P, Chen S, Zhang H, Xie P. Real-time qPCR identifies suitable reference genes for Borna disease virus-infected rat cortical neurons. Int J Mol Sci 2014; 15:21825-39. [PMID: 25431926 PMCID: PMC4284680 DOI: 10.3390/ijms151221825] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/21/2014] [Accepted: 09/25/2014] [Indexed: 01/02/2023] Open
Abstract
Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is the most commonly-used technique to identify gene expression profiles. The selection of stably expressed reference genes is a prerequisite to properly evaluating gene expression. Here, the suitability of commonly-used reference genes in normalizing RT-qPCR assays of mRNA expression in cultured rat cortical neurons infected with Borna disease virus (BDV) was assessed. The expressions of eight commonly-used reference genes were comparatively analyzed in BDV-infected rat cortical neurons and non-infected control neurons mainly across 9 and 12 days post-infection. These reference genes were validated by RT-qPCR and separately ranked by four statistical algorithms: geNorm, NormFinder, BestKeeper and the comparative delta-Ct method. Then, the RankAggreg package was used to construct consensus rankings. ARBP was found to be the most stable internal control gene at Day 9, and ACTB at Day 12. As the assessment of the validity of the selected reference genes confirms the suitability of applying a combination of the two most stable references genes, combining the two most stable genes for normalization of RT-qPCR studies in BDV-infected rat cortical neurons is recommended at each time point. This study can contribute to improving BDV research by providing the means by which to obtain more reliable and accurate gene expression measurements.
Collapse
Affiliation(s)
- Lujun Zhang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, China.
| | - Siwen Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
| | - Liang Zhang
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
| | - Hongmin You
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
| | - Rongzhong Huang
- Department of Rehabilitation, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Lin Sun
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
| | - Peng He
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
| | - Shigang Chen
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
| | - Hong Zhang
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, China.
| |
Collapse
|
24
|
Mironov VI, Romanov AS, Simonov AY, Vedunova MV, Kazantsev VB. Oscillations in a neurite growth model with extracellular feedback. Neurosci Lett 2014; 570:16-20. [PMID: 24686176 DOI: 10.1016/j.neulet.2014.03.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/03/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
Abstract
We consider the influence of extracellular signalling on neurite elongation in a model of neurite growth mediated by building proteins (e.g., tubulin). The tubulin production dynamics were supplied by a function describing the influence of extracellular signalling, which can promote or depress neurite elongation. We found that this extracellular feedback could generate neurite length oscillations consisting of a periodic sequence of elongations and retractions. The oscillations prevent further outgrowth of the neurite, which becomes trapped in the non-uniform extracellular field. We analysed the characteristics of the elongation process for different distributions of attracting and repelling sources of the extracellular signalling molecules. The model predicts three different scenarios of neurite development in the extracellular field, including monotonic and oscillatory outgrowth, localised limit cycle oscillations and complete growth depression.
Collapse
Affiliation(s)
- V I Mironov
- Nizhny Novgorod Neuroscience Centre, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| | - A S Romanov
- Nizhny Novgorod Neuroscience Centre, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A Yu Simonov
- Nizhny Novgorod Neuroscience Centre, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - M V Vedunova
- Nizhny Novgorod Neuroscience Centre, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - V B Kazantsev
- Nizhny Novgorod Neuroscience Centre, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia; Laboratory of Nonlinear Dynamics of Living Systems, Institute of Applied Physics of Russian Academy of Science, Nizhny Novgorod, Russia
| |
Collapse
|
25
|
Takano T, Urushibara T, Yoshioka N, Saito T, Fukuda M, Tomomura M, Hisanaga SI. LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes. Mol Biol Cell 2014; 25:1755-68. [PMID: 24672056 PMCID: PMC4038502 DOI: 10.1091/mbc.e14-01-0675] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neurons extend two types of neurites-axons and dendrites-that differ in structure and function. Although it is well understood that the cytoskeleton plays a pivotal role in neurite differentiation and extension, the mechanisms by which membrane components are supplied to growing axons or dendrites is largely unknown. We previously reported that the membrane supply to axons is regulated by lemur kinase 1 (LMTK1) through Rab11A-positive endosomes. Here we investigate the role of LMTK1 in dendrite formation. Down-regulation of LMTK1 increases dendrite growth and branching of cerebral cortical neurons in vitro and in vivo. LMTK1 knockout significantly enhances the prevalence, velocity, and run length of anterograde movement of Rab11A-positive endosomes to levels similar to those expressing constitutively active Rab11A-Q70L. Rab11A-positive endosome dynamics also increases in the cell body and growth cone of LMTK1-deficient neurons. Moreover, a nonphosphorylatable LMTK1 mutant (Ser34Ala, a Cdk5 phosphorylation site) dramatically promotes dendrite growth. Thus LMTK1 negatively controls dendritic formation by regulating Rab11A-positive endosomal trafficking in a Cdk5-dependent manner, indicating the Cdk5-LMTK1-Rab11A pathway as a regulatory mechanism of dendrite development as well as axon outgrowth.
Collapse
Affiliation(s)
- Tetsuya Takano
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Tomoki Urushibara
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Nozomu Yoshioka
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Taro Saito
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Mineko Tomomura
- Meikai Pharmaco-Medical Laboratory, Meikai University School of Dentistry, Sakado 350-0283, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
26
|
A link between the nuclear-localized srGAP3 and the SWI/SNF chromatin remodeler Brg1. Mol Cell Neurosci 2014; 60:10-25. [PMID: 24561795 DOI: 10.1016/j.mcn.2014.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 02/06/2014] [Accepted: 02/11/2014] [Indexed: 11/21/2022] Open
Abstract
The Slit-Robo GTPase activating protein 3 (srGAP3) is an important modulator of actin cytoskeletal dynamics and has an important influence on a variety of neurodevelopmental processes. Mutations in the SRGAP3 gene on chromosome 3p25 have been found in patients with intellectual disability. Genome-wide association studies and behavioral assays of knockout mice had also revealed SRGAP3 as a risk gene for schizophrenia. We have recently shown that srGAP3 protein undergoes regulated shuttling between the cytoplasm and the nucleus during neuronal development. It is shown here that nuclear-localized srGAP3 interacts with the SWI/SNF remodeling factor Brg1. This interaction is mediated by the C-terminal of srGAP3 and the ATPase motif of Brg1. In the primary cultured rat cortical neurons, the levels of nuclear-localized srGAP3 and its interaction with Brg1 have a significant impact on dendrite complexity. Furthermore, the interaction between srGAP3 and Brg1 was also involved in valproic acid (VPA) -induced neuronal differentiation of Neuro2a cells. We then show that GTP-bound Rac1 and GAP-43 may be potential mediators of nuclear srGAP3 and Brg1. Our results not only indicate a novel signaling pathway that contributes to neuronal differentiation and dendrite morphology, but also implicate a novel molecular mechanism underlying srGAP3 regulation of gene expression.
Collapse
|
27
|
Endocannabinoid metabolism in the prefrontal cortex in schizophrenia. Schizophr Res 2013; 147:53-57. [PMID: 23561296 PMCID: PMC3650113 DOI: 10.1016/j.schres.2013.02.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 12/15/2022]
Abstract
Adolescent cannabis use is associated with greater relative risk, increased symptom severity, and earlier age of onset of schizophrenia. We investigated whether this interaction may be partly attributable to disease-related disturbances in metabolism of the major cortical endocannabinoid 2-arachidonoylglycerol (2-AG). Transcript levels for the recently discovered 2-AG metabolizing enzyme, α-β-hydrolase domain 6 (ABHD6), were assessed using quantitative PCR in the prefrontal cortex of schizophrenia and healthy subjects (n=84) and antipsychotic- or tetrahydrocannabinol-exposed monkeys. ABHD6 mRNA levels were elevated in schizophrenia subjects who were younger and had a shorter illness duration but not in antipsychotic- or tetrahydrocannabinol-exposed monkeys. Higher ABHD6 mRNA levels may increase 2-AG metabolism which may influence susceptibility to cannabis in the earlier stages of schizophrenia.
Collapse
|
28
|
Bellon A, Le Pen G, Matricon J, Jay TM, Krebs MO. Potential application as screening and drug designing tools of cytoarchitectural deficiencies present in three animal models of schizophrenia. Expert Opin Drug Discov 2013; 4:257-78. [PMID: 23489125 DOI: 10.1517/17460440902762794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The development of new treatment alternatives for schizophrenia has been prevented by the unknown etiology of the illness and the divergence of results in the field. However, consistent neuropathological findings are emerging from anatomical areas known to be at the core of schizophrenia. If these deficiencies are replicated in animal models then such anomalies could become the target for a new generation of drugs. OBJECTIVE To determine if the methylazoxymethanol acetate (MAM) model, the heterozygote reeler mouse (HRM) and NMDA-antagonists treated rats replicate neuropathological deficits encountered in patients with schizophrenia and to establish if such changes could lead the search for developing novel treatment alternatives. METHODS Databases including MEDLINE, Cochrane and Ovid were searched; search terms included neuropathology, schizophrenia and animal models. RESULTS/CONCLUSIONS NMDA-antagonist treated animals partially replicate schizophrenia anomalies in parvalbumin positive interneurons. In contrast, neuroanatomical deficiencies replicated by the MAM model and the HRM in the hippocampus and the prefrontal cortex seem promising targets for future pharmacological research in schizophrenia. Such neuroanatomical findings along with evidence from molecules and genes associated with schizophrenia suggest new drugs should aim to correct deficits in the formation of dendrites and axons that seems to be implicated in this illness pathophysiology.
Collapse
Affiliation(s)
- Alfredo Bellon
- INSERM, Hôpital Sainte-Anne, Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, U894, 2 ter rue d'Alésia, 75014 Paris, France +33 1 40788634 ; +33 1 45807293 ;
| | | | | | | | | |
Collapse
|
29
|
Cheng YC, Scotting PJ, Hsu LS, Lin SJ, Shih HY, Hsieh FY, Wu HL, Tsao CL, Shen CJ. Zebrafish rgs4 is essential for motility and axonogenesis mediated by Akt signaling. Cell Mol Life Sci 2013; 70:935-50. [PMID: 23052218 PMCID: PMC11113239 DOI: 10.1007/s00018-012-1178-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 09/19/2012] [Accepted: 09/24/2012] [Indexed: 12/21/2022]
Abstract
The schizophrenia susceptibility gene, Rgs4, is one of the most intensively studied regulators of G-protein signaling members, well known to be fundamental in regulating neurotransmission. However, little is known about its role in the developing nervous system. We have isolated zebrafish rgs4 and shown that it is transcribed in the developing nervous system. Rgs4 knockdown did not affect neuron number and patterning but resulted in locomotion defects and aberrant development of axons. This was confirmed using a selective Rgs4 inhibitor, CCG-4986. Rgs4 knockdown also attenuated the level of phosphorylated-Akt1, and injection of constitutively-activated AKT1 rescued the motility defects and axonal phenotypes in the spinal cord but not in the hindbrain and trigeminal neurons. Our in vivo analysis reveals a novel role for Rgs4 in regulating axonogenesis during embryogenesis, which is mediated by another schizophrenia-associated gene, Akt1, in a region-specific manner.
Collapse
Affiliation(s)
- Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, 33383, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Synchronous symmetry breaking in neurons with different neurite counts. PLoS One 2013; 8:e54905. [PMID: 23408951 PMCID: PMC3569465 DOI: 10.1371/journal.pone.0054905] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
As neurons develop, several immature processes (i.e., neurites) grow out of the cell body. Over time, each neuron breaks symmetry when only one of its neurites grows much longer than the rest, becoming an axon. This symmetry breaking is an important step in neurodevelopment, and aberrant symmetry breaking is associated with several neuropsychiatric diseases, including schizophrenia and autism. However, the effects of neurite count in neuronal symmetry breaking have never been studied. Existing models for neuronal polarization disagree: some predict that neurons with more neurites polarize up to several days later than neurons with fewer neurites, while others predict that neurons with different neurite counts polarize synchronously. We experimentally find that neurons with different neurite counts polarize synchronously. We also show that despite the significant differences among the previously proposed models, they all agree with our experimental findings when the expression levels of the proteins responsible for symmetry breaking increase with neurite count. Consistent with these results, we observe that the expression levels of two of these proteins, HRas and shootin1, significantly correlate with neurite count. This coordinated symmetry breaking we observed among neurons with different neurite counts may be important for synchronized polarization of neurons in developing organisms.
Collapse
|
31
|
Samartzis L, Dima D, Fusar-Poli P, Kyriakopoulos M. White Matter Alterations in Early Stages of Schizophrenia: A Systematic Review of Diffusion Tensor Imaging Studies. J Neuroimaging 2013; 24:101-10. [DOI: 10.1111/j.1552-6569.2012.00779.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/18/2012] [Accepted: 10/06/2012] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lampros Samartzis
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
- Athalassa Psychiatric Hospital; Cyprus Mental Health Services; Nicosia Cyprus
| | - Danai Dima
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
| | - Paolo Fusar-Poli
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
| | - Marinos Kyriakopoulos
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
- National and Specialist Children's Inpatient Unit; South London and Maudsley NHS Foundation Trust; London UK
| |
Collapse
|
32
|
Lang B, Pu J, Hunter I, Liu M, Martin-Granados C, Reilly TJ, Gao GD, Guan ZL, Li WD, Shi YY, He G, He L, Stefánsson H, St Clair D, Blackwood DH, McCaig CD, Shen S. Recurrent deletions of ULK4 in schizophrenia: a novel gene crucial for neuritogenesis and neuronal motility. J Cell Sci 2013; 127:630-40. [DOI: 10.1242/jcs.137604] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although many pathogenic copy number variations (CNVs) are associated with neuropsychiatric diseases, few of them have been functionally characterised. Here we report multiple schizophrenia cases with CNV abnormalities specific to unc-51-like kinase 4 (ULK4), a novel serine/threonine kinase gene. Deletions spanning exons 21–34 of ULK4 were present in 4 out of 3,391 schizophrenia patients from the International Schizophrenia Consortium, but absent in 3,181 controls. Deletions removing exons 33 and 34 of the large splice variant of ULK4 also were enriched in Icelandic schizophrenia and bipolar patients compared to 98,022 controls (P=0.0007 for schizophrenia plus bipolar disorder). Combining the two cohorts gives a p value less than 0.0001 for schizophrenia, or for schizophrenia plus bipolar disorder. The expression of ULK4 is neuron-specific and developmentally regulated. ULK4 modulates multiple signalling pathways including ERK, p38, PKC, and JNK, which are involved in stress responses and implicated in schizophrenia. Knockdown of ULK4 disrupts the composition of microtubules and compromises neuritogenesis and cell motility. Targeted Ulk4 deletion causes corpus callosum agenesis in mice. Our findings indicate that ULK4 is a rare susceptibility gene for schizophrenia.
Collapse
|
33
|
Szamosi A, Kelemen O, Kéri S. Hippocampal volume and the AKT signaling system in first-episode schizophrenia. J Psychiatr Res 2012; 46:279-84. [PMID: 22209534 DOI: 10.1016/j.jpsychires.2011.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The phosphoinositide 3'-kinase (PI3K)--protein kinase B (AKT1)--glycogen synthase kinase (GSK)-3β system is modulated by several factors implicated in the pathophysiology of schizophrenia. Evidence suggests that neuregulin 1 (NRG1) induces decreased AKT phosphorylation in schizophrenia relative to healthy controls, which may be related to dysfunctional neurodevelopment and neuroplasticity. The aim of this study was to investigate the relationship between NRG1--induced AKT phosphorylation and hippocampal volume in schizophrenia. METHODS Participants were 20 first-episode patients with schizophrenia who did not receive psychotropic medications and 20 matched healthy controls. We measured the phosphorylated AKT--total AKT and phosphorylated ERK (extracellular signal-regulated kinase)--total ERK ratios in peripheral lymphoblasts before and after NRG1 administration. Whole-brain, left, and right hippocampal volumes were quantified using FreeSurfer software. RESULTS Patients with schizophrenia displayed decreased AKT but normal ERK ratio compared with controls. Patients also had a reduction in left hippocampal volume. There was no significant difference between patients and controls in whole-brain and right hippocampal volume. Decreased AKT ratio was associated with reduced hippocampal volume. There was no significant relationship between ERK ratio and brain structure. CONCLUSION Activation of the AKT system is specifically associated with hippocampal volume in first-episode schizophrenia, which provides further evidence for the pivotal role of this messenger system in the pathophysiology of psychotic disorders.
Collapse
|
34
|
Trivedi MS, Jarbe T. A brief review on recent developments in animal models of schizophrenia. Indian J Pharmacol 2011; 43:375-80. [PMID: 21844988 PMCID: PMC3153696 DOI: 10.4103/0253-7613.83104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/26/2011] [Accepted: 04/25/2011] [Indexed: 11/04/2022] Open
Abstract
Number of patients suffering from schizophrenia is increasing daily, subsequently, increasing the need of proper medication to treat the symptoms and eventually improve the patients' condition. However, all the progress for designing or discovering medication comes to a standstill, as the symptomatic treatment can only be done in the patients, but performing clinical trials with all the possible candidate drugs in human beings and patients is unethical. Thus, the need arises for proper animal and non-human primate animal models of the disease, which would not only serve the purpose of understanding the disease in a better physiological setting, but also would allow the scientists to focus on developing a therapeutically effective and potent medication for treating this hazardous disease. This brief review article focuses on a few animal models which are generally used for carrying out studies on schizophrenic symptoms in research labs and industry worldwide. The paper also tries to validate the pre-clinically available models based on certain specified criteria like the predictive constructive and face validity. Thus, the paper gives guidance toward the mechanistic and traditional models of schizophrenia applying some of the newer principles and helps researchers in deciding a particular relevant model for their own purpose.
Collapse
Affiliation(s)
- M S Trivedi
- Department of Neuro-Pharmacology, Northeastern University, 360-Huntington Avenue, Boston, MA- 02115, USA
| | | |
Collapse
|
35
|
Dysbindin-1, a schizophrenia-related protein, facilitates neurite outgrowth by promoting the transcriptional activity of p53. Mol Psychiatry 2011; 16:1105-16. [PMID: 21502952 DOI: 10.1038/mp.2011.43] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genetic variations in the DTNBP1 gene (encoding the protein dysbindin-1) have been implicated as risk factors in the pathogenesis of schizophrenia. Previous studies have indicated that dysbindin-1 functions in the regulation of synaptic activity. Recently, dysbindin-1 has also been documented to be involved in neuronal development. In this study, we identified necdin as a binding partner of dysbindin-1 using a yeast two-hybrid screen. Dysbindin-1 recruits necdin to the cytoplasm, thereby attenuating the repressive effects of necdin on p53 transcriptional activity. Knockdown of dysbindin-1, like knockdown of p53, greatly decreases the expressions of the p53 target genes coronin 1b and rab13, which are required for neurite outgrowth. Moreover, overexpression of p53 restores the neurite outgrowth blocked by dysbindin-1 knockdown. In brains of dysbindin-1 null mice (the sandy strain), p21, Coronin 1b and Rab13 levels are reduced. Furthermore, primary cultured cortical neurons from sandy mice display neurite outgrowth defects when compared with those from wild-type mice. Thus, our data provide evidence that dysbindin-1 has an important role in neurite outgrowth through its regulation of p53's transcriptional activity.
Collapse
|
36
|
Association of VSNL1 with schizophrenia, frontal cortical function, and biological significance for its gene product as a modulator of cAMP levels and neuronal morphology. Transl Psychiatry 2011; 1:e22. [PMID: 22832524 PMCID: PMC3309514 DOI: 10.1038/tp.2011.20] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We report an association of single-nucleotide polymorphisms (SNPs) for the VSNL1 gene (visinin-like 1) with schizophrenia and frontal cortical function in a sample of patients with Diagnostic and Statistical Manual of Mental Disorder-IV (DSM-IV) diagnoses of schizophrenia, compared with healthy controls. Moreover, VSNL1 SNPs were associated with performance in the Wisconsin Card Sorting Test, a measure for the assessment of frontal cortical function. The VSNL1 gene product, Visinin-like-protein-1 (VILIP-1), is a member of the neuronal EF-hand Ca(2+)-sensor protein family. Previously, VILIP-1 mRNA and protein expression were shown to be altered in animal models and in schizophrenia patients. VILIP-1 influences cytosolic cyclic adenosine mono phosphate (cAMP) levels, cell migration, exocytotic processes and differentiation in the periphery. This raises the question, whether, similar to other potential schizophrenia susceptibility genes such as Disc1, PDE4B and Akt, VSNL1 may affect cAMP signaling and neurite outgrowth in neurons. In dissociated rat hippocampal neurons, VILIP-1 small interfering RNA knockdown decreased cAMP levels and reduced dendrite branching, compared with control-transfected cells. In contrast, VILIP-1 overexpression had the opposite effect. Similar results have been obtained in the human dopaminergic neuronal cell line SH-SY5Y, where the effect on neurite branching and length was attenuated by the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine and the protein kinase A inhibitor KT5720. These results show that the association of VSNL1 SNPs with the disease and cognitive impairments, together with previously observed pathological changes in VILIP-1 protein expression, possibly occurring during brain development, may contribute to the morphological and functional deficits observed in schizophrenia.
Collapse
|
37
|
Bellon A, Krebs MO, Jay TM. Factoring neurotrophins into a neurite-based pathophysiological model of schizophrenia. Prog Neurobiol 2011; 94:77-90. [DOI: 10.1016/j.pneurobio.2011.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 04/05/2011] [Accepted: 04/05/2011] [Indexed: 01/02/2023]
|
38
|
Naatanen R, Kujala T, Kreegipuu K, Carlson S, Escera C, Baldeweg T, Ponton C. The mismatch negativity: an index of cognitive decline in neuropsychiatric and neurological diseases and in ageing. Brain 2011; 134:3435-53. [DOI: 10.1093/brain/awr064] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
39
|
Differential effects of prenatal and postnatal expressions of mutant human DISC1 on neurobehavioral phenotypes in transgenic mice: evidence for neurodevelopmental origin of major psychiatric disorders. Mol Psychiatry 2011; 16:293-306. [PMID: 20048751 PMCID: PMC2914807 DOI: 10.1038/mp.2009.144] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Strong genetic evidence implicates mutations and polymorphisms in the gene Disrupted-In-Schizophrenia-1 (DISC1) as risk factors for both schizophrenia and mood disorders. Recent studies have shown that DISC1 has important functions in both brain development and adult brain function. We have described earlier a transgenic mouse model of inducible expression of mutant human DISC1 (hDISC1) that acts in a dominant-negative manner to induce the marked neurobehavioral abnormalities. To gain insight into the roles of DISC1 at various stages of neurodevelopment, we examined the effects of mutant hDISC1 expressed during (1) only prenatal period, (2) only postnatal period, or (3) both periods. All periods of expression similarly led to decreased levels of cortical dopamine (DA) and fewer parvalbumin-positive neurons in the cortex. Combined prenatal and postnatal expression produced increased aggression and enhanced response to psychostimulants in male mice along with increased linear density of dendritic spines on neurons of the dentate gyrus of the hippocampus, and lower levels of endogenous DISC1 and LIS1. Prenatal expression only resulted in smaller brain volume, whereas selective postnatal expression gave rise to decreased social behavior in male mice and depression-like responses in female mice as well as enlarged lateral ventricles and decreased DA content in the hippocampus of female mice, and decreased level of endogenous DISC1. Our data show that mutant hDISC1 exerts differential effects on neurobehavioral phenotypes, depending on the stage of development at which the protein is expressed. The multiple and diverse abnormalities detected in mutant DISC1 mice are reminiscent of findings in major mental diseases.
Collapse
|
40
|
Sakoğlu U, Upadhyay J, Chin CL, Chandran P, Baker SJ, Cole TB, Fox GB, Day M, Luo F. Paradigm shift in translational neuroimaging of CNS disorders. Biochem Pharmacol 2011; 81:1374-87. [PMID: 21219879 DOI: 10.1016/j.bcp.2010.12.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/29/2010] [Accepted: 12/29/2010] [Indexed: 12/29/2022]
Abstract
During the last two decades, functional neuroimaging technology, especially functional magnetic resonance imaging (fMRI), has improved tremendously, with new attention towards resting-state functional connectivity of the brain. This development has allowed scientists to study changes in brain structure and function, and probe these two properties under conditions of evoked stimulation, disease and drug administration. In the domain of functional imaging, the identification and characterization of central nervous system (CNS) functional networks have emerged as potential biomarkers for CNS disorders in humans. Recent attempts to translate clinical neuroimaging methodology to preclinical studies have also been carried out, which offer new opportunities in translational neuroscience research. In this paper, we review recent developments in structural and functional MRI and their use to probe functional connectivity in various CNS disorders such as schizophrenia, mood disorders, Alzheimer's disease (AD) and pain.
Collapse
Affiliation(s)
- Unal Sakoğlu
- Translational Imaging/Advanced Technology, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wissner-Gross ZD, Scott MA, Ku D, Ramaswamy P, Yanik MF. Large-scale analysis of neurite growth dynamics on micropatterned substrates. Integr Biol (Camb) 2011; 3:65-74. [PMID: 20976322 PMCID: PMC3173981 DOI: 10.1039/c0ib00058b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During both development and regeneration of the nervous system, neurons display complex growth dynamics, and several neurites compete to become the neuron's single axon. Numerous mathematical and biophysical models have been proposed to explain this competition, which remain experimentally unverified. Large-scale, precise, and repeatable measurements of neurite dynamics have been difficult to perform, since neurons have varying numbers of neurites, which themselves have complex morphologies. To overcome these challenges using a minimal number of primary neurons, we generated repeatable neuronal morphologies on a large scale using laser-patterned micron-wide stripes of adhesive proteins on an otherwise highly non-adherent substrate. By analyzing thousands of quantitative time-lapse measurements of highly reproducible neurite growth dynamics, we show that total neurite growth accelerates until neurons polarize, that immature neurites compete even at very short lengths, and that neuronal polarity exhibits a distinct transition as neurites grow. Proposed neurite growth models agree only partially with our experimental observations. We further show that simple yet specific modifications can significantly improve these models, but still do not fully predict the complex neurite growth behavior. Our high-content analysis puts significant and nontrivial constraints on possible mechanistic models of neurite growth and specification. The methodology presented here could also be employed in large-scale chemical and target-based screens on a variety of complex and subtle phenotypes for therapeutic discoveries using minimal numbers of primary neurons.
Collapse
Affiliation(s)
- Zachary D. Wissner-Gross
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
- Harvard-MIT Division of Health, Science, and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mark A. Scott
- Harvard-MIT Division of Health, Science, and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David Ku
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Priya Ramaswamy
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mehmet Fatih Yanik
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 36-834, Cambridge, MA 02139. ; Fax: 617-324-3534; Tel: 617-253-1583
| |
Collapse
|
42
|
Abstract
Genetic variations in dysbindin-1 (dystrobrevin-binding protein-1) are one of the most commonly reported variations associated with schizophrenia. As schizophrenia could be regarded as a neurodevelopmental disorder resulting from abnormalities of synaptic connectivity, we attempted to clarify the function of dysbindin-1 in neuronal development. We examined the developmental change of dysbindin-1 in rat brain by western blotting and found that a 50 kDa isoform is highly expressed during the embryonic stage, whereas a 40 kDa one is detected at postnatal day 11 and increased thereafter. Immunofluorescent analyses revealed that dysbindin-1 is enriched at the spine-like structure of primary cultured rat hippocampal neurons. We identified WAVE2, but not N-WASP, as a binding partner for dysbindin-1. We also found that Abi-1, a binding molecule for WAVE2 involved in spine morphogenesis, interacts with dysbindin-1. Although dysbindin-1, WAVE2 and Abi-1 form a ternary complex, dysbindin-1 promoted the binding of WAVE2 to Abi-1. RNA interference-mediated knockdown of dysbindin-1 led to the generation of abnormally elongated immature dendritic protrusions. The present results indicate possible functions of dysbindin-1 at the postsynapse in the regulation of dendritic spine morphogenesis through the interaction with WAVE2 and Abi-1.
Collapse
|
43
|
Measurement and comparison of serum neuregulin 1 immunoreactivity in control subjects and patients with schizophrenia: an influence of its genetic polymorphism. J Neural Transm (Vienna) 2010; 117:887-95. [DOI: 10.1007/s00702-010-0418-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 05/02/2010] [Indexed: 02/07/2023]
|
44
|
Loe-Mie Y, Lepagnol-Bestel AM, Maussion G, Doron-Faigenboim A, Imbeaud S, Delacroix H, Aggerbeck L, Pupko T, Gorwood P, Simonneau M, Moalic JM. SMARCA2 and other genome-wide supported schizophrenia-associated genes: regulation by REST/NRSF, network organization and primate-specific evolution. Hum Mol Genet 2010; 19:2841-57. [PMID: 20457675 DOI: 10.1093/hmg/ddq184] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The SMARCA2 gene, which encodes BRM in the SWI/SNF chromatin-remodeling complex, was recently identified as being associated with schizophrenia (SZ) in a genome-wide approach. Polymorphisms in SMARCA2, associated with the disease, produce changes in the expression of the gene and/or in the encoded amino acid sequence. We show here that an SWI/SNF-centered network including the Smarca2 gene is modified by the down-regulation of REST/NRSF in a mouse neuronal cell line. REST/NRSF down-regulation also modifies the levels of Smarce1, Smarcd3 and SWI/SNF interactors (Hdac1, RcoR1 and Mecp2). Smarca2 down-regulation generates an abnormal dendritic spine morphology that is an intermediate phenotype of SZ. We further found that 8 (CSF2RA, HIST1H2BJ, NOTCH4, NRGN, SHOX, SMARCA2, TCF4 and ZNF804A) out of 10 genome-wide supported SZ-associated genes are part of an interacting network (including SMARCA2), 5 members of which encode transcription regulators. The expression of 3 (TCF4, SMARCA2 and CSF2RA) of the 10 genome-wide supported SZ-associated genes is modified when the REST/NRSF-SWI/SNF chromatin-remodeling complex is experimentally manipulated in mouse cell lines and in transgenic mouse models. The REST/NRSF-SWI/SNF deregulation also results in the differential expression of genes that are clustered in chromosomes suggesting the induction of genome-wide epigenetic changes. Finally, we found that SMARCA2 interactors and the genome-wide supported SZ-associated genes are considerably enriched in genes displaying positive selection in primates and in the human lineage which suggests the occurrence of novel protein interactions in primates. Altogether, these data identify the SWI/SNF chromatin-remodeling complex as a key component of the genetic architecture of SZ.
Collapse
Affiliation(s)
- Yann Loe-Mie
- INSERM U675/U894, Centre Psychiatrie & Neurosciences, Université Paris-Descartes, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Matricon J, Bellon A, Frieling H, Kebir O, Le Pen G, Beuvon F, Daumas-Duport C, Jay TM, Krebs MO. Neuropathological and Reelin deficiencies in the hippocampal formation of rats exposed to MAM; differences and similarities with schizophrenia. PLoS One 2010; 5:e10291. [PMID: 20421980 PMCID: PMC2858661 DOI: 10.1371/journal.pone.0010291] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/15/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Adult rats exposed to methylazoxymethanol (MAM) at embryonic day 17 (E17) consistently display behavioral characteristics similar to that observed in patients with schizophrenia and replicate neuropathological findings from the prefrontal cortex of psychotic individuals. However, a systematic neuropathological analysis of the hippocampal formation and the thalamus in these rats is lacking. It is also unclear if reelin, a protein consistently associated with schizophrenia and potentially involved in the mechanism of action of MAM, participates in the neuropathological effects of this compound. Therefore, a thorough assessment including cytoarchitectural and neuromorphometric measurements of eleven brain regions was conducted. Numbers of reelin positive cells and reelin expression and methylation levels were also studied. PRINCIPAL FINDINGS Compared to untreated rats, MAM-exposed animals showed a reduction in the volume of entorhinal cortex, hippocampus and mediodorsal thalamus associated with decreased neuronal soma. The entorhinal cortex also showed laminar disorganization and neuronal clusters. Reelin methylation in the hippocampus was decreased whereas reelin positive neurons and reelin expression were unchanged. CONCLUSIONS Our results indicate that E17-MAM exposure reproduces findings from the hippocampal formation and the mediodorsal thalamus of patients with schizophrenia while providing little support for reelin's involvement. Moreover, these results strongly suggest MAM-treated animals have a diminished neuropil, which likely arises from abnormal neurite formation; this supports a recently proposed pathophysiological hypothesis for schizophrenia.
Collapse
Affiliation(s)
- Julien Matricon
- INSERM U894, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Hôpital Sainte-Anne, Paris, France
| | - Alfredo Bellon
- INSERM U894, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Hôpital Sainte-Anne, Paris, France
- * E-mail: (AB); (MOK)
| | - Helge Frieling
- INSERM U894, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, Paris, France
- Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Oussama Kebir
- INSERM U894, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Hôpital Sainte-Anne, Paris, France
| | - Gwenaëlle Le Pen
- INSERM U894, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Hôpital Sainte-Anne, Paris, France
| | - Frédéric Beuvon
- Neuropathology unit, Université Paris Descartes, Faculté de Médecine Paris Descartes, Hôpital Sainte-Anne, Paris, France
- INSERM U894, Laboratoire de Plasticité gliale et tumeurs cérébrales, Centre de Psychiatrie et Neurosciences, Paris, France
| | - Catherine Daumas-Duport
- Neuropathology unit, Université Paris Descartes, Faculté de Médecine Paris Descartes, Hôpital Sainte-Anne, Paris, France
- INSERM U894, Laboratoire de Plasticité gliale et tumeurs cérébrales, Centre de Psychiatrie et Neurosciences, Paris, France
| | - Thérèse M. Jay
- INSERM U894, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Hôpital Sainte-Anne, Paris, France
| | - Marie-Odile Krebs
- INSERM U894, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Hôpital Sainte-Anne, Paris, France
- * E-mail: (AB); (MOK)
| |
Collapse
|
46
|
Fossella JA, Guise K, Fan J. Genetics as a tool for the dissociation of mental operations over the course of development. Ann N Y Acad Sci 2010; 1191:110-32. [DOI: 10.1111/j.1749-6632.2010.05439.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Ghiani CA, Starcevic M, Rodriguez-Fernandez IA, Nazarian R, Cheli VT, Chan LN, Malvar JS, de Vellis J, Sabatti C, Dell’Angelica EC. The dysbindin-containing complex (BLOC-1) in brain: developmental regulation, interaction with SNARE proteins and role in neurite outgrowth. Mol Psychiatry 2010; 15:115, 204-15. [PMID: 19546860 PMCID: PMC2811213 DOI: 10.1038/mp.2009.58] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 05/08/2009] [Accepted: 05/26/2009] [Indexed: 12/25/2022]
Abstract
Previous studies have implicated DTNBP1 as a schizophrenia susceptibility gene and its encoded protein, dysbindin, as a potential regulator of synaptic vesicle physiology. In this study, we found that endogenous levels of the dysbindin protein in the mouse brain are developmentally regulated, with higher levels observed during embryonic and early postnatal ages than in young adulthood. We obtained biochemical evidence indicating that the bulk of dysbindin from brain exists as a stable component of biogenesis of lysosome-related organelles complex-1 (BLOC-1), a multi-subunit protein complex involved in intracellular membrane trafficking and organelle biogenesis. Selective biochemical interaction between brain BLOC-1 and a few members of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) superfamily of proteins that control membrane fusion, including SNAP-25 and syntaxin 13, was demonstrated. Furthermore, primary hippocampal neurons deficient in BLOC-1 displayed neurite outgrowth defects. Taken together, these observations suggest a novel role for the dysbindin-containing complex, BLOC-1, in neurodevelopment, and provide a framework for considering potential effects of allelic variants in DTNBP1--or in other genes encoding BLOC-1 subunits--in the context of the developmental model of schizophrenia pathogenesis.
Collapse
Affiliation(s)
- CA Ghiani
- Mental Retardation Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - M Starcevic
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - IA Rodriguez-Fernandez
- Mental Retardation Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - R Nazarian
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - VT Cheli
- Mental Retardation Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - LN Chan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- ACCESS Program, University of California, Los Angeles, CA, USA
| | - JS Malvar
- Mental Retardation Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - J de Vellis
- Mental Retardation Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - C Sabatti
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - EC Dell’Angelica
- Mental Retardation Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
48
|
Kuai L, Wang X, Madison JM, Schreiber SL, Scolnick EM, Haggarty SJ. Chemical genetics identifies small-molecule modulators of neuritogenesis involving neuregulin-1/ErbB4 signaling. ACS Chem Neurosci 2010; 1:325-342. [PMID: 20495671 PMCID: PMC2873204 DOI: 10.1021/cn900046a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 01/07/2010] [Indexed: 12/30/2022] Open
Abstract
Genetic findings have suggested that neuregulin-1 (Nrg1) and its receptor v-erb-a erythroblastic leukemia viral oncogene homolog 4 (ErbB4) may play a role in neuropsychiatric diseases. However, the downstream signaling events and relevant phenotypic consequences of altered Nrg1 signaling in the nervous system remain poorly understood. To identify small molecules for probing Nrg1-ErbB4 signaling, a PC12-cell model was developed and used to perform a live-cell, image-based screen of the effects of small molecules on Nrg1-induced neuritogenesis. By comparing the resulting phenotypic data to that of a similar screening performed with nerve growth factor (NGF), this multidimensional screen identified compounds that directly inhibit Nrg1-ErbB4 signaling, such as the 4-anilino-quinazoline Iressa (gefitinib), as well as compounds that potentiate Nrg1-ErbB4 signaling, such as the indolocarbazole K-252a. These findings provide new insights into the regulation of Nrg1-ErbB4 signaling events and demonstrate the feasibility of using such a multidimensional, chemical-genetic approach for discovering probes of pathways implicated in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Letian Kuai
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142
| | - Xiang Wang
- Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, Colorado 80309
| | - Jon M. Madison
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142
| | - Stuart L. Schreiber
- Chemical Biology Program, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142
| | - Edward M. Scolnick
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142
| | - Stephen J. Haggarty
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142
- Center for Human Genetic Research, Massachusetts General Hospital, Department of Neurology, Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114
| |
Collapse
|
49
|
Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatry 2009; 14:601-13. [PMID: 18268500 DOI: 10.1038/mp.2008.7] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dorsolateral prefrontal cortex (dlpfc) is strongly implicated in the pathogenesis of schizophrenia (SCZ) and bipolar disorder (BPD) and, within this region, abnormalities in glutamatergic neurotransmission and synaptic function have been described. Proteins associated with these functions are enriched in membrane microdomains (MM). In the current study, we used two complementary proteomic methods, two-dimensional difference gel electrophoresis and one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis followed by reverse phase-liquid chromatography-tandem mass spectrometry (RP-LC-MS/MS) (gel separation liquid chromatography-tandem mass spectrometry (GeLC-MS/MS)) to assess protein expression in MM in pooled samples of dlpfc from SCZ, BPD and control cases (n=10 per group) from the Stanley Foundation Brain series. We identified 16 proteins altered in one/both disorders using proteomic methods. We selected three proteins with roles in synaptic function (syntaxin-binding protein 1 (STXBP1), brain abundant membrane-attached signal protein 1 (BASP1) and limbic system-associated membrane protein (LAMP)) for validation by western blotting. This revealed significantly increased expression of these proteins in SCZ (STXBP1 (24% difference; P<0.001), BASP1 (40% difference; P<0.05) and LAMP (22% difference; P<0.01)) and BPD (STXBP1 (31% difference; P<0.001), BASP1 (23% difference; P<0.01) and LAMP (20% difference; P<0.01)) in the Stanley brain series (n=20 per group). Further validation in dlpfc from the Harvard brain subseries (n=10 per group) confirmed increased protein expression in SCZ of STXBP1 (18% difference; P<0.0001), BASP1 (14% difference; P<0.0001) but not LAMP (20% difference; P=0.14). No significant differences in STXBP1, BASP1 or LAMP protein expression in BPD dlpfc were observed. This study, through proteomic assessments of MM in dlpfc and validation in two brain series, strongly implicates LAMP, STXBP1 and BASP1 in SCZ and supports the view of a neuritic and synaptic dysfunction in the neuropathology of SCZ.
Collapse
|
50
|
Reite M, Teale P, Rojas DC, Reite E, Asherin R, Hernandez O. MEG auditory evoked fields suggest altered structural/functional asymmetry in primary but not secondary auditory cortex in bipolar disorder. Bipolar Disord 2009; 11:371-81. [PMID: 19500090 PMCID: PMC2905653 DOI: 10.1111/j.1399-5618.2009.00701.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Objective physiological indices independently characterizing affective and schizophreniform psychoses would contribute to our understanding of the nature of their relationships. Magnetoencephalography (MEG)-based metrics of altered structural/functional asymmetry in the superior temporal gyrus have previously been found to characterize schizophrenia at the level of both the primary auditory (AI) and the secondary auditory (AII) cortex. This study examines these markers in patients with bipolar disorder, with the goal of improved understanding of the patterns of brain asymmetry that may independently characterize affective and schizophreniform psychosis. METHODS We studied 17 euthymic bipolar subjects and 17 matched controls. Auditory evoked fields were generated by both 40 Hz auditory stimuli eliciting steady state gamma band (SSR), activating the AI cortex, and discrete 1 kHz tone pips, activating the AII cortex. MEG was recorded from the hemisphere contralateral to the ear stimulated using a 37-channel MEG system. Source location estimates were calculated in both left and right hemispheres. Neuroanatomical location estimates for medial Heschl's gyri were determined from magnetic resonance images for correlation with MEG source locations. RESULTS Bipolar subjects failed to demonstrate normal laterality of SSR AI responses, indicating altered patterns of asymmetry at the level of AI cortex, but demonstrated normal asymmetry of AII responses (right anterior to left). Medial Heschl's gyri centroids were similarly lateralized in both groups, however (right anterior to left), dissociating function from structure in the AI cortex in the bipolar group. CONCLUSIONS The findings are compatible with altered functional/structural relationships, including diminished left-right hemisphere asymmetry of the AI, but not the AII cortex in bipolar disorder. In schizophrenia, both the AI and AII cortices exhibit such derangements; thus, the findings support both shared and nonshared features of auditory cortical disruption between the two disorders. This functional disorganization may help explain previously reported decreases in amplitude and phase synchrony of SSR gamma band responses in bipolar subjects, suggesting impaired neocortical synchrony in AI, possibly at a cortico-thalamic level, but perhaps not extending to heteromodal association cortex, and may relate to the cognitive impairments found in bipolar disorder.
Collapse
Affiliation(s)
- Martin Reite
- Neuromagnetic Imaging Laboratory, Department of Psychiatry, University of Colorado, Denver, 13001 East 17th Place, P.O. Box 6508, Mail Stop F546, Aurora, CO 80045, USA.
| | | | | | | | | | | |
Collapse
|